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A B S T R A C T

Objective: When determining the presence or absence of an Auditory Brainstem Response (ABR), clinicians often 
visually inspect the accruing data over time, i.e., a sequential test is adopted. The current work presents and 
evaluates Bayes Factors (BFs) as an objective sequential test for assisting clinicians with this task.
Method: Test specificity and sensitivity were optimised in simulated data and evaluated in subject-recorded data, 
including no-stimulus recordings (17 adults) and chirp-evoked ABR recordings (31 adults, 9 with hearing loss). 
The BF approach was compared with an existing sequential test, called the Convolutional Group Sequential Test 
(CGST).
Results: In simulations, BFs reduced mean test times by 60–70 % relative to the CGST while maintaining equal 
sensitivity and specificity. Similar reductions were observed in subject-recorded EEG background activity (~70 
%) and in chirp-evoked ABRs (0–60 %, depending on stimulus levels). For BFs, test time is tied to noise levels in 
the data, which allows test sensitivity to be controlled even when noise levels are high. The drawback is that the 
FPR is also tied to test time, and results show small variations (<0.01) in FPRs depending on noise levels. In 
contrast, test time for the CGST is fixed, giving an improved control over the FPR, but a reduced control over test 
sensitivity.
Significance: BFs demonstrated high sensitivity and reduced mean test times relative to the CGST. It also provides 
regular feedback with no maximum test time specified, making it well-suited at assisting clinicians with different 
levels of expertise and feedback preferences.

1. Introduction

The Auditory Brainstem Response (ABR) is a brief change in neural 
activity generated along the auditory pathway in response to sound [1]. 
It can be measured non-invasively using scalp electrodes and is routinely 
used in hearing screening and audiogram estimation in newborns and 
other hard-to-test populations[2,3] as well as detecting some neuro
logical disorders (e.g., [4]). Usually, the first step in these applications is 
to determine whether an ABR is present or absent, after which additional 
analysis can be carried out on the amplitude and morphology of the 
ABR.

One challenge with detecting the ABR is that it is often hidden in the 
background activity, which can be an order of magnitude larger than the 
ABR [1]. To reliably detect the ABR, it is therefore important to first 
improve its Signal-to-Noise Ratio (SNR), which is achieved by present
ing many stimuli to the subject and averaging the brief time-intervals 

following stimuli onsets to reduce “noise”. An experienced clinician 
then visually inspects the averaged waveforms to determine if a 
response is present or absent [2]. A drawback with visual inspection, 
however, is that results can vary both within and between examiners 
[5,6], thus introducing a subjective, examiner-dependent element to the 
analysis, potentially compromising the accuracy of the test.

In most ABR applications, errors in decision-making can have sig
nificant implications: An ABR that is incorrectly deemed present, for 
example, may lead to undiagnosed hearing loss. To reduce subjectivity 
and increase test accuracy and efficiency, researchers have sought to 
automate the procedure through objective detection methods (e.g. 
[7,8,9,10,11,12,13]). In the literature, these methods are often evalu
ated as “single shot” tests, which implies that data is analysed just once. 
This contrasts with applications in the clinic where methods are applied 
repeatedly to the accruing data over time, known as a sequential test. 
Sequential tests are important for providing timely feedback to 
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examiners. They also help to keep test time low as data collection can be 
stopped early for the high SNR responses. When compared to single shot 
test strategies, sequential tests previously reduced mean test times for 
ABR detection by up to approximately 45 % whilst maintaining equal 
test sensitivity [11,12].

Sequential tests have clear advantages over single shot test strategies 
but present a challenge in terms of controlling the False-Positive Rate 
(FPR). This is because repeated hypothesis testing increases the chance 
of finding spurious effects in noise, which means that the False-Positive 
Rate (FPR) increases as more tests are carried out, known as an inflated 
FPR [14]. To prevent inflated FPRs, the critical thresholds for response 
detection need to be chosen carefully, for which various methods have 
been proposed (e.g., [9,12,15,16,17,18]). However, many of these 
methods require the statistical analysis to be pre-specified in terms of 
how often and when data is analysed, leading to relatively inflexible test 
protocols that may not be optimally efficient. Note also that if the 
sequential test comes to an end without having reached a clear outcome 
in terms of ABR present or absent, then the test cannot be prolonged, at 
least not without also inflating the FPR.

The aim for the current study was to introduce and evaluate a flexible 
and efficient sequential test for assisting clinicians with ABR detection, 
built around the Bayes Factor (BF). The BF is a measure of the evidence 
for one hypothesis over another [19,20], defined in the current study as 
“H0: ABR is absent” and “H1: ABR is present”. More specifically, the BF is 
a ratio of likelihoods, defined as the likelihood that the data arose under 
H1 over the likelihood that the data arose under H0. If H1 is true, then the 
BF value increases towards infinity as data accrues, whereas if H0 is true, 
then the BF value decreases towards zero. Statistical inference is then 
carried out by placing upper and lower thresholds on the BF, i.e., H1 is 
accepted for BF > BFHigh, or H0 for BF < BFLow, else (for BFLow > BF <
BFHigh) further data collection is deemed necessary before making a final 
decision.

The BF approach is attractive for ABR detection, firstly because the 
probability of inferring a false-positive decreases as data accumulates, 
which implies that the FPR cannot exceed some fixed upper threshold, 
regardless of how often or how long data is analysed. This contrasts with 
conventional frequentist analyses where controlling the FPR requires 
limitations to be imposed on the frequency and duration of the analysis. 
The practical implication is that the BF approach can be used to assist 
with data analysis for as long as the clinician deems necessary. The BF 
approach can also be applied to the accruing data frequently (e.g, every 
3 seconds), providing regular feedback. Lastly, the BF approach aligns 
with the intuitions of the examiners who are similarly expected to make 
fewer errors as data accrues, potentially resulting in a more trustworthy 
detector.

The BF approach was previously also applied successfully in the 
related field of Auditory Steady State Response (ASSR) detection [21], 
where it was compared to the Neyman-Pearson (NP) detector and a 
modified Sequential Probability Ratio Test. All three methods use a 
likelihood ratio, computed between two competing hypotheses, and 
differences between methods lie primarily in how the critical thresholds 
are constructed. The BF approach in the current work is similar to 
methods in [21] but differs in that it uses two thresholds − one for 
accepting H0 (response absent) and one for accepting H1 (response 
present). This contrasts with [21] where thresholds were defined for 
accepting H1 only, i.e. early stopping in favour of H0 was not considered. 
It is also worth noting that methods in [21] were evaluated as single shot 
tests, rather than as sequential tests. The current study thus extends 
work from [21] to ABR detection whilst also introducing inference on 
both H0 and H1. The procedure is then evaluated within a sequential 
testing framework.

In the following sections, the BF approach is described in more detail 
and then evaluated in terms of specificity, sensitivity, and efficiency (the 
required sample size for response detection). Data for the assessment 
comprised realistic simulated data, as well as recordings of EEG back
ground activity from 17 adults with normal hearing, and chirp-evoked 

ABR recordings from 31 adults, 9 of which had some degree of hear
ing loss. Comparisons were also drawn with an existing sequential test 
strategy from [11] − the Convolutional Group Sequential Test (CGST) −
which pre-specifies when and how often to analyse data. Some pros and 
cons underlying the BF approach are considered in the Discussion along 
with directions for future work.

2. Methods

ABR measurements involve presenting many stimuli to a subject and 
recording EEG in the short time intervals following stimulus onset. 
These short time intervals are referred to as “epochs” and consist in the 
current work of voltage measurements along the 0–15 ms post-stimulus 
intervals. In matrix format, epochs are represented as: 

D =

⎡

⎣
d11 ⋯ d1J
⋮ ⋱ ⋮

dN1 ⋯ dNJ

⎤

⎦ (1) 

where dij is the jth sample of the ith epoch, N is the total number of 
epochs (the ensemble size), and J is the number of samples within each 
epoch. The mean epoch, known as the coherent average, is found by 
averaging down each of the J columns. This is typically inspected 
visually by examiners to determine whether it contains an ABR or not. 
Additionally, data can be analysed using some statistical detection 
method.

2.1. Bayes Factors for ABR detection

The Bayes Factor (BF) is a measure of the strength of evidence for one 
hypothesis compared to another [19]. In the current work, these hy
potheses are the null hypothesis, “H0: ABR is absent”, and the alternative 
hypothesis, “H1: ABR is present”. The evidence is an F statistic, extracted 
from data matrix D using the time domain Hotelling’s T2 (HT2) test 
[10,22]; see also Section 2.2.1). The BF value itself can be expressed as: 

BF =
L(F|H1)

L(F|H0)
(2) 

where L(F|H0) and L(F|H1) are the likelihoods that F arose if H0 or H1 
were true, respectively. Statistical inference can then be carried out by 
constructing upper and lower thresholds for the BF value: If BF > BFHigh, 
then H1 is accepted as true, whereas if BF < BFLow, then H0 is accepted, 
else the result is inconclusive and additional data collection is deemed 
necessary. An illustrative example of how the BF value is computed is 
also shown in Fig. 1, panel (a).

The main components of the BF approach thus comprise: (1) the test 
statistic, given in the current work by an F statistic, (2) the distributions 
of the F statistic under the H0 and H1 hypotheses, which are needed to 
compute the L(F|H0) and L(F|H1) components, and (3) the BFHigh and 
BFLow critical thresholds for inference. Note also that in order to define 
the H1 hypothesis, assumptions need to be made about the ABR. These 
components are further considered in the sections below.

2.1.1. The F statistic
The F statistic was extracted from D using the time domain HT2 test. 

First, each 15 ms epoch in D was compressed into Q = 25 “voltage- 
means”, which involved splitting each epoch into 25 non-overlapping 
0.6 ms segments, and averaging across segments to give an Nx25- 
dimensional matrix of voltage means: 

V =

⎡

⎣
v11 ⋯ v1Q
⋮ ⋱ ⋮

vN1 ⋯ vNQ

⎤

⎦ (3) 

where vij is the jth voltage mean extracted from the ith epoch. A T2 

statistic is then computed using [23]: 
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T2 = N • x • S− 1 • x (4) 

where x is a Q-dimensional vector of “mean voltage-means”, found by 
averaging down the Q columns of V, S− 1 is the inverse of the covariance 
matrix of V, and’ denotes vector transpose. Finally, the T2 statistic is 
transformed into an F statistic [23]: 

F = T2 N − Q
Q(N − 1)

(5) 

which follows a central F distribution under H0, and a non-central F 
distribution under H1.

It is worth noting that the T2 statistic in Eq. (4) is a measure of the 
signal amplitude, represented by x, relative to the noise, represented by 
covariance matrix S, and is thus related to the SNR. It is, however, a 
special type of SNR because, unlike standard SNR calculations that 
consider signal and noise power, the T2 statistic also incorporates the 
covariance of the noise. In situations where features are correlated, this 
results in a more powerful test compared to tests that consider just the 
variance. For more in-depth discussion of the HT2 test, see also [24] and 
Rencher et al. (2001).

The number of voltage-means, Q, to extract from the 15 ms analysis 
window is an important parameter that impacts on test performance. 

When Q is too small, peaks and troughs in the ABR waveform may cancel 
out due to averaging, leading to reduced signal amplitudes and poten
tially a less powerful test. While this can be prevented by increasing Q, a 
larger Q comes with the adverse effect of a higher dimension of the 
feature matrix V. This is undesirable, as it introduces many unknown 
parameters (variances and covariances) to the analysis, all of which 
need to be estimated from the data, potentially resulting in additional 
uncertainty and a less powerful test (e.g. [25]). The choice for Q = 25 in 
the current work was motivated by findings in [10] where Q = 25 led to 
a good test sensitivity when combined with a 15 ms analysis window. 
Finally, note that the averaging procedure functions as a low-pass filter 
with down sampling. When averaging across 0.6 ms segments, the 
effective sampling rate is 1000/0.6 = 1.67 kHz (rather than the original 
5 kHz) with a Nyquist frequency of 835 Hz, thus limiting the bandwidth 
of the voltage means to 30–835 Hz, rather than the 30–1500 Hz band of 
the original data.

2.1.2. The null distribution
If H0 is true (no ABR is present), then the expected values for x are 

given by a Q-dimensional vector of zeros because (1) the ABR amplitude 
is assumed to be zero, and (2) the direct current component (mean signal 
value) is removed from the data during the data pre-processing stage by 
a high-pass filter (a 3rd-order Butterworth filter with a 30 Hz cut-off 

Fig. 1. Panel (a) illustrates how the Bayes Factor (BF) is computed when using single point priors for the null and alternative hypotheses, denoted by H0 and H1, 
respectively. In this example, Q = 25 voltage means were extracted from an ensemble of N = 1000 epochs, which were then analysed by the Hotelling’s T2 test, giving 
an F value of 1.7. Under H0, F was assumed to follow a central F distribution with Q and N degrees of freedom, whereas under H1, F was assumed to follow a non- 
central F distribution Q and N degrees of freedom along with non-centrality parameter λ = 0.025. The λ parameter was extracted from an ABR template waveform 
(Section 2.1.4), shown in panel (b). The Q = 25 voltage means (μ in Eq. (7)) extracted from this waveform were overlayed for illustration purposes. Using Eq. (2), the 
BF value is then given by BF =

L(F|H1)
L(F|H0)

= 0.754
0.104 = 7.25, i.e., the numerator, L(F = 1.7|H1), is given by the height of the alternative distribution at location F = 1.7 and 

equals 0.754, whereas the denominator, L(F = 1.7|H0), is given by the height of the null distribution at location F = 1.7 and equals 0.104. Panels (c) and (d) 
illustrate the expected trajectories for the log-transformed BF values under H0 and H1, shown as shaded regions. For illustration purposes, three hand-selected 
example trajectories under each hypothesis were also shown as white lines, along with the log-transformed BFHigh threshold for accepting H1 (here equal to 
4.23) and the log-transformed BFLow threshold for accepting H0 (equal to − 1.01). Testing continues until the BF value exceeds either BFHigh or BFLow, in which case an 
ABR would be deemed present or absent, respectively.
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frequency in the current work). In this case, F is assumed to follow a 
central F distribution with Q and N-Q degrees of freedom [23]. The L(F|
H0) term in the denominator of Eq. (2) for computing the BF is 
accordingly given by: 

L(F|H0) = ∅C(F, Q, N − Q) (6) 

where ∅C denotes a central F distribution. Note that Eq. (6) describes the 
height of ∅C at location F (panel a, Fig. 1).

2.1.3. The alternative distributions
If H1 is true (an ABR is present), then the F statistic is assumed to 

follow a non-central F distribution with Q and N-Q degrees of freedom 
along with non-centrality parameter λ [23]: 

λ = N • μ • Σ− 1 • μ (7) 

where μ is a Q-dimensional vector containing the expected values for x 
(representing the ABR), and Σ is a QxQ dimensional matrix containing 
the expected values for S (representing the background activity). The λ 
parameter is thus equivalent to the T2 statistic in Eq. (4), after 
substituting x and S for their expected values, μ and Σ, and is therefore 
also closely related to the ABR’s SNR.

In the ideal scenario, both μ and Σ would be known before the test, 
allowing H1 to be defined using a single, subject- and recording-specific 
λ value. The challenge, however, is that both μ and Σ are typically not 
known, and to define the alternative distribution, assumptions must be 
made. One approach is to assume λ directly, and to define a prior dis
tribution across the range of λ values typically observed under H1. The 
drawback, however, is that H1 is then no longer explicitly tied to the 
ABR, i.e., because λ is an SNR-based metric, each value may correspond 
to a multitude of ABR and noise power combinations. As a result, sta
tistical inference no longer directly informs the clinician about the 
actual amplitude of the ABR, only its amplitude relative to the noise.

Instead of specifying λ directly, it was opted to estimate Σ using S, 
and to extract the μ values from an ABR template waveform, rescaled to 
achieve a certain peak to trough amplitude (PTTa) value. Doing so al
lows the λ parameter (and hence the H1 hypothesis) to be defined as a 
function of the ABR’s PTTa. Using the ABR PTTa is attractive as it is a 
commonly used metric in audiology. For example, clinicians apply the 
PTTa-based “3 to 1 rule” when visually detecting ABRs [2], requiring the 
PTTa value to be at least three times the estimated noise before a 
response is deemed present. There is also substantial literature on ABR 
PTTa values (e.g., [26]), which facilitates the construction of priors over 
PTTa values (considered below) and may ultimately lead to an intuitive 
and interpretable test that is more readily integrated with current clin
ical practices.

Regarding the template waveform, this was constructed by averaging 
ABR measurements from 12 adults with normal hearing [27] – a more 
detailed overview of the averaging process is given in the Supplemental 

Digital Content. The template waveform was then rescaled to achieve a 
certain PTTa value, say A. Note that this PTTa value corresponds to the 
difference between the largest peak and the smallest trough of the ABR 
template, which is dominated by wave V. Prior distributions were then 
placed over A, covering PTTa values ranging from 0.2, up to 1.6 µV, i.e. 
the range of ABR amplitude values typically observed in the literature (e. 
g., [26]). To also assess the sensitivity of the approach to the choice of 
prior, a total of four prior distributions were considered. 

1. Single point prior

In the most straightforward case, a “single point prior” can be used, 
which considers a single “minimum ABR waveform” with a PTTa value 
of 0.2 µV. This prior, shown in panel (a) of Fig. 2, can be modelled using 
a Dirac delta function, which is infinite at 0.2 µV, and zero everywhere 
else: 

Pr(A|H1) = δ(A − 0.2) (8) 

where δ is the Dirac delta function. Interpreting the output of the BF 
approach under the single point prior is relatively intuitive: If BF <
BFLow, then H0 is accepted, and it is concluded that an ABR was absent, 
or that the ABR PTTa value was smaller than the minimum amplitude of 
0.2 uV. If BF > BFHigh, then it is concluded that an ABR is present and 
that the PTTa value of the ABR was at least 0.2 uV. 

2. Truncated exponential prior

A potential drawback for the single point prior is that the L(F|H1)

term (the numerator in Eq. (2) may yield relatively low likelihood values 
in cases where the ABR PTTa values exceed 0.2 uV, potentially leading 
to reduced test sensitivities. To address this, a distribution can be placed 
over a range of hypothesised PTTa values. The first distribution that was 
considered was a truncated exponential distribution, which was defined 
so that 99 % of its area lay along the 0.2 to 1.6 µV interval: 

Pr(A|H1) =
1

0.304
exp(−

A − 0.2
0.304

) (9) 

where all probability densities were set to zero for A < 0.2, i.e., the 
distribution was truncated to the [0.2, 1.6] uV interval – see Fig. 2, panel 
(b). Under this distribution, ABR PTTa values of 0.2 µV were deemed 
most probable, with probability densities decreasing exponentially for 
increasing PTTa values.

When placing a distribution over A, note that multiple ABR templates 
are now considered when computing L(F|H1) in the BF equation. In 
particular, computing L(F|H1) requires integrating over the PTTa A: 

Fig. 2. Four prior distributions for the assumed peak-to-trough amplitude (PTTa) value of the ABR waveform in the data under the alternative hypothesis H1, 
including a single point prior, a truncated exponential prior, a uniform prior and a truncated Gaussian prior. These distributions serve as weights when computing the 
BF value, essentially biasing test sensitivity towards detecting ABR PTTa values that are considered most probable.
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L(F|H1) =

∫A=1.6

A=0.2

∅NC(F, Q, N − Q, λA) • Pr(A|H1)dA (10) 

where ∅NC() denotes a non-central F distribution, which takes a non- 
centrality parameter, λA, as input: 

λA = N • μA • S− 1 • μA (11) 

and where μA is the Q-dimensional vector of voltage means, extracted 
from the ABR template waveform, rescaled to have a PTTa of A µV. 
Regarding the integral in Eq. (10), this was computed using the trape
zoidal rule with the resolution for A set to 0.01 µV. Note that the integral 
is repeatedly re-computed each time the analysis is carried out, which 
was every ~3 seconds in the current work. 

3. Uniform prior

A uniform prior, shown in Fig. 2, panel (c), was also considered, 
which was again placed along all ABR PTTa values along the 0.2 to 1.6 
µV interval. All ABR PTTa values along this interval were thus deemed 
equally likely. In this case, Pr(A|H1) = 0.7143 for all PTTa values, giving 
an area of one, i.e., 0.7143 x 1.4 = 1. The L(F|H1) marginal likelihood 
was computed using Eq. (10) with Pr(A|H1) set to the uniform prior. 

4. Truncated Gaussian prior

Finally, a truncated Gaussian prior, shown in Fig. 2, panel (d), was 
considered. The most probable PTTa value was now assumed to be the 
mean value along the 0.2 to 1.6 µV interval, equal to 0.9 µV, and 
probability densities decreased for PTTa values that were smaller or 
larger. The standard deviation for this distribution was 0.2718, which 
led to 99 % of the distribution’s area lying along the 0.2 to 1.6 µV in
terval. Values outside this interval were not considered and their 
probability density was set to 0. The L(F|H1) term was again computed 
using Eq. (10) with Pr(A|H1) now set to the truncated Gaussian prior

2.1.4. The prior distribution for the ABR PTTA value under H0
The null hypothesis of “ABR absent” was always defined using a 

single A value, namely A = 0 µV. The prior in this case can thus also be 
considered a single point prior with likelihood values for all A set to 
zero, except for A = 0.

2.1.5. Sequential testing and critical thresholds
In the current work, the BF value was re-computed every 142 epochs, 

which corresponds to ~3 seconds intervals when using a 47.17 Hz 
stimulus rate. For each choice of prior, data were collected and analysed 
repeatedly until either the BF > BFHigh, or the BF < BFLow criterion was 
met. Note that no maximum test time was specified. To facilitate a fair 
comparison with the CGST approach, methods were optimised in 
simulated data to have a FPR of 0.01 and a TPR of 0.99 (Section 2.3). For 
the BF approach, this involved optimizing the BFHigh and BFLow critical 
thresholds, per choice for prior (Table 1).

2.2. A benchmark to compare against: The CGST approach

To establish a benchmark to compare against, the sequential test 

strategy from [17] was also included in the assessment, which was 
previously optimised for ABR detection [11]. This approach uses nu
merical convolution to find the null distribution of the sequential test 
statistic, from which the stage-wise critical thresholds for controlling the 
FPR and true-negative rate (TNR) are derived. As the approach for 
finding the critical thresholds revolves around convolution, it was 
coined the Convolutional Group Sequential Test, or CGST.

With the CGST approach, data is analysed in disjoint blocks of ob
servations. Analysing 10,000 epochs with a 5-staged sequential test, for 
example, might analyse epochs 1–2000 in stage one, epochs 2001–4000 
in stage two, etc. At each stage, a test statistic, say Tk, is generated using 
some statistical test, which is combined with all previously generated 
test statistics through summation to give the stage k summary statistic, 
Sk =

∑K
k=1Tk. In the current work, the Tk test statistics were the log- 

transformed p values generated by the HT2 test. The stage-wise sum
mary statistics were thus defined as: 

Sk =
∑K

k=1
− 2log(pk) (12) 

where pk is the HT2-generated p value at stage k. It is worth noting that 
− 2log(.) is Fisher’s transformation [28], which has some desirable 
properties in terms of test efficiency when combining p values [29]. The 
Sk test statistics are then evaluated against the stage k critical thresholds: 
If Sk < bk, then an ABR is deemed absent and H0 is accepted, whereas if 
Sk > ak, an ABR is deemed present and H0 is rejected, else the outcome is 
deemed ambiguous and the test proceeds to stage k + 1, to a maximum 
of K stages.

The aim for the CGST approach is to find the ak and bk (k = 1, 2, …, 
K) critical thresholds, such that the stage-wise FPRs and TNRs are 
controlled. The stage-wise FPRs and TNRs are denoted by αk and βk, 
respectively, and are specified by the user prior to the test. To find ak and 
bk, the CGST first aims to generate the stage-wise null distribution of Sk, 
say ΦSk . The only requirement for finding ΦSk is that the null distribu
tions of the stage-wise Tk test statistics, say ΦTk , are known. When Tk =

− 2log(pk), then ΦTk follows a χ2
2 distribution [28], i.e., a χ2 distribution 

with 2 degrees of freedom. For k = 1, ΦS1 = ΦT1 = χ2
2, and for k > 1, the 

ΦSk distributions are given by: 

ΦSk = Φ[bk ,ak ]
Sk− 1

* ΦTk (13) 

where * denotes convolution and Φ[bk
,ak ] indicates that distribution Φ has 

been truncated to the [bk
, ak] interval, i.e. all probability densities 

outside this interval were set to zero. Note that truncation is necessary, 
as it is not possible to enter stage k with Sk > ak or Sk < bk, as the 
sequential test would otherwise already have been stopped. Note also 
that the area under ΦSk is reduced by the area of the truncated regions, 
and thus no longer equals one.

Once the ΦSk distributions have been generated, finding ak and bk is 
relatively straightforward: ak is found by solving 

∫∞
ak

ΦSk = αk, and bk is 

found by solving 
∫ bk

0 ΦSk = βk. In practice, the ∞ is of course replaced 
with a sufficiently large value. Additional implementation details and 
graphical illustrations are also provided in [17].

When using the CGST, various test parameters need to be specified 
by the user, including (1) the number of stages K, (2) the stage-wise FPRs 
αk, (3) the stage-wise TNRs βk, and (4) the stage-wise ensemble sizes, 
denoted by Nk. Among these parameters, the choice of K introduces a 
trade-off between test sensitivity and test time: Larger K implies more 
frequent data analysis, offering opportunities to stop the test early if a 
conclusive result is obtained. This helps to keep test time low for the 
high SNR responses. The trade-off is that the available data is split into 
smaller chunks. This results in a reduced test sensitivity, potentially 
prolonging test time for the lower SNR responses.

In previous work [11], the choice for K was evaluated and optimised 
for ABR detection in both simulations and in subject data: K values 

Table 1 
The BFLow and BFHigh critical thresholds, per choice for Pr(A|H1) prior, opti
mised in simulated data to give a False-Positive Rate (FPR) of 0.01 and a true- 
positive rate (TPR) of 0.99 with reanalysis of accruing data carried out every 
3 seconds.

Single point Exponential Uniform Gaussian

BFHigh 68.9529 65.15261 39.11059 34.13786
BFLow 0.362637 0.0515147 0.01255055 0.00136935
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ranging from 1 to 9 were considered, and in each case, TPRs and FPRs 
were optimised to be 0.99 and 0.01, respectively, allowing test time to 
be evaluated as a function of K whilst maintaining equal test specificity 
and sensitivity. Results show a good test performance across a range of 
ABR SNRs when using K values of ~5, up to ~9. Based on these results, 
the current work selected K = 5.

For the remaining parameters, the overall β-level was set to 1-α, and 
the available α and β was split equally across the K stages, giving αk and 
βk values of α

K and β
K, respectively. To ensure a fair comparison with the 

BF approach, the overall α-level was optimised in simulations, such that 
the overall FPR was 0.01, and the ensemble size was optimised to give an 
overall TPR of 0.99. Data for the optimization was the same simulated 
data previously used to optimise the BF approach. The optimised 
ensemble size was 11,625 epochs (or ~246 s), split equally across the K 
stages, giving Nk values 2325 (for k = 1, 2, …, 5). The optimised α-level 
for obtaining a FPR of 0.01 was 0.0062. The resulting Ak and Bk critical 
thresholds are shown in Table 2. Note that a5 and b5 are equivalent, 
which means that the test is forced to choose between H0 and H1 
following stage 5, i.e. H0 is accepted if S5 < b5, or rejected if S5 > a5.

2.3. Evaluating test performance in simulations

The aim for the simulations was thus firstly to first optimise the FPRs 
and TPRs of the CGST and BF approach (described previously). A second 
aim was to further evaluate the optimised methods across a range of test 
conditions. Data comprised coloured noise for emulating the EEG 
background activity along with a diverse set of ABR templates for 
simulating a response. These templates differ from the ABR template 
used to define H1 in the BF approach. Keeping the assumed ABR tem
plate distinct from the true (simulated) ABRs helps to ensure a more fair 
and realistic evaluation of methods, because the true ABR waveform is 
usually unknown in practice also.

Simulated EEG background activity: Background activity was simu
lated using the frequency domain bootstrap (FDB) approach from [30], 
which takes EEG data as input, and outputs many “surrogate re
cordings”. The surrogates aim to emulate important characteristics of 
the original data, including signal power, spectral content, and the 
smoothed envelope of the recording. The main steps of the FDB include 
(1) rescaling the original recording by its root mean square (RMS) en
velope to obtain a recording with a more uniform variance, (2) esti
mating the power spectral density (PSD) function of the rescaled 
recording, (3) introducing random variation to obtain many random 
“surrogate PSD functions”, (4) transforming the random surrogate PSD 
functions back to the time domain using the inverse FFT, and (5) 
rescaling the surrogates with the previously estimated RMS envelope to 
restore some non-stationarities in sample variance.

Regarding the RMS envelope, this was estimated by sliding a 200 ms 
rectangular window over the recording and computing the RMS value at 
each window location. The resulting RMS envelope was then also 
smoothed using a 5 Hz low-pass 3rd-order zero-phase (two-pass) But
terworth filter. Regarding the smoothed PSD function, this was esti
mated using Welch’s method [31], which involved (i) segmenting the 
four second recording into 200 ms windows with 80 % overlap, (ii) 
applying a Hamming window to each segment to reduce spectral 
leakage, (iii) taking the FFT of each windowed segment, (iv) trans
forming the FFT values to PSD values, and (v) averaging the PSD values 

to obtain a smoothed estimate of the PSD function.
To generate the “random surrogate PSDs”, the smoothed PSD func

tion estimates were multiplied (at each frequency) with randomly 
sampled values from an exponential distribution with a mean of one. 
The random surrogate PSDs were then transformed to FFT magnitudes, 
and a random phase value − sampled randomly from a uniform distri
bution from 0 to 2π − was assigned to each frequency. Finally, the 
randomised surrogate FFTs were transformed to the time domain using 
the inverse FFT where they were rescaled by the original smoothed RMS 
envelope to reintroduce non-stationarities in sample variance.

To further preserve non-stationarities of the original recording, the 
approach was applied in four second blocks. A new RMS envelope and a 
new smoothed PSD function was thus computed for each four-second 
segment of EEG. When simulating longer recordings, surrogates were 
simulated in four-second blocks and concatenated into a single 
recording. The original data, from which the surrogates were derived, 
was approximately 4.5 hours in duration following pre-processing and 
artefact rejection (Section 2.4.1). For a more detailed description of the 
FDB approach, including implementation details and illustrative exam
ples, see [30].

ABR templates: As mentioned above, ABRs were simulated using a 
diverse set of ABR template waveforms. These templates were given by 
coherently averaged chirp-evoked ABR waveforms, previously recorded 
from 31 adults, 9 of which had some degree of hearing loss [32]. To 
qualify as an ABR template, a relatively strict selection criterion was 
applied to the coherent averages in that the PTTa value should be 10 
times larger than the residual background activity. The residual back
ground activity in each coherent average was estimated using the mean 
absolute difference of its two coherent average replicates: The first 
replicate was given by the average of the even-numbered epochs, and 
the second replicate by the odd-numbered epochs. Using such a strict 
criterion eliminates noisy coherent averages and helps to ensure that a 
relatively clear (i.e., noise-free) ABR is simulated, rather than back
ground activity. Note that this is a stricter variation of the 3-to-1 rule, 
which is routinely used by clinicians when detecting ABRs through vi
sual inspection [2]. A total of 30 coherent averages satisfied the selec
tion criterion, which can be seen in the current work’s Supplemental 
Digital Content. As described in the sections below, these template 
waveforms were also rescaled to achieve a certain PTTa value before 
being added to the no-stimulus surrogates to simulate a response.

2.3.1. Optimizations
As mentioned previously, the critical thresholds for the BF and CGST 

approach were optimised along with the stage-wise ensemble sizes for 
the CGST. For the no-stimulus condition, data comprised 500,000 zero- 
mean surrogates with mean powers ranging from ~1.4 to ~11.9 µV2, 
depending on the original EEG recording being emulated. For the 
stimulus condition, data comprised no-stimulus surrogates with one of 
the 30 ABR template waveforms (selected at random, per recording) 
added to each epoch. The PTTa values of the simulated ABRs were 
varied from 0.2 to 1.6 µV, in steps of 0.01 µV, and a total of 10,000 tests 
were carried out for each PTTa value, giving a total of 1,410,000 sur
rogate recordings for the stimulus condition.

2.3.2. Simulations i – Comparisons in sensitivity and test time
Following the initial optimisations, additional simulations were 

carried out to further evaluate test performance. First, test performance 
was evaluated for ABR PTTa values ranging from 0.01 to 1.6 µV, in steps 
of 0.01 µV. These simulations were similar to those used for the opti
misation, except that the [0.01, 0.2] µV interval was now also included 
in the assessment. Note that the [0.01, 0.2] µV interval represents the 
most challenging cases in the clinic, i.e., cases that tend to be borderline 
in terms of ABR present/absent. The TPR was now also computed 
separately, per PTTa value, giving a total of 161 TPRs, each estimated 
from 10,000 simulated recordings. This contrasts with the preceding 
optimizations where a single TPR (considering all PTTa values) was 

Table 2 
The stage-wise critical thresholds when using the Convolutional Group 
Sequential Test (CGST). These thresholds were optimised, along with the stage- 
wise ensemble sizes (the Nk values), in simulated data, such that the FPR 
equalled 0.01 and the TPR equalled 0.99.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

ak 0.4432 2.355 5.465 10.12 26.05
bk 13.39 17.12 20.35 23.31 26.05
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estimated.

2.3.3. Simulations II – Evaluating different noise conditions
In the second set of simulations, test performance was evaluated 

under alternative noise conditions. These simulations were identical to 
those in Section 2.3.2 above, except that the amplitude of the back
ground activity was now either doubled, or halved. A total of 10,000 
tests were again carried out, per PTTa value, and per noise condition. 
For the no-stimulus condition, the number of tests was increased from 
10,000 to 500,000 to obtain a more accurate estimate of the FRP. The 99 
% confidence intervals for the expected FPR of α = 0.01 were [0.0096, 
0.0104], which were found using a binomial distribution constructed 
from 500,000 “Bernoulli trials” where a “successful Bernoulli trial” was 
assumed to occur with probability α = 0.01.

2.4. Evaluating test performance in subject data

Following the simulations, methods were further evaluated in 
subject-recorded data, which included no-stimulus EEG recordings [33] 
and chirp-evoked ABR recordings [32].

2.4.1. No-stimulus EEG data
Recordings of EEG background activity (no stimulus was used) were 

previously recorded from 17 adults with normal hearing [33] under four 
test conditions. The current work included recordings from the “sleep” 
and “still” conditions where subjects were asked to try and sleep 
(although sleep was not confirmed), or to lie still with their eyes closed 
but not to fall asleep, respectively. Electrodes (silver–silver chloride, Ag/ 
AgCl) were attached to the left mastoid (active electrode), the right 
cheek (ground) and the upper forehead (reference), and EEG measure
ments were made using a Compumedics Neuroscan II EEG amplifier at a 
sampling rate of 20 kHz. Data were downsampled offline to 5 kHz, after 
which they were band-pass filtered with a 3rd-order zero-phase (two- 
pass) Butterworth filter from 30 to 1500 Hz, and restructured into 21.2 
ms epochs, corresponding to a (here hypothetical, as no stimuli were 
applied) stimulus rate of 47.1698 Hz. Artefact rejection was also applied 
by discarding all epochs with maximum absolute values exceeding 10 
µV. After pre-processing and artefact rejection, there were approxi
mately 4.5 hours of data available.

Data analysis: The aim for the no-stimulus data analysis was to esti
mate the FPR of the methods in subject-recorded data. A challenge, 
however, is that the BF approach does not specify a maximum test time, 
and in some cases, there was insufficient data to reach a conclusive test 
outcome. It was therefore opted to generate a longer set of recordings 
using the time-domain “moving block bootstrap” approach from [27], 
which involves resampling (with replacement) blocks of consecutive 
EEG measurements from the original recordings. The length of the 
resampled blocks was set to 3 seconds to preserve serial correlation and 
short-term non-stationarities in the data. For the CGST approach, the 
total length of the bootstrapped recordings was ~246 seconds (11,625 
epochs), whereas for the BF approach this varied per test. A total of 
10,000 bootstrapped recordings were constructed and analysed with the 
BF and CGST methods. It is worth mentioning that the number of in
dependent tests carried out cannot easily be determined due to the 
resampling with replacement procedure. Confidence intervals for the 
expected FPR of 0.01 were therefore not constructed.

2.4.2. Chirp-evoked ABR data
Chirp-evoked ABR data were previously recorded from 31 adults 

(aged 18–70), 9 of whom had some degree of hearing loss [32]. The 
chirp stimuli included 500, 1000, 2000, and 4000 Hz narrow-band CE- 
Chirps [34], presented at a rate of 47.1698 Hz at a range of Hearing 
Levels (dB HL), which were later transformed to dB Sensation Levels (dB 
SLs) by comparing against the corresponding behavioural hearing 
thresholds. During the test, subjects were asked to relax with their eyes 
closed. Electrodes were placed at the vertex (active electrode), the nape 

of the neck (reference) and mid-forehead (ground), and chirps were 
presented via a RME Fireface UC soundcard through ER-2 insert phones. 
Data were recorded using an Interacoustics Eclipse system, and then 
routed back to Matlab software for recording via the RME sound card 
with a sampling rate of 48 kHz. Data were subsequently downsampled to 
5 kHz, and band-pass filtered from 30-1500 Hz using a 3rd-order zero- 
phase (two-pass) Butterworth filter. Artefact rejection was also applied 
by discarding all epochs with maximum values exceeding 20 µV. A more 
detailed description of the test procedure, including stimulus calibra
tion, is given in [32]. The ensemble sizes for this data ranged from just 
1000 epochs, up to 37,000 epochs (median 7000, maximum absolute 
deviation ~5300). The detection methods were applied to 474 audible 
(≥0 dB SL) ABR recordings: 124 recordings at ≥ 0–20 dB SL, 169 at ≥
20–40 dB SL and 181 for ≥ 40 dB SL. After preprocessing and artefact 
rejection, there was a total of ~22 hours of data available for the 
analysis. Note that in some cases, there was insufficient data to reach a 
clear decision, resulting in an ambiguous test outcome. Contrary to the 
no-stimulus data analysis, recordings were not extended through 
resampling.

3. Results

This section presents results from the simulations and the subject 
data analysis.

3.1. Results from simulations i – Comparisons in sensitivity and test time

Results from Simulations I are presented in panels (a) and (b) of 
Fig. 3: Panel (a) shows the detection rates, per detection method, as a 
function of the simulated ABR PTTa value, and panel (b) shows the mean 
test times, per detection method, also as a function of the simulated ABR 
PTTa value. Note that the PTTa axis in panel (a) was truncated to the [0, 
0.3] µV interval to aid visualisation.

Detection rates were similar across methods, with a small advantage 
being observed for the CGST approach along the [0, 0.2] µV PTTa in
terval. However, this came at the cost of a relatively large increase in 
mean test times. When considering the [0, 0.4] µV PTTa interval, for 
example, the “grand mean test time” (i.e., the mean of the mean test 
times) was 128.4 seconds for the CGST approach, whereas for the BF 
approach this was 59.3 (single point prior), 62.3 (exponential prior), 
59.3 (uniform prior), and 69.9 seconds (Gaussian prior). For larger PTTa 
values (i.e., those exceeding 0.4 µV), the mean test time for the CGST 
approached ~49 s, which was the lowest possible test time as analyses 
were carried out in blocks of 2325 epochs. This contrasts with the BF 
approach where the lowest possible test time was ~3 seconds due to the 
142 epoch block size. The grand mean test time − considering all PTTa 
values − was 69.7 seconds for the CGST, whereas for the BF approach 
this was 28.2 (single point prior), 22.6 (exponential prior), 22.2 (uni
form prior), and 24.4 (Gaussian prior) seconds.

Of the four BF priors evaluated, mean test times varied depending on 
the ABR PTTa value in the data. When considering the [0, 0.3] µV PTTa 
interval, the lowest mean test times were observed for the single point 
prior, followed by the exponential prior, the uniform prior, and lastly the 
Gaussian prior. When evaluating ABR PTTa values larger than ~0.3 µV, 
the single point prior showed the highest mean test times, whereas the 
remaining three priors showed similar mean test times and were all 
lower than the single point prior as well as the CGST. The priors over 
ABR PTTa values are further considered in the Discussion.

4. Section 3.2. Results from simulations II – Evaluating different 
noise conditions

Results from Simulations II are presented in panels (c) and (d) of 
Fig. 3. For the BF approach, results for all four priors showed a similar 
trend across noise conditions, and to keep this section concise, results 
are presented for just the single point prior. Results for the remaining 
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Fig. 3. The detection rates and mean test times of the Bayes Factors (BF) approach and the Convolutional Group Sequential Test (CGST), presented as a function of 
the simulated ABR PTTa value. Panels (a) and (b) show results from Simulations I and compare detection rates and test times for the CGST and the BF approach with 
different priors, and panels (c) and (d) show results from Simulations II, which evaluates the effect of changing noise levels in the data. For simulations II, the 
performance of the BF approach was similar across all four priors. Results were therefore presented for just the single point prior. Note also that the PTTa axis was 
truncated in panels (a) and (c) for visualization purposes. Further details are provided in the main text.

Fig. 4. Results from the subject-recorded chirp-evoked data analysis. The top panels show the percentage of tests where an ABR was deemed present, absent, or 
“ambiguous”, where ambiguous implies that there was insufficient data to reach a clear test outcome. Results are presented as stacked bar plots, per detection 
method, and per dB sensation level (dB SL) category. The bottom panels show the mean test times, presented as regular bar plots, per detection method, and per dB 
SL category.
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three priors were moved to the Supplemental Digital Content.
In terms of detection rates in panel (c), results show that the CGST 

was impacted considerably by noise levels in the data. For example, 
when data contained an ABR with a PTTa value of 0.2 µV, detection rates 
were > 0.999 (noise halved), 0.71 (original noise) and 0.22 (noise 
doubled). This contrasts with the BF approach where detection rates 
were relatively stable, i.e., for the 0.2 µV PTTa value, these were 0.77 
(noise halved), 0.72 (original noise) and 0.68 (noise doubled). The 
relatively stable TPRs for the BF approach came at the cost of (or was 
facilitated by) changes in mean test times: for the 0.2 µV PPTa value, 
mean test times were 22.2 seconds (noise halved), 76.4 seconds (original 
noise) and 284.3 seconds (noise doubled).

5. Section 3.3. Results from the chirp-evoked ABR data analysis

Results from the chirp-evoked ABR data analysis are presented in 
Fig. 4. The top panels show the percentage of tests where an ABR was 
deemed present, absent, or ambiguous, presented as stacked bar plots, 
and the bottom panels show the mean test times in seconds. Note that 
the “ambiguous” category refers to recordings where additional data 
collection was deemed necessary but was not possible as data were 
analysed offline. For the higher stimulus levels (SL ≥ 20 dB), the BF 
approach with an exponential, uniform and/or Gaussian prior showed 
the highest detection rates as well as the lowest mean test times. For the 
lower stimulus levels (SL < 20 dB), discrepancies between detection 
methods were less pronounced, but results suggest slightly higher 
detection rates and lower mean test times for the BF approach relative to 
the CGST.

Post-hoc comparisons show that median test times differed signifi
cantly across methods for the “≥20 and < 40 dB SL” as well as the “≥ 40 
dB SL” categories (global comparisons using Friedman’s test, p < 0.001), 
but not for the “≥0 and < 20 dB SL” category (Friedman’s test, p > 0.05). 
As a follow-up test, pairwise comparisons were drawn between methods 
using Fisher’s exact test, which confirmed significantly (p < 0.001) 
higher detection rates for the BF approach when using an exponential, a 
uniform, or a Gaussian prior, relative to both the CGST and the BF 
approach with a single point prior. The remaining pairwise comparisons 
revealed no significant differences between methods.

5.1. Test specificity

The estimated FPRs of the detection methods for the simulated data 
are shown in Table 3. FPRs for the CGST approach fell within the 99 % 
confidence intervals of the expected FPR of 0.01 for all noise conditions. 
For the BF approach, FPRs fell within the 99 % confidence for the 
original noise condition but were significantly lower than α for the noise 
halved condition, and significantly higher than α for the noise doubled 
condition. This reduced control over the FPR for the BF approach is not 
desirable but is the price to be paid for flexibility in test time along with 
a relatively good control over the TPR (further considered in the 

Discussion). FPRs for the no-stimulus EEG background activity (also 
presented in Table 3), however, were approximately controlled as 
intended, which is reassuring that a good test specificity can be obtained 
in practice.

With respect to the mean test times for the simulated no-stimulus 
data (Table 3), it is helpful to first consider the original noise test con
dition where FPRs were equal across methods, meaning comparisons in 
mean test times were fair. The mean test times for the BF approach were 
~47 seconds under all priors, whereas for the CGST, this was ~149 
seconds. The BF approach thus demonstrated a reduced mean test time 
of almost 70 %. For the remaining noise conditions, the mean test times 
for the CGST were not impacted, whereas the mean test times for the BF 
approach varied, ranging from ~13.5 seconds for the noise halved 
condition to ~177 seconds for the noise doubled condition. For the 
subject-recorded EEG background activity, mean test times were similar 
to the mean test times observed for the simulated data under the original 
noise test condition.

6. Discussion

This study introduced BFs for ABR detection and evaluated its test 
operating characteristics in simulations and subject-recorded data. Test 
operating characteristics – specificity, sensitivity and test time – are 
crucial to the methods performance, but if the approach is to assist ex
aminers in the clinic, then it would ideally also adapt to the needs of the 
clinician. This involves providing prompt, intuitive and useful feedback 
for as long as the clinician deems necessary. The BF approach is well- 
suited in this regard, as it gives frequent feedback (e.g. every ~3 sec
onds) with no maximum test time specified. As it was designed around 
the widely used ABR PTTa value, results are interpretable, and poten
tially more readily integrated into current clinical workflows.

In simulated data, the BF approach also demonstrated reduced mean 
test times relative to the CGST whilst maintaining equal test specificity 
and sensitivity: In the no stimulus condition, mean test times were 
almost 70 % lower for the BF approach relative to the CGST (Table 3). 
This relatively large reduction in test time is likely because the CGST 
considers just the null distribution, whereas the BF approach considers 
both the null and the alternative distribution(s). By considering both 
distributions, the BF approach can capitalize on recordings with low 
noise levels, in which case the null and alternative distributions will tend 
to diverge quickly, leading to more extreme (i.e., smaller or larger) BF 
values, and ultimately earlier decision-making. For noisy recordings, on 
the other hand, the null and alternative distributions will diverge more 
slowly, leading to less extreme BF values, indicating no strong evidence 
for either hypothesis and hence that additional data collection is needed 
before a decision can be made.

Thus, when recordings are noisy (relative to the strength of the 
assumed ABR under H1), the BF approach tends to reside longer in the 
indecisive region (the [BFLow, BFHigh] interval), and automatically pro
longs data collection until sufficient evidence has accrued to make a 

Table 3 
False-positive rates (FPRs) and mean test times (in seconds) from the specificity assessment. Results are presented for the simulated data and for the subject-recorded 
background activity. For the simulated data, three noise conditions were evaluated, including: (1) the original noise condition, for which methods were optimised to 
give an FPR of 0.01, (2) the noise halved condition, where the amplitude of the original noise was halved, and (3) the noise doubled condition, where noise amplitude 
was doubled. Results are presented per noise condition, for both Convolutional Group Sequential Test (CGST) approach and the Bayes Factors (BF) approach with a 
single point prior (sing.), an exponential prior (exp.), a uniform prior (uni.), or a Gaussian prior (Gauss.).

Methods Simulations Subject-recorded background activity

Noise halved Original noise Noise doubled

FPR Test time FPR Test time FPR Test time FPR Test time

CGST 0.0104 149.67 0.01 149.34 0.0102 149.2 0.0133 155
BF, sing. 0.0077 13.8 0.0102 47.4 0.0116 176.4 0.0098 41.7
BF, exp. 0.0056 13.5 0.0099 47.1 0.0142 176.6 0.0116 41.8
BF, uni. 0.0041 13.5 0.0099 47.2 0.0177 176.6 0.0099 42
BF, Gauss. 0.0031 13.5 0.0096 47.5 0.0189 177.9 0.0101 42
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clear decision regarding which hypothesis (H0 or H1) is true. While this 
helps to control the TPR, it leads to a reduced control over the FPR: for 
the higher noise levels, time spent in the indecisive region increases, 
which presents opportunities for random variations to spuriously drive 
the BF value in the wrong direction, potentially leading to an error and 
ultimately an increased FPR.

Contrary to the BF approach, the CGST pre-specifies when and how 
long to analysis data. While this helps to control the FPR, it leads to a 
reduced control over the TPR. Additionally, the CGST approach only 
considers the null distribution of the test statistic, i.e., it adopts a fre
quentist Null Hypothesis Significance Testing (NHST) procedure, which 
has received increasing levels of critique over the past few decades (e.g., 
[20,35,36]), particularly in regards to the use of p values: p values 
represent the probability that data arose under just H0, and as such, 
provide a limited assessment of the data as they disregard aspects of 
statistical power. As a result, p values are effective at providing evidence 
against H0, but not in favour of it, meaning they are not well-suited for 
binary decision tasks such as for ABR detection.

Besides the CGST and BF approach in this work, various additional 
sequential tests have been proposed in the literature for auditory evoked 
response detection (e.g., [9,12,15,16,21,37]). Perhaps the most well- 
known is the Table Testing approach [9,15,16], which uses extensive 
simulations to find the critical threshold at each test step for controlling 
the FPR. Like the CGST, table testing has a drawback in that the statis
tical analysis is specified at the outset, which includes when, how often, 
and for how long data can be analysed, leading to relatively inflexible 
test protocols.

6.1. Choice for prior

As the BF is sensitive to the chosen prior [36], the current work 
evaluated test performance under four different priors. An important 
factor to consider in this evaluation is that the BFLow and BFHigh 
thresholds were optimised, per prior, so that the desired FPR and TPR 
was obtained. As shown in Table 1, the optimised thresholds depend 
strongly on the chosen prior, e.g., BFLow was just ~0.0014 for the 
Gaussian prior, but ~0.363 for the single point prior. This implies that 
H0 should be considered 1 / 0.0014 = ~714 times more likely than H1 
before being accepted under a Gaussian prior, whereas under the single 
point prior, H0 should be considered 1 / 0.363 = ~2.75 more likely 
before being accepted.

Broadly speaking, the prior specifies the initial expectations 
regarding what is plausible, and what is not plausible, and serves as a 
form of confirmation bias: Evidence that aligns with the initial expec
tations is deemed important, whereas evidence that contradicts the 
initial expectations is more readily dismissed. This effect is amplified as 
the prior distribution becomes less dispersed, or “more informed”. The 
most informed prior in the current work was the single point prior, as 
this assumed just a single PTTa value of 0.2 µV. Accordingly, mean test 
times for the single point prior were lowest (relative to the remaining 
priors) when data conformed with the initial expectation or bias, i.e., 
when data contained an ABR with a PTTa value equal to (or close to) the 
assumed 0.2 µV value. The remaining priors were less informed (more 
dispersed, i.e. higher variance) and considered a wider range of PTTa 
values at the outset. This led to reduced mean test times (relative to the 
single point prior) for the larger PTTa values (which were deemed least 
likely under the single point prior), but higher mean test times (relative 
to the single point prior) for PTTa values close to 0.2 µV.

Regardless of the choice for prior, mean test time in the current work 
peaked when data contained an ABR with a PTTa value of just 0.17 µV, 
which might therefore be considered the most challenging test condition 
for the BF approach. More generally, cases that are borderline in terms of 
whether an ABR is present or absent will be challenging, both for the BF 
approach and for clinicians. It might therefore be preferable to design 
the detection method for these more challenging scenarios. If so, then 
results from this work suggest that a single point prior would be the 

preferred approach. The single point prior has the additional benefit of 
being relatively easy to implement and interpret.

6.2. Limitations and future work

Perhaps the main limitation for the BF approach in the current work 
is that its FPR depends on noise levels in the data. When noise levels 
were changed, the largest FPR variations were observed for the Gaussian 
prior, and the smallest variations for the single point prior, i.e., for the 
noise halved condition, FPRs were 0.077 (single point prior) and 0.0031 
(Gaussian prior) whereas for the noise doubled condition, these were 
0.0116 (single point prior) and 0.0189 (Gaussian prior). This is a 
concern, as the specificity of the BF approach then depends on test 
conditions encountered in the clinic, e.g., restless subjects with higher 
noise levels and longer recordings will tend to result in additional false 
positives. A potential solution might be to repeatedly re-estimate noise 
levels from the accruing data and utilize a look-up table to find the 
correct critical thresholds for controlling the FPR for the estimated 
noise.

Strictly speaking, the FPR for the BF approach is not just dependent 
on the noise, but on the SNR. More specifically, it depends on the 
assumed effect size under the alternative hypothesis relative to the 
background activity. In the current work, this effect size was defined 
using an ABR template waveform. Note therefore that if this waveform 
changes, then the critical thresholds may also need to be adjusted. In 
future work, a distribution of effect sizes estimated from a set of ABR 
templates could also be considered. Alternatively, users may prefer to 
assume the λ parameter directly as this circumvents the need to assume a 
template.

With respect to the choice for prior, the optimal prior would be both 
subject- and recording-dependent. Specifically, the optimal prior is a 
single-point prior, derived from the subject-specific ABR waveform and 
the recording-specific EEG background activity, both of which, howev
er, are typically unknown. However, even if the optimal prior is usually 
unattainable, any information about the expected ABR or EEG back
ground activity is valuable and could be used to construct more effective 
priors, potentially further improving test performance. Future work 
might therefore aim to identify additional prior information that can be 
exploited, e.g. whether subjects are expected to have normal hearing or 
not.

Lastly, the approach was evaluated in subject-recorded chirp-evoked 
ABR data, but the analysis was not carried out online. Rather it emulated 
the online data collection procedure with an offline analysis of pre- 
recorded data. The limitation with this analysis is that there was not 
always sufficient data to reach an unambiguous test outcome. In future 
work, the approach should be evaluated online, ideally in a large cohort 
of infants with suspected hearing loss, as this is expected to be the main 
target group for this work.

7. Conclusion

Sequentially applied BFs were introduced and evaluated for ABR 
detection. The approach demonstrated reduced grand mean test times (i. 
e., the average of all mean test times) of approximately 60–70 % relative 
to the non-adaptive CGST approach whilst maintaining comparable 
specificity and sensitivity. The BF approach additionally provides 
frequent feedback (every ~3 seconds), for as long as the clinician deems 
necessary, i.e., no maximum test time needs to be specified. A potential 
limitation, however, is that its FPR depends on noise levels in the data, 
and further work is needed to obtain a more robust control over test 
specificity. Care is also needed when selecting the prior, as this greatly 
impacts on the critical thresholds for response detection. Of the four 
priors evaluated, the single point prior demonstrated the best perfor
mance when detecting ABRs with small amplitudes, which are expected 
to be the most challenging for clinicians, and thus where clinicians may 
benefit most from assistance by an objective detection method. Overall, 
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sequentially applied BFs offer a flexible, intuitive and accurate approach 
for assisting clinicians with response detection.
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