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Abstract: Submarine canyons are important conduits for microplastic transport to the deep sea, but the processes involved in
that transport and how faithfully seafloor deposits record trends in pollution remain unclear. We use sediment push cores for
microplastic and sediment grain-size analysis from two transects across the Whittard Canyon, UK, to investigate the roles of
near-bed flows and sub-seafloor processes in the transport and burial of microplastics and semi-synthetic microfibres.
Microplastic and microfibre pollution is pervasive across the canyon at both transects, from the thalweg and from 500 m higher
on the flanks, despite turbidity currents being confined to the canyon thalweg. We calculate sediment accumulation rates from
219ph dating and show that microplastic concentrations remain similar at sediment depths down to 10 cm. Throughout the
Whittard Canyon there is an observed uniformity in the gradual decline in microfibre concentration with sediment depth,
despite the variable sample locations and marked variations in sediment accumulation rates. Furthermore, the huge global
increase in plastic production rates over time is not recorded, and microplastics are present in sediments that predate the mass
production of plastic. The interaction of turbidity currents, deep tidally driven currents and sub-seafloor processes affects
microfibre burial processes in the deep sea and shreds any potential signal that microplastics may provide as indicators of
historical plastic production rates; complicating the use of microplastics as fully reliable markers of Anthropocene onset.

Supplementary material: The Supplementary material includes an extended ‘Setting and methods’, and the data tables for the
grain-size/microplastic analysis, contamination control measures, micro-Fourier transform infrared (u-FTIR) spectroscopy, and
210pp sediment accumulation rate analysis, and is available at https:/doi.org/10.6084/m9.figshare.c.7803458

Received 21 October 2024; revised 1 May 2025; accepted 1 May 2025

Plastic production has increased by 700%, from 50 million tonnes
(Mt) in the 1970s to more than 400 Mt in 2022 (Plastics Europe
2023). More than 10 Mt of plastic enters the world’s ocean annually
(Lebreton et al. 2017). Microplastics (<1 mm diameter particles)
represent ¢. 13.5% of the marine plastic budget (Koelmans et al.
2017), including primary (manufactured particles: Zitko and
Hanlon 1991) and secondary (derived from the breakdown of
macroplastics: Andrady 2011) microplastics. Semi-synthetic micro-
fibres (e.g. composed of rayon and chlorinated rubber) are also
persistent in the natural environment (Athey and Erdle 2022;
Finnegan et al. 2022), are observed in deep-sea sediments (Woodall
et al. 2014) and have similar detrimental effects on biota (Jiang ez al.
2024) as plastic microfibres. Semi-synthetic microfibres are
commonly used in clothes manufacturing (e.g. Napper and
Thompson 2016) and cigarette filters (e.g. Belzagui ef al. 2021).
Therefore, we use ‘microfibre’ to encompass synthetic and semi-
synthetic microfibres, and ‘anthropogenic microparticles’ to
encompass both microplastic particles and microfibres.

Lacustrine and shallow-marine settings act as archives to
calculate the rate and quantity of pollutant delivery (such as
anthropogenic microparticles) and allow monitoring of how stresses
on ecosystems change over time (Brandon ez al. 2019; Uddin et al.
2021 and references therein). Few studies have acquired

sedimentary time-series records of anthropogenic microparticles
in the deep sea (e.g. Chen et al. 2020), despite it being the ultimate
sink for plastics (Thompson et al. 2004; Woodall et al. 2014;
Koelmans et al. 2017; Choy et al. 2019). Furthermore, none exist
for submarine canyons, the main conduits for delivering particulate
matter (Normark 1970; Talling ef al. 2023), including pollutants
(Paull et al. 2002; Zhong and Peng 2021; Pierdomenico et al. 2023)
from terrestrial and coastal settings to the deep sea, and hosts to
important seafloor ecosystems (Treignier et al. 2006; Fernandez-
Arcaya et al. 2017). Avalanches of sediment, known as turbidity
currents, flow through submarine canyons and are responsible for
generating Earth’s largest sediment accumulations (Curray and
Moore 1971). These flows are thought to be the main agent for
anthropogenic microparticle transfer to, and sequestration on, the
deep seafloor (Kane and Clare 2019; Pohl ef al. 2020; Rohais et al.
2024; Zhang et al. 2024; Chen et al. 2025). However, it is
increasingly recognized that other hydrodynamic processes can also
affect anthropogenic microparticle concentrations in the deep sea
(e.g. Kane e al. 2020), as well as the transport and burial of
particulate matter in submarine canyons (e.g. Maier et al. 2019;
Bailey et al. 2024; Hage et al. 2024; Palanques et al. 2024). It is
possible that the importance of these processes has been under-
estimated and, therefore, that the role of hydrodynamic and sub-
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Fig. 1. Location of the data used in this study. (a) The location of the Whittard Canyon. (b) The locations of the cores and hydrodynamic mooring (M1) in
the Eastern Branch of the Whittard Canyon. (¢) Slope angle map of the Eastern Branch. (d) Longitudinal profile of the canyon thalweg. (e) Cross-sections

through each transect (the locations are shown in b).

seafloor processes, and human activities on anthropogenic micro-
particle dispersal and burial in submarine canyons, remains
unconstrained. Here, we consider the sub-seafloor as the tens of
centimetres below the seafloor sediments. This uncertainty results
from a lack of targeted seafloor sampling and sedimentological
context, therefore limiting our understanding of anthropogenic

microparticle fluxes to the deep sea, threats to deep-seafloor
ecosystems and deep-sea anthropogenic sedimentary archives.

In addition to anthropogenic microparticle transport via turbidity
currents, we hypothesize that other hydrodynamic (e.g. internal
tides), anthropogenic (e.g. seabed trawling) and biological (e.g.
bioturbation) processes work to (re-)distribute and bury pollutants
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across wide areas in submarine canyon systems. We aim to tie
anthropogenic microparticle distribution with concepts of deep-
water process sedimentology to determine the interplay of
anthropogenic microparticle transport and burial processes in the
deep sea using a targeted seafloor sampling dataset from two
transects across the Whittard Canyon. We assess these process
interactions by integrating detailed seafloor observations from
multibeam bathymetric mapping and video footage acquired from a
remotely operated vehicle (ROV), with analysis of near-seafloor
sediments sampled at four box-core locations to quantify sediment
accumulation rates, and at nine precisely-located ROV push-core
locations to quantify the sediment grain size and anthropogenic
microparticle concentration in seafloor sediments. To test the
hypothesis, and meet this aim, the following objectives are
addressed: (i) to map the distribution and concentration of
anthropogenic microparticles throughout a branch of the Whittard
Canyon; (ii) to document changes in the anthropogenic micro-
particle concentration with burial depth; (iii) to assess sediment
grain-size trends associated with the anthropogenic microparticle
distribution and concentration, and integrate the findings with
sediment accumulation rates; and (iv) to discuss how anthropogenic
microparticle transport and burial processes controls their transfer in
submarine canyons.

Setting and methods
Whittard Canyon

The head of the Whittard Canyon lies at c. 200 m water depth in the
Celtic Sea, NE Atlantic, ¢. 300 km from the nearest coast (Fig. 1a).
Four main tributary branches incise steeply into the shelf break. The
canyon extends oceanwards for c¢. 150 km to c¢. 3800 m water depth
(Amaro et al. 2016). The upper-canyon reach of the Eastern Branch
extends c. 55 km, from the head to ¢. 2960 m water depth, with steep
canyon flanks and a >2° thalweg slope, with a vertical relief from flank
to thalweg of c. 1000 m (Fig. 1b, c, ). The lower-canyon reach extends
to ¢. 3800 m water depth, with lower gradient canyon flanks and a <2°
thalweg slope, with a vertical relief from flank to thalweg of ¢. 1250 m
(Fig. 1b, ¢, e). Further details of the canyon’s geomorphology and
bathymetry are included in the Supplementary material.

Fishing activity on the Celtic Margin

Fishing activities that disturb the seafloor (i.e. benthic trawling) are
common around the head of the Whittard Canyon and on many of its

49°

Fig. 2. Intensity of apparent trawling as
recorded by Global Fishing Watch.

(a) The Whittard Canyon 2013-14.

(b) The Whittard Canyon 2023-24.

(¢) Marine Conservation Zone (MCZ)
2013-14. (d) Marine Conservation

Zone (2023-24).

interfluves (Fig. 2). Bottom trawling activity can be a source of
marine pollutants (Xue et al. 2020) and causes sediment
resuspension (Daly ef al. 2018); however, whether this is explicitly
bottom trawling or mid-water trawls in the Whittard Canyon cannot
be determined from the Global Fishing Watch (2024) data (see
Supplementary Material ). The cumulative, annual apparent trawling
effort for 2013—14 and 2023-24 was exported from Global Fishing
Watch (2024) for an area of 16 650 km? (48-49° N, 9-11° W)
around the continental shelf and the Whittard Canyon (Fig. 2a, b).
The apparent trawling effort for the same period for the 661 km?
(48° 10" 2.56"-48° 29" 59.74"” N, 9° 33" 34.59"-9° 47’ 52.25" W)
area covered by The Canyons Marine Conservation Zone (MCZ)
was also exported (Fig. 2c¢, d). The MCZ was designated in
November 2013 for the features ‘Cold-water coral reef” and ‘Deep
seabed’, following identification of vulnerable ecosystems in the
area (Davies et al. 2014). Later on, two further features were added
to the site designation: ‘Coral gardens’ and ‘Sea-pen and burrowing
megafauna communities’. The intensity of apparent trawling on the
Celtic Margin increased five-fold in the 10 year period from 2013—
14 to 2023-24 (Global Fishing Watch 2024) (Fig. 2), but was
banned in the majority of The Canyons MCZ in June 2022 as new
fisheries management measures were implemented. In March 2023,
the Irish sector of the Whittard Canyon was declared a candidate
Special Area of Conservation, particularly for the protection of the
Annex I habitat type ‘reefs” (NPWS 2023). However, fishing with
bottom-contact gear has been banned in EU waters below 800 m
water depth since 2017, with a further ban between 400 and 800 m
in selected areas brought in to protect vulnerable marine ecosystems
in 2022 (EU 2022).

Hydrodynamic mooring

A moored, downward-looking, 600 kHz Acoustic Doppler Current
Profiler (ADCP) (M1 mooring in Fig. 1b: 30 m above seafloor and
1500 m water depth) was deployed in the Eastern Branch and
recorded near-bed hydrodynamic conditions from June 2019 to
June 2020, including vigorous (up to 1 m s~!) internal tides and six
turbidity currents. These turbidity currents had maximum down-
canyon velocities of 1.5-5.0 m s™!, flow thicknesses greater than
30 m and carried quartz-rich, fine sand as sampled in a sediment trap
10 m above the seafloor (Heijnen e al. 2022; Chen et al. 2025)
(Fig. 3b). The frequency and velocity of the turbidity currents
recorded by the ADCP during the sampling period documented how
the Whittard Canyon experienced turbidity current activity analogous
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Fig. 3. (a) Cross-section of the samples for grain-size analysis. (b) Grain-size distribution plots for the sediment trap at the M1 mooring site of Heijnen
et al. (2022). (¢)—(k) the push cores of the current study. Abbreviations: vfs, very fine sand; fs, fine sand; ms, medium sand; cs, coarse sand; vcs, very

coarse sand; gr, granule.

in frequency and velocity to many land-attached canyons, despite
being land-detached (Heijnen et al. 2022; Talling et al. 2023).

Sediment push-core recovery

Five precisely located push cores were collected using the ROV Isis
during expedition JC237 onboard the RRS James Cook (Huvenne
2024), along an across-canyon transect in the upper-canyon reach
(24.9 km from the head and 1062—1546 m water depth) from 34 to
521 m above thalweg on the canyon flank. Four precisely located
push cores were also collected from an across-canyon transect in the
lower-canyon reach (62.3 km from the head and 2773-3204 m water
depth) (Fig. 1b, d, e) from 0 to 431 m above thalweg on the canyon
flank. In doing so, the two distinct physiographical domains, with
respect to the amount of canyon confinement provided by the
gradient of the canyon flanks and canyon thalweg of the Whittard
Canyon, were extensively sampled. Expanding on the study by Chen
et al. (2025) where push cores were collected along a down-thalweg
transect, the current study used two across-canyon transects. These

across-canyon transects were positioned to constrain anthropogenic
microparticle distribution and concentration with increasing height
and distance from the thalweg, where hydrodynamic processes other
than turbidity currents are active. The push cores were recovered from
the upper-canyon transect on 21 August 2022, and from the lower-
canyon transect on 2 September 2022. All nine push cores were
subsampled at 1 cm depth intervals, down to 10 cm, depending on
the core recovery (subsample n=83), for anthropogenic micro-
particle extraction and sediment grain-size analysis (see
Supplementary Table S1). High-resolution bathymetric data
enabled investigation of the effects of submarine canyon geomorph-
ology on the anthropogenic microparticle distribution.

Laboratory procedures

Anthropogenic microparticle extraction, identification and
quantification

The 1 cm sediment core horizons had variable weights and water
content, so samples were dried overnight in a drying oven set to
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Fig. 4. Micro-Fourier transform infrared (u-FTIR) spectroscopy spectra and microscope photographs of microfibres. (a) Rayon u-FTIR spectra. (b) Polyester
W-FTIR spectra. (¢) Polyethylene u-FTIR spectra. (d) Polystyrene u-FTIR spectra. (e) Chlorinated rubber p-FTIR spectra. (f) Polypropylene u-FTIR spectra.

(g) Photograph of polyester microfibre. (h) Photograph of rayon microfibre.

50°C. The dried samples were weighed, and, for comparative
purposes, the weight and anthropogenic microparticle content were
normalized to 50 g dry sediment weight. Sediment samples were
then stored in glass beakers covered with aluminium foil. Samples
were added to a 11 glass beaker with ¢. 700 ml of a dense ZnCl,
solution (1.6 g cm™>), disaggregated using a magnetic stirrer and
mixed until homogenized. The microplastics were extracted from
the sediment using a polyvinyl chloride Sediment Microplastic
Isolation (SMI) unit following a protocol developed for microplastic
extraction in a cost-effective, reproducible and easily portable
manner (Coppock et al. 2017). The solution was added to the SMI
unit, and the beaker was rinsed with the ZnCl, solution to flush any
remaining sediment/anthropogenic microparticles. Prior to each
use, the SMI unit was disassembled and thoroughly rinsed with
Class 1 Milli-Q de-ionized water. Following settling overnight, the
headspace supernatant was isolated by closing the ball valve of the
SMI unit and rinsing with extra ZnCl, solution to flush any
remaining anthropogenic microparticles before vacuum filtering
over a Whatman 541, 22 um, filter paper. The prepared filter paper
was then placed in a labelled Petri dish and covered. Throughout the
extraction procedure, all individuals wore white cotton laboratory
coats and latex gloves. All the extraction stages were performed in a
clean laboratory in a fume cupboard. When the sediment samples

were mixing in the 1 | beaker, and settling in the SMI units, they
were covered with aluminium foil to limit airborne contamination.
When it was not possible during the sample preparation to cover the
sediment sample with aluminium foil, an opened Petri dish with a
blank Whatman 541, 22 um, filter paper was placed in the fume
cupboard and used as a contamination control procedural blank.
When the prepared filter paper was exposed during the identifica-
tion stage, a second contamination control procedural blank was
also collected, again using an opened Petri dish with a blank
Whatman 541, 22 um, filter paper placed in the microscopy
laboratory (see Supplementary Table S2).

The prepared filter papers, both from the extraction process and
the control blanks, were analysed in a clean microscopy laboratory
using a Zeiss Axio Zoom, V16 stereomicroscope at x20-50
magnification. Here, we define anthropogenic microparticles as
being between in 1 um and 1 mm in size; the same size range used
by prominent microplastic studies (e.g. Browne et al. 2011;
Claessens et al. 2011; Van Cauwenberghe et al. 2013, 2015;
Vianello et al. 2013; Dekiff et al. 2014; Kane and Clare 2019; Kane
et al. 2022). Filter papers were traversed systematically to identify
anthropogenic microparticles based on the following criteria: (i) no
visible cellular or organic structures; (ii) a positive reaction to the
hot needle test (de Witte et al. 2014); and (iii) maintenance of
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structural integrity when touched or moved. Anthropogenic
microparticles were categorized based on their colour and type,
including, whether they were microfibres, microplastic fragments
(including films) or microbeads (see Supplementary Table S1).

Micro-Fourier transform infrared spectroscopy

Anthropogenic microparticles were visually identified using optical
microscopy, and a subset of particles was analysed using micro-
Fourier transform infrared (u-FTIR) spectroscopy for polymer
confirmation. Identification of the polymer composition was
conducted on a subsample (n=13) of the extracted microplastics
using a Perkin-Elmer Spotlight 400 FTIR spectrometer in the
transmittance mode (Fig. 4; see also Supplementary Table S3).
Further details are included in the Supplementary material.

Grain-size analysis

The grain sizes of 79 of the 83 push-core samples were analysed using
a Microtrac FLOWSYNC particle sizer (Microtrac MRB). The grain
sizes of the four remaining samples (PCO60B-E) were analysed using
the dry sieving method as the FLOWSYNC particle sizer has an upper
particle size limit of 2000 pm, and the fragmented shell material in the
samples exceeded this upper limit. The FLOWSYNC particle sizer
uses tri-laser diffraction to measure the particle-size distribution with
a lower particle limit size of 0.01 um. The samples were subjected to a
small amount of ultrasonic dispersion. Three aliquots were analysed
to ensure that each sample was completely dispersed. The grain-size
distribution, indicating the volume percentage of grains in a certain
size interval, was constructed (Fig. 3c—k). The grain-size percentiles
were exported from the FLOWSYNC software and are documented in
Supplementary Table S1.
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210pp sediment accumulation rates

Sediment accumulation rates derived from the 2!°Pb dating of box
cores were determined at four positions within the upper-canyon
reach: two in the thalweg and two on the canyon flanks (Figs 1 and 5;
see Supplementary Table S4). Sediment accumulation rates were
calculated from the four box cores (BC64, BC65, BC72 and BC73)
(Fig. 5b—i; see Supplementary Table S4) using 2!°Pb dating. The
box cores were collected during the research cruise 64PE421
conducted by NIOZ (the Royal Netherlands Institute for Sea
Research) from 14 to 25 May 2017. The recovery rates of the box
cores varied by location. Further details are included in the
Supplementary material.

Results

Anthropogenic microparticle pollution in surficial
sediments

Anthropogenic microparticles were present throughout all nine push
cores (Figs 6 and 7c, f). A total of 1255 anthropogenic
microparticles were observed with optical microscopy and a
subset of the particles (n = 13) was verified with FTIR spectroscopy.
Microfibres were the dominant anthropogenic microparticle type
(microfibres =91.3%, fragments=5.7% and microbeads = 3.0%).
Herein, the anthropogenic microparticle count quantifies as the
number of particles per 50 g of dry sediment weight (particles/
50 g). The FTIR spectroscopy confirmed that 62% of the
anthropogenic microparticles were plastic, with common polymers
including polyvinyl butyral, polyvinylchloride and acrylic. The
remaining 38% comprised semi-synthetic polymers, including
chlorinated rubber and rayon (Fig. 4; see Supplementary Table S3).
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Fig. 6. Box plot for the microfibre concentration and sediment depth for
all the push cores.

Microfibres in the canyon thalweg

In push core 060 (PC060) (34 m above thalweg, at the upper
transect), the grain-size range was 31-8000 pm, and the gravel
and sand percentages had arithmetic means of 9.6 and 90.3%,
respectively; the granule-sized particles were fragmented shells
(Fig. 3c; see Supplementary Table S1). The microfibre count in
PCO060 increased with sediment depth from 4 to 30 microfibres/
50 g (Fig. 7c). In PC113 (0 m above thalweg, at the lower
transect), the grain-size range was 2-200 pm, and the sand and
silt percentages had arithmetic means of 92.4 and 7.6%,
respectively (Fig. 3i; see Supplementary Table S1). The
microfibre count in PC113 decreased with sediment depth by
62.5% (Fig. 7f).

The sediment accumulation rates in BC64 (1389 m water depth,
0 m above thalweg) and BC73 (2011 m water depth, 0 m above
thalweg) were 0.04 and 1.19 cm a™!, respectively (Fig. Se, g).
Therefore, it could take 8.4—250 years to accumulate 10 cm of
sediment in the canyon thalweg, meaning that sediments
containing anthropogenic microparticles in the thalweg may
predate the mass production of plastic in the 1950s. The mobility
of sediment within the thalweg can be observed in a photograph
captured by the ROV Isis during the recovery of PC060; a high
level of suspended sediment is recorded in the water column of the
thalweg following the passing of a turbidity current down-canyon
(Fig. 8a).

Microfibres on the canyon flanks

At the upper transect, the push cores (PC062, PC064 and PC066,
located 220, 277 and 321 m above thalweg, respectively) had a
grain-size range of 0.25-200 um (clay to fine sand) (Fig. 3d—f), and
the sand percentage had arithmetic means of 54.9, 43.8 and 39.9%,
respectively (see Supplementary Table S1). The microfibre count
in these cores was low and uniform, ranging from 0 to 19/50 g with
an arithmetic mean of 7/50 g (Fig. 7c¢). PC069 (518 m above
thalweg) was located near the tributary canyons at the upper
transect; the grain-size range was also 0.25-200 um, yet, despite its
increased height above the central thalweg, the sand percentage had
an arithmetic mean of 47.6% (Fig. 3f, g; see Supplementary
Table S1). PC069 contained the greatest range of anthropogenic
microparticle types, and an arithmetic mean microfibre count of 18/
50 g (Fig. 7c; see Supplementary Table S1). At the lower transect,
PC114 and PC116, located 209 and 431 m above thalweg,
respectively, had the same grain-size range as the canyon-flank
push cores at the upper transect, but the sand percentage had
arithmetic means of 17.2 and 16.5%, respectively (Fig. 3j, k; see
Supplementary Table S1). In these push cores, the microfibre count
decreased with depth by 64.5 and 80.3%, respectively (Fig. 7f; see
Supplementary Table S1).

The sediment accumulation rates in BC65 (1105 m water depth
and 284 m above thalweg) and BC72 (788 m water depth and 601 m
above thalweg) were 0.22 and 0.09 cm a~!, respectively (Fig. 5S¢, i).
Therefore, it could take 45-111 years to accumulate 10 cm of
sediment on the canyon flanks and this means that sediment
containing anthropogenic microparticles on the canyon flanks may
predate the mass production of plastic.

On the canyon flanks at the upper transect, 277 m above thalweg
and thus above the known thickness of the turbidity currents
recorded by Heijnen et al. (2022), the crest orientation of sub-
parallel ripples observed on the seafloor suggests a flow direction
approximately perpendicular to the direction of turbidity current
transport (Fig. 8b). This indicates that other hydrodynamic
processes capable of sediment transport are also active on the
canyon flanks (e.g. internal tides).
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Cross-section of the Whittard Canyon showing the push-core locations. In PC060, the 1950 plastic production onset is based on the sediment accumulation

rate calculated from 2'°Pb dating of the sediments in box core 64. The sediment accumulation rate calculated from BC65 can be approximately tied to

PC064 and equates to 16.5 cm of sediment accumulation in the 75 year period since the onset of plastic production. The push cores and box cores are not

co-located within the Whittard Canyon but are based on their longitudinal position and height above the thalweg; they are deemed suitable for relating
sediment accumulation rate to the presence of anthropogenic microparticles with depth.
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| 1546 m water depth - 34 m above the thalweg
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Push-core

Downslope

Discussion
Microfibre transport and burial processes

Microfibre pollution is pervasive throughout the Eastern Branch
down to the 10 cm sediment depth of the push cores. Almost all
push cores showed a gradual decline in microfibre concentration
with depth. This gradual decline with depth is despite the marked
differences in sediment accumulation rates across the canyon, and
the 700% increase in the background plastic production rate.
Microfibres are hypothesized to be transported to the canyon head
via cross-continental shelf currents, and transported through the
canyon by turbidity currents (Fig. 9a, ¢) (Chen ef al. 2025) and via
vertical settling from marine sources (Fig. 9b, f), but their
subsequent redistribution and burial cannot solely be explained by
deposition from turbidity currents.

From the observed grain-size trends in the canyon thalweg
(notably the absence of sediment <31 um in PC060) we infer that
the frequent (sub-annual) and fast (up to 5 m s™') turbidity currents
serve to bypass and winnow silt-sized sediment and microfibres
further down-canyon. Pohl ef al. (2020) explored how the vertical
distribution of microfibres was more homogeneous in turbidity
currents compared to microplastic fragments. Furthermore, Chen
et al. (2025) suggest that the flushing of microfibres and other types
of anthropogenic microparticles by turbidity currents in the
Whittard Canyon occurs due to their markedly lower settling
velocity compared to quartz grains (see fig. 4 in Chen et al. 2025).

Fig. 8. Photographs taken of seabed
push-core sampling from the ROV. (a)
Canyon thalweg at the upper transect.
(b) Canyon flanks at the upper
transect.

This suggests that anthropogenic microparticles are capable of
being transported in the dilute, upper parts of turbidity currents,
through submarine canyons and farther into the deep sea to a wider
range of depositional environments and seafloor ecosystems.

However, microfibres were recorded at elevations up to 518 m
above thalweg, over an order of magnitude above the recorded
thickness of measured turbidity currents. This suggests that other
processes are also important in the Whittard Canyon and need be
considered in other submarine canyon systems in order to develop
holistic source-to-sink models for anthropogenic pollutant transfer
(Fig. 9). The presence of sand in the canyon-flank push cores, and
increased sand percentage 518 m above thalweg, suggests that
sediment is not sourced exclusively from hemipelagic fallout.
Furthermore, this suggests that sediment, and microfibres and other
anthropogenic microparticles, stored on the Celtic Margin are being
transported via episodic turbidity currents in the tributary canyons
or by sediment resuspension by benthic trawling close to the canyon
head and on the canyon interfluves (Figs 2, 3g and 9; see
Supplementary Table S1). The location of BC72 (Fig. 5a), high on
the canyon flank opposite the Celtic Margin and the tributary
canyons, could explain the low sediment accumulation rates
(Fig. 5i).

The observed uniformity of the gradual decline in microfibre
concentration with sediment depth suggests, however, that sub-
seafloor processes also affect microfibre burial processes in the deep
sea. Hyporheic transfer of microplastics has been demonstrated in
riverbeds (Frei er al. 2019). In sub-seafloor settings, hyporheic
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Fig. 9. Synthesis of microfibre transport and burial processes in submarine canyons. (a)—(d) Transport processes. (e) Sub-seafloor processes.

(f) Anthropogenic forces.Source: (c) is modified from Chen ez al. (2025).

transfer is driven by pressure gradients, as exist between the base of
turbidity currents and the seafloor (e.g. Eggenhuisen and McCaffrey
2012), and is invoked here as a control on the stratigraphic
distribution of microfibres (Fig. 9¢). Internal tides have been

directly monitored in the Whittard Canyon (Hall ez al. 2017) and
have been observed to reflect against the steep topography of the
canyon flanks in the upper canyon where they are then focused into
the canyon thalweg (Amaro et al. 2016; Hall et al. 2017; van Haren
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et al. 2022). This is hypothesized to cause sediment and microfibre
resuspension via internal tide pumping (Fig. 9d) (e.g. Liet al. 2019;
Normandeau et al. 2024). In other submarine canyons, internal tides
have been observed to rework turbidity current deposits
(Normandeau et al. 2024), and affect particulate organic carbon
transport (Maier et al. 2019). Particulate organic carbon shares
similar hydrodynamic properties to anthropogenic microparticles in
terms of density and irregular dimensions. On the canyon flanks of
the Whittard Canyon internal tide pumping may generate a
sufficient pressure gradient to drive hyporheic transfer of micro-
fibres through sediment pore spaces, where turbidity currents are not
active. Microplastic infiltration depth increases positively with
sediment grain size (Waldschldger and Schiittrumpf 2020); hence,
hyporheic transfer may be enhanced in the canyon thalweg where
turbidity currents and internal tide focusing are active, compared to
high on the canyon flanks where turbidity currents are absent
(Fig. 9e).

Bioturbation may also play a role in controlling the vertical
distribution of microfibres in the sub-seafloor (Fig. 9¢). The
uppermost 10 cm of BC64 and BC65 were bioturbated (Fig. 5b, d).
Sediment and microplastic mixing by bioturbation has been
documented experimentally (Nékki e al. 2017) and is hypothesized
to occur in deep-sea sediments (Courtene-Jones ef al. 2020). The
depth of the bioturbated layer extends to 10 cm in modern marine
sediments, with individual burrows extending deeper (Tarhan ez al.
2015). This mixing may be enhanced on the canyon flanks due to
less stressed conditions for organisms to colonize compared to the
thalweg (Fig. 9¢). However, a diverse suite of burrow types has been
recorded in the margin of slope channel fills where organisms can
‘shelter’ from powerful sediment gravity flows (Heard and
Pickering 2008; Hubbard e al. 2012). This has the potential to
further complicate sediment and microplastic mixing mechanisms
in surficial submarine canyon sediments. Bioturbation and
hyporheic transfer are likely to be important in transferring
anthropogenic microparticles into pre-1950s deep-sea sediments;
the latter supported in lakes where bioturbation is absent (Dimante-
Deimantovica et al. 2024). The identification of a sharp, laterally
continuous contact between sediments of pre-plastic production
age, with an absence of anthropogenic microparticles, and of post-
plastic production age, containing anthropogenic microparticles, is
required to support the formal definition of the Anthropocene. In
reality, this will be challenging due to the interaction of post-
depositional processes in terrestrial and deep-marine sediments.

Shredding of anthropogenic microparticle signals in the
deep-sea

We suggest that sediment transport and burial processes, and
anthropogenic forcing, act as non-linear filters that can shred the
environmental signal of increasing plastic production rates through
time in submarine canyons. The efficiency of anthropogenic
microparticle transfer from land-based sources to the Whittard
Canyon is relatively low, given the land-detached nature of the
canyon. This suggests that anthropogenic microparticle pollution in
land-detached canyons, of which there are more than 5000 (Harris
and Whiteway 2011), may be dominantly marine-sourced, and that
such systems receive a buffered supply of terrestrially sourced
anthropogenic microparticles. Despite this, Chen et al. (2025)
showed that the maximum microplastic concentration per 50 g of
dry sediment in the Whittard Canyon was greater than that recorded
in other submarine canyons. Combined with the study of Chen et al.
(2025), the anthropogenic microparticle distribution (Fig. 7c, f) and
grain-size data (Fig. 3c—k) presented here suggest that anthropo-
genic microparticles are capable of being transported through the
Whittard Canyon and are hypothesized to be transferred down-
canyon to the Celtic Fan at water depths of more than 4500 m. Given

the importance of the deep sea being the ultimate sink to
anthropogenic microparticles (Kane and Clare 2019), how they
are distributed in submarine fan successions and their relationship
with respect to sediment depth and age should be the focus of future
attempts to further understand micropollutant distribution in the
deep sea. Furthermore, given the dynamism of submarine canyons,
the buffered supply of anthropogenic microparticles to land-
detached canyons, and the mobility of microfibres and thus other
anthropogenic microparticles in the sub-seafloor, the efficacy of
using anthropogenic microparticles as anthropogenic tracer parti-
cles is questionable, along with calculations of their fluxes.

Conclusions

By adopting a multi-disciplinary approach, our results show that
anthropogenic microparticle pollution is pervasive in the Whittard
Canyon, at least to 10 cm sediment depth in both the thalweg and on
canyon flanks more than 500 m above the thalweg. While turbidity
currents are a major agent in the transfer of anthropogenic
microparticles, the turbidity currents in the Whittard Canyon are
only tens of metres thick, suggesting other processes and sources of
anthropogenic microparticles are needed to explain their distribu-
tion. These processes are under-represented in the stratigraphic
record of deep-sea deposits, and a better understanding can aid more
accurate calculations of particulate matter flux. Additional sources
include hemipelagic settling, and sediments on the continental shelf
resuspended by benthic trawling and entering tributary canyons.
Transport and resuspension of anthropogenic microparticles by
internal tidal pumping is likely to occur across the entire canyon
water depth. Almost all of the push cores showed only a gradual
decline in anthropogenic microparticle concentrations down to
10 cm, despite the 700% increase in global plastic production since
the 1970s. Where low sedimentation accumulation rates are
recorded, much of the sediment in the box cores predates plastic
production. This suggests subsurface mobility of anthropogenic
microparticles, with the likely processes including bioturbation and
hyporheic transfer. The observed distribution of anthropogenic
microparticles in the Whittard Canyon demonstrates that they are
not entirely flushed through canyons, but may be permanently or
transiently stored, and be mobile within the sediment bed. These
results suggest that anthropogenic microparticles incorporated into
deep-sea sediments may be a poor record of canyon particulate flux
and form an imperfect timeline, meaning that identifying the
Anthropocene boundary using anthropogenic microparticles in
these sediments may be flawed. A multi-disciplinary approach is
critical to untangling the different processes that act to transfer and
bury micropollutants in deep-sea sediments, and to identify
seafloor ecosystems that are vulnerable to anthropogenic micro-
pollutant exposure.
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