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REVIEW

Discovering microproteins: making the most of ribosome profiling data
Sonia Chothania, Lena Hoa, Sebastian Schafera, and Owen Rackhama,b,c

aProgram in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore; bSchool of Biological Sciences, University of 
Southampton, Southampton, UK; cThe Alan Turing Institute, The British Library, London, UK

ABSTRACT
Building a reference set of protein-coding open reading frames (ORFs) has revolutionized biological process 
discovery and understanding. Traditionally, gene models have been confirmed using cDNA sequencing and 
encoded translated regions inferred using sequence-based detection of start and stop combinations longer 
than 100 amino-acids to prevent false positives. This has led to small ORFs (smORFs) and their encoded proteins 
left un-annotated. Ribo-seq allows deciphering translated regions from untranslated irrespective of the length. 
In this review, we describe the power of Ribo-seq data in detection of smORFs while discussing the major 
challenge posed by data-quality, -depth and -sparseness in identifying the start and end of smORF translation. 
In particular, we outline smORF cataloguing efforts in humans and the large differences that have arisen due to 
variation in data, methods and assumptions. Although current versions of smORF reference sets can already be 
used as a powerful tool for hypothesis generation, we recommend that future editions should consider these 
data limitations and adopt unified processing for the community to establish a canonical catalogue of 
translated smORFs.
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Small open reading frames: missed key players in 
biology

To date, there are ~ 22,000 genes annotated in Ensembl [1] that 
contain an open reading frame (ORF, known ORFs) and which are 
considered ‘protein coding’. However, the bioinformatic process 
by which these annotations were made included assumptions 
about ORF length. This was done in order to account for the fact 
that start and stop codons appear at random in the genome and as 
such there are many millions of genomic loci that have ORF-like 
characteristics [2] (i.e. they are between a start and a stop codon), 
but only a fraction of these are translated. As such, in the past, to 
ensure reliable prediction of ORFs a threshold of ~ 100 amino 
acids has often been used to ensure the validity of predicted 
ORFs. Not including this assumption would have resulted in the 
annotation of many millions of possible small ORFs (smORFs), 
most of which would have been false positives. However, as 
a consequence we have systematically missed those ORFs that 
are shorter than 100 amino acids, despite there being no biological 
reason for their exclusion (see Figure 1).

Evidence is increasingly accumulating that we may have 
underestimated the prevalence of smORFs. Genes previously 
annotated as non-coding (e.g. long-non coding RNAs or 
lncRNA) have been found to be frequently associated with 
mono- and polysomal complexes [3], suggesting many more 
may be translated. Indeed, dozens of smORF encoded peptides 
(SEPs) have been found in lncRNAs playing a role in a diverse 
range of biological functions (referred to as novel unannotated 
ORFs or nuORFs). Early studies showed that translation of 

smORFs located upstream of known ORFs (referred to as 
upstream ORFs or uORFs) could play a cis-regulatory effect 
(both negative and positive) [4] on the host ORF, and more 
recently uORFs have also been shown to encode functional 
peptides [5–7]. Equally, small open reading frames have been 
identified downstream of ORFs (known as dORFs). Taken 
together, these discoveries raise the question of to what extent 
might a significant subset of the millions of possible small 
ORFs (smORFs) in the ‘dark matter’ of the genome that were 
previously disregarded are actually translated?

A step-change in smORF identification came with the intro
duction of Ribosome profiling (or also called Ribo-seq) [8,9]. This 
technology can generate a snapshot of ribosome locations across 
the transcriptome with single nucleotide resolution. For the first 
time, Ribo-seq provided experimental evidence to estimate global 
translation levels in vivo [10–12]. Importantly, Ribo-seq was able 
to demonstrate prevalent binding of ribosomes to RNA outside of 
the known coding regions. However, there have been disagree
ments in the field as to what extent of the previously annotated 
non-coding regions are translated [13,14]. As a result, the chal
lenge that remains is how to accurately distinguish active transla
tion from ribosome occupancy. Specifically, we outline the data, 
methods and assumptions used in development of reference sets of 
translated smORFs in humans, the current versions of such sets 
and the overlap across them. We highlight the relative sparseness 
of data despite the large number of studies, and following from 
this, argue for combining multiple Ribo-seq datasets to improve 
signal-to-noise ratios for smORF identification. We also caution 
against simply aggregating predictions into consensus smORF 
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reference sets without standardizing the smORF annotation pipe
line. Moving forward, we recommend pooling Ribo-seq data and 
adopting unified processing standards to establish a high-quality, 
consensus smORF catalogue for the research community. It 
should be noted that computational tools to detect translated 
smORFs, classification of smORFs and exemplar SEPs have been 
reviewed in detail previously [15–17] and as such will not be 
covered in detail here.

The 3-nt periodicity observed using Ribo-seq has 
revolutionized smORF detection

Many RNA-ribosome interactions are unrelated to translation, 
and thus polysome profiling is not ideal to discover translated 
ORFs [18]. Detection of smORFs using Ribo-seq is potentially 
more accurate and has been a very active field of research since 
its discovery. Initial studies have shown that ribosome footprints 
can be found in the known ORFs but also within regions that had 
previously been annotated as ‘non-coding’. However, these initial 
studies did not take advantage of the single-nucleotide resolution 
of Ribo-seq data [19]. Active translation of mRNA leads to ribo
some footprints with inferred P-sites on the first nucleotide of 
every codon (or every three base-pairs)-, thus forming a three- 
nucleotide periodic signal (or periodicity, see Figure 2) observed at 
a nucleotide resolution. In contrast, a random ribosomal occur
rence (i.e. one that is unrelated to mRNA translation) leads to 
footprints in all nucleotides uniformly. Periodicity observed by 
combining the ribosome protected fragments (RPFs) around the 
start and stop of known ORFs has been routinely used to examine 
the data quality [12,20–23]. Subsequently, scanning the transcrip
tome for regions with 3-nt periodicity has been at the heart of 
smORF detection [24]. 

Current catalogues present a wide-range and 
inconsistent sets of smORFs

Numerous catalogues listing smORFs using existing Ribo-seq 
data either to detect or to validate translation have been 

generated but disparities in data and methods used to identify 
actively translated smORFs can lead to large differences in the 
annotation of translated smORFs. Across the seven catalogues 
[25–32] described (discussed in detail below) in this review, we 
found that less than 50% of the smORFs could be found in at 
least two catalogues when using the host gene ID as a reference. 
This overlap was reduced to ~ 27% for two catalogues and less 
than 10% for three catalogues when using the exact stop-site 
position to test for repeated identification (see Figure 3). 
Although repeated identification in independent catalogues do 
not necessarily provide unequivocal evidence for the veracity of 
smORF, and likewise a smORF found only in one catalogue 
may still be bona fide, the question remains as to how large is 
the consensus and what should be considered a reference set 
for future studies. The lack of a consensus reference set such as 
those for known ORFs (i.e. Uniprot [33], Refseq [34] and 
Ensembl [1]) creates challenges for researchers trying to under
stand the function and clinical utility of smORFs.

In an ideal-scenario, translated smORFs would be identified 
based on continuous 3-nt periodicity from their start-to-end (as in 
Figure 2) using Ribo-seq as evidence of their translation. In reality, 
currently available individual sample data are very sparse with 
uneven coverage across ORFs. The computational methods 
being developed to detect smORFs have numerous approaches 
for accounting for this sparseness, with varying levels of strin
gency. As a result, large differences in smORF detection can occur 
simply by fluctuations in data quality and smORF detection algo
rithms, something that is often overlooked. As the field moves 
towards constructing a consensus set of smORFs these aspects 
must be considered and accounted for. For this reason, this review 
will focus on the challenges faced by the community and best 
practices that the field should consider adopting to reach the goal 
of a canonical smORF catalogue.

Are the underlying data of high-resolution or not?

Ribo-seq data provide an unprecedented resolution of transla
tion but the available data is very sparse both due to technical 

Figure 1. Length distribution of known protein-coding ORFs. Barplot showing frequency of ORFs annotated in Ensembl (hg38) according to their length. Frequency 
of ORFs longer than 1200 amino-acids are not shown.
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Figure 2. Three-nucleotide periodicity profile of ribosome footprints during active translation of an open reading frame (ORF). A. Schematic showing translation 
initiation on the canonical start codon (AUG, methionine) of the ORF, B. translation elongation i.e. translation of the subsequent codons (only one codon shown) of 
the ORF after initiation, and, C. translation termination with ribosome drop-off or disassembly at the stop-codon (UGA here). E-site: exit site, P-site: peptidyl-site, 
A-site: aminoacyl site. Sequenced ribosome protected fragment (RPF) can be used to infer the position of the P-site and subsequently the codon that is being 
translated. Inferred P-site position is coloured based on the ORF frame. Frame 1: dark blue, frame 2: light blue, frame 3: orange.
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and biological limitations. The sample library prep requires 
high input material and has several optimization steps that 
can potentially generate distortions as described previously 
[24]. Thus, sequenced Ribo-seq reads undergo several pre- 
processing steps including strict quality control and only 
selected high-quality usable reads are used to infer P-site 
positions for smORF detection (see Figure 4). Short and low- 
quality sequenced reads are discarded after trimming sequen
cing adaptors followed by mapping of remaining reads to 
a database of contaminant sequences including ribosomal 
RNA (rRNA) and transfer RNA (tRNA). Such contaminant 
sequences are very prevalent in Ribo-seq data, making this 
step very detrimental to the usable read depth. This typically 
results in as low as only ~ 10% [35] of the sequenced reads to 
be usable. From the remaining reads about ~ 20–80% are 
reported as uniquely mapped to the transcriptome in various 
studies, considering the short read length and varying data 
quality [36]. Apart from these pre-processing steps, QC such 
as length distribution and 3-nt periodicity is also tested. The 
ribosomal footprint during active translation is expected to 
have a fixed read length range depending on the digestion 
conditions [37], cellular stress [38] or elongation inhibitor 
[39]. In a typical Ribo-seq experiment, when cycloheximide 
is used as the elongation inhibitor, the most prevalent foot
prints should be ~ 29 nt long in eukaryotic cytosolic ribo
somes [8]. Failure to observe these footprints with high 3-nt 

periodicity in coding sequences may suggest that the data is 
not reliable for identifying actively translated mRNA. Despite 
this, many datasets, generated under normal conditions, using 
cycloheximide, fail to achieve these periodic footprints (see 
Supp. Figure 1). Overall, a high number of input reads and 
optimization is required to obtain high-depth and -quality 
Ribo-seq data that can be used to detect smORF translation 
accurately and such data are limited.

A low usable read-depth of Ribo-seq leads to low coverage 
across all codons in ORFs. For instance, in the human genome, 
there are more than 12 million codons [1] within known proteins. 
Using a single sample of say 20–30 million sequenced reads 
typically yields roughly less than, 5–10 million uniquely mapped 
reads (after QC filters as described above). Therefore, this barely 
provides one read per codon or P-site location. In reality, this 
number would be even lower as the coverage is confounded by 
several factors. First, coverage depends on expression levels and 
ORFs that are lowly expressed would be more difficult to detect 
[40]. Second, Ribo-seq typically has non-uniform coverage across 
codons leading to no-information available for many codons and 
thus making it impossible to determine if those regions were 
translated. For instance, the availability of tRNAs can influence 
the speed of translation by stalled or rapid translation of certain 
codons, thus leading to higher or lower RPFs mapping to those 
codons, respectively [41]. Previous studies have shown that there 
is non-uniform coverage across the length of ORFs [42,43]. 

Figure 3. Overlap of smORFs identified across different published catalogues. Stacked barplot showing percentage of smORFs found in various catalogues. A smORF 
is considered as found in multiple catalogues if it shares the host gene ID (from five catalogues) or shares the same stop-site position (from seven catalogues). 
Catalogues which did not have host gene symbol information in the downloads file were omitted [28,32] for the host-gene overlap.

Figure 4. Pre-processing steps and quality control of sequenced Ribo-seq reads. 1. Sequencing adaptors are trimmed from input reads. Short and low-quality reads 
are discarded. 2. Contaminant sequences such as reads mapping to ribosomal RNA (rRNA) or transfer RNA (tRNA) are discarded. 3. Remaining reads are mapped to 
the transcriptome. 4. Quality control steps are carried out such as 3-nt periodicity (a) and length distribution (b).
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Theoretically, with sufficient depth and population size, 100% 
codons would have Ribo-seq read coverage in the translating 
frame, providing a clear picture of smORF translation 
(Figure 5A). In reality, various biological and technical biases 
lead to non-uniform coverage and limited usable read depth. 
This leads to absence of coverage in several codons. A study 
showed that in individual Ribo-seq samples, 84% codons are 
covered only for the top 10 expressed genes while for top 1000 
expressed genes, only 36% of the codons are covered [45]. Here, 
we show an example of a validated uORF encoded protein 
(SEHBP) [44], using individual sample data only ~ 20% of codons 
are covered (>1 inferred P-site read) providing no evidence of 
translation for more than 80% of codons (see Figure 5B). For 
another example, which is a predicted smORF with no known 
function, likely a false-positive smORF, also shows only ~ 33% 
codons covered (Figure 5C). In both the examples, it becomes 
impossible to confirm the translation of the full length of the 
smORF to differentiate it from artefacts or false positives as well 
as accurately define its coordinates. Overall, currently available 
Ribo-seq samples do not have uniform coverage at the nucleotide- 
resolution throughout the smORF, thus making it difficult to 
confirm smORF translation and its coordinates accurately. As 
such, Ribo-seq can illuminate new translated regions of the gen
ome, but challenges and questions remain as to how best to 
achieve this.

Is the ORF actively translated?

Several metrics and tools have been developed to detect 
actively translated smORFs keeping in mind the sparseness 

of Ribo-seq data. Since there is not enough depth at the 
nucleotide-resolution, translation of a smORF is often tested 
by a summarized view of reads mapped to the smORF. For 
instance, if a smORF is translated, it would be expected to 
have RPFs of length distribution similar to the distribution 
within known coding sequences in the given Ribo-seq experi
ment and the Fragment length organization similarity score 
(or FLOSS) [14] uses this information to determine a smORFs 
coding potential. Similarly, if a smORF is translated it is 
expected to have more reads mapped within the ORF as 
compared to after its stop codon. The Ribosome release 
score (or RRS) [13] quantifies the ratio of the reads in the 
putative smORF and the following 3’UTR normalized to the 
lengths of the regions and mRNA read depth to test for 
a smORF’s coding potential. TOC classifier [46] uses 
a random forest classifier that models on scores such as 
RRS, FLOSS, inside-out (metric to test nucleotides covered 
by Ribo-seq inside the ORF and outside the ORF) and trans
lational efficiency.

The above metrics look for features of translation holisti
cally, but they do not confirm the continuous translation of 
the smORF. The ideal scenario for smORF detection would be 
observing periodic RPFs over every codon in the smORF. 
However, because of the shallowness in a typical Ribo-seq 
library, observing such 3nt-periodicity over every codon of 
an ORF is rare. For this reason, many of the published 
methods use strategies to overcome this, for example, com
bining the observations across codons or alleviating the shal
lowness. For example, Ribotaper [47] uses a multitaper 
strategy followed by a Fourier transform as a way to detect 

Figure 5. Evidence of translation using Ribo-seq inferred P-sites is sparse across ORFs. A. Barplot showing theoretical distribution of inferred P-site positions (#P-sites) 
and codon-coverage based on Ribo-seq reads in a given smORF. B. Barplot showing inferred P-site positions and codon coverage across the smORF region using 
individual samples from hepatocytes [31] for a known and functionally validated smORF SEHBP [44] (B), and a false positive smORF located at chromosome 2: 
70,087,581 –70,087,706 (C). D-E. barplot showing inferred P-site positions and codon coverage for smORF shown in B (D), and C (E) using merged high-quality Ribo- 
seq data [31]. SmORF region is marked in dark blue. P-sites in frame 1: dark blue, frame 2: light blue and frame 3: orange.
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periodic signals across all codons. Spectre [48] uses a sliding 
window approach and RibORF [49] bins the ORF into regions 
based on the available read coverage within the ORF. 
RiboWave [50] uses a chi-square test to test for in-frame 
P-site enrichment in the ORF in comparison to the flanking 
regions. RiboNT [51] compares data in the translating frame 
with the two other frames using student t-tests to infer pre
sence of periodicity in smORFs. ORFscore [52] compares the 
ORF’s RPF distribution in each frame with an equally sized 
uniform distribution using a chi-square test and additionally 
quantifies % of in-frame positions with reads. Alternatively, in 
order to alleviate shallow usable data, PRICE [53] attempts to 
rescue reads such as multi-mappers that would otherwise be 
discarded. Another tool, RiboHMM [54], assigns modified 
emission probabilities for base positions with missing data 
according to the current state of the HMM (e.g. TES, 5’UTS, 
TIS). Rb-Bp [55] applies LOWESS smoothing for each frame 
to account for sparse or spiky nature of Ribo-seq data. These 
tools allow the detection of actively translated smORFs with 
3-nt periodicity throughout the length of the smORF, 
although care must be taken while interpreting the results as 
they largely depend on data depth and quality.

Where does the smORF start?

The 3-nt periodicity confirms the translating frame and the first 
encountered stop in this translating frame determines the end of 
the smORF encoded protein. Determining the start is relatively 
more difficult. Alternative start-sites and non-canonical start- 
codons [56] increase the complexity of start-site determination 
and subsequently can exponentially increase the number of pos
sible isoforms for a given smORF. The sparseness in Ribo-seq data 
makes it difficult to decipher the most-used start of the smORF 
and for simplicity, several studies apply prior assumptions such as 
limiting possible start to only AUG or selecting the most 5’ AUG 
(or longest) as the start-site [49,52,57,58]. Some studies use Ribo- 
seq data coverage to determine the most used start-site such as 
SmProt [30], which uses the highest ‘–framebest’ score from 
RiboTISH [59] tool to select the isoform with the best coverage. 
Shorter isoforms have a bias towards full coverage, thus another 
study used the 5’ most start-site which maintains uniform cover
age of periodicity [31]. Variants of Ribo-seq protocol have been 
also developed for enrichment of translation initiation (TI) sites 
using drugs that preferentially inhibit translation initiation only 
such as harringtonine [9], lactimidomycin [60] and lactimidomy
cin followed by puromycin [61,62] which is a translation inhibitor 
that effectively depletes elongating ribosomes. TIS data analysis 
suggests that the majority of ribosomes initiate translation at 
cognate AUG codons, followed by near cognate start codons 
CUG, GUG with ~ 50% initiating at non-AUG start-codons 
[9,61,62]. Therefore, is critical to consider non-canonical initia
tion sites when defining smORF start-sites. Computational tools 
to combine TI-seq and Ribo-seq data from the same biological 
samples have been developed such as ORF-Rater [63], which uses 
a regression fit against an expected profile of start- and stop- 
signals. TISCA [64], which combines translation complex sequen
cing (TCP-seq) to determine the 40S ribosomal subunit decreas
ing point along with global TI-seq to more accurately determine 
initiation sites. RiboTISH [59], detects initiation sites and also 

quantifies differential initiation site usage across conditions using 
TI-seq data. Similar to the issue with detecting translation, the 
start-site determination is also largely dependent on data-depth 
and quality. Different tools deploy varying prior assumptions and 
methods to determine the start of a given smORF and care must 
be taken in interpreting results and combining them.

Pooling data to define a reference set of smORFs

The ultimate goal of smORF detection is to identify potential 
peptides encoded by genomic regions that could be incorporated 
into our knowledge base of known proteins. As smORFs were 
previously excluded only for technical practicality, with new tech
nologies providing high-resolution for translation of smORFs, 
their reference set development efforts should be treated no 
different from known ORFs. Historically, gene models were 
defined using cDNA data which transitioned to using RNA-seq 
for improved accuracy of 3’UTR boundaries and splice junctions. 
With the aim to obtain a reference set for a given species, these 
Ensembl gene models were built based on a pooled dataset with 
RNA-seq reads merged across tissue-types. Individual tissue data
set gene-models were only used for further refining [65]. In stark 
contrast, currently, most studies defining smORF sets use single- 
samples to detect smORF coordinates. This causes two problems: 
First, considering the sparseness of Ribo-seq data there is not 
enough evidence to distinguish translation from noise in indivi
dual sample data, increasing the false positives (Figure 5B,C). 
Second, this has led to multiple cell- and tissue-type reference 
sets instead of a common reference set for a given species. To 
address the first issue, a study combined three replicates of the 
same tissue in arabidopsis for smORF detection increasing the 
codon coverage to 90% [66]. Similarly, technical or biological 
replicates have been merged in few other studies [30,32]. To 
address both the issues, in humans, recently a study pooled 
reads from all published and newly generated high-quality and 
QC-passed human Ribo-seq from 11 primary human cells and 
tissues. This led to 1.3 billion inferred P-sites which covered ~ 80% 
codons across the genome [31]. Trips-Viz [67] also uses aggre
gated data from multiple studies to improve detection and then 
uses several features (such as number of codons in regions of 
interest with higher in-frame reads as compared to out-of-frame, 
drop-in Ribo-seq density at the stop codon and so on) to rank 
smORFs for high-confidence of translation. Pooling data in these 
studies provided increased evidence to define the boundaries of 
smORFs and allowed testing for their translation more stringently. 
Specifically, for the two examples described above in Figure 5, by 
pooling data the codon coverage increased from ~ 20% to ~ 80%. 
Using the merged data, the difference between a truly translated 
and false positive is clearer, such as SEHBP (a functionally vali
dated, stable peptide [44], Figure 5D) which is known to be 
translated has a clear translation signature opposed to a false- 
positive smORF shown in Figure 5E does not have a translation 
signature even after merging data. In order to demonstrate the 
global impact of sequencing depth on ORF detection, we down
sampled published pooled Ribo-seq data [31] to 6 million and up 
to 1.3 billion inferred P-sites. We then quantified the detection 
rate of known ORFs and predicted smORFs from the same study 
across a range of total inferred P-sites (using a codons-in-frame 
value of 70% as a detection threshold) (see Figure 6A–D). This 
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demonstrates that with ~ 6 million inferred P-sites, the vast 
majority of ORFs and smORFs have poor codon coverage 
(Figure 6A) and as a result only ~ 3% (or 431) of expressed 
known ORFs and ~ 1% (or 103) of smORFs would be detected 
(Figure 6C,D). Pooling samples increase codon coverage and thus 
enable us to have stricter quality control by testing each codon 
within the smORF for translation. Thus, allowing higher resolu
tion to identify the translation as well as the accurate start of the 
smORF. As smORF reference sets are in early stages, similar to 
what has been done historically for gene models, smORFs initial 
set can be defined using pooled data which can be further refined 
in future versions.

Current reference sets use different data, methods, 
and assumptions

Previous cataloguing efforts have allowed researchers access to 
reference sets of SEPs that can be further tested in a given 
system of interest (see Table 1). OpenProt [25] and the 
uORFdb (version 2) [26,27] identify all possible ORFs and 
uORFs, respectively, using a 3-frame translation of the tran
scriptome while grouping similar ORFs. OpenProt further 
annotated several pieces of evidence such as protein conserva
tion based on sequence homology, expression based on mass- 
spectrometry-based proteomics and translation based on 

Figure 6. Increase in codon coverage and codons-in-frame within ORFs using pooled Ribo-seq data. A-B. Violin plot showing codon coverage (>1 Ribo-seq read with 
inferred P-site in the given codon) found with varying usable read depth for known ORFs from Ensembl (A) and smORFs identified in a previous study (B). C-D. 
Barplots showing number of ORFs with more than 70% codons-in-frame using data with varying usable read depth for known ORFs from Ensembl (C) and smORFs 
identified in a previous study [31] (D). Usable read depth is the number of inferred P-sites obtained after filtering low-quality sequencing reads, adaptor trimming, 
removal of contaminant sequences such as rRNA and selecting only uniquely mapped reads for the read lengths that show 3-nt periodicity for annotated ORFs 
(between 28–30 bp). Known ORFs were filtered for expression (TPM > 1 in at least one sample).
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Ribo-seq. Specifically, they used published Ribo-seq data to 
detect smORFs using PRICE [53] and found only 5,696 of the 
461,462 reported on OpenProt with evidence of translation. 
Not all ORF sequences may be translated and have just 
occurred by chance, thus such comprehensive approaches 
have the risk of increased type I error (more false positives). 
SmProt (version 1) [68], uORFdb [26,27], MetamORF [28] 
curate smORFs detected using Ribo-seq from the literature 
and collate them on a database. Such “union sets’’ have 
allowed an overview of smORFs found in any published 
study but led to millions of smORFs catalogued together 
that were identified from dataset with varying quality and 
3-nt periodicity leading to many false positives. In order to 
reduce the false positives, a study limited their data-source to 
only seven high-quality Ribo-seq dataset and combined the set 
of smORFs published in these individual studies [29]. This 
study presents the Phase I smORFs as the ones found in at 
least two studies, or an ‘intersection set’ as high-confidence 
smORFs based on repeated identification. Although replic
ability can show repeated evidence of a Ribo-seq signal, it 
does not indicate that the ones that are not replicated are not 
translated. Both the union set and intersection set approaches, 
combined smORFs identified using varying data quality, dif
ferent computational methods and detection criterion leading 
to discrepancies in what is considered as a translated smORF.

In order to have a consistent definition of smORF transla
tion, several studies detect smORFs in a unified manner by 
uniformly processing data and applying common tools and 
presets [30,32,69]. SmProt [30] (version 2) re-processes 96 
human Ribo-seq samples and detects translated smORFs 
using RiboTISH [59] on individual samples. Sorfs.org uses 
34 human Ribo-seq datasets and uses an in-built pipeline to 
detect smORFs present in individual samples [32]. To account 
for low-depth in datasets, sorfs.org employs a lenient thresh
old of 10% in-frame coverage and tests for recurrence of 
smORFs in multiple datasets. These studies have allowed 
standardized identification of smORFs but due to sparseness 
in Ribo-seq samples makes it difficult to distinguish between 
actual translation and noise as described previously. In 

humans, a recent study merged high-quality Ribo-seq data 
to mitigate the sparseness in the data [31] and detected 
smORFs with a unified pipeline. Pooled data allowed higher 
codon coverage, thus allowing to test each codon within the 
smORF and stricter QC, only selecting smORFs which have 
a high 3-nt periodicity (>75%), percentage of codons-in-frame 
(>71%) and drop-off score (>92%). Uniform processing and 
standard definition allows for a more straightforward inter
pretation of catalogued smORFs as opposed to combining 
smORF lists from different dataset which were called using 
a variety of data, tools and assumptions.

What have current smORF sets told us about nuORFs, 
uORFs, and dORFs?

The reference sets for smORFs, while still evolving, have 
already enhanced our knowledge on their global properties 
such as their overall abundance, expression, start-site usage 
and evolutionary conservation. In humans, uORFs (upstream 
ORFs) have been found to be most abundant followed by 
nuORFs (novel unannotated ORFs), and dORFs (downstream 
ORFs) being the fewest in number across the human genome 
[29,31]. Human smORFs have also been shown to bemore 
recently evolved, especially the ones in lncRNAs [19,31]. The 
generation of a reference set has also allowed quantification of 
expression levels and translation efficiency for each smORF 
and several studies have found that uORFs are generally 
comparable to known ORFs in their translation levels and 
TE whereas dORFs have been found to have lower levels as 
compared to known ORFs [31,49]. NuORFs have been found 
to have low translation levels but the translation-efficiency for 
nuORFs is nearly comparable to known ORFs [49]. With 
regard to start-site usage, generally more than half of the 
translated smORFs have been found to use non-AUG start- 
codons [9,61,62]. Specifically, uORFs are more enriched for 
non-canonical start-codons compared to other ORFs [9,49]. 
Translated uORFs have been found more often in genes 
encoding transcription factors [31], oncogenes and cellular 
receptors [70]. These global properties have allowed us to 

Table 1. Comparison of data, methods and presets used to catalogue human smORFs.

Uses Ribo- 
seq to 
detect 
smORFs

No. of 
Ribo-seq 
samples 
used

Cell- 
types/ 
tissues

Uniform Re- 
processing of 
Ribo-seq data

Individual/ 
merged 
data used

Method 
to call 
smORFs

Method to 
select most 
probable 
isoform

Start- 
codon

Length 
threshold 
(amino 
acids)

No. of 
smORFs 
reported

uORFs: 
nuORFs: 
dORFs 
reported

sorfs.org Y 34  
dataset

Various Y Only 
replicates 
merged

Unified N AUG and 
near- 
cognate

10 555,927 -

SmPROT v2 Y 96  
samples

Various Y Only  
replicates 
merged

Unified Using the – 
frame best 
score

AUG and 
near- 
cognate

5 327,995 NA

OpenPROT N NA NA N NA NA N AUG 30 461,462 NA
MetaMORF Y - Various N Various Various N Various No 664,771 -
uORFdb N NA Various N NA NA N AUG and 

near- 
cognate

No >2.4 million Only uORFs

Mudge et al. Y 139 
samples

Various N Various Various Longest ORF AUG 16 7,264 3771: 
2208: 
565

Chothani et al. Y 187  
samples

Various Y Merged Unified Longest ORF 
with best 
uniformity 
score

AUG and 
near- 
cognate

No 7,767 5280:  
1652: 802
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view smORFs and known ORFs together to be able to under
stand the similarities and differences between them, their 
potential functions and evolutionary history.

Apart from global properties of smORFs, several different 
possibilities of functions of their translation have been 
described. NuORFs have been generally linked to generate 
functional proteins that are important in humans such as 
for heart development [71], muscle formation [72–74], regu
lating calcium uptake in muscle [75,76] and play important 
roles in the mitochondria [77–79]. For smORFs in the 
untranslated regions of known protein-coding ORFs there 
are various alternative fates [80]. UORFs have been frequently 
shown to repress the known ORF on its transcript and few 
global studies show lower readout of protein levels for known 
ORFs containing uORFs using proteomics readout [70,81] 
and translation-efficiency [49,58]. Although, several nega
tively regulated uORF-mORF pairs exist, translation of 
uORFs has also been shown to positively affect the translation 
of the main ORF [4,82,82,83] and protect the translation of 
the known ORF under stress [84]. Recently, several human 
genome-wide studies have highlighted that although there do 
exist several uORF-mORF pairs that are negatively regulated, 
the predominant trend shows uORF and mORF being regu
lated in the same direction. This has been shown indepen
dently by various studies, such as for cell-identity of 
fibroblasts, endothelial cells, kidney, brain and heart tissues 
[31] and in disease conditions such as fibrosis [85] and in 
glioblastoma [5] and dilated cardiomyopathy patients [10]. 
Another study found deleting start-codon for peptide- 
forming uORFs only minimally increased the expression of 
the main CDS indicating non repressive function of uORFs 
[6]. uORFs are also increasingly being shown to encode pep
tides with important functions in disease [5], and form com
plexes or directly inhibit other proteins [6,7]. Apart from 
uORFs, dORFs, which are found on the 3’UTR of known 
ORFs, have been shown to enhance translation of the main 
ORFs and the number of dORFs rather than the length is 
shown to further enhance this effect [86]. A study also showed 
a dORF encoded a protein that is a cancer antigen [87]. While 
these studies show evidence for the possible function of 
smORFs and their encoded peptides, with 1000s of smORFs 
detected in Ribo-seq with translation signatures identical to 
known proteins, more studies are needed to understand the 
roles of nuORFs, uORFs and dORFs.

Road ahead and challenges

There is a growing concern in the scientific community that 
the current reference set of long ORFs may have overlooked 
a significant number of smORFs. This has led to a community 
call for the development of a translated smORF reference set 
that can be integrated into existing annotations [29]. 
Currently available Ribo-seq data have shallow-depth and 
are sparse in nature and thus to detect smORFs accurately it 
requires pooling of data, as has been presented for human 
smORFs [31]. This study uniformly processed, analysed and 
pooled high-quality data to obtain >80% codon coverage on 
the human translatome and thus was able to detect a reference 
set of smORFs that have undergone a stricter quality control 

by testing each codon for translation. Moving forward, we 
recommend pooling existing high-quality data for a given 
species to account for the data-sparseness and uniformly 
identify smORFs to obtain a reference set. All subsequent 
newly generated Ribo-seq data should then be added to the 
original data release to re-analyse and identify smORFs 
further improving the annotation. To ensure stability across 
versions, two primary areas need to be considered. First, the 
approach to updating and sharing revisions and second, the 
method for ranking smORFs to provide a confidence level. 
Learning from the experience of incorporating known ORFs 
into the genebuild can help in developing a smORF reference 
set. Ensembl is updated every 3 months and significant 
updates, such as the most recent genome build was updated 
after 5 years. Similarly, smORF reference set updates should 
be released every few years with new Ribo-seq data pooled 
with previous data builds to identify and update the smORF 
reference set. Criteria should be established to add or remove 
smORFs. Instead of removing smORFs with slightly reduced 
scores in newer versions, they could be assigned a confidence 
level based on consistent or improved uniformity and peri
odicity in reference set updates. A translation support level 
(TrSL) can be assigned to smORFs similar to transcript sup
port level (TSL) scores provided by Ensembl for transcripts. 
With technological advances from cDNA sequencing to RNA- 
seq with longer sequencing reads, revisions of gene models 
have now become fairly consistent. Future revisions of 
smORF reference sets will also need to be dynamic and aim 
to follow the same trajectory, and thus, be updated with not 
only new data but also incorporate advances in Ribo-seq 
protocols improving data resolution and quality.

A reference set of translated smORFs can be a powerful 
tool for discoveries of new proteins or regulatory control 
elements. Previously conducted studies to understand known 
ORFs can be used as blueprints to discover smORF biology. 
Here, we provide a few examples of applications in each layer 
of protein production, i.e. DNA, RNA and protein. At the 
DNA level, a study showed uORF start-creating and stop- 
disrupting mutations are under strong negative selection 
[88]. smORFs can be tested for presence of GWAS and 
eQTLs and have been reviewed for cardiovascular disorders 
recently [89]. At the RNA level, the smORFs can be used for 
differential expression analysis using RNA-sequencing and 
Ribo-seq to understand their role in a given biological system 
[12]. Generation of a reference set incorporated along with 
the known ORFs would allow researchers to use publicly 
available RNAseq data to infer which smORFs are differen
tially regulated in a given disease or perturbation of interest 
without having to perform Ribo-seq and call smORFs in every 
new system of study. For those interested to investigate 
lncRNA coding potential, several sequence- and evolutionary 
conservation-based tools [90,91], and more recently deep 
learning models, have been developed [92,93] to identify 
cryptic ORFs using in silico prediction. As has recently 
become evident, lncRNAs tend to encode young proteins 
[19] and thus traditional ORF prediction methods which 
rely on length-biased and evolutionary conservation-biased 
methods would not be able to discern coding potential effi
ciently [46]. Instead, Ribo-seq provides experimental evidence 
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for translation within lncRNAs and thus smORF reference 
sets can be used as a direct-measure of lncRNA coding poten
tial. Tools such as ‘Is it a smORF?’ available in http://smorfs. 
ddnetbio.com/ can be used to identify lncRNAs encoding 
high-confidence translated smORFs using ribo-seq evidence. 
Lastly, protein-level studies can help us delineate whether 
a smORF makes a stable peptide or is degraded. Thus, several 
studies have verified the evidence of their presence in mass 
spectrometry data [11,25,31,32,52,94–96], but due to technical 
limitations [97,98] for detecting short peptide sequences accu
rately, best practices for methods to detect smORFs in-vivo 
are still developing. CRISPR-based screening strategies have 
also been deployed to identify smORFs essential for cellular 
growth [6,99] and cancer cell survival [99]. Depending on the 
number of smORFs that can be directly used for testing, the 
reference set may need to be filtered to obtain a more feasible 
number. The activity and role of smORFs can be better under
stood with such studies and thus have the potential to uncover 
new insights into cellular processes as well as disease mechan
isms. As our understanding of smORFs grows, they can be 
incorporated into widely used databases such as Uniprot, 
GENCODE and Ensembl similar to the approach taken with 
known protein-coding ORFs, further expanding our knowl
edge of the translatome and proteome.
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