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Abstract

We investigate and use the beam propagation method with equivalent input noise for the simulation of narrow-band
amplified spontaneous emission (ASE) and signal amplification in continuous-wave Cr*":ZnSe non-waveguiding “bulk”
amplifiers with non-saturating signal and ASE in different configurations with weak reabsorption. Both the incident pump
at 1901 nm and the signal at 2410 nm were diffraction-limited gaussian beams. We implemented the equivalent input noise
as random realizations of one photon per gridpoint, and showed that this leads to one noise photon per mode. Simula-
tion results of between 100 and 6000 realizations were ensemble-averaged to determine the power spectral density of the
ASE in a Monte Carlo approach. We validated the approach by comparing results for single-mode and multimode fiber
amplifiers to those obtained with well-established fiber amplifier models. We also calculated the beam quality of the ASE,

M? ¢, from its spatial distribution. We found that under some conditions, but not all, M3 E2 can serve as an estimate

of an effective number of ASE modes and, together with the ASE PSD, predict the achievable signal gain. It is also pos-
sible to evaluate the PSD per unit solid angle due to spontaneous emission from the input noise seeding, and we found

agreement down to the single-photon level.

1 Introduction

Single-mode end-pumping of “bulk” traveling-wave optical
amplifiers is attractive since it opens up for tight pump-beam
confinement and high gain in relatively long gain media, in
which a poor beam-quality would make the pump power
prohibitive. Thus, a 17-mm-long Yb: YAG crystal reached
a weakly saturated gain of nearly 40 dB at 1030 nm when
pumped with 35 W of power at 920 nm from a single-mode
Nd-doped fiber laser [1]. In the mid-infrared, Cr**:ZnSe
has emerged as a favored material for stimulated emission
in a broad wavelength range of around 2-3 um, peaking
at 2.4 um [2]. Gain as high as 45 dB in the spectral range
2.3-2.6 pum has been reported with pulsed pumping [3]. The
pump was an Er-doped fiber laser, few-moded with good
beam quality.

>4 Johan Nilsson
jn@orc.soton.ac.uk

I Optoelectronics Research Centre, University of

Southampton, Southampton SO17 1BJ, UK

High-gain amplification is accompanied by amplified
spontaneous emission (ASE), and the modeling and simu-
lation of ASE in bulk amplifiers with diffraction-limited
single-mode pump and signal is the focus of this paper. Fig-
ure | illustrates the configuration we consider. The drawn
beams and their parameters are only examples, except that
the undistorted pump focal plane is at the crystal midpoint
in our simulations. The ASE generated by the pumped crys-
tal is not shown. ASE is often undesirable (e.g., it adds noise
to a signal and can compress the gain and deplete the pump
power). A further advantage of the small pump volume of
single-mode pumping is that it also reduces the ASE for a
given level of signal gain.

Even if undesirable, ASE can also be helpful for assess-
ing the gain spectral shape, bandwidth, and level. For a
single mode (including single polarization), the single-sided
power spectral density (PSD) of the ASE, S,; [W/Hz] is
proportional to the inversion factor ng, (also known as the
spontaneous-emission factor), photon energy Av, and to
(Gy;, — 1), where Gy, > 1 is the linear gain. Thus,

Sase (A) = (Gun(A) — D)ng, (M) h (1)
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Fig. 1 Schematic of the pump and signal beam arrangements, with-
out crystal (i.e., in air; top) and with the Cr**:ZnSe crystal placed in
the beams (bottom). The incident beams are collinear, concentric, and
diffraction-limited with gaussian profiles and are characterized by the
air-values of the beam waist radius wy, (at e 2 intensity) and the position

at some wavelength A in the ASE spectrum. See, e.g. [4-6],
(Eq. 58) [7], (Eq. 2.33). We will consider the case when the
wavelength is that of a signal to be amplified, but it could be
different. The equation applies to waveguiding single-mode
amplifiers such as fiber amplifiers as well as to each of the
modes of a multimode amplifier. The total PSD of the ASE
is given as the sum over all spatial and polarization modes,
each with its own value of Gy, and n,. However, the varia-
tions in n, may be negligible. For example, in the limit of
negligible ground-state absorption (in a four-level system
or completely inverted three-level system) and background
loss, ng, = 1. See, e.g. [6], or [7] (Eq. 2.34). Then, n,, is the
same for all modes. The Petermann K-factor (also known as
the excess spontaneous-emission factor) [5, 6, 8, 9] can also
enter into Eq. (1), but we assume that it equals unity.

Alternatively, it is possible to assign an effective number
of modes which results in the total PSD when multiplied
by ngy, and G, — 1 (=G, at high gain). Although the gain
used for such a calculation can be chosen in different ways,
we will use the highest gain that the amplifier can attain at
a considered wavelength, for a specific set of pump param-
eters. For ng,, the choice of a representative value is simpli-
fied if its modal dependence is small. A complication for
non-waveguiding, “bulk,” amplifiers is that the definition of
a mode (or modal set) is no longer unique [4]. However, it
may still be possible to use the square of the beam propa-
gation factor of the ASE, M3gj, as a replacement for the
effective number of modes [10]. Thus, we hypothesize that
for an amplifier that supports multiple modes,
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z; of the focal plane relative to the crystal input plane. Disregarding
distortions induced by the crystal, the crystal shifts the focal planes to
n z;, where n is the refractive index. The undistorted pump focal plane
is at the crystal midpoint in our simulations. The ASE generated in the
crystal is not illustrated

2

SASE - (Glzn - 1) nsp MEXSE (2)
= (Grin — 1) ngp ME\SE,z ME&SE,y

where all quantities are evaluated at some wavelength /.

The second equality allows for non-circular beams, but our

geometry will be circularly symmetric, and we will use the

product M3gp , M3gy, interchangeably with M3q 5

Another difficulty is that the gain in a bulk amplifier depends
on the signal beam alignment, which therefore must be opti-
mal. On the other hand, this makes Eq. (2) potentially more
attractive as a means to calculating the highest attainable
gain from Sz and M?%g;, which may be reasonably sim-
ple to measure with standard laboratory equipment. These
parameters are therefore interesting to simulate. Note also
that the pump configuration is not optimized in our simula-
tions, e.g., in terms of pump waist radius. In other words,
our simulations use signal alignments which are first opti-
mized for the different considered pump configurations,
though these are in turn generally not optimized.

Simulations of ASE in bulk amplifiers have sometimes
assumed that the gain is spatially homogeneous and / or
employed ray approximations (ray tracing) [4, 10-14].
However, with diffraction-limited pumping, the high gain
and thus the ASE may be restricted to only a few modes.
Since diffraction becomes important in this regime, the
wave-based beam propagation method (BPM, also known
as the Feit-Fleck algorithm) [15—19] has then been used
to describe the propagation, e.g., in x-ray / free-electron
lasers [17, 19] and other lasers [18]. These are typically
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mirror-less, thus actually ASE-sources operating with short
pulses of high gain. In those simulations, the ASE was
seeded by spontaneous emission occurring throughout the
pumped gain medium, in bespoke BPM-implementations.
The spontaneous emission is a rapidly varying random pro-
cess, so the ASE varies rapidly in time. Averaging can be
used to evaluate, e.g., coherence and stationary and slowly
varying parameters, in the pulsed as well as continuous-
wave (cw) regime.

As an alternative to seeding the ASE throughout the gain
medium, S, can be evaluated by seeding the input of each
mode of an amplifier by n, input noise photons (equivalent
to ng, photons per second per hertz). See, e.g. [7], (p. 77)
[9, 20]. This approach is often used for waveguiding ampli-
fiers and follows directly from Eq. (1). Specifically, G, n,,
hv=S8,sg + ngy, hv when G, > 1. When G;;,>>1, S5, = G,
ng, hv, but more generally, one can just subtract n, photons
from Gy, ng, hv to arrive at Sz

In this paper, we investigate the use of BPM with equiva-
lent input noise of one photon per gridpoint (correspond-
ing to ny, = 1) and, accordingly, simulate narrow-band
ASE (including spontaneous emission) in a cw Cr*":ZnSe
amplifier with homogeneous line broadening and low
reabsorption. Both the incident pump and the signal are
diffraction-limited gaussian beams as illustrated in Fig. 1.
We calculate the beam propagation factors and the power
spectral density of the generated ASE at the signal wave-
length (2410 nm) for different crystal parameters and, as an
important objective, assess if Eq. (2) can be used to deter-
mine the highest attainable gain, which we also calculate.
The ASE and signal are assumed to be weak enough to
avoid gain saturation. This was confirmed in most cases. To
handle the stochastic nature of the ASE, the results are aver-
aged over between 100 and 6000 realizations in a Monte
Carlo method. This approach for simulating the ASE PSD
does not require any modes to be defined and can be used
with any BPM code, as long as the equivalent input noise
is correctly implemented. We validated our approach by
comparing BPM simulation results on fiber amplifiers in
the single-mode and multimode regime to those of a well-
established fiber-amplifier simulation method, as well as to
analytic calculations of the spontaneous emission and reach
agreement down to the single-photon-level. In addition, we
compare different methods for determining M3 ¢ from the
calculated ASE and find good as well as poor adherence to
the hypothesized Eq. (2).

This paper is structured as follows. Section 2 details our
simulation approach and parameters. Section 3 validates the
approach through comparisons to well-established simula-
tions for optical fiber amplifiers and to analytic calculations
of spontaneous emission. We also compare different meth-
ods for calculating M?. Section 4 presents our simulations

of Cr**:ZnSe-amplifiers. Section 5 discusses the accuracy
of our simulation approach and criteria for the validity of
the hypothesized Eq. (2) and summarizes approximate cal-
culations on the amount of saturation by the ASE (“self-
saturation”). ASE would only saturate the gain in one of the
simulated configurations, and then only for gain of ~50 dB
or more. In Appendix 1, we show that an equivalent input
noise of one photon per gridpoint leads to an equivalent
input noise of one photon per mode (or any normalized light
distribution).

We do not consider damage limitations and neglect
thermo-optic and other refractive-index effects. These can
lead to beam aberrations [1, 10, 14] and are often important
in Cr*":ZnSe [2], although they can be less significant in
the quasi-continuous-wave regime and in gain media with
lower thermo-optic coefficient.

To reduce the length of the main text, some less cen-
tral material is covered in Supplement 1. This includes the
numerical grid, the use of a constant inversion factor (ny, =
1), and the determination of the effective ASE bandwidth
which we then use to estimate the ASE self-saturation. It
also includes a section on thermally generated radiation.
This could be a factor in experiments but is found to be
negligible at 2410 nm. Furthermore, we discuss advantages
and disadvantages relative to distributed ASE-seeding [9,
17-20] in different regimes.

2 Calculation approach

We use BPM as implemented in R P F Power [21] v. 7 to
calculate the propagation of a signal wave and an ASE
wave, both at a wavelength of 2410 nm, and a pump wave
at 1901 nm in the steady-state regime in Cr*":ZnSe crystals.
Table 1 lists the parameters we used for the bulk amplifier,
as well as parameters used in fiber simulations used for vali-
dation, except when otherwise stated. BPM propagates the
complex field of a wave in a number of steps, each of which
is split into a refractive and a diffractive part (e.g., [15-19]).
RP Fiber Power is a commercial software package which
uses the paraxial approximation and Fourier transformation
for the diffractive part of a BPM propagation step. It does
not support seeding of the ASE by spontaneous emission
occurring throughout the gain medium. Instead, we used its
script language to implement seeding with equivalent input
noise with random complex amplitude in the input grid-
points of the BPM simulations. Each gridpoint is seeded
with noise of the same complex normal distribution, cor-
responding to one noise photon (n, = 1). Appendix 1 shows
that for a waveguide structure, ny, photons per gridpoint
leads to the well-known condition of ng, equivalent input
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Table 1 Optical and numerical parameters used in simulations

Quantity Symbol Value
Pump wavelength 1901 nm
Wavelength for ASE PSD and 1 2410 nm
signal

Photon energy of ASE and hvorhv, 82.4z]
signal

Absorption cross-section at of 7.38x10723 m?

pump wavelength

Stimulated-emission cross- of 3.85x10723 m?

section at pump wavelength

Absorption cross-section at g’ 0.0873x 1072 m?

signal wavelength

Stimulated-emission cross- o 12.94x 1072 m?

section at signal wavelength

Signal power Negligible

Inversion factor ng, 1

Fiber parameters

Pump power 200 kW (essentially
infinite)

Fiber length 50 mm

Cr*'-concentration 3.66x10% m™

Refractive index of cladding 2.45

Core numerical aperture 0.0313

Core radius, SMF 23.19 um

Core radius, MMF 85.77 pm

Bulk crystal parameters

Crystal length 17 mm

Refractive index n 2.45

Cr?*-concentration 7.03x10%* m™ (Case A,
C,D)

14.05%x10% m3 (Case B)
Grid parameters

Transverse spacing of
gridpoints

Ax=Ay 16 um (Case A & B)

8 um (Case C & D and
fiber simulations)

512 pm (Case A & B)
2048 pm (Case C & D
and fiber simulations)

50 pm (fiber simulations)
85 pm (Case A)

42.5 pm (Case B)

100 um (Case C & D)

Size of transverse window

Step length

noise photons per guided mode [5, 7, 9]. This was also con-
firmed by simulations.

The refractive part of a BPM step includes the amplifica-
tion and pump absorption by the gain medium. A fraction
n, of the laser-active ions is in the upper laser level, and
the remaining ions are in the lower laser level in our simu-
lations. The local intensities of the propagating waves are
used in standard rate equations to calculate the excited frac-
tion, from which the local gain and absorption follow. The
numerical grid we use is square with equidistant samples.

BPM is intrinsically monochromatic, so the results are
valid for monochromatic pump and signal. Coherence can
be important since higher coherence can lead to stronger
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multipath interference patterns with more pronounced spa-
tial variations of the gain. However, both the pump and sig-
nal distributions remain smooth in the gain medium, with
only minor interference effects. Furthermore, the signal
is assumed to be sufficiently weak to avoid saturation and
make spatial hole-burning negligible, so the signal does not
influence the propagation of the other waves. Under these
conditions, the coherence (or linewidth) is not expected to
significantly affect the evolution of the pump and signal.

Also the ASE is assumed to be sufficiently weak to avoid
self-saturation and therefore not affect the pump or signal.
This means that we can evaluate the ASE PSD (numerically
equal to the power in 1 Hz of bandwidth) at only a single
wavelength without regard to the rest of the ASE-spectrum.
We also disregard backward-propagating ASE with the
same motivation and treat all waves as co-propagating in
the forward direction. Accordingly, a single BPM run calcu-
lates a forward-propagating monochromatic wave related to
the ASE PSD for a specific realization of the random noise-
seeding. This is then repeated a number of times with dif-
ferent realizations of the random noise-seeding. The spatial
intensity-distributions of the different runs are then ensem-
ble-averaged [17-19] to arrive at an uncorrected approxi-
mate ASE PSD. The number of runs that is needed depends
on the parameters and targeted accuracy. Between 100 and
6000 were found to be sufficient. As a correction, Egs. (1)
& (2) suggest that we should subtract ng, photons per grid-
point from the ensemble-averaged result. However, a large
fraction of the gain medium is unpumped and thus weakly
absorbing, e.g., ~0.45 dB or ~10% in our default bulk crys-
tal. This makes the use of Egs. (1) & (2) complicated. In
fact, because of the absorption in unpumped regions, the
power (in 1 Hz) of the equivalent input noise can exceed the
uncorrected output when the input grid is large or the gain
is low. Therefore, as the correction, we subtract the unab-
sorbed~0.9 photons (in the default crystal and with ng, = 1)
from the ASE intensity in each point of the output grid. We
refer to this as subtraction of residual equivalent input noise
(REIN). Given the random nature, this can lead to negative
intensities in some gridpoints, but all evaluated quantities
of primary interest involve integration of the intensity over
several gridpoints, so negative intensity in a few points is
acceptable.

After the REIN subtraction, we finally arrive at the spa-
tial distribution of the ASE PSD, from which the beam qual-
ity (M3g5) and PSD (S, can be calculated. Also note
that with appropriate scaling of the Fourier transformation,
the REIN is the same in real space and in Fourier space (e.g.,
0.9 photons per gridpoint), so we subtract the same REIN
also in Fourier space (notably for evaluation of the farfield
ASE intensity distribution).
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For simplicity, we use the approximation ng, = 1. More
precisely, in a homogeneously excited gain medium [4, 6,
7],

Ngp = NQUS/(NQU: —Nlag — a)

= 2%/ [nz (0F + 02) — of] ®
Here, N, and N, [m] are the number densities of Cr*-ions
in the lower and upper laser level, 6°; and ¢°; are the absorp-
tion and emission cross-sections, and a [m'] is the back-
ground loss. In the second equality, we assume that only two
levels are populated and that a=0, which we do through-
out this paper. In the presence of reabsorption (¢“>0), n,
increases if 7, and thus the gain decrease. However, because
", is small compared to ¢°; at 2410 nm in Cr*":ZnSe, ng,
exceeds 1.1 only for gain below 4.2 dB with our default
crystal parameters and uniform excitation. Our gain is gen-
erally much higher than that, which justifies the approxima-
tion ng, = 1. See the Supplement 1 for further discussions of
ng, and its use in the BPM input grid.

The propagated ASE field and thus its PSD S ¢ that we
calculate include spontancous emission, S, This can be
measured and is also readily evaluated from simulated and
/ or measured quantities such as the absorbed pump power
and the number of excited ions, when reabsorption can be
neglected. In cases and regions where the emission has expe-
rienced little amplification, S, may even dominate over the
contribution from stimulated emission to S,gz. This is true
even though only the fraction of the spontaneous emission
emitted at angles supported by the numerical grid contrib-
utes to S ¢, as calculated with BPM. This fraction depends
on the transverse grid spacing and was of the order of 0.1%.

Whereas S is just a simple sum over all points in the
output numerical grid, the calculation of M3 is more
intricate. We found the details to be critical and considered
three different calculation methods, based on the ensemble-
averaged ASE intensity distributions at the exit plane of the
gain medium and in the farfield.

To calculate the farfield distribution, we implemented a
lens as a parabolic phase function at the crystal exit plane
for the purpose of minimizing the divergence of the aver-
aged beam, so that the exit plane coincides with the waist of
the beam after the lens. We Fourier-transformed the lensed
field (i.e., the complex amplitude) for each realization. The
overall farfield intensity-distribution was calculated as the
ensemble-average of the intensity-distributions of all the
realizations (with REIN subtraction). This process was per-
formed for a range of focal powers, and the focal power
yielding the smallest divergence was ultimately selected.

One method we used to calculate the exit-plane beam-
width, divergence, and subsequently M?%gj, was a sec-
ond-moment (“D40¢”") approach similar to ISO 11,146 [22].

A second method corresponds to a slit scanned across the
beam in orthogonal directions, whereby the beamwidth is
determined from the positions on different sides of the peak
at which the value reaches some fraction of the peak value.
We used full-width at half-maximum (FWHM) values and
divided those by (2 In 2)1/2=1.177. In case of a diffraction-
limited gaussian beam, this converts the FWHM-values to
the 2nd -moment values of the radius w, and divergence
half-angle §,. Other levels are also possible, for example, a
fractional intensity level of 1/€? is often used. Although the
level is important, we did not consider it carefully, but found
that a lower level led to better agreement in Eq. (2) in one
investigated case.

Our beams are expected to be circularly symmetric and
in a third method, “circle-scan”, we evaluated the quantity

I (r) = & (2)“ I (rcos — xq, rsinf — ) df in polar
coordinates (r, 6). Here, I (x, y) is the ASE PSD distribution
in the exit plane and (x,, ¥,) is the beam center-of-mass.
The units of / and 7, are W Hz ' m™2. The beam radius was
then taken to be the value of 7 where I, () reaches 1/e* of
its peak value. The divergence was similarly evaluated from

the farfield.

With these choices of fractional intensity levels, circle-
scanning led to M3 g ;-values that adhered better to Eq. (2)
than slit-scanning did. The ISO-approach proved the worst
in this respect.

We ignore Fresnel reflections. These can be significant,
e.g., 17.7% at a refractive index of 2.45, but can be reduced
by an anti-reflection coating.

Our simulations neglect thermo-optic (thermal-guiding)
and polarization effects. As it comes to the PSD of the ASE,
our calculations are for a single polarization. The pump and
signal polarizations are irrelevant for Cr**:ZnSe and other
isotropic gain media, and the total ASE is twice that in a
single polarization. Since there are no nonlinear effects for
the ASE and signal (including saturation), their propagation
is linear in our simulations.

Thermo-optic effects (extending to stress-optic effects
and bulging of end-facets) and resulting beam aberrations
are often important in Cr’>*:ZnSe [2], although they can be
less significant in the quasi-continuous-wave regime and in
gain media with lower thermo-optic coefficient. We expect
that the inclusion of such effects, as well as ASE self-satu-
ration and other nonlinearities, to be challenging and com-
putationally intensive. The nonlocal nature and delayed
response of thermo-optic effects contribute to the difficulty.
Iterative approaches may well be required, and these can
have problems with convergence. Any notional solution
may even be unstable. Having said that, input-end noise
seeding is fundamentally compatible with BPM solvers that
include nonlinearities such as thermo-optic effects, e.g., if
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this capability is added to an updated version of RP Fiber
Power (stimulated Raman scattering and the nonlinear Kerr
effect are already available in RP Fiber Power).

BPM with thermo-optic effects is treated in [23]. Refer-
ence [19] also discusses some related issues. Both references
describe temporally resolved simulations, which although
computationally demanding can overcome problems related
to the simulation of thermal diffusion and convergence with
bidirectional saturating waves including ASE. Ultimately,
the choice of method depends on what nonlinear effects
are considered. Input-end noise seeding may be compatible
with all nonlinear effects and simulation methods, but even
if so, it may not be best.

We also point out that although the implementation of the
noise seeding was in itself relatively straightforward, the over-
all programming effort was considerable. There were some
2200 lines of code in the RP Fiber Power script language,
with large fractions devoted to loops and post-processing (to
calculate M*-values of the signal as one example), writing
output files, plotting, etc. This was a modification and exten-
sion of a script for the simulation of a bulk amplifier kindly
provided by Dr. Riidiger Paschotta. Mathematica was used
for plotting and further postprocessing of the output from
RP Fiber Power, e.g., for ensemble-averaging, calculating
M?-values of the ASE in different ways, and identifying opti-
mal signal parameters. This comprised~ 1500 lines of code.

3 Validation through simulations of fiber
amplifiers

We simulated fiber structures with a well-defined number
of guided modes and well-defined gain confined to the core
with BPM and compared the results to those obtained with
conventional equations for the evolution of modal power in
the incoherent regime, which we refer to as “modal power
evolution”, MPE. See, e.g., [7, 20, 24]. The MPE-equations
are well proven for the simulation of gain and ASE in fiber
amplifiers and can therefore be used for validation. We used
RP Fiber Power also for the MPE simulations. In contrast to
our BPM simulations, the MPE-implementation seeds the
ASE with spontaneous emission distributed along the fiber.
The MPE-calculations used analytic LP-modes. The BPM-
calculations used a configuration like that in Fig. 1, with
diffraction-limited gaussian input beams. These were now
focused on the fiber input face (z, = 0), with beam waist
radii w, obtained with Marcuse’s formula for the mode field
radius of the fundamental mode [25].

We simulated a single-mode fiber and a multimode fiber.
Both fibers were 50-mm long and had a cladding refrac-
tive-index of 2.45. The cores had a numerical aperture
(NA) of 0.031 and were Cr*"-doped with a concentration of
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3.66x 10%* m=. The cross-sections for stimulated emission
and absorption, as well as the pump wavelength (1901 nm)
and signal / ASE wavelength (2410 nm), were set to the
values used for the Cr>*:ZnSe bulk crystal (Table 1). These
parameters are not realistic for a fiber but are fine for vali-
dation and largely agree with those of the bulk crystal. The
pump power was 200 kW in the fiber simulations. This
choice is also unrealistic but ensures that n, is clamped at
the pump transparency level of ¢/ / (6, +0F)=0.657. At
this excitation level, the gain becomes 1.35 dB/mm if all of
the signal propagates within the gain medium (unity over-
lap). Furthermore, from Eq. (3), ny, = 1.0035, which is only
0.015 dB higher than n, = 1 used in the BPM simulations.

The BPM simulations further used a longitudinal step
length of 50 um and 256 %256 transverse points with a spac-
ing of Ax=Ay=8 pm (window size 2048 pum). The grid thus
supports propagation angles up to 6,=1 /(2 n Ax)=61.5 mrad
(in the x-direction) in the paraxial approximation at an in-
fiber wavelength of 2410 nm / 2.45=984 nm. Note also that
256x256=65,536 transverse points, so with seeding of one
noise photon per point in the input grid, the total seeding is 48.2
dB higher than the single-photon seeding of a single mode.

In these simulations, only the pump (which is forward-
propagating) affects the excitation level, and there is no
gain-saturation from backward-propagating light. Thus, the
forward-propagating waves at a longitudinal position z are
independent of backward-propagating waves at that posi-
tion, and independent of what happens at locations further
forward. It follows that the output parameters (e.g., power)
from a fiber of a specific length L is equal to the value of
those parameters at z=L in a longer fiber. We took advan-
tage of this in the MPE-simulations but not in the BPM
simulations, to save on scripting efforts.

3.1 Single-mode fiber amplifier

The single-mode fiber had a 46.38-um diameter core with
V'=2.40 at the pump wavelength. For the BPM-calculations,
the waist radii w, were 25.52 pm and 30.94 um for pump
and signal. For the MPE-calculations, both the pump and
signal were launched as LP,;-modes. Figure 2 shows how
the small-signal gain and ASE evolves along the fiber, with
the two methods. The ASE is plotted in terms of S gz / hv,
i.e., the ASE PSD at the signal wavelength in one polariza-
tion, relative to the signal photon energy. For the MPE cal-
culations, this practically coincides with the signal gain for
gain over ~ 13 dB. At lower gain, S,q;/ Av+1 still coincides
with the gain, thus following Eq. (1).

The gain calculated with BPM is similar to that calcu-
lated with the MPE equations. The 6% reduction in loga-
rithmic gain (the dB gain) in Fig. 2 may be caused by the
sampling, i.e., a lower overlap in the BPM grid. With each
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Fig.2 Single-mode fiber. (a) The gain, ASE level S,z / hv (before and
after subtraction of residual equivalent input noise) and S,¢z / Av+1
simulated with BPM and MPE as indicated. For the MPE-simulations,
the curves for S,z / hv+1 and the gain are indistinguishable. The ana-

gridpoint representing an area of Ax Ay=64 um?, the core
area corresponds to 26.40 gridpoints, but the sampling was
such that only 25 gridpoints were within the core. We also
see that the ASE-level in the BPM calculations agrees with
that of the MPE-calculations for gain above around 24 dB.
Furthermore, for BPM-calculations, the ASE and gain lev-
els are within 2 dB of each other, when the gain exceeds ~25
dB of gain (G}, = 320). Thus, S gz is within 2 dB of ~320
photons at G, = 320. This is 23 dB lower than the 65,536
of residual photons in the unpumped output (i.e., the REIN),
which we subtract from the ASE intensity. This indicates
that our subtraction of the residual equivalent input noise is
accurate at that point. Note that in our fiber simulations, the
number of photons in the REIN is practically the same as the
number of input noise photons, since the average doping of
the simulated structure and thus the absorption of the input
noise photons across the whole grid is negligible (the doped
core makes up only a fraction of 4.03 x 10~* of the simulated
volume).

For lower gain, unguided spontaneous emission (which
may experience a small amount of amplification insofar as
it overlaps with the core) increases relative to the ASE. The
spontaneous emission couples primarily to the large number
of unguided modes, including those supported by the BPM
grid. Thus, the spontaneous emission contributes much
more to S g as calculated with BPM than to that calculated
with MPE, which only includes the spontaneous emission
captured by the guided mode. Therefore, S,q; will differ.
The PSD of the spontaneous emission, S, (without any
amplification) is also shown in Fig. 2. We calculated this

Fiber length or position [m]

lytically calculated spontaneous-emission level S, is also shown. (b)

M2 s from BPM-simulations, evaluated as a 2nd -moment (x and y),
with slit-scanning (x and y), as well as with circle-scanning

analytically, as the PSD generated per excited ion and unit
solid angle in one polarization, hv n* o/ 22 (from [26])
multiplied by the solid angle supported by the BPM grid
(=4x0.0615% sr=0.0151 sr in the paraxial approximation)
and the number of excited ions. Within 1 dB, S, agrees with
S,sg at low gain, and we conclude that S,q; as calculated
with BPM is dominated by spontaneous emission at low
gain. Figure 2 shows that the calculated PSD (S ;) remains
correct even when it becomes nearly 40 dB lower than the
uncorrected PSD (before REIN subtraction), in regimes
where the PSD is dominated by spontaneous emission and
the amplification of the spontaneous emission is low. This
further confirms the accuracy of the REIN subtraction.

The beam propagation factors M3y are plotted in
Fig. 2 (b), as evaluated from the BPM-simulations in the
three different ways. For an analytic LP,;-mode, M?is close
to unity, e.g., < 1.1. The 2nd -moment calculation yields
M3 ¢ p-values which are much larger. We attribute this dis-
crepancy to low levels of background light at large distances
from the core, which is known to increase the calculated
M?-value (e.g., [27]). In further calculations (not shown),
the second-moment calculation came close to expected
values of M3 for gain>70 dB, when the background
is sufficiently low relative to the light guided by the core.
By contrast, the slit-scan and circle-scan determinations of
M? 45 seem reasonably accurate for gains of ~12 dB or
more, which is reached at around 15 mm of propagation. We
also found that the transverse profile of the signal (launched
with a gaussian profile), and thus its M*-value, stabilized
after around 20 mm of propagation.
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To further test the validity of the BPM-calculations and
the subtraction of the REIN, we compared the spatial dis-
tribution of the calculated PSD [W Hz ! m™] to analytic
calculations of the spontaneous emission from 15 mm of
fiber. For this, S, was averaged over 4000 runs. Figure 2
(a) suggests that spontaneous emission may dominate the
calculated S gz at this length. Furthermore, at this length,
the simplifying assumptions of negligible amplification and
boundary effects that these analytic calculations rely on are
fulfilled in a reasonably large part of the output field. Note
also that there is no reabsorption in the undoped cladding.
The analytic evaluation only included the emission in the
angular range supported by the BPM grid and a single polar-
ization (like the BPM simulations). Figure 3 shows I, (r)
(defined previously) before and after REIN subtraction, as
well as the analytic evaluation. For small radial coordinates,
the BPM calculation is dominated by light that has trav-
eled in the core or through the core at a small angle over a
relatively long length (e.g., up to 4.6 mm at 10 mrad), thus
experiencing significant amplification. This results in stron-
ger ASE which is not captured by the analytic calculation.
Light at larger radii has traveled at larger angles and is thus
less affected by amplification. Radial positions>0.15 mm
show good agreement, and we conclude that following
REIN subtraction, the BPM PSD distribution agrees well
with the spontaneous emission distribution in regions with
little ASE.

Whereas the REIN does not contribute to the actual ASE
and is therefore subtracted, the spontaneous emission does
contribute, e.g., in the form of a spatially wide background
(56% of the power is outside the core in the BPM simula-
tions of Fig. 3). This background can affect M3 g, and the
2nd -moment value is particularly sensitive. We note that
the spatial distribution of the spontaneous emission can
be affected also by factors such as cladding diameter and
coating loss, which we did not consider and are often not
included in simulations.

-9
10
BPM simulations before REIN subtraction

zE \
v \
é N 10710F . «—BPM simulations after REIN subtraction
£ [y
28 O, ey,
a @ 11| P, Y, yiw\s
510 CZA W d i)
28 )
5 £ 04 P op i
33 @,)). p‘YO IRE
a g /\S‘s/b !

= 40712 "
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Radial coordinate [mm]
Fig. 3 Single-mode fiber, 15 mm. Power spectral density per unit area

according to analytically calculated spontaneous emission as well as
BPM simulations before and after REIN subtraction
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From these calculations on single-mode fibers, we con-
clude that our approach for the simulation of signal gain
and ASE is fundamentally correct and accurate at suffi-
ciently high gain. The ASE PSD as calculated with our BPM
approach is within 2 dB of that obtained with the standard
MPE-model for fiber amplifiers for gain>25 dB. Further-
more, the relation between the gain and ASE PSD agrees
with Eq. (1) for gain>24 dB. Similarly, the beam propa-
gation factor of the ASE agrees with the expected M3
~ 1 when the gain is sufficiently high. This was for gains
above ~12 dB in case of circle-scanning and slit-scanning
but gain as high as 70 dB was required for the 2nd -moment
method. We attribute the deviations at lower gain to back-
ground light in the form of unguided spontaneous emission.
At low gain, there is good agreement between S g, and the
PSD calculated analytically for spontaneous emission, both
regarding their total level and their distribution. Our results
also highlight the significance of accurately subtracting the
residual unpumped background, which we succeeded with.

3.2 Multimode fiber amplifier

Next, we consider a multimode fiber amplifier. The physical
and numerical parameters are the same as for the single-
mode fiber, except for the larger core diameter of 171.5 pm.
The core supports 12 LP-modes at the signal wavelength
(V=1.00). For the BPM-calculations, the waist radii w
of the incident gaussian beams were 61 pm (pump) and
63.25 um (signal), which match the radii of the fundamen-
tal modes. These are well confined to the core for /'=7.00.
The high pump power (200 kW) means the intensity suf-
fices to excite the Cr**-ions to the pump transparency level
even at the edge of the core. There are 357 gridpoints within
the core. Figure 4 illustrates results of BPM simulations for
20 mm of propagation. Figure 5 shows the calculated gain
and S, (BPM & MPE), M3 (BPM), and S, (analytic).
When all modes are excited by the same signal power, the
overall gain for 50 mm calculated with MPE becomes 62.5
dB, which can be viewed as the average modal gain. The
LP,-gain (MPE) reaches 66.6 dB, which closely approxi-
mates the potential gain of 67.4 dB with unity overlap. The
BPM simulations yield a gain in close agreement (66.7 dB).
The second-moment M>-value for the signal (i.e., not ASE)
becomes 1.06, consistent with the supposition of fundamen-
tal-mode propagation in the BPM simulations.

Along the length of the fiber (Fig. 5), the MPE-calcula-
tions lead to an ASE PSD (relative to the photon energy)
in LPy, which agrees closely with the LPj,-gain once this
exceeds~13 dB (distances>10 mm). As with the single-
mode fiber, the agreement extends also to lower levels of
gain, if an extra photon is added to the ASE in LP,,;. Further-
more, the total ASE PSD becomes 12 times the average gain
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Fig. 4 Multimode fiber, 20 mm. Examples of ASE PSD distribution in
spatial and angular (spatial frequency) domain calculated with BPM.
(a) Output intensity of a single realization with random input noise
including REIN. (b) Intensity of a single realization along the fiber
cut in the plane y=0. (¢) Output intensity (including REIN) ensem-
ble-averaged over 1000 realizations. (d) Cut through center of (c) at

for values above ~ 13 dB, i.e., the MPE-calculations lead to
an average ASE per mode that agrees with the average gain.

When it comes to the BPM-calculations, the resulting
ASE PSD agrees with that of the MPE-calculations for all
modes within 3 dB for average gain above 27 dB and within
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y=0 before and after REIN subtraction. (e) Farfield intensity distribu-
tion (i.e., in spatial-frequency domain) ensemble-averaged over 1000
realizations. The plot includes the REIN of one photon per gridpoint.
The divergence measured as the circle-scanned radius has been mini-
mized with a lens. (f) Cut through center of (e) before and after REIN
subtraction

1 dB above 36 dB. For higher gain the curves become indis-
tinguishable. Thus, our method for calculating the ASE PSD
with BPM is valid for high gain. For low gain, unguided
spontaneous emission appears to contribute significantly to
S sg- As demonstrated for the single-mode fiber, S, may
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Fig. 5 Multimode fiber. (a) Gain, ASE level S / hv before and after
subtraction of residual equivalent input noise and S,g; / (hv Masp

) for BPM and MPE-simulations. Quantities are shown, selectively,
for LP,,, all modes, and average per mode. S, / (hv M3 gp") (from
BPM simulations) is depicted for circle-scan determinations of M? g
as well as for slit-scan and 2nd -moment determinations. Some curves

still be correctly calculated but is no longer dominated by
core-guided ASE. The MPE-calculations do not include S,
leading to a lower value of S .

. . 2
We next consider whether the quantity M3q5" (or
Misp » Migg,) can be used for the effective number

of modes, as proposed in Eq. (2). The 12 modes in our fiber
would correspond to M3y (and M3gy , and M3y,

) of approximately 12'2 ~ 3.46. However, since the lower-

order modes with lower M?-values tend to be more confined
to the core and thus reach higher gain and output power, the
overall M?%g; is weighted towards the modes with lower
M?-values. Figure 5 (b) shows values of M3 gp from the
BPM-simulations. The second-moment values of M?3%g¢y
become 2.73 and 2.79 for the two orthogonal directions at
50 mm. This suggests Mf‘SE?I foSE,y = 7.63 effective

modes. The M>-values are larger for shorter propagation
distances (with lower gain), e.g., 45 at 15 mm. This high
value is attributed to power in a spatially wide background
and suggests that the second-moment calculation should not
be used in Eq. (2).

With a slit-scan determination (FWHM), the two orthog-
onal M3 p-values become 4.05 and 3.87 at 50 mm. Their
product becomes 15.7, so the M3 ;-values determined
this way seem to over-estimate the number of modes, even
though the background errors should be relatively unim-
portant, given the high gain at 50 mm for light in the core.
Circle-scanning (threshold 1/¢?) yields M3 4 = 3.02, sug-
gesting 9.13 effective modes. The value remains below
122 for distances > 33 mm (44 dB of LP,-gain). The
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appear indistinguishable. The analytically calculated spontaneous-
emission level S, is also shown. (b) M3y from BPM-simulations,
evaluated as a 2nd -moment (x and y), with slit-scanning (x and y), and
with circle-scanning. The value of 3.46, approximately corresponding
to 12 modes, is indicated

slit-scanned and circle-scanned values of M3y increase
slowly for shorter lengths, down to 15-20 mm. This may
be a result of reduced spatial gain-peaking. For even shorter
lengths, they increase rapidly, which suggests a significant
fraction of the light is outside the core. Still, they remain
much smaller than the 2nd -moment values.

Figure 5 (a) also shows the quantity S, / M3g EQ,
which we compare to the highest achievable single-mode
gain (i.e., the gain of LP,, in this case), according to Eq. (2).
If we use Eq. (2) to calculate M3 ¢ E2 from S,z and Gy;,,, we

get M2,” =4.91=2.222at 50 mm. All the M2, -values
determined from the ensemble-averaged BPM intensity dis-
tributions were larger than 2.22, but are reasonably close for
the 2nd -moment and circle-scan evaluations. However, for
lengths < 40 mm, the 2nd -moment M3 g ;-values become

2 . .
large, and S,g; / M3gp~ underestimates the LP,-gain. By
contrast, the circle-scan determination leads to values of

Sy | Mig E2 that remain within 3 dB of the LP,;-gain
for all lengths down to 5 mm. The slit-scan calculations
adhered somewhat worse to Eq. (2), especially at high gain.
See Fig. 5 (a).

Here as well as in other simulations, we generally found
the circle-scan evaluation of M%¢, to conform best to
Eq. (2), but this may be due to the choice of the fractional
intensity level /., used for determining the beam diameter
rather than the method itself. We briefly investigated this,
by calculating slit-scan and circle-scan M3 g -values for
the 50-mm fiber determined with different values of /,, The
directly determined ASE diameters 2 w, ¢z and full-angle



Modeling and simulation of amplified spontaneous emission in single-mode-pumped Cr**:ZnSe bulk...

Page 11 of 21 63

divergences 2 6, 45z were divided by (-2 In In?)l/ 2 before
calculating M3gp (= © w5z Oouse / A). This leads to
M*=1 for a diffraction-limited gaussian beam. Figure 6
shows the result, together with the 2nd -moment calculation
as well as the values of M?%g; that correspond to 12 modes

and 4.9 modes (taking the number of modes as M3 g EQ).
We see that for these parameters, the reason the circle-scan
leads to a lower value of M3, is that it is determined at a
lower fractional intensity level, 1/e>=0.135 vs. 0.5 for the
slit-scanning. Different fractional intensity levels may fit
better with Eq. (2) in general, but we did not investigate this
further. These M? ¢ ;-values are all from BPM simulations.
We did not calculate M?%g for the MPE-simulations.

Overall, we conclude that our BPM-approach for calcu-
lating the guided ASE PSD is correct also in these simula-
tions of a multimode fiber for gain>27 dB, verified through
comparisons to MPE simulations. Also unguided sponta-
neous emission (including weakly amplified spontaneous
emission) appears to be correctly calculated. Furthermore,
Eq. (2) is correct to within 3 dB, when M3 4 is determined
with circle-scanning with fractional intensity level of 1/e.
The accuracy is better at higher gain, whereas deviations can
become large at low gain. We reiterate that second-moment-
calculations of M3y generally led to large discrepancies
in Eq. (2). This may be a result of the spontaneous-emis-
sion background. For circle-scanning and slit-scanning, the
choice of fractional intensity level used for the determina-
tion of beam radius and divergence is important but was not
studied in depth.

(2)
Myse

2"-moment (x & y)

4.912=22

0 0.1 0.2 03 0.4 05 06 0.7 0.8
Fractional intensity level

Fig. 6 Multimode fiber, 50 mm. M3y calculated with exit-plane
beam radii w, 4 and farfield divergence half-angles 6, 45 determined
from slit-scans and circle-scans at different fractional intensity levels
and from their 2nd moments (for which the intensity-level does not

apply)

4 Simulations of Cr2+:ZnSe amplifiers

We now turn to non-waveguiding “bulk” Cr**:ZnSe ampli-
fiers in the arrangement depicted in Fig. 1. We simulate
these in the small-signal regime using BPM in four different
cases. Each case involves the pump being focused at the
center of the gain medium (crystal), with variations in waist
radius and/or dopant concentration, and ignoring any distor-
tions induced by the crystal. To test the validity of Eq. (2),
we need to determine the highest achievable gain for any
signal beam launched through the crystal under the different
conditions. Therefore, optimization of the signal launch is
necessary, whereas optimization of the pumping or crystal
length is not required for testing Eq. (2). We limit our opti-
mization efforts to pump and signal beams which would be
collinear and concentric diffraction-limited gaussian beams,
in the absence of gain- and absorption-induced aberrations
in the crystal. Although the crystal does aberrate the beams,
we anticipate that the gain achieved with these restrictions
will be close to what could be attained with unrestricted sig-
nal optimization (e.g., allowing for non-gaussian beams).

With these restrictions, we used BPM to simulate and
optimize the signal gain with respect to the undistorted air-
values of the signal waist radius wy ; and focal plane position
z;, for different pump powers. Subsequently, we evaluated
Eq. (2) with the optimized gain, along with the ASE PSD
and M?-values determined through BPM simulations of
the ASE (with ensemble-averaging and REIN subtraction).
Note that in the small-signal regime we consider, the ASE
is independent of the presence of the signal, and vice versa.
The amplifiers consisted of 17 mm of Cr**:ZnSe. Given a
refractive index n of 2.45, the undistorted air-value of the
pump focal position z;, becomes 8.5 / 2.45=3.47 mm for
mid-point focusing. Except for Case B below, the Cr**-con-
centration was 7.03 x 10* m™. With our pump and signal
wavelengths, this leads to a gain of 2.59 dB/mm with unity
overlap and thus 44.0 dB in 17 mm in the limit of infinite
pump power.

We first (Case A) examine pumping which is confocal
(neglecting distortions). The undistorted pump waist radius
Wy, becomes 45.8 pm (Rayleigh length in crystal 8.5 mm).
To illustrate the signal gain optimization needed for Eq. (2),
Fig. 7 shows the optimized gain values and the correspond-
ing values of wy ; and z;,. There is also a contour plot of the
gain vs. wy; and z;, at a pump power of 20 W, for which
the optimal values are wy,; = 38.7 um and z;; = 2.83 mm.
The gain reaches 35.6 dB (G}, = 3660). Since the pump
decreases along the crystal, the optimal signal focus is in
front of the pump focus.

Figure 8 presents the gain vs. pump power for the opti-
mized w, and z;,. It also includes S,gz and S,g; / Mf‘SEQ

(both relative to the photon energy), and M3 ¢ evaluated
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Fig. 7 Case A, bulk crystal with confocal pump-focusing. (a) Opti-
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(b) M3 g4y evaluated as a 2nd -moment and with slit-scanning (x and y), as well as with circle-scanning

in different ways. The spontaneous-emission PSD S, at
2410 nm (in one polarization within the range of propaga-
tion angles supported by the BPM grid) is also plotted. This
was evaluated as a spectral and angular fraction of the total
fluorescence power. The BPM simulations used 200 lon-
gitudinal steps of 85 pm and 32 x 32 transverse gridpoints
with a spacing of 16 pum (window size 512 pm). This sup-
ports propagation angles up to 30.7 mrad in the crystal for
the signal and ASE. See Supplement 1 for a discussion of
the parameters of the numerical grid. Circle-scanning yields
the smallest deviations in Eq. (2), remaining below 3 dB for
gain above ~20 dB. Notably, the ASE can be generated with
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high beam quality. With circle-scanning, the lowest M35
-value becomes 1.48 (pump power 15 W, gain 33 dB). At
low pump power, S, agrees with S,g; within 2 dB, thus
dominating S,gz. The analytic calculation of S, neglects
reabsorption, which partly explains why S, > S, at low
gain.

In Case A, the maximum gain is limited by the concen-
tration—length product of the crystal. Case B is the same
as Case A, except that the Cr*"-concentration is doubled
to 14.05x10** m™. This allows for gain up to 87.9 dB at
infinite pump power. Figure 9 shows the results. Due to the
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proximity of the quantities in Fig. 8 (a) when plotted on a
scale capturing the full gain range, Fig. 9 (b) displays the
differences between the gain and the quantities shown in
Fig. 8 (a), while Fig. 9 (a) presents the gain and the M3 4,
-values. The transverse numerical grid was the same as in
Case A, while the step-length was halved to limit the gain
in a step. Also as for Case A, the circle-scanned determi-
nation of M?3g, fits best with Eq. (2). The deviations are
below 3 dB for pump power>8 W (gain>30 dB). M3 is
lowest for 25 W of pump power (gain 69 dB), reaching 1.3
(slit-scan and 2nd -moment). With circle-scanning, M?% ¢
becomes as low as 1.03 at 25 W of pump power, and the
discrepancy in Eq. (2) becomes only 0.04 dB at that power.

When the total power in the full ASE spectrum is con-
sidered, ASE “self-saturation” (neglected in these simula-
tions) becomes significant for pump powers in the range
15-5000 W, over which the gain exceeds 50 dB. See Sup-
plement 1. This affects the accuracy of our simulations
with narrowband ASE. However, neglecting self-saturation
affects both sides of Eq. (2) and does not automatically
invalidate a comparison between simulated ASE and gain,
although it will impact comparisons between experiments
and simulations.

Case C employs a much larger pump beam, w,, =
200 pm, for the original (default) concentration (Table 1).
This leads to a much larger pump beam volume (1.07 mm?)
than with confocal pumping (0.075 mm?) and therefore
more ASE, e.g., S,z = 7.9 fW/Hz vs. 0.56 fW/Hz with con-
focal pumping at 35.5 dB of gain. The ASE simulations used
170 longitudinal steps of 100 pm and 256 x 256 transverse
points with a spacing of 8 um (half of Case A) for a window
size of 2048 pum (four times that in Case A). This supports
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Fig. 9 Case B, bulk crystal with confocal pump-focusing and double
concentration. (a) Gain and M? g 5 evaluated as a 2nd -moment (x and
»), with slit-scanning (x and y), and with circle-scanning. (b) ASE level
8,5z / hv (before and after REIN subtraction) and S g, / (hv M3 g Ez).

propagation angles up to 61.5 mrad at 2410 nm. Figure 10
shows the results. For the circle-scan, the quantity S g /

M3g E2 is within 3 dB of the achievable gain for gain>33
dB (pump power>85 W). In this range, S g is over 8 dB
larger than S,,. Compared to confocal pumping, the ASE
beam propagation factor M3, is considerably worse in
Case C. With circle-scanning, it reaches a minimum of 7.1
for a pump power of 100 W (gain 35.5 dB).

Case D, finally, considers tight focusing of the pump,
wp, = 8 um. Because of the rapid diffraction (Rayleigh
length 0.26 mm in the crystal), the pump beam volume is
larger than for the confocal case, 0.61 mm?>. The numeri-
cal grid was the same as in Case C. Figure 11 shows the

results. With circle-scanning, the quantity S,g; / M3 E2 is
within 3.7 dB of the achievable gain for gain>22 dB (pump
power>24 W). In this range, S, is at least 2 dB larger than
S, Again, the deviation from Eq. (2) is larger for the other
methods of determining M3 gp (especially 2nd -moment).
The beam propagation factor M3 (circle-scan) reaches
a minimum of 2.7 for 50 W of pump power (gain 33.4 dB).

5 Discussion

In the cases we have examined, the BPM-simulations
with equivalent input noise followed by subtraction of the
residual equivalent input noise are accurate for the power
spectral density S ¢z, not only at high gain when spontane-
ous emission (S,) is negligible but also at low gain when it
dominates. Specifically, for the single-mode fiber, S, as
calculated with BPM agrees with that of the well-proven
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MPE approach for gains above ~24 dB (Fig. 2). At lower
gain, the numerous modes supported by the BPM grid
means that more of the spontaneous emission is captured
than with the MPE approach, which only treats the guided
modes. Therefore, although S, as calculated with the two
methods will differ, we still expect S,sg ppys— Sy, = Suse, mpe
at low gain. We verified this to be the case for the single-
mode fiber, and thus the accuracy of the BPM-approach in
this regime, with only a small deviation at the few-photon
level.

The accuracy of the subtraction of the residual equiva-
lent input noise is noteworthy. Our results demonstrate
its accuracy down to the few-photon level, even when the
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equivalent input noise comprises 65,536 photons. This
accuracy was obtained with ensemble-averaging of, e.g.,
4000 realizations used at low gain, and is consistent with a
standard deviation of (65,536 / 4000)"? = 4.0 photons. This
corresponds to —42.1 dB of 65,536 photons. For a single
mode with equivalent input noise of one photon, the stan-
dard deviation of the averaged value becomes 40002 =
0.016 photons or —18.0 dB. The standard deviation is unaf-
fected by the REIN subtraction, which is deterministic.

This high accuracy justifies our approach for evaluating
and subtracting the REIN.

The observations are similar for the multimode fiber in
Fig. 5. For instance, BPM and MPE-calculations of S,qz
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agree well for gains larger than ~27 dB. On the other hand,
as the gain decreases (corresponding to shorter fibers), the
agreement between S,q; and analytic calculations of S,
becomes worse than for the single-mode fiber, e.g., at 10
and 15 mm. The agreement then improves again for fibers
shorter than 5 mm (gain up to ~6 dB). One possible expla-
nation for this observation is that at the higher gains of 10
and 15-mm fibers, the large core leads to significant amplifi-
cation of unguided light in the BPM simulations. It is impor-
tant to note that this does not imply that the calculation of
S, 18 less accurate, even if the definition of the regime
where spontaneous emission dominates becomes less dis-
tinct in these scenarios.

MPE-simulations are not available for the bulk amplifier,
but we can still assess the agreement between BPM-calcula-
tions of S ¢, at low gain (when it is dominated by spontane-
ous emission) and S, as follows. We determined S, from
the pump power absorbed in the BPM-calculations, assum-
ing unity quantum efficiency and with negligible reabsorp-
tion and stimulated emission due to the signal and ASE
(within 1 Hz). Calculations on Case A (not shown in Fig. 5
(a)) revealed that for low gain, these agreed within a fraction
of a photon, even when the REIN subtraction reduced S,z
by over 99.9%, to ~0.4 photons. In this case, the BPM grid
comprised 32 x 32 points, resulting in a standard deviation
of (32x32 /4000)""? = 0.51 photons in the ensemble-aver-
aged equivalent input noise. For Case C, S,q agreed with
S, within 2 dB for gain below 11 dB (pump power<25 W).
For Case D, S5z agreed with S, within 2 dB for gain below
~20 dB (pump power<22 W).

We do not present any experimental results, but note that
for comparisons to experiments, a square aperture can be
used in the farfield to reject light at angles not supported
by the BPM grid. This may not be necessary if S, forms
a well-defined beam within the BPM grid, but some assess-
ment of the capture is required, since the spontaneous emis-
sion can be quite significant also at large angles. If S ;5 does
not form a beam of sufficient definition for nearly lossless
or calibrated coupling into an optical spectrum analyzer
(OSA) for direct measurement of S ;¢ then one can instead
measure the shape of the full ASE spectrum with an OSA
and the total ASE power with a power meter and determine
S,sg from that. For this, the effective ASE bandwidth as
calculated in Supplement 1 can be used. Additionally, more
precise modeling can be considered, e.g., to account for the
coupling of the emission into a collection fiber or the trans-
verse boundaries of the gain fiber or crystal. If needed, these
approaches can provide a more comprehensive and accu-
rate comparison. The beam propagation factors M3 cal-
culated from the spatial distribution of the simulated ASE
(farfield, exit-plane, and / or some other plane or planes)
can also be compared to experimental values, preferably

determined in the same way (e.g., slit-scan) and without any
mismatch in the captured propagation angles to reduce the
sources of discrepancy.

Our simulations show that Eq. (2) can determine the gain
from S, and M3 4, with reasonable accuracy in some,
but not all, circumstances. We would like to identify char-
acteristics that gauge the validity of Eq. (2) with parame-
ters that are straightforward to measure. We reiterate that
the gain Gy, in Eq. (2) is the highest achievable gain for a
specific combination of crystal, pump focusing, and pump

power. Furthermore, Eq. (2) relies on M3 E2 correspond-
ing to an effective number of modes. We first point out that
this cannot always hold. A counterexample is a pump com-
prising two parallel beams. Each of these can generate a
(nearly) diffraction-limited ASE-beam, thus they comprise
approximately two modes combined. However, the M-
value of the combined beams depends on their separation
and can be arbitrarily large. A ring-shaped pump beam is
a similar counterexample. Still, M3 E2 may be a reason-
able approximation for the effective number of modes in
our simulations, in which the transverse gain profiles are
largely convex without significant dips. We restrict this dis-
cussion to circle-scanned M3 ¢ -values determined at the
1/€% intensity level, as this method worked best for Eq. (2).

The most obvious gauge is that at high gain, the adher-
ence to Eq. (2) is fair or good. In the four cases we studied,
the discrepancy in Eq. (2) became smaller than ~3 dB for
gain above 20-30 dB. However, this gauge requires that
the optimal gain is at least 20-30 dB, which may be diffi-
cult to know. We would rather gauge the validity from S, g
and M3y, which would anyway be calculated or mea-
sured. Figure 12 shows the discrepancy in Eq. (2) vs. pump
power for the four bulk amplifier cases, as well as S,z /

(hv M2 ,”)and M2 . The vertical lines indicate transi-

tion points between large and small discrepancy. Although
somewhat arbitrarily defined, we see that these transitions

occur when S,z / (hv MiSEz) is in the range 20-30 dB.
Furthermore, the transitions correlate with sharp increases
in M?%g; towards lower pump power.

These criteria have significant variations and gray zones,
and the M3 4 -criterion furthermore requires knowledge
of M3y, for a range of pump powers. We were not able
to identify a better criterion but will discuss some of the
options we investigated.

The correlation with the beam quality suggests that the
formation of a beam of ASE could be a criterion. This would
be easy to determine with a camera in the farfield. How-
ever, this criterion did not work. Figure 13 (a) shows a cut
through the center of the ASE beam in the farfield for Case
A at 6 W of pump power. A lens at the exit plane minimized
the divergence. The peak is ~16 dB above the background,
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Fig. 12 Discrepancy in Eq. (2) vs. pump

power for cases A—D 2(top) plotted together . ;

with Sygz / (hv M35 ) and M3 gg. The 6 —— —
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but still, the discrepancy in Eq. (2) is 5.4 dB. The exit-plane
distribution has a peak ~8 dB above the background (Fig. 13
(b)) and is thus less pronounced than the peak in the farfield.
This may explain why a sharp beam (i.e., farfield peak) does
not guarantee good adherence to Eq. (2).

@ Springer

The appropriateness of a configuration could also consti-
tute a gauge for the validity of Eq. (2). Thus, the discrepancy
in Eq. (2) may be large only for unreasonable configurations
or parameters of little interest, such as those with very low
gain or unrealistically high pump power. For instance, Case
D has pump focusing that is far from optimal. (Case C may
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Fig. 13 (a) Farfield and (b) exit-plane distribution of S along a line through the center of the beam for Case A at 6 W of pump power

be more relevant insofar as it resembles highly multimode
pumping.) Confocal pumping is not optimal, either, but is
close. Furthermore, in terms of optimization, we note that
the crystal length relates not only to the focusing but also the
power of the pump, i.e., for a given pump power, the crys-
tal length is optimal when the leaked pump is just enough
to excite enough ions to create gain at the output end of
the crystal. For Case A, this match between crystal length
and pump power occurs for 6 W of pump power, which is
thus highly relevant. However, the discrepancy in Eq. (2)
is significant at that power. In Case B (confocal pump-
ing with twice the concentration), the similarly matching
pump power becomes~ 16.6 W, and now, the discrepancy
in Eq. (2) is small. We attribute the improved agreement to
the higher gain in Case B, ~53.7 dB at 16.6 W of pumping,
compared to 19 dB (at 6 W of pumping) in Case A. We con-
clude that a pump with focusing and power well-matched
to a specific crystal is not enough to ensure the validity of
Eq. (2).

We noted previously that the larger pump volume of Case
C and D increases the ASE for a given signal gain. This is
reflected by the difference between the curves for the sig-
nal gain and for S,q; / hv, in Fig. 10 (a) and Fig. 11 (a).
See also Eq. (1). The pumping is far from optimal in those
cases. Improved pump parameters lead to higher signal gain
for a given pump power, and reduced difference between
those curves. Thus, the difference is smaller in Case A with
confocal pumping (Fig. 8 (a)), ~3 dB or less for pump pow-
ers in the range 10-35 W, with signal gain 28-37 dB. For
other pump powers, the ASE PSD is more than 3 dB higher
than that suggested by Eq. (1). For example, it reaches~6
dB for a pump power of 250 W. This excess ASE may be
a result of a pump intensity that is sufficiently high to cre-
ate significant gain also in the wings of the Gaussian pump
beam, thus increasing the gain volume beyond the diffrac-
tion limit. Note also that although the confocal pumping we
used is close to optimal, fully optimized pump beam and

crystal parameters may further reduce the ASE PSD for a
specific signal gain (in addition to reducing the required
pump power). It is also clear that to minimize the ASE for
a given signal gain, the signal should be at the gain peak.

Case B also uses confocal pumping, but with twice the
concentration as in case A. Again, the deviation from Eq. (1)
is small over a range of pump powers, and is less than 1 dB
for a pump power of 15 W. This suggests that the ASE is
close to single-moded at this wavelength. The signal gain of
50 dB is at the limit of where we consider ASE self-satura-
tion to be negligible. Note also that the ASE beam quality
may be significantly worse at other wavelengths where the
gain is lower. This can affect the beam quality of the ASE as
a whole, although the effect may be small since at high gain,
the ASE PSD is strongly peaked at the gain peak. This is
straightforward to simulate with our approach. We also note
that the backward ASE will differ, and this could be signifi-
cant. However, these points were not investigated.

Our BPM-simulations assume that the equivalent input
noise consists of one photon per gridpoint, corresponding
to ng, = 1, but any background loss or ground-state absorp-
tion of signal photons makes n, larger and dependent on
the fractional excitation n,. See Eq. (3). Yet, in the absence
of ASE self-saturation, the simulations are linear in 7, so
our assessment of Eq (2) is equally valid for any value of
n,, if it is the same in each gridpoint. Therefore, precise
accuracy in ng, is not crucial in this regard, when we are not
comparing to experiments. However, n, varies across the
input grid, with n,~0 at the unpumped edge of the window.
The simulations do not include any background loss, but
there is some ground-state absorption. Therefore, Eq. (3)
suggests that a constant value of n,, across the input grid is
not the best choice. We have not tried to determine better,
potentially position-dependent, values for ng,. However, to
estimate the errors resulting from the use of a constant n,,
across the full input grid, we compared results of Case A
with 50 W of pump power and ny, = 1 everywhere to those
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where the noise seeding was restricted to the effectively
pumped parts of the input grid, and ny, = 0 elsewhere. The
difference incurred by this spatial variation of n,, was neg-
ligible, indicating that constant seeding across the window
with ng, = 1 is a reasonable assumption in this simulation.
The validity of uniform seeding is further supported by the
good agreement with spontaneous-emission calculations.
However, we have not explored what happens when there
is significant ground-state absorption of the signal. Then,
distributed seeding of the ASE (by spontaneous emission)
[7, 17, 19, 20] may be a better choice, since this avoids
the problem of spatial variations in n, in the input grid.
It is unclear how a spatially varying value of n,, would be
determined, given also that more precise determinations of
ng, depend on the longitudinal distribution of the gain and
ground-state absorption (e.g., [7]). Distributed seeding also
avoids the need for subtraction of residual equivalent input
noise (although this is quite accurate in our simulations).
The Petermann K-factor K [5, 6, 8, 9] may play a role
in the discrepancy observed in our simulations in relation
to Eq. (2). Given that K>1, this can lead to a higher ASE-
power in a mode than Egs. (1) and (2) suggest. However, the

effective number of modes M3 E2 is generally larger than
S sz and Gy, suggests according to Eq. (2). See Fig. 12 (top)
as well as Fig. 5 (a), 8 (a), 9 (b), 10 (a), and 11 (a). A value
K>1 would increase the ASE per mode and thus exacerbate
this discrepancy (as does ng, > 1).

Instead of evaluating K, we view this as a factor that can
affect the observed discrepancy.

We next discuss if our neglect of ASE self-saturation
is justified (irrespective of the accuracy of Eq. (2)). In the
absence of self-saturation, it is possible to simulate only
the small part of the ASE power that lies within 1 Hz, and
to disregard counter-propagating ASE. By contrast, in the
presence of self-saturation, accurate simulations must con-
sider the ASE in both directions and include the total ASE
power P g in both polarizations in the full spectrum. For
ASE counter-directional to the signal, the ASE seeding
occurs in the signal output end, so n,, needs to be evalu-
ated in that end. However, given also that convergence and
the number of iterations required are concerns with contra-
directional saturating waves (e.g., [19]), this considerably
more demanding calculation is beyond our scope. Instead,
to assess if ASE self-saturation can be neglected, we sim-
ulated P,q; in the same way as we did S g at 2410 nm,
i.e., with a monochromatic wave, but with the equivalent-
input noise seeding scaled by an effective ASE bandwidth
Av,y and the number of polarizations (=2). The effective
bandwidth depends on the gain and was calculated from a
spectral integral of Eq. (1), i.e., the total ASE power in a
single mode. See Supplement 1 for details. For the crystal of
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Case A, C, D, the effective linewidth varies from 35.6 THz
(690 nm) at low gain to 14.6 THz (282 nm) at 44.0 dB (the
highest that can be reached with 1901-nm pumping). The
saturation (i.e., compression) of the gain at 2410 nm was
<0.05 dB in Case A, C, D, with forward-propagating ASE
only. Even if the compression approximately doubles with
bidirectional ASE, this can still be neglected.

By contrast, Case B allows for higher gain, and self-
saturation can become significant for gain exceeding 50
dB. Note however that this does not automatically invali-
date Eq. (2), and the validation of the simulation approach
remains valid in the sense that it is based on comparisons
of different simulated parameters that all derive from the
same spatial gain distribution and are thus all affected by the
inclusion or neglect of self-saturation. Consequently, Eq. (2)
can remain valid for simulated quantities even when signifi-
cant saturation is neglected. Likewise, it may be possible to
use experimental values of M3 and S to calculate the
achievable gain according to Eq. (2), insofar as the satu-
rated transverse gain profile does not cause problems and
the limits of validity discussed above are observed. How-
ever, simulations and experiments would not agree.

Whereas S (g5 (in 1 Hz) is easier to simulate, the power in
the whole ASE spectrum, P, is easier to measure. There-
fore, we estimated the relation between S, (at 2410 nm)
and P in the unsaturated regime. We found that P g =
(Sysp / hv) x 2.5 uW for gain up to 40 dB in the crystal
of Case A, C, D. For instance, with four effective modes
( M3 4 =2) per polarization, 20 dB of gain can be expected
to generate 2 mW of forward ASE power. See Supplement
1 for details.

Our signal power was sufficiently low to avoid satura-
tion, and the accuracy of our approach for a stronger, satu-
rating, signal would have to be investigated. A saturating
signal co-propagating with the pump is straightforward to
simulate, but spatial hole-burning may cause the transverse
gain profile to become concave. This can invalidate Eq. (2).
Supplement 1 provides further details and discussions on
the calculation of ASE, effective bandwidth, ASE self-sat-
uration, and ng,.

6 Conclusions

We have investigated and used the beam propagation
method with equivalent input noise for the simulation of
narrow-band amplified spontaneous emission at the signal
wavelength and signal amplification in continuous-wave
Cr*":ZnSe non-waveguiding “bulk” amplifiers with non-sat-
urating signal and ASE in different configurations. Both the
incident pump at 1901 nm and the signal at 2410 nm were
diffraction-limited gaussian beams. The signal wavelength
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coincided with the peak of the gain, which was homoge-
nously broadened. The absorption at the signal wavelength
in the un-pumped crystals was between 0.48 dB and 0.95
dB, so any reabsorption at weak pumping was small. We
implemented the equivalent input noise as random realiza-
tions of one photon per gridpoint (corresponding to ny, =
1), and we showed that this leads to the familiar one noise
photon per mode. We conducted between 100 and 6000
simulations with different realizations of the random input
noise, then ensemble-averaged the outcomes to determine
the power spectral density of the ASE, including its spatial
distribution in the exit-plane and farfield. Our approach is
compatible with standard BPM code, as long as the equiva-
lent input noise is correctly implemented. While it is not
necessary to define any modes, we validated the simulations
of the ASE PSD by comparing results for single-mode and
multimode fiber amplifiers to those obtained with well-
established conventional fiber amplifier models.

We also calculated the beam quality of the ASE at the sig-
nal wavelength, M3 g, with different methods. We inves-
tigated if M54 EQ could serve as an estimate of an effective
number of ASE modes and, when coupled with the ASE
PSD, predict achievable signal gain. Notably, the value of
M? 45 varied considerable between the different methods.
Depending on the amplifier configuration, we found that at
gain higher than 20-30 dB it became possible to determine
the achievable signal gain from the ASE characteristics with
reasonable accuracy. It is also possible to evaluate the spon-
taneous emission, and we found agreement down to the sin-
gle-photon level. We note that the ASE beam propagation
and M?% g depends on the wavelength and can be different
for the full ASE spectrum. We did not investigate thermo-
optic effects, nor cases with strong reabsorption or satura-
tion (e.g., strong bidirectional ASE spectra). Even if seeding
with equivalent input noise remains valid, the modification
of the numerical solver to treat such effects would require
significantly more work.

Appendix 1

We show that the assumption of one (or 7g,) noise photon
per gridpoint in the BPM input grid leads to the excitation of
one (or ng,) noise photon per mode. We use the convention
that the optlcal intensity 7 (W/m?) of a lightwave is related
to the complex field according to 7 (x, y, z) = |4 (x, y, 2)]%,
where x and y are transverse coordinates and z is the longi-
tudinal coordinate. The power of a paraxial lightwave in a
transverse plane z becomes,

szff(;ay,z)

dedy = ([ |A (z, y, 2)*dudy (4)

We further introduce modal fields A™ (x, y, z) and nor-
malize them according to

ff |Amf (z, v, z)|2da:dy =1W Q)

Also, let 4,, be a modal amplitude (complex and dimen-
sionless) so that the complex field of an excited mode is
given by 4 (x, y, z)=A4,, A" (x, y, z). The power P,, of a
mode becomes P, = 1 W x |4, [>. When excited by an exter-
nal field 4, 4,, becomes,

Anp=0W)~ jj A* (z, y, 2) AmS (z, y, ) dzdy (6)

where the star denotes complex conjugation. See, e.g.
[28], for details on modes and their excitation.

On an equidistant discrete grid such as that we use in
BPM, the integrals are replaced by sums, e.g.,

;|Am (@is yj, Z|ATAU_ATA?/Z Amf =1W (7)
Ap=(1W) Az Ay Y A AT
o o (8)
=AwW) 'AzAy ZA*
2
P:AxAy;\Am ©)

where Ax and Ay are the grid spacings and (x;, y;) are the
coordinates of gridpoint (7, j). We also adopt the convention

A"Lf ('riv Yj, Z)
ties) and for simplicity drop the explicit z-dependence of

= A;?f (and similarly for other quanti-

the fields. In Eq. (8), we have also written A;;-Lf on its polar
form, ’A’-'-Lf e'?

To proceed, we let A; represent an input noise field com-
prising normally- dlstrlbuted random complex variables
with zero mean and circular symmetry so that the distribu-
tions of the real and imaginary parts are the same and inde-

pendent. From Eq. (8) the expectation value of the modal
excitation becomes

E[A ] =E|[(AW) 'AzAy Y A A7
o (10)
=W AmAyZE [A5] AT =0

i, J

E [*] denotes expectation values, which we evaluate as
ensemble-averages in our BPM-simulations. Furthermore,
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2 (Vanance of sum rule), and that Var [{;]=E [ U2] - [f,l]2
E [IAm\z} = aw)ytazay YAy =F [é,/ ] (since E [¢;]=0). Finally, the expectation value of
L_' , the modal power resultlng from the noise seeding becomes
B ) E[Pn]=1W><A 2:Psample
= W) (Awdy) B ZAZAZ’f In;Ofar as thL salmple amplitudes 4; and thus their com-
r ) (11)  plex conjugates 4; are normally d1str1buted complex ran-
AW (asay’E Z A dom variables w1th zero mean, the weighted sum is also a
normally distributed complex random variable with zero
: 2 mean. This includes the modal amplitude described by
—awW) 2 (Aeay)’ B || 4, lap Eq. (8). Also note that since the complex distribution of
L7 4 is circularly symmetric, the phases of the weights A;;Lf

For the last equality in Eq. (11), we have used that a
distribution which is circularly symmetric in the complex
plane is independent of the phase argument and therefore its
expectation value does not change when multiplied by the
phase factor ¢’ i 5

We next substitute 4;; by (P;*"" / Ax Ay)"* (&;+i 1),
where P, js"’”ple is the expectation value of the sample power
=E [|A,j| ] Ax Ay) and ¢; and 7;; are real-valued normally
distributed random variables. From our assumptions, it fol-
lows that they have zero mean and the same variance. It
also follows that E [|¢;+i ny| 1=E [fy 1+E [’7;/ 1=1,s0 E
[é‘lj 1=E [77,/ ]=1/2. We can then write Eq. (11) as

2

!
AL

E [|Am|2} —(W) 2 (AzAy)’E ‘ZAU
i, j

= (AW) 2 Az Ay psomrle

2
Z (fij +i77¢j) A?;f

2

=20W)

—2 AzAy psample
2

s
S lAm

-2 Az AyPsample

2
) (12)
Amf :|

A )2]

—2(1 W)’z AszPsam,pchE [(5“)2]
i, J

Il
L

aw)
E (Zé

Apd

=2(1 W) AzAy psample gy

qu

=2(1W)2Ax AyP“‘“"PleZVar [5 .

Amf

—21W) 2 Az Ay PN B [(s i
“J

2
mf
AU

2
_ -2 sample mf
=(AW) ? Az Ay Ppsmr Z AT
)

-1 Psample

=1w)

Here, we have used that the variance Var [*] of a sum
of random variables ¢; with weights ‘AZLJC ‘ is equal to

the sum of the variances of the weighted random variables

@ Springer

(e.g., in case of a Gaussian beam with curved wavefront) do
not matter.

From this, it follows that a sampled random field with
one noise photon per sample will excite a mode with one
noise photon (ny, = 1). The results extend also to other val-
ues of n,, and to any normalized distribution in the paraxial
approximation, including Hermite-Gaussian modes and
plane-wave modes, as well as non-modal distributions.
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