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High-gain amplification is accompanied by amplified 
spontaneous emission (ASE), and the modeling and simu-
lation of ASE in bulk amplifiers with diffraction-limited 
single-mode pump and signal is the focus of this paper. Fig-
ure 1 illustrates the configuration we consider. The drawn 
beams and their parameters are only examples, except that 
the undistorted pump focal plane is at the crystal midpoint 
in our simulations. The ASE generated by the pumped crys-
tal is not shown. ASE is often undesirable (e.g., it adds noise 
to a signal and can compress the gain and deplete the pump 
power). A further advantage of the small pump volume of 
single-mode pumping is that it also reduces the ASE for a 
given level of signal gain.

Even if undesirable, ASE can also be helpful for assess-
ing the gain spectral shape, bandwidth, and level. For a 
single mode (including single polarization), the single-sided 
power spectral density (PSD) of the ASE, SASE [W/Hz] is 
proportional to the inversion factor nsp (also known as the 
spontaneous-emission factor), photon energy hν, and to 
(Glin – 1), where Glin ≥ 1 is the linear gain. Thus,

SASE (λ) = (Glin(λ) − 1)nsp (λ) h� (1)

1  Introduction

Single-mode end-pumping of “bulk” traveling-wave optical 
amplifiers is attractive since it opens up for tight pump-beam 
confinement and high gain in relatively long gain media, in 
which a poor beam-quality would make the pump power 
prohibitive. Thus, a 17-mm-long Yb: YAG crystal reached 
a weakly saturated gain of nearly 40 dB at 1030 nm when 
pumped with 35 W of power at 920 nm from a single-mode 
Nd-doped fiber laser [1]. In the mid-infrared, Cr2+:ZnSe 
has emerged as a favored material for stimulated emission 
in a broad wavelength range of around 2–3  μm, peaking 
at 2.4 μm [2]. Gain as high as 45 dB in the spectral range 
2.3–2.6 μm has been reported with pulsed pumping [3]. The 
pump was an Er-doped fiber laser, few-moded with good 
beam quality.
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Abstract
We investigate and use the beam propagation method with equivalent input noise for the simulation of narrow-band 
amplified spontaneous emission (ASE) and signal amplification in continuous-wave Cr2+:ZnSe non-waveguiding “bulk” 
amplifiers with non-saturating signal and ASE in different configurations with weak reabsorption. Both the incident pump 
at 1901 nm and the signal at 2410 nm were diffraction-limited gaussian beams. We implemented the equivalent input noise 
as random realizations of one photon per gridpoint, and showed that this leads to one noise photon per mode. Simula-
tion results of between 100 and 6000 realizations were ensemble-averaged to determine the power spectral density of the 
ASE in a Monte Carlo approach. We validated the approach by comparing results for single-mode and multimode fiber 
amplifiers to those obtained with well-established fiber amplifier models. We also calculated the beam quality of the ASE, 
M2

ASE , from its spatial distribution. We found that under some conditions, but not all, M2
ASE

2 can serve as an estimate 
of an effective number of ASE modes and, together with the ASE PSD, predict the achievable signal gain. It is also pos-
sible to evaluate the PSD per unit solid angle due to spontaneous emission from the input noise seeding, and we found 
agreement down to the single-photon level.
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at some wavelength λ in the ASE spectrum. See, e.g. [4–6], 
(Eq. 58) [7], (Eq. 2.33). We will consider the case when the 
wavelength is that of a signal to be amplified, but it could be 
different. The equation applies to waveguiding single-mode 
amplifiers such as fiber amplifiers as well as to each of the 
modes of a multimode amplifier. The total PSD of the ASE 
is given as the sum over all spatial and polarization modes, 
each with its own value of Glin and nsp. However, the varia-
tions in nsp may be negligible. For example, in the limit of 
negligible ground-state absorption (in a four-level system 
or completely inverted three-level system) and background 
loss, nsp = 1. See, e.g. [6], or [7] (Eq. 2.34). Then, nsp is the 
same for all modes. The Petermann K-factor (also known as 
the excess spontaneous-emission factor) [5, 6, 8, 9] can also 
enter into Eq. (1), but we assume that it equals unity.

Alternatively, it is possible to assign an effective number 
of modes which results in the total PSD when multiplied 
by nsp and Glin – 1 (≈ Glin at high gain). Although the gain 
used for such a calculation can be chosen in different ways, 
we will use the highest gain that the amplifier can attain at 
a considered wavelength, for a specific set of pump param-
eters. For nsp, the choice of a representative value is simpli-
fied if its modal dependence is small. A complication for 
non-waveguiding, “bulk,” amplifiers is that the definition of 
a mode (or modal set) is no longer unique [4]. However, it 
may still be possible to use the square of the beam propa-
gation factor of the ASE, M2

ASE , as a replacement for the 
effective number of modes [10]. Thus, we hypothesize that 
for an amplifier that supports multiple modes,

SASE = (Glin − 1) nsp M2
ASE

2

= (Glin − 1) nsp M2
ASE, x M2

ASE,y

� (2)

where all quantities are evaluated at some wavelength λ. 
The second equality allows for non-circular beams, but our 
geometry will be circularly symmetric, and we will use the 
product M2

ASE, x M2
ASE,y  interchangeably with M2

ASE
2. 

Another difficulty is that the gain in a bulk amplifier depends 
on the signal beam alignment, which therefore must be opti-
mal. On the other hand, this makes Eq. (2) potentially more 
attractive as a means to calculating the highest attainable 
gain from SASE and M2

ASE , which may be reasonably sim-
ple to measure with standard laboratory equipment. These 
parameters are therefore interesting to simulate. Note also 
that the pump configuration is not optimized in our simula-
tions, e.g., in terms of pump waist radius. In other words, 
our simulations use signal alignments which are first opti-
mized for the different considered pump configurations, 
though these are in turn generally not optimized.

Simulations of ASE in bulk amplifiers have sometimes 
assumed that the gain is spatially homogeneous and / or 
employed ray approximations (ray tracing) [4, 10–14]. 
However, with diffraction-limited pumping, the high gain 
and thus the ASE may be restricted to only a few modes. 
Since diffraction becomes important in this regime, the 
wave-based beam propagation method (BPM, also known 
as the Feit-Fleck algorithm) [15–19] has then been used 
to describe the propagation, e.g., in x-ray / free-electron 
lasers [17, 19] and other lasers [18]. These are typically 

Fig. 1  Schematic of the pump and signal beam arrangements, with-
out crystal (i.e., in air; top) and with the Cr2+:ZnSe crystal placed in 
the beams (bottom). The incident beams are collinear, concentric, and 
diffraction-limited with gaussian profiles and are characterized by the 
air-values of the beam waist radius w0 (at e–2 intensity) and the position 

zf of the focal plane relative to the crystal input plane. Disregarding 
distortions induced by the crystal, the crystal shifts the focal planes to 
n zf, where n is the refractive index. The undistorted pump focal plane 
is at the crystal midpoint in our simulations. The ASE generated in the 
crystal is not illustrated
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mirror-less, thus actually ASE-sources operating with short 
pulses of high gain. In those simulations, the ASE was 
seeded by spontaneous emission occurring throughout the 
pumped gain medium, in bespoke BPM-implementations. 
The spontaneous emission is a rapidly varying random pro-
cess, so the ASE varies rapidly in time. Averaging can be 
used to evaluate, e.g., coherence and stationary and slowly 
varying parameters, in the pulsed as well as continuous-
wave (cw) regime.

As an alternative to seeding the ASE throughout the gain 
medium, SASE can be evaluated by seeding the input of each 
mode of an amplifier by nsp input noise photons (equivalent 
to nsp photons per second per hertz). See, e.g. [7], (p. 77) 
[9, 20]. This approach is often used for waveguiding ampli-
fiers and follows directly from Eq. (1). Specifically, Glin nsp 
hν = SASE + nsp hν when Glin > 1. When Glin > > 1, SASE ≈ Glin 
nsp hν, but more generally, one can just subtract nsp photons 
from Glin nsp hν to arrive at SASE.

In this paper, we investigate the use of BPM with equiva-
lent input noise of one photon per gridpoint (correspond-
ing to nsp = 1) and, accordingly, simulate narrow-band 
ASE (including spontaneous emission) in a cw Cr2+:ZnSe 
amplifier with homogeneous line broadening and low 
reabsorption. Both the incident pump and the signal are 
diffraction-limited gaussian beams as illustrated in Fig. 1. 
We calculate the beam propagation factors and the power 
spectral density of the generated ASE at the signal wave-
length (2410 nm) for different crystal parameters and, as an 
important objective, assess if Eq. (2) can be used to deter-
mine the highest attainable gain, which we also calculate. 
The ASE and signal are assumed to be weak enough to 
avoid gain saturation. This was confirmed in most cases. To 
handle the stochastic nature of the ASE, the results are aver-
aged over between 100 and 6000 realizations in a Monte 
Carlo method. This approach for simulating the ASE PSD 
does not require any modes to be defined and can be used 
with any BPM code, as long as the equivalent input noise 
is correctly implemented. We validated our approach by 
comparing BPM simulation results on fiber amplifiers in 
the single-mode and multimode regime to those of a well-
established fiber-amplifier simulation method, as well as to 
analytic calculations of the spontaneous emission and reach 
agreement down to the single-photon-level. In addition, we 
compare different methods for determining M2

ASE  from the 
calculated ASE and find good as well as poor adherence to 
the hypothesized Eq. (2).

This paper is structured as follows. Section 2 details our 
simulation approach and parameters. Section 3 validates the 
approach through comparisons to well-established simula-
tions for optical fiber amplifiers and to analytic calculations 
of spontaneous emission. We also compare different meth-
ods for calculating M2. Section 4 presents our simulations 

of Cr2+:ZnSe-amplifiers. Section  5 discusses the accuracy 
of our simulation approach and criteria for the validity of 
the hypothesized Eq. (2) and summarizes approximate cal-
culations on the amount of saturation by the ASE (“self-
saturation”). ASE would only saturate the gain in one of the 
simulated configurations, and then only for gain of ~ 50 dB 
or more. In Appendix 1, we show that an equivalent input 
noise of one photon per gridpoint leads to an equivalent 
input noise of one photon per mode (or any normalized light 
distribution).

We do not consider damage limitations and neglect 
thermo-optic and other refractive-index effects. These can 
lead to beam aberrations [1, 10, 14] and are often important 
in Cr2+:ZnSe [2], although they can be less significant in 
the quasi-continuous-wave regime and in gain media with 
lower thermo-optic coefficient.

To reduce the length of the main text, some less cen-
tral material is covered in Supplement 1. This includes the 
numerical grid, the use of a constant inversion factor (nsp = 
1), and the determination of the effective ASE bandwidth 
which we then use to estimate the ASE self-saturation. It 
also includes a section on thermally generated radiation. 
This could be a factor in experiments but is found to be 
negligible at 2410 nm. Furthermore, we discuss advantages 
and disadvantages relative to distributed ASE-seeding [9, 
17–20] in different regimes.

2  Calculation approach

We use BPM as implemented in R P F Power [21] v. 7 to 
calculate the propagation of a signal wave and an ASE 
wave, both at a wavelength of 2410 nm, and a pump wave 
at 1901 nm in the steady-state regime in Cr2+:ZnSe crystals. 
Table 1 lists the parameters we used for the bulk amplifier, 
as well as parameters used in fiber simulations used for vali-
dation, except when otherwise stated. BPM propagates the 
complex field of a wave in a number of steps, each of which 
is split into a refractive and a diffractive part (e.g., [15–19]). 
RP Fiber Power is a commercial software package which 
uses the paraxial approximation and Fourier transformation 
for the diffractive part of a BPM propagation step. It does 
not support seeding of the ASE by spontaneous emission 
occurring throughout the gain medium. Instead, we used its 
script language to implement seeding with equivalent input 
noise with random complex amplitude in the input grid-
points of the BPM simulations. Each gridpoint is seeded 
with noise of the same complex normal distribution, cor-
responding to one noise photon (nsp = 1). Appendix 1 shows 
that for a waveguide structure, nsp photons per gridpoint 
leads to the well-known condition of nsp equivalent input 
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multipath interference patterns with more pronounced spa-
tial variations of the gain. However, both the pump and sig-
nal distributions remain smooth in the gain medium, with 
only minor interference effects. Furthermore, the signal 
is assumed to be sufficiently weak to avoid saturation and 
make spatial hole-burning negligible, so the signal does not 
influence the propagation of the other waves. Under these 
conditions, the coherence (or linewidth) is not expected to 
significantly affect the evolution of the pump and signal.

Also the ASE is assumed to be sufficiently weak to avoid 
self-saturation and therefore not affect the pump or signal. 
This means that we can evaluate the ASE PSD (numerically 
equal to the power in 1 Hz of bandwidth) at only a single 
wavelength without regard to the rest of the ASE-spectrum. 
We also disregard backward-propagating ASE with the 
same motivation and treat all waves as co-propagating in 
the forward direction. Accordingly, a single BPM run calcu-
lates a forward-propagating monochromatic wave related to 
the ASE PSD for a specific realization of the random noise-
seeding. This is then repeated a number of times with dif-
ferent realizations of the random noise-seeding. The spatial 
intensity-distributions of the different runs are then ensem-
ble-averaged [17–19] to arrive at an uncorrected approxi-
mate ASE PSD. The number of runs that is needed depends 
on the parameters and targeted accuracy. Between 100 and 
6000 were found to be sufficient. As a correction, Eqs. (1) 
& (2) suggest that we should subtract nsp photons per grid-
point from the ensemble-averaged result. However, a large 
fraction of the gain medium is unpumped and thus weakly 
absorbing, e.g., ~ 0.45 dB or ~ 10% in our default bulk crys-
tal. This makes the use of Eqs.  (1) & (2) complicated. In 
fact, because of the absorption in unpumped regions, the 
power (in 1 Hz) of the equivalent input noise can exceed the 
uncorrected output when the input grid is large or the gain 
is low. Therefore, as the correction, we subtract the unab-
sorbed ~ 0.9 photons (in the default crystal and with nsp = 1) 
from the ASE intensity in each point of the output grid. We 
refer to this as subtraction of residual equivalent input noise 
(REIN). Given the random nature, this can lead to negative 
intensities in some gridpoints, but all evaluated quantities 
of primary interest involve integration of the intensity over 
several gridpoints, so negative intensity in a few points is 
acceptable.

After the REIN subtraction, we finally arrive at the spa-
tial distribution of the ASE PSD, from which the beam qual-
ity ( M2

ASE) and PSD (SASE) can be calculated. Also note 
that with appropriate scaling of the Fourier transformation, 
the REIN is the same in real space and in Fourier space (e.g., 
0.9 photons per gridpoint), so we subtract the same REIN 
also in Fourier space (notably for evaluation of the farfield 
ASE intensity distribution).

noise photons per guided mode [5, 7, 9]. This was also con-
firmed by simulations.

The refractive part of a BPM step includes the amplifica-
tion and pump absorption by the gain medium. A fraction 
n2 of the laser-active ions is in the upper laser level, and 
the remaining ions are in the lower laser level in our simu-
lations. The local intensities of the propagating waves are 
used in standard rate equations to calculate the excited frac-
tion, from which the local gain and absorption follow. The 
numerical grid we use is square with equidistant samples.

BPM is intrinsically monochromatic, so the results are 
valid for monochromatic pump and signal. Coherence can 
be important since higher coherence can lead to stronger 

Table 1  Optical and numerical parameters used in simulations
Quantity Symbol Value
Pump wavelength 1901 nm
Wavelength for ASE PSD and 
signal

λ 2410 nm

Photon energy of ASE and 
signal

hν or hνs 82.4 zJ

Absorption cross-section at 
pump wavelength

σa
p 7.38 × 10–23 m2

Stimulated-emission cross-
section at pump wavelength

σe
p 3.85 × 10–23 m2

Absorption cross-section at 
signal wavelength

σa
s 0.0873 × 10–23 m2

Stimulated-emission cross-
section at signal wavelength

σe
s 12.94 × 10–23 m2

Signal power Negligible
Inversion factor nsp 1
Fiber parameters
Pump power 200 kW (essentially 

infinite)
Fiber length 50 mm
Cr2+-concentration 3.66 × 1024 m–3

Refractive index of cladding 2.45
Core numerical aperture 0.0313
Core radius, SMF 23.19 μm
Core radius, MMF 85.77 μm
Bulk crystal parameters
Crystal length 17 mm
Refractive index n 2.45
Cr2+-concentration 7.03 × 1024 m–3 (Case A, 

C, D)
14.05 × 1024 m–3 (Case B)

Grid parameters
Transverse spacing of 
gridpoints

Δx = Δy 16 μm (Case A & B)
8 μm (Case C & D and 
fiber simulations)

Size of transverse window 512 μm (Case A & B)
2048 μm (Case C & D 
and fiber simulations)

Step length 50 μm (fiber simulations)
85 μm (Case A)
42.5 μm (Case B)
100 μm (Case C & D)
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A second method corresponds to a slit scanned across the 
beam in orthogonal directions, whereby the beamwidth is 
determined from the positions on different sides of the peak 
at which the value reaches some fraction of the peak value. 
We used full-width at half-maximum (FWHM) values and 
divided those by (2 ln 2)1/2 ≈ 1.177. In case of a diffraction-
limited gaussian beam, this converts the FWHM-values to 
the 2nd -moment values of the radius w0 and divergence 
half-angle θ0. Other levels are also possible, for example, a 
fractional intensity level of 1/e2 is often used. Although the 
level is important, we did not consider it carefully, but found 
that a lower level led to better agreement in Eq. (2) in one 
investigated case.

Our beams are expected to be circularly symmetric and 
in a third method, “circle-scan”, we evaluated the quantity 
Ic (r) = 1

2π

∫ 2π

0 I (rcosθ − x0, rsinθ − y0) dθ  in polar 
coordinates (r, θ). Here, I (x, y) is the ASE PSD distribution 
in the exit plane and (x0, y0) is the beam center-of-mass. 
The units of I and Ic are W Hz–1 m–2. The beam radius was 
then taken to be the value of r where Ic (r) reaches 1/e2 of 
its peak value. The divergence was similarly evaluated from 
the farfield.

With these choices of fractional intensity levels, circle-
scanning led to M2

ASE-values that adhered better to Eq. (2) 
than slit-scanning did. The ISO-approach proved the worst 
in this respect.

We ignore Fresnel reflections. These can be significant, 
e.g., 17.7% at a refractive index of 2.45, but can be reduced 
by an anti-reflection coating.

Our simulations neglect thermo-optic (thermal-guiding) 
and polarization effects. As it comes to the PSD of the ASE, 
our calculations are for a single polarization. The pump and 
signal polarizations are irrelevant for Cr2+:ZnSe and other 
isotropic gain media, and the total ASE is twice that in a 
single polarization. Since there are no nonlinear effects for 
the ASE and signal (including saturation), their propagation 
is linear in our simulations.

Thermo-optic effects (extending to stress-optic effects 
and bulging of end-facets) and resulting beam aberrations 
are often important in Cr2+:ZnSe [2], although they can be 
less significant in the quasi-continuous-wave regime and in 
gain media with lower thermo-optic coefficient. We expect 
that the inclusion of such effects, as well as ASE self-satu-
ration and other nonlinearities, to be challenging and com-
putationally intensive. The nonlocal nature and delayed 
response of thermo-optic effects contribute to the difficulty. 
Iterative approaches may well be required, and these can 
have problems with convergence. Any notional solution 
may even be unstable. Having said that, input-end noise 
seeding is fundamentally compatible with BPM solvers that 
include nonlinearities such as thermo-optic effects, e.g., if 

For simplicity, we use the approximation nsp = 1. More 
precisely, in a homogeneously excited gain medium [4, 6, 
7],

nsp = N2 σe
s / (N2 σe

s − N1 σa
s − α)

= n2 σe
s/ [n2 ( σe

s + σa
s ) − σa

s ] � (3)

Here, N1 and N2 [m–3] are the number densities of Cr2+-ions 
in the lower and upper laser level, σa

s and σe
s are the absorp-

tion and emission cross-sections, and α [m–1] is the back-
ground loss. In the second equality, we assume that only two 
levels are populated and that α = 0, which we do through-
out this paper. In the presence of reabsorption (σa

s > 0), nsp 
increases if n2 and thus the gain decrease. However, because 
σa

s is small compared to σe
s at 2410 nm in Cr2+:ZnSe, nsp 

exceeds 1.1 only for gain below 4.2 dB with our default 
crystal parameters and uniform excitation. Our gain is gen-
erally much higher than that, which justifies the approxima-
tion nsp = 1. See the Supplement 1 for further discussions of 
nsp and its use in the BPM input grid.

The propagated ASE field and thus its PSD SASE that we 
calculate include spontaneous emission, Ssp. This can be 
measured and is also readily evaluated from simulated and 
/ or measured quantities such as the absorbed pump power 
and the number of excited ions, when reabsorption can be 
neglected. In cases and regions where the emission has expe-
rienced little amplification, Ssp may even dominate over the 
contribution from stimulated emission to SASE. This is true 
even though only the fraction of the spontaneous emission 
emitted at angles supported by the numerical grid contrib-
utes to SASE, as calculated with BPM. This fraction depends 
on the transverse grid spacing and was of the order of 0.1%.

Whereas SASE is just a simple sum over all points in the 
output numerical grid, the calculation of M2

ASE  is more 
intricate. We found the details to be critical and considered 
three different calculation methods, based on the ensemble-
averaged ASE intensity distributions at the exit plane of the 
gain medium and in the farfield.

To calculate the farfield distribution, we implemented a 
lens as a parabolic phase function at the crystal exit plane 
for the purpose of minimizing the divergence of the aver-
aged beam, so that the exit plane coincides with the waist of 
the beam after the lens. We Fourier-transformed the lensed 
field (i.e., the complex amplitude) for each realization. The 
overall farfield intensity-distribution was calculated as the 
ensemble-average of the intensity-distributions of all the 
realizations (with REIN subtraction). This process was per-
formed for a range of focal powers, and the focal power 
yielding the smallest divergence was ultimately selected.

One method we used to calculate the exit-plane beam-
width, divergence, and subsequently M2

ASE , was a sec-
ond-moment (“D4σ”) approach similar to ISO 11,146 [22]. 
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3.66 × 1024 m–3. The cross-sections for stimulated emission 
and absorption, as well as the pump wavelength (1901 nm) 
and signal / ASE wavelength (2410  nm), were set to the 
values used for the Cr2+:ZnSe bulk crystal (Table 1). These 
parameters are not realistic for a fiber but are fine for vali-
dation and largely agree with those of the bulk crystal. The 
pump power was 200  kW in the fiber simulations. This 
choice is also unrealistic but ensures that n2 is clamped at 
the pump transparency level of σa

p / (σa
p + σe

p) = 0.657. At 
this excitation level, the gain becomes 1.35 dB/mm if all of 
the signal propagates within the gain medium (unity over-
lap). Furthermore, from Eq. (3), nsp = 1.0035, which is only 
0.015 dB higher than nsp = 1 used in the BPM simulations.

The BPM simulations further used a longitudinal step 
length of 50 μm and 256 × 256 transverse points with a spac-
ing of Δx = Δy = 8 μm (window size 2048 μm). The grid thus 
supports propagation angles up to θg = λ / (2 n Δx) = 61.5 mrad 
(in the x-direction) in the paraxial approximation at an in-
fiber wavelength of 2410 nm / 2.45 = 984 nm. Note also that 
256 × 256 = 65,536 transverse points, so with seeding of one 
noise photon per point in the input grid, the total seeding is 48.2 
dB higher than the single-photon seeding of a single mode.

In these simulations, only the pump (which is forward-
propagating) affects the excitation level, and there is no 
gain-saturation from backward-propagating light. Thus, the 
forward-propagating waves at a longitudinal position z are 
independent of backward-propagating waves at that posi-
tion, and independent of what happens at locations further 
forward. It follows that the output parameters (e.g., power) 
from a fiber of a specific length L is equal to the value of 
those parameters at z = L in a longer fiber. We took advan-
tage of this in the MPE-simulations but not in the BPM 
simulations, to save on scripting efforts.

3.1  Single-mode fiber amplifier

The single-mode fiber had a 46.38-µm diameter core with 
V = 2.40 at the pump wavelength. For the BPM-calculations, 
the waist radii w0 were 25.52 μm and 30.94 μm for pump 
and signal. For the MPE-calculations, both the pump and 
signal were launched as LP01-modes. Figure 2 shows how 
the small-signal gain and ASE evolves along the fiber, with 
the two methods. The ASE is plotted in terms of SASE / hν, 
i.e., the ASE PSD at the signal wavelength in one polariza-
tion, relative to the signal photon energy. For the MPE cal-
culations, this practically coincides with the signal gain for 
gain over ~ 13 dB. At lower gain, SASE / hν + 1 still coincides 
with the gain, thus following Eq. (1).

The gain calculated with BPM is similar to that calcu-
lated with the MPE equations. The 6% reduction in loga-
rithmic gain (the dB gain) in Fig. 2 may be caused by the 
sampling, i.e., a lower overlap in the BPM grid. With each 

this capability is added to an updated version of RP Fiber 
Power (stimulated Raman scattering and the nonlinear Kerr 
effect are already available in RP Fiber Power).

BPM with thermo-optic effects is treated in [23]. Refer-
ence [19] also discusses some related issues. Both references 
describe temporally resolved simulations, which although 
computationally demanding can overcome problems related 
to the simulation of thermal diffusion and convergence with 
bidirectional saturating waves including ASE. Ultimately, 
the choice of method depends on what nonlinear effects 
are considered. Input-end noise seeding may be compatible 
with all nonlinear effects and simulation methods, but even 
if so, it may not be best.

We also point out that although the implementation of the 
noise seeding was in itself relatively straightforward, the over-
all programming effort was considerable. There were some 
2200 lines of code in the RP Fiber Power script language, 
with large fractions devoted to loops and post-processing (to 
calculate M2-values of the signal as one example), writing 
output files, plotting, etc. This was a modification and exten-
sion of a script for the simulation of a bulk amplifier kindly 
provided by Dr. Rüdiger Paschotta. Mathematica was used 
for plotting and further postprocessing of the output from 
RP Fiber Power, e.g., for ensemble-averaging, calculating 
M2-values of the ASE in different ways, and identifying opti-
mal signal parameters. This comprised ~ 1500 lines of code.

3  Validation through simulations of fiber 
amplifiers

We simulated fiber structures with a well-defined number 
of guided modes and well-defined gain confined to the core 
with BPM and compared the results to those obtained with 
conventional equations for the evolution of modal power in 
the incoherent regime, which we refer to as “modal power 
evolution”, MPE. See, e.g., [7, 20, 24]. The MPE-equations 
are well proven for the simulation of gain and ASE in fiber 
amplifiers and can therefore be used for validation. We used 
RP Fiber Power also for the MPE simulations. In contrast to 
our BPM simulations, the MPE-implementation seeds the 
ASE with spontaneous emission distributed along the fiber. 
The MPE-calculations used analytic LP-modes. The BPM-
calculations used a configuration like that in Fig.  1, with 
diffraction-limited gaussian input beams. These were now 
focused on the fiber input face (zf = 0), with beam waist 
radii w0 obtained with Marcuse’s formula for the mode field 
radius of the fundamental mode [25].

We simulated a single-mode fiber and a multimode fiber. 
Both fibers were 50-mm long and had a cladding refrac-
tive-index of 2.45. The cores had a numerical aperture 
(NA) of 0.031 and were Cr2+-doped with a concentration of 
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analytically, as the PSD generated per excited ion and unit 
solid angle in one polarization, hν n2 σe

s / λ2 (from [26]) 
multiplied by the solid angle supported by the BPM grid 
(= 4 × 0.06152 sr = 0.0151 sr in the paraxial approximation) 
and the number of excited ions. Within 1 dB, Ssp agrees with 
SASE at low gain, and we conclude that SASE as calculated 
with BPM is dominated by spontaneous emission at low 
gain. Figure 2 shows that the calculated PSD (SASE) remains 
correct even when it becomes nearly 40 dB lower than the 
uncorrected PSD (before REIN subtraction), in regimes 
where the PSD is dominated by spontaneous emission and 
the amplification of the spontaneous emission is low. This 
further confirms the accuracy of the REIN subtraction.

The beam propagation factors M2
ASE  are plotted in 

Fig.  2 (b), as evaluated from the BPM-simulations in the 
three different ways. For an analytic LP01-mode, M2 is close 
to unity, e.g., < 1.1. The 2nd -moment calculation yields 
M2

ASE-values which are much larger. We attribute this dis-
crepancy to low levels of background light at large distances 
from the core, which is known to increase the calculated 
M2-value (e.g., [27]). In further calculations (not shown), 
the second-moment calculation came close to expected 
values of M2

ASE  for gain > 70 dB, when the background 
is sufficiently low relative to the light guided by the core. 
By contrast, the slit-scan and circle-scan determinations of 
M2

ASE  seem reasonably accurate for gains of ~ 12 dB or 
more, which is reached at around 15 mm of propagation. We 
also found that the transverse profile of the signal (launched 
with a gaussian profile), and thus its M2-value, stabilized 
after around 20 mm of propagation.

gridpoint representing an area of Δx Δy = 64 µm2, the core 
area corresponds to 26.40 gridpoints, but the sampling was 
such that only 25 gridpoints were within the core. We also 
see that the ASE-level in the BPM calculations agrees with 
that of the MPE-calculations for gain above around 24 dB. 
Furthermore, for BPM-calculations, the ASE and gain lev-
els are within 2 dB of each other, when the gain exceeds ~ 25 
dB of gain (Glin ≈ 320). Thus, SASE is within 2 dB of ~ 320 
photons at Glin = 320. This is 23 dB lower than the 65,536 
of residual photons in the unpumped output (i.e., the REIN), 
which we subtract from the ASE intensity. This indicates 
that our subtraction of the residual equivalent input noise is 
accurate at that point. Note that in our fiber simulations, the 
number of photons in the REIN is practically the same as the 
number of input noise photons, since the average doping of 
the simulated structure and thus the absorption of the input 
noise photons across the whole grid is negligible (the doped 
core makes up only a fraction of 4.03 × 10–4 of the simulated 
volume).

For lower gain, unguided spontaneous emission (which 
may experience a small amount of amplification insofar as 
it overlaps with the core) increases relative to the ASE. The 
spontaneous emission couples primarily to the large number 
of unguided modes, including those supported by the BPM 
grid. Thus, the spontaneous emission contributes much 
more to SASE as calculated with BPM than to that calculated 
with MPE, which only includes the spontaneous emission 
captured by the guided mode. Therefore, SASE will differ. 
The PSD of the spontaneous emission, Ssp (without any 
amplification) is also shown in Fig.  2. We calculated this 

Fig. 2  Single-mode fiber. (a) The gain, ASE level SASE / hν (before and 
after subtraction of residual equivalent input noise) and SASE / hν + 1 
simulated with BPM and MPE as indicated. For the MPE-simulations, 
the curves for SASE / hν + 1 and the gain are indistinguishable. The ana-

lytically calculated spontaneous-emission level Ssp is also shown. (b) 
M2

ASE  from BPM-simulations, evaluated as a 2nd -moment (x and y), 
with slit-scanning (x and y), as well as with circle-scanning
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From these calculations on single-mode fibers, we con-
clude that our approach for the simulation of signal gain 
and ASE is fundamentally correct and accurate at suffi-
ciently high gain. The ASE PSD as calculated with our BPM 
approach is within 2 dB of that obtained with the standard 
MPE-model for fiber amplifiers for gain > 25 dB. Further-
more, the relation between the gain and ASE PSD agrees 
with Eq.  (1) for gain > 24 dB. Similarly, the beam propa-
gation factor of the ASE agrees with the expected M2

ASE  
≈ 1 when the gain is sufficiently high. This was for gains 
above ~ 12 dB in case of circle-scanning and slit-scanning 
but gain as high as 70 dB was required for the 2nd -moment 
method. We attribute the deviations at lower gain to back-
ground light in the form of unguided spontaneous emission. 
At low gain, there is good agreement between SASE and the 
PSD calculated analytically for spontaneous emission, both 
regarding their total level and their distribution. Our results 
also highlight the significance of accurately subtracting the 
residual unpumped background, which we succeeded with.

3.2  Multimode fiber amplifier

Next, we consider a multimode fiber amplifier. The physical 
and numerical parameters are the same as for the single-
mode fiber, except for the larger core diameter of 171.5 μm. 
The core supports 12 LP-modes at the signal wavelength 
(V = 7.00). For the BPM-calculations, the waist radii w0 
of the incident gaussian beams were 61  μm (pump) and 
63.25 μm (signal), which match the radii of the fundamen-
tal modes. These are well confined to the core for V = 7.00. 
The high pump power (200 kW) means the intensity suf-
fices to excite the Cr2+-ions to the pump transparency level 
even at the edge of the core. There are 357 gridpoints within 
the core. Figure 4 illustrates results of BPM simulations for 
20 mm of propagation. Figure 5 shows the calculated gain 
and SASE (BPM & MPE), M2

ASE  (BPM), and Ssp (analytic). 
When all modes are excited by the same signal power, the 
overall gain for 50 mm calculated with MPE becomes 62.5 
dB, which can be viewed as the average modal gain. The 
LP01-gain (MPE) reaches 66.6 dB, which closely approxi-
mates the potential gain of 67.4 dB with unity overlap. The 
BPM simulations yield a gain in close agreement (66.7 dB). 
The second-moment M2-value for the signal (i.e., not ASE) 
becomes 1.06, consistent with the supposition of fundamen-
tal-mode propagation in the BPM simulations.

Along the length of the fiber (Fig. 5), the MPE-calcula-
tions lead to an ASE PSD (relative to the photon energy) 
in LP01 which agrees closely with the LP01-gain once this 
exceeds ~ 13 dB (distances > 10  mm). As with the single-
mode fiber, the agreement extends also to lower levels of 
gain, if an extra photon is added to the ASE in LP01. Further-
more, the total ASE PSD becomes 12 times the average gain 

To further test the validity of the BPM-calculations and 
the subtraction of the REIN, we compared the spatial dis-
tribution of the calculated PSD [W Hz–1 m–2] to analytic 
calculations of the spontaneous emission from 15  mm of 
fiber. For this, SASE was averaged over 4000 runs. Figure 2 
(a) suggests that spontaneous emission may dominate the 
calculated SASE at this length. Furthermore, at this length, 
the simplifying assumptions of negligible amplification and 
boundary effects that these analytic calculations rely on are 
fulfilled in a reasonably large part of the output field. Note 
also that there is no reabsorption in the undoped cladding. 
The analytic evaluation only included the emission in the 
angular range supported by the BPM grid and a single polar-
ization (like the BPM simulations). Figure  3 shows Ic (r) 
(defined previously) before and after REIN subtraction, as 
well as the analytic evaluation. For small radial coordinates, 
the BPM calculation is dominated by light that has trav-
eled in the core or through the core at a small angle over a 
relatively long length (e.g., up to 4.6 mm at 10 mrad), thus 
experiencing significant amplification. This results in stron-
ger ASE which is not captured by the analytic calculation. 
Light at larger radii has traveled at larger angles and is thus 
less affected by amplification. Radial positions > 0.15  mm 
show good agreement, and we conclude that following 
REIN subtraction, the BPM PSD distribution agrees well 
with the spontaneous emission distribution in regions with 
little ASE.

Whereas the REIN does not contribute to the actual ASE 
and is therefore subtracted, the spontaneous emission does 
contribute, e.g., in the form of a spatially wide background 
(56% of the power is outside the core in the BPM simula-
tions of Fig. 3). This background can affect M2

ASE , and the 
2nd -moment value is particularly sensitive. We note that 
the spatial distribution of the spontaneous emission can 
be affected also by factors such as cladding diameter and 
coating loss, which we did not consider and are often not 
included in simulations.

Fig. 3  Single-mode fiber, 15 mm. Power spectral density per unit area 
according to analytically calculated spontaneous emission as well as 
BPM simulations before and after REIN subtraction
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1 dB above 36 dB. For higher gain the curves become indis-
tinguishable. Thus, our method for calculating the ASE PSD 
with BPM is valid for high gain. For low gain, unguided 
spontaneous emission appears to contribute significantly to 
SASE. As demonstrated for the single-mode fiber, SASE may 

for values above ~ 13 dB, i.e., the MPE-calculations lead to 
an average ASE per mode that agrees with the average gain.

When it comes to the BPM-calculations, the resulting 
ASE PSD agrees with that of the MPE-calculations for all 
modes within 3 dB for average gain above 27 dB and within 

Fig. 4  Multimode fiber, 20 mm. Examples of ASE PSD distribution in 
spatial and angular (spatial frequency) domain calculated with BPM. 
(a) Output intensity of a single realization with random input noise 
including REIN. (b) Intensity of a single realization along the fiber 
cut in the plane y = 0. (c) Output intensity (including REIN) ensem-
ble-averaged over 1000 realizations. (d) Cut through center of (c) at 

y = 0 before and after REIN subtraction. (e) Farfield intensity distribu-
tion (i.e., in spatial-frequency domain) ensemble-averaged over 1000 
realizations. The plot includes the REIN of one photon per gridpoint. 
The divergence measured as the circle-scanned radius has been mini-
mized with a lens. (f) Cut through center of (e) before and after REIN 
subtraction
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slit-scanned and circle-scanned values of M2
ASE  increase 

slowly for shorter lengths, down to 15–20 mm. This may 
be a result of reduced spatial gain-peaking. For even shorter 
lengths, they increase rapidly, which suggests a significant 
fraction of the light is outside the core. Still, they remain 
much smaller than the 2nd -moment values.

Figure  5 (a) also shows the quantity SASE / M2
ASE

2, 
which we compare to the highest achievable single-mode 
gain (i.e., the gain of LP01 in this case), according to Eq. (2). 
If we use Eq. (2) to calculate M2

ASE
2 from SASE and Glin, we 

get M2
ASE

2 = 4.91 = 2.222 at 50 mm. All the M2
ASE-values 

determined from the ensemble-averaged BPM intensity dis-
tributions were larger than 2.22, but are reasonably close for 
the 2nd -moment and circle-scan evaluations. However, for 
lengths < 40 mm, the 2nd -moment M2

ASE-values become 
large, and SASE / M2

ASE
2 underestimates the LP01-gain. By 

contrast, the circle-scan determination leads to values of 
SASE / M2

ASE
2 that remain within 3 dB of the LP01-gain 

for all lengths down to 5  mm. The slit-scan calculations 
adhered somewhat worse to Eq. (2), especially at high gain. 
See Fig. 5 (a).

Here as well as in other simulations, we generally found 
the circle-scan evaluation of M2

ASE  to conform best to 
Eq. (2), but this may be due to the choice of the fractional 
intensity level Iref used for determining the beam diameter 
rather than the method itself. We briefly investigated this, 
by calculating slit-scan and circle-scan M2

ASE-values for 
the 50-mm fiber determined with different values of Iref. The 
directly determined ASE diameters 2 w0,ASE and full-angle 

still be correctly calculated but is no longer dominated by 
core-guided ASE. The MPE-calculations do not include Ssp, 
leading to a lower value of SASE.

We next consider whether the quantity M2
ASE

2 (or 
M2

ASE, x M2
ASE,y) can be used for the effective number 

of modes, as proposed in Eq. (2). The 12 modes in our fiber 
would correspond to M2

ASE  (and M2
ASE, x and M2

ASE,y

) of approximately 121/2 ≈ 3.46. However, since the lower-
order modes with lower M2-values tend to be more confined 
to the core and thus reach higher gain and output power, the 
overall M2

ASE  is weighted towards the modes with lower 
M2-values. Figure 5 (b) shows values of M2

ASE  from the 
BPM-simulations. The second-moment values of M2

ASE  
become 2.73 and 2.79 for the two orthogonal directions at 
50 mm. This suggests M2

ASE, x M2
ASE,y  = 7.63 effective 

modes. The M2-values are larger for shorter propagation 
distances (with lower gain), e.g., 45 at 15 mm. This high 
value is attributed to power in a spatially wide background 
and suggests that the second-moment calculation should not 
be used in Eq. (2).

With a slit-scan determination (FWHM), the two orthog-
onal M2

ASE-values become 4.05 and 3.87 at 50 mm. Their 
product becomes 15.7, so the M2

ASE-values determined 
this way seem to over-estimate the number of modes, even 
though the background errors should be relatively unim-
portant, given the high gain at 50 mm for light in the core. 
Circle-scanning (threshold 1/e2) yields M2

ASE  = 3.02, sug-
gesting 9.13 effective modes. The value remains below 
121/2 for distances > 33  mm (44 dB of LP01-gain). The 

Fig. 5  Multimode fiber. (a) Gain, ASE level SASE / hν before and after 
subtraction of residual equivalent input noise and SASE / (hν M2

ASE
2

) for BPM and MPE-simulations. Quantities are shown, selectively, 
for LP01, all modes, and average per mode. SASE / (hν M2

ASE
2) (from 

BPM simulations) is depicted for circle-scan determinations of M2
ASE  

as well as for slit-scan and 2nd -moment determinations. Some curves 

appear indistinguishable. The analytically calculated spontaneous-
emission level Ssp is also shown. (b) M2

ASE  from BPM-simulations, 
evaluated as a 2nd -moment (x and y), with slit-scanning (x and y), and 
with circle-scanning. The value of 3.46, approximately corresponding 
to 12 modes, is indicated
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4  Simulations of Cr2+:ZnSe amplifiers

We now turn to non-waveguiding “bulk” Cr2+:ZnSe ampli-
fiers in the arrangement depicted in Fig.  1. We simulate 
these in the small-signal regime using BPM in four different 
cases. Each case involves the pump being focused at the 
center of the gain medium (crystal), with variations in waist 
radius and/or dopant concentration, and ignoring any distor-
tions induced by the crystal. To test the validity of Eq. (2), 
we need to determine the highest achievable gain for any 
signal beam launched through the crystal under the different 
conditions. Therefore, optimization of the signal launch is 
necessary, whereas optimization of the pumping or crystal 
length is not required for testing Eq. (2). We limit our opti-
mization efforts to pump and signal beams which would be 
collinear and concentric diffraction-limited gaussian beams, 
in the absence of gain- and absorption-induced aberrations 
in the crystal. Although the crystal does aberrate the beams, 
we anticipate that the gain achieved with these restrictions 
will be close to what could be attained with unrestricted sig-
nal optimization (e.g., allowing for non-gaussian beams).

With these restrictions, we used BPM to simulate and 
optimize the signal gain with respect to the undistorted air-
values of the signal waist radius w0,s and focal plane position 
zf,s for different pump powers. Subsequently, we evaluated 
Eq. (2) with the optimized gain, along with the ASE PSD 
and M2-values determined through BPM simulations of 
the ASE (with ensemble-averaging and REIN subtraction). 
Note that in the small-signal regime we consider, the ASE 
is independent of the presence of the signal, and vice versa. 
The amplifiers consisted of 17 mm of Cr2+:ZnSe. Given a 
refractive index n of 2.45, the undistorted air-value of the 
pump focal position zf,p becomes 8.5 / 2.45 = 3.47 mm for 
mid-point focusing. Except for Case B below, the Cr2+-con-
centration was 7.03 × 1024 m–3. With our pump and signal 
wavelengths, this leads to a gain of 2.59 dB/mm with unity 
overlap and thus 44.0 dB in 17 mm in the limit of infinite 
pump power.

We first (Case A) examine pumping which is confocal 
(neglecting distortions). The undistorted pump waist radius 
w0,p becomes 45.8 μm (Rayleigh length in crystal 8.5 mm). 
To illustrate the signal gain optimization needed for Eq. (2), 
Fig. 7 shows the optimized gain values and the correspond-
ing values of w0,s and zf,s. There is also a contour plot of the 
gain vs. w0,s and zf,s at a pump power of 20 W, for which 
the optimal values are w0,s = 38.7 μm and zf,s = 2.83 mm. 
The gain reaches 35.6 dB (Glin = 3660). Since the pump 
decreases along the crystal, the optimal signal focus is in 
front of the pump focus.

Figure 8 presents the gain vs. pump power for the opti-
mized w0,s and zf,s. It also includes SASE and SASE / M2

ASE
2 

(both relative to the photon energy), and M2
ASE  evaluated 

divergences 2 θ0,ASE were divided by (–2 ln Iref)1/2 before 
calculating M2

ASE  (= π w0,ASE θ0,ASE / λ). This leads to 
M2 = 1 for a diffraction-limited gaussian beam. Figure  6 
shows the result, together with the 2nd -moment calculation 
as well as the values of M2

ASE  that correspond to 12 modes 
and 4.9 modes (taking the number of modes as M2

ASE
2). 

We see that for these parameters, the reason the circle-scan 
leads to a lower value of M2

ASE  is that it is determined at a 
lower fractional intensity level, 1/e2 = 0.135 vs. 0.5 for the 
slit-scanning. Different fractional intensity levels may fit 
better with Eq. (2) in general, but we did not investigate this 
further. These M2

ASE-values are all from BPM simulations. 
We did not calculate M2

ASE  for the MPE-simulations.
Overall, we conclude that our BPM-approach for calcu-

lating the guided ASE PSD is correct also in these simula-
tions of a multimode fiber for gain > 27 dB, verified through 
comparisons to MPE simulations. Also unguided sponta-
neous emission (including weakly amplified spontaneous 
emission) appears to be correctly calculated. Furthermore, 
Eq. (2) is correct to within 3 dB, when M2

ASE  is determined 
with circle-scanning with fractional intensity level of 1/e2. 
The accuracy is better at higher gain, whereas deviations can 
become large at low gain. We reiterate that second-moment-
calculations of M2

ASE  generally led to large discrepancies 
in Eq.  (2). This may be a result of the spontaneous-emis-
sion background. For circle-scanning and slit-scanning, the 
choice of fractional intensity level used for the determina-
tion of beam radius and divergence is important but was not 
studied in depth.

Fig. 6  Multimode fiber, 50  mm. M2
ASE  calculated with exit-plane 

beam radii w0,ASE and farfield divergence half-angles θ0,ASE determined 
from slit-scans and circle-scans at different fractional intensity levels 
and from their 2nd moments (for which the intensity-level does not 
apply)
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high beam quality. With circle-scanning, the lowest M2
ASE

-value becomes 1.48 (pump power 15 W, gain 33 dB). At 
low pump power, Ssp agrees with SASE within 2 dB, thus 
dominating SASE. The analytic calculation of Ssp neglects 
reabsorption, which partly explains why Ssp > SASE at low 
gain.

In Case A, the maximum gain is limited by the concen-
tration–length product of the crystal. Case B is the same 
as Case A, except that the Cr2+-concentration is doubled 
to 14.05 × 1024 m–3. This allows for gain up to 87.9 dB at 
infinite pump power. Figure 9 shows the results. Due to the 

in different ways. The spontaneous-emission PSD Ssp at 
2410 nm (in one polarization within the range of propaga-
tion angles supported by the BPM grid) is also plotted. This 
was evaluated as a spectral and angular fraction of the total 
fluorescence power. The BPM simulations used 200 lon-
gitudinal steps of 85 μm and 32 × 32 transverse gridpoints 
with a spacing of 16 μm (window size 512 μm). This sup-
ports propagation angles up to 30.7 mrad in the crystal for 
the signal and ASE. See Supplement 1 for a discussion of 
the parameters of the numerical grid. Circle-scanning yields 
the smallest deviations in Eq. (2), remaining below 3 dB for 
gain above ~ 20 dB. Notably, the ASE can be generated with 

Fig. 8  Case A, bulk crystal with confocal pump-focusing. (a) Gain, Ssp / hν, SASE / hν before and after REIN subtraction, and SASE / (hν M2
ASE

2). 
(b) M2

ASE  evaluated as a 2nd -moment and with slit-scanning (x and y), as well as with circle-scanning

 

Fig. 7  Case A, bulk crystal with confocal pump-focusing. (a) Opti-
mized gain and the corresponding values of w0,s and zf,s. The crystal 
midpoint and the beam waist radius corresponding to confocal focus-

ing of the signal (51.6 μm) and the waist radius used for the pump 
(45.8 μm) are indicated, too. (b) contour plot of the gain vs. w0,s and 
zf,s at a pump power of 20 W
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propagation angles up to 61.5 mrad at 2410 nm. Figure 10 
shows the results. For the circle-scan, the quantity SASE / 
M2

ASE
2 is within 3 dB of the achievable gain for gain > 33 

dB (pump power > 85 W). In this range, SASE is over 8 dB 
larger than Ssp. Compared to confocal pumping, the ASE 
beam propagation factor M2

ASE  is considerably worse in 
Case C. With circle-scanning, it reaches a minimum of 7.1 
for a pump power of 100 W (gain 35.5 dB).

Case D, finally, considers tight focusing of the pump, 
w0,p = 8  μm. Because of the rapid diffraction (Rayleigh 
length 0.26 mm in the crystal), the pump beam volume is 
larger than for the confocal case, 0.61 mm3. The numeri-
cal grid was the same as in Case C. Figure 11 shows the 
results. With circle-scanning, the quantity SASE / M2

ASE
2 is 

within 3.7 dB of the achievable gain for gain > 22 dB (pump 
power > 24 W). In this range, SASE is at least 2 dB larger than 
Ssp. Again, the deviation from Eq. (2) is larger for the other 
methods of determining M2

ASE  (especially 2nd -moment). 
The beam propagation factor M2

ASE  (circle-scan) reaches 
a minimum of 2.7 for 50 W of pump power (gain 33.4 dB).

5  Discussion

In the cases we have examined, the BPM-simulations 
with equivalent input noise followed by subtraction of the 
residual equivalent input noise are accurate for the power 
spectral density SASE, not only at high gain when spontane-
ous emission (Ssp) is negligible but also at low gain when it 
dominates. Specifically, for the single-mode fiber, SASE as 
calculated with BPM agrees with that of the well-proven 

proximity of the quantities in Fig. 8 (a) when plotted on a 
scale capturing the full gain range, Fig. 9 (b) displays the 
differences between the gain and the quantities shown in 
Fig. 8 (a), while Fig. 9 (a) presents the gain and the M2

ASE

-values. The transverse numerical grid was the same as in 
Case A, while the step-length was halved to limit the gain 
in a step. Also as for Case A, the circle-scanned determi-
nation of M2

ASE  fits best with Eq. (2). The deviations are 
below 3 dB for pump power > 8 W (gain > 30 dB). M2

ASE  is 
lowest for 25 W of pump power (gain 69 dB), reaching 1.3 
(slit-scan and 2nd -moment). With circle-scanning, M2

ASE  
becomes as low as 1.03 at 25 W of pump power, and the 
discrepancy in Eq. (2) becomes only 0.04 dB at that power.

When the total power in the full ASE spectrum is con-
sidered, ASE “self-saturation” (neglected in these simula-
tions) becomes significant for pump powers in the range 
15–5000 W, over which the gain exceeds 50 dB. See Sup-
plement 1. This affects the accuracy of our simulations 
with narrowband ASE. However, neglecting self-saturation 
affects both sides of Eq.  (2) and does not automatically 
invalidate a comparison between simulated ASE and gain, 
although it will impact comparisons between experiments 
and simulations.

Case C employs a much larger pump beam, w0,p = 
200 μm, for the original (default) concentration (Table 1). 
This leads to a much larger pump beam volume (1.07 mm3) 
than with confocal pumping (0.075 mm3) and therefore 
more ASE, e.g., SASE = 7.9 fW/Hz vs. 0.56 fW/Hz with con-
focal pumping at 35.5 dB of gain. The ASE simulations used 
170 longitudinal steps of 100 μm and 256 × 256 transverse 
points with a spacing of 8 μm (half of Case A) for a window 
size of 2048 μm (four times that in Case A). This supports 

Fig. 9  Case B, bulk crystal with confocal pump-focusing and double 
concentration. (a) Gain and M2

ASE  evaluated as a 2nd -moment (x and 
y), with slit-scanning (x and y), and with circle-scanning. (b) ASE level 
SASE / hν (before and after REIN subtraction) and SASE / (hν M2

ASE
2). 

M2
ASE  is evaluated as indicated. M2

ASE
2 & M2

ASE, x × M2
ASE, y  

are used equivalently. All curves are in dB, and the signal gain has 
been subtracted (e.g., (SASE / hν)dB – gain in dB, etc.)
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equivalent input noise comprises 65,536 photons. This 
accuracy was obtained with ensemble-averaging of, e.g., 
4000 realizations used at low gain, and is consistent with a 
standard deviation of (65,536 / 4000)1/2 = 4.0 photons. This 
corresponds to − 42.1 dB of 65,536 photons. For a single 
mode with equivalent input noise of one photon, the stan-
dard deviation of the averaged value becomes 4000–1/2 = 
0.016 photons or − 18.0 dB. The standard deviation is unaf-
fected by the REIN subtraction, which is deterministic.

This high accuracy justifies our approach for evaluating 
and subtracting the REIN.

The observations are similar for the multimode fiber in 
Fig.  5. For instance, BPM and MPE-calculations of SASE 

MPE approach for gains above ~ 24 dB (Fig. 2). At lower 
gain, the numerous modes supported by the BPM grid 
means that more of the spontaneous emission is captured 
than with the MPE approach, which only treats the guided 
modes. Therefore, although SASE as calculated with the two 
methods will differ, we still expect SASE, BPM – Ssp ≈ SASE, MPE 
at low gain. We verified this to be the case for the single-
mode fiber, and thus the accuracy of the BPM-approach in 
this regime, with only a small deviation at the few-photon 
level.

The accuracy of the subtraction of the residual equiva-
lent input noise is noteworthy. Our results demonstrate 
its accuracy down to the few-photon level, even when the 

Fig. 11  Case D, bulk crystal with w0,p = 8 μm. (a) Gain, Ssp / hν, SASE / hν (before and after subtraction of residual equivalent input noise) and SASE 
/ (hν M2

ASE
2). (b) M2

ASE  evaluated as a 2nd -moment (x and y) and with slit-scanning (x and y), as well as with circle-scanning

 

Fig. 10  Case C, bulk crystal with w0,p = 200 μm. (a) Gain, Ssp / hν, SASE / hν (before and after subtraction of residual equivalent input noise) and 
SASE / (hν M2

ASE
2). (b) M2

ASE  evaluated as a 2nd -moment (x and y), with slit-scanning (x and y), as well as with circle-scanning
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determined in the same way (e.g., slit-scan) and without any 
mismatch in the captured propagation angles to reduce the 
sources of discrepancy.

Our simulations show that Eq. (2) can determine the gain 
from SASE and M2

ASE  with reasonable accuracy in some, 
but not all, circumstances. We would like to identify char-
acteristics that gauge the validity of Eq.  (2) with parame-
ters that are straightforward to measure. We reiterate that 
the gain Glin in Eq. (2) is the highest achievable gain for a 
specific combination of crystal, pump focusing, and pump 
power. Furthermore, Eq. (2) relies on M2

ASE
2 correspond-

ing to an effective number of modes. We first point out that 
this cannot always hold. A counterexample is a pump com-
prising two parallel beams. Each of these can generate a 
(nearly) diffraction-limited ASE-beam, thus they comprise 
approximately two modes combined. However, the M2-
value of the combined beams depends on their separation 
and can be arbitrarily large. A ring-shaped pump beam is 
a similar counterexample. Still, M2

ASE
2 may be a reason-

able approximation for the effective number of modes in 
our simulations, in which the transverse gain profiles are 
largely convex without significant dips. We restrict this dis-
cussion to circle-scanned M2

ASE-values determined at the 
1/e2 intensity level, as this method worked best for Eq. (2).

The most obvious gauge is that at high gain, the adher-
ence to Eq. (2) is fair or good. In the four cases we studied, 
the discrepancy in Eq. (2) became smaller than ~ 3 dB for 
gain above 20–30 dB. However, this gauge requires that 
the optimal gain is at least 20–30 dB, which may be diffi-
cult to know. We would rather gauge the validity from SASE 
and M2

ASE , which would anyway be calculated or mea-
sured. Figure 12 shows the discrepancy in Eq. (2) vs. pump 
power for the four bulk amplifier cases, as well as SASE / 
(hν M2

ASE
2) and M2

ASE . The vertical lines indicate transi-
tion points between large and small discrepancy. Although 
somewhat arbitrarily defined, we see that these transitions 
occur when SASE / (hν M2

ASE
2) is in the range 20–30 dB. 

Furthermore, the transitions correlate with sharp increases 
in M2

ASE  towards lower pump power.
These criteria have significant variations and gray zones, 

and the M2
ASE-criterion furthermore requires knowledge 

of M2
ASE  for a range of pump powers. We were not able 

to identify a better criterion but will discuss some of the 
options we investigated.

The correlation with the beam quality suggests that the 
formation of a beam of ASE could be a criterion. This would 
be easy to determine with a camera in the farfield. How-
ever, this criterion did not work. Figure 13 (a) shows a cut 
through the center of the ASE beam in the farfield for Case 
A at 6 W of pump power. A lens at the exit plane minimized 
the divergence. The peak is ~ 16 dB above the background, 

agree well for gains larger than ~ 27 dB. On the other hand, 
as the gain decreases (corresponding to shorter fibers), the 
agreement between SASE and analytic calculations of Ssp 
becomes worse than for the single-mode fiber, e.g., at 10 
and 15 mm. The agreement then improves again for fibers 
shorter than 5 mm (gain up to ~ 6 dB). One possible expla-
nation for this observation is that at the higher gains of 10 
and 15-mm fibers, the large core leads to significant amplifi-
cation of unguided light in the BPM simulations. It is impor-
tant to note that this does not imply that the calculation of 
SASE is less accurate, even if the definition of the regime 
where spontaneous emission dominates becomes less dis-
tinct in these scenarios.

MPE-simulations are not available for the bulk amplifier, 
but we can still assess the agreement between BPM-calcula-
tions of SASE at low gain (when it is dominated by spontane-
ous emission) and Ssp as follows. We determined Ssp from 
the pump power absorbed in the BPM-calculations, assum-
ing unity quantum efficiency and with negligible reabsorp-
tion and stimulated emission due to the signal and ASE 
(within 1 Hz). Calculations on Case A (not shown in Fig. 5 
(a)) revealed that for low gain, these agreed within a fraction 
of a photon, even when the REIN subtraction reduced SASE 
by over 99.9%, to ~ 0.4 photons. In this case, the BPM grid 
comprised 32 × 32 points, resulting in a standard deviation 
of (32 × 32 / 4000)1/2 = 0.51 photons in the ensemble-aver-
aged equivalent input noise. For Case C, SASE agreed with 
Ssp within 2 dB for gain below 11 dB (pump power < 25 W). 
For Case D, SASE agreed with Ssp within 2 dB for gain below 
~ 20 dB (pump power < 22 W).

We do not present any experimental results, but note that 
for comparisons to experiments, a square aperture can be 
used in the farfield to reject light at angles not supported 
by the BPM grid. This may not be necessary if SASE forms 
a well-defined beam within the BPM grid, but some assess-
ment of the capture is required, since the spontaneous emis-
sion can be quite significant also at large angles. If SASE does 
not form a beam of sufficient definition for nearly lossless 
or calibrated coupling into an optical spectrum analyzer 
(OSA) for direct measurement of SASE then one can instead 
measure the shape of the full ASE spectrum with an OSA 
and the total ASE power with a power meter and determine 
SASE from that. For this, the effective ASE bandwidth as 
calculated in Supplement 1 can be used. Additionally, more 
precise modeling can be considered, e.g., to account for the 
coupling of the emission into a collection fiber or the trans-
verse boundaries of the gain fiber or crystal. If needed, these 
approaches can provide a more comprehensive and accu-
rate comparison. The beam propagation factors M2

ASE  cal-
culated from the spatial distribution of the simulated ASE 
(farfield, exit-plane, and / or some other plane or planes) 
can also be compared to experimental values, preferably 
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The appropriateness of a configuration could also consti-
tute a gauge for the validity of Eq. (2). Thus, the discrepancy 
in Eq. (2) may be large only for unreasonable configurations 
or parameters of little interest, such as those with very low 
gain or unrealistically high pump power. For instance, Case 
D has pump focusing that is far from optimal. (Case C may 

but still, the discrepancy in Eq. (2) is 5.4 dB. The exit-plane 
distribution has a peak ~ 8 dB above the background (Fig. 13 
(b)) and is thus less pronounced than the peak in the farfield. 
This may explain why a sharp beam (i.e., farfield peak) does 
not guarantee good adherence to Eq. (2).

Fig. 12  Discrepancy in Eq. (2) vs. pump 
power for cases A – D (top) plotted together 
with SASE / (hν M2

ASE
2) and M2

ASE . The 
vertical lines separate regions with large 
and small discrepancy in Eq. (2) for the 
four cases and the shaded area in the top 
graph indicates the range for good agree-
ment, defined as ± 3 dB
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crystal parameters may further reduce the ASE PSD for a 
specific signal gain (in addition to reducing the required 
pump power). It is also clear that to minimize the ASE for 
a given signal gain, the signal should be at the gain peak.

Case B also uses confocal pumping, but with twice the 
concentration as in case A. Again, the deviation from Eq. (1) 
is small over a range of pump powers, and is less than 1 dB 
for a pump power of 15 W. This suggests that the ASE is 
close to single-moded at this wavelength. The signal gain of 
50 dB is at the limit of where we consider ASE self-satura-
tion to be negligible. Note also that the ASE beam quality 
may be significantly worse at other wavelengths where the 
gain is lower. This can affect the beam quality of the ASE as 
a whole, although the effect may be small since at high gain, 
the ASE PSD is strongly peaked at the gain peak. This is 
straightforward to simulate with our approach. We also note 
that the backward ASE will differ, and this could be signifi-
cant. However, these points were not investigated.

Our BPM-simulations assume that the equivalent input 
noise consists of one photon per gridpoint, corresponding 
to nsp = 1, but any background loss or ground-state absorp-
tion of signal photons makes nsp larger and dependent on 
the fractional excitation n2. See Eq. (3). Yet, in the absence 
of ASE self-saturation, the simulations are linear in nsp, so 
our assessment of Eq (2) is equally valid for any value of 
nsp, if it is the same in each gridpoint. Therefore, precise 
accuracy in nsp is not crucial in this regard, when we are not 
comparing to experiments. However, n2 varies across the 
input grid, with n2 ≈ 0 at the unpumped edge of the window. 
The simulations do not include any background loss, but 
there is some ground-state absorption. Therefore, Eq.  (3) 
suggests that a constant value of nsp across the input grid is 
not the best choice. We have not tried to determine better, 
potentially position-dependent, values for nsp. However, to 
estimate the errors resulting from the use of a constant nsp 
across the full input grid, we compared results of Case A 
with 50 W of pump power and nsp = 1 everywhere to those 

be more relevant insofar as it resembles highly multimode 
pumping.) Confocal pumping is not optimal, either, but is 
close. Furthermore, in terms of optimization, we note that 
the crystal length relates not only to the focusing but also the 
power of the pump, i.e., for a given pump power, the crys-
tal length is optimal when the leaked pump is just enough 
to excite enough ions to create gain at the output end of 
the crystal. For Case A, this match between crystal length 
and pump power occurs for 6 W of pump power, which is 
thus highly relevant. However, the discrepancy in Eq.  (2) 
is significant at that power. In Case B (confocal pump-
ing with twice the concentration), the similarly matching 
pump power becomes ~ 16.6 W, and now, the discrepancy 
in Eq. (2) is small. We attribute the improved agreement to 
the higher gain in Case B, ~ 53.7 dB at 16.6 W of pumping, 
compared to 19 dB (at 6 W of pumping) in Case A. We con-
clude that a pump with focusing and power well-matched 
to a specific crystal is not enough to ensure the validity of 
Eq. (2).

We noted previously that the larger pump volume of Case 
C and D increases the ASE for a given signal gain. This is 
reflected by the difference between the curves for the sig-
nal gain and for SASE / hνs in Fig.  10 (a) and Fig. 11 (a). 
See also Eq. (1). The pumping is far from optimal in those 
cases. Improved pump parameters lead to higher signal gain 
for a given pump power, and reduced difference between 
those curves. Thus, the difference is smaller in Case A with 
confocal pumping (Fig. 8 (a)), ~ 3 dB or less for pump pow-
ers in the range 10–35 W, with signal gain 28–37 dB. For 
other pump powers, the ASE PSD is more than 3 dB higher 
than that suggested by Eq. (1). For example, it reaches ~ 6 
dB for a pump power of 250 W. This excess ASE may be 
a result of a pump intensity that is sufficiently high to cre-
ate significant gain also in the wings of the Gaussian pump 
beam, thus increasing the gain volume beyond the diffrac-
tion limit. Note also that although the confocal pumping we 
used is close to optimal, fully optimized pump beam and 

Fig. 13  (a) Farfield and (b) exit-plane distribution of SASE along a line through the center of the beam for Case A at 6 W of pump power
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Case A, C, D, the effective linewidth varies from 35.6 THz 
(690 nm) at low gain to 14.6 THz (282 nm) at 44.0 dB (the 
highest that can be reached with 1901-nm pumping). The 
saturation (i.e., compression) of the gain at 2410 nm was 
< 0.05 dB in Case A, C, D, with forward-propagating ASE 
only. Even if the compression approximately doubles with 
bidirectional ASE, this can still be neglected.

By contrast, Case B allows for higher gain, and self-
saturation can become significant for gain exceeding 50 
dB. Note however that this does not automatically invali-
date Eq. (2), and the validation of the simulation approach 
remains valid in the sense that it is based on comparisons 
of different simulated parameters that all derive from the 
same spatial gain distribution and are thus all affected by the 
inclusion or neglect of self-saturation. Consequently, Eq. (2) 
can remain valid for simulated quantities even when signifi-
cant saturation is neglected. Likewise, it may be possible to 
use experimental values of M2

ASE  and SASE to calculate the 
achievable gain according to Eq.  (2), insofar as the satu-
rated transverse gain profile does not cause problems and 
the limits of validity discussed above are observed. How-
ever, simulations and experiments would not agree.

Whereas SASE (in 1 Hz) is easier to simulate, the power in 
the whole ASE spectrum, PASE, is easier to measure. There-
fore, we estimated the relation between SASE (at 2410 nm) 
and PASE in the unsaturated regime. We found that PASE ≈ 
(SASE / hν) × 2.5 µW for gain up to 40 dB in the crystal 
of Case A, C, D. For instance, with four effective modes 
( M2

ASE  = 2) per polarization, 20 dB of gain can be expected 
to generate 2 mW of forward ASE power. See Supplement 
1 for details.

Our signal power was sufficiently low to avoid satura-
tion, and the accuracy of our approach for a stronger, satu-
rating, signal would have to be investigated. A saturating 
signal co-propagating with the pump is straightforward to 
simulate, but spatial hole-burning may cause the transverse 
gain profile to become concave. This can invalidate Eq. (2). 
Supplement 1 provides further details and discussions on 
the calculation of ASE, effective bandwidth, ASE self-sat-
uration, and nsp.

6  Conclusions

We have investigated and used the beam propagation 
method with equivalent input noise for the simulation of 
narrow-band amplified spontaneous emission at the signal 
wavelength and signal amplification in continuous-wave 
Cr2+:ZnSe non-waveguiding “bulk” amplifiers with non-sat-
urating signal and ASE in different configurations. Both the 
incident pump at 1901 nm and the signal at 2410 nm were 
diffraction-limited gaussian beams. The signal wavelength 

where the noise seeding was restricted to the effectively 
pumped parts of the input grid, and nsp = 0 elsewhere. The 
difference incurred by this spatial variation of nsp was neg-
ligible, indicating that constant seeding across the window 
with nsp = 1 is a reasonable assumption in this simulation. 
The validity of uniform seeding is further supported by the 
good agreement with spontaneous-emission calculations. 
However, we have not explored what happens when there 
is significant ground-state absorption of the signal. Then, 
distributed seeding of the ASE (by spontaneous emission) 
[7, 17, 19, 20] may be a better choice, since this avoids 
the problem of spatial variations in nsp in the input grid. 
It is unclear how a spatially varying value of nsp would be 
determined, given also that more precise determinations of 
nsp depend on the longitudinal distribution of the gain and 
ground-state absorption (e.g., [7]). Distributed seeding also 
avoids the need for subtraction of residual equivalent input 
noise (although this is quite accurate in our simulations).

The Petermann K-factor K [5, 6, 8, 9] may play a role 
in the discrepancy observed in our simulations in relation 
to Eq. (2). Given that K ≥ 1, this can lead to a higher ASE-
power in a mode than Eqs. (1) and (2) suggest. However, the 
effective number of modes M2

ASE
2 is generally larger than 

SASE and Glin suggests according to Eq. (2). See Fig. 12 (top) 
as well as Fig. 5 (a), 8 (a), 9 (b), 10 (a), and 11 (a). A value 
K > 1 would increase the ASE per mode and thus exacerbate 
this discrepancy (as does nsp > 1).

Instead of evaluating K, we view this as a factor that can 
affect the observed discrepancy.

We next discuss if our neglect of ASE self-saturation 
is justified (irrespective of the accuracy of Eq. (2)). In the 
absence of self-saturation, it is possible to simulate only 
the small part of the ASE power that lies within 1 Hz, and 
to disregard counter-propagating ASE. By contrast, in the 
presence of self-saturation, accurate simulations must con-
sider the ASE in both directions and include the total ASE 
power PASE in both polarizations in the full spectrum. For 
ASE counter-directional to the signal, the ASE seeding 
occurs in the signal output end, so nsp needs to be evalu-
ated in that end. However, given also that convergence and 
the number of iterations required are concerns with contra-
directional saturating waves (e.g., [19]), this considerably 
more demanding calculation is beyond our scope. Instead, 
to assess if ASE self-saturation can be neglected, we sim-
ulated PASE in the same way as we did SASE at 2410  nm, 
i.e., with a monochromatic wave, but with the equivalent-
input noise seeding scaled by an effective ASE bandwidth 
Δνeff and the number of polarizations (= 2). The effective 
bandwidth depends on the gain and was calculated from a 
spectral integral of Eq.  (1), i.e., the total ASE power in a 
single mode. See Supplement 1 for details. For the crystal of 
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We further introduce modal fields Amf (x, y, z) and nor-
malize them according to
� ∣∣Amf (x, y, z)

∣∣2
dxdy = 1 W � (5)

Also, let Am be a modal amplitude (complex and dimen-
sionless) so that the complex field of an excited mode is 
given by A (x, y, z) = Am Amf (x, y, z). The power Pm of a 
mode becomes Pm = 1 W × |Am|2. When excited by an exter-
nal field A, Am becomes,

Am = (1 W )−1
�

A∗ (x, y, z) Amf (x, y, z) dxdy� (6)

where the star denotes complex conjugation. See, e.g. 
[28], for details on modes and their excitation.

On an equidistant discrete grid such as that we use in 
BPM, the integrals are replaced by sums, e.g.,

∑
i, j

∣∣Amf (xi, yj , z)
∣∣2∆ x ∆ y = ∆ x ∆ y

∑
i, j

∣∣∣Amf
ij

∣∣∣
2

= 1 W � (7)

Am = (1 W )−1 ∆ x ∆ y
∑
i, j

A∗
ijAmf

ij

= (1 W )−1 ∆ x ∆ y
∑
i, j

A∗
ij

∣∣∣Amf
ij

∣∣∣ eiφ mf
ij

� (8)

P = ∆ x ∆ y
∑
i, j

|Aij |2 � (9)

where Δx and Δy are the grid spacings and (xi, yj) are the 
coordinates of gridpoint (i, j). We also adopt the convention 
Amf (xi, yj , z) = Amf

ij  (and similarly for other quanti-
ties) and for simplicity drop the explicit z-dependence of 
the fields. In Eq. (8), we have also written Amf

ij  on its polar 

form, 
∣∣∣Amf

ij

∣∣∣ eiφ mf
ij .

To proceed, we let Aij represent an input noise field com-
prising normally-distributed random complex variables 
with zero mean and circular symmetry so that the distribu-
tions of the real and imaginary parts are the same and inde-
pendent. From Eq.  (8) the expectation value of the modal 
excitation becomes

E [Am] = E


(1 W )−1∆ x ∆ y

∑
i, j

A∗
ijAmf

ij




= (1 W )−1∆ x ∆ y
∑
i, j

E
[
A∗

ij

]
Amf

ij = 0
� (10)

E [*] denotes expectation values, which we evaluate as 
ensemble-averages in our BPM-simulations. Furthermore,

coincided with the peak of the gain, which was homoge-
nously broadened. The absorption at the signal wavelength 
in the un-pumped crystals was between 0.48 dB and 0.95 
dB, so any reabsorption at weak pumping was small. We 
implemented the equivalent input noise as random realiza-
tions of one photon per gridpoint (corresponding to nsp = 
1), and we showed that this leads to the familiar one noise 
photon per mode. We conducted between 100 and 6000 
simulations with different realizations of the random input 
noise, then ensemble-averaged the outcomes to determine 
the power spectral density of the ASE, including its spatial 
distribution in the exit-plane and farfield. Our approach is 
compatible with standard BPM code, as long as the equiva-
lent input noise is correctly implemented. While it is not 
necessary to define any modes, we validated the simulations 
of the ASE PSD by comparing results for single-mode and 
multimode fiber amplifiers to those obtained with well-
established conventional fiber amplifier models.

We also calculated the beam quality of the ASE at the sig-
nal wavelength, M2

ASE , with different methods. We inves-
tigated if M2

ASE
2 could serve as an estimate of an effective 

number of ASE modes and, when coupled with the ASE 
PSD, predict achievable signal gain. Notably, the value of 
M2

ASE  varied considerable between the different methods. 
Depending on the amplifier configuration, we found that at 
gain higher than 20–30 dB it became possible to determine 
the achievable signal gain from the ASE characteristics with 
reasonable accuracy. It is also possible to evaluate the spon-
taneous emission, and we found agreement down to the sin-
gle-photon level. We note that the ASE beam propagation 
and M2

ASE  depends on the wavelength and can be different 
for the full ASE spectrum. We did not investigate thermo-
optic effects, nor cases with strong reabsorption or satura-
tion (e.g., strong bidirectional ASE spectra). Even if seeding 
with equivalent input noise remains valid, the modification 
of the numerical solver to treat such effects would require 
significantly more work.

Appendix 1

We show that the assumption of one (or nsp) noise photon 
per gridpoint in the BPM input grid leads to the excitation of 
one (or nsp) noise photon per mode. We use the convention 
that the optical intensity I (W/m2) of a lightwave is related 
to the complex field according to I (x, y, z) = |A (x, y, z)|2, 
where x and y are transverse coordinates and z is the longi-
tudinal coordinate. The power of a paraxial lightwave in a 
transverse plane z becomes,

P =
�

I (x, y, z) dxdy =
�

|A (x, y, z)|2dxdy� (4)
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(variance of sum rule), and that Var [ξij] = E [ξij
2] – E [ξij]2 

= E [ξij
2] (since E [ξij] = 0). Finally, the expectation value of 

the modal power resulting from the noise seeding becomes 
E [Pm] = 1 W × |Am|2 = Psample.

Insofar as the sample amplitudes Aij and thus their com-
plex conjugates Aij

* are normally distributed complex ran-
dom variables with zero mean, the weighted sum is also a 
normally distributed complex random variable with zero 
mean. This includes the modal amplitude described by 
Eq.  (8). Also note that since the complex distribution of 
Aij is circularly symmetric, the phases of the weights Amf

ij  
(e.g., in case of a Gaussian beam with curved wavefront) do 
not matter.

From this, it follows that a sampled random field with 
one noise photon per sample will excite a mode with one 
noise photon (nsp = 1). The results extend also to other val-
ues of nsp, and to any normalized distribution in the paraxial 
approximation, including Hermite-Gaussian modes and 
plane-wave modes, as well as non-modal distributions.
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For the last equality in Eq.  (11), we have used that a 
distribution which is circularly symmetric in the complex 
plane is independent of the phase argument and therefore its 
expectation value does not change when multiplied by the 
phase factor eiφ mf

ij .
We next substitute Aij by (Pij

sample / Δx Δy)1/2 (ξij + i ηij), 
where Pij

sample is the expectation value of the sample power 
(= E [|Aij|2] Δx Δy) and ξij and ηij are real-valued normally 
distributed random variables. From our assumptions, it fol-
lows that they have zero mean and the same variance. It 
also follows that E [|ξij + i ηij|2] = E [ξij

2] + E [ηij
2] = 1, so E 

[ξij
2] = E [ηij

2] = 1/2. We can then write Eq. (11) as
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Here, we have used that the variance Var [*] of a sum 
of random variables ξij with weights 

∣∣∣Amf
ij

∣∣∣ is equal to 

the sum of the variances of the weighted random variables 
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