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Measuring and Pricing Macroeconomic Uncertainty: a Machine Learning
Econometric Approach

by Fengtian Yang

This thesis measures and prices macroeconomic (or aggregate) uncertainty with
non-parametric (AI/ML) methods, benchmarking against the current parametric
standard in the literature. Long-short term memory deep neural networks (LSTMs)
are the current method of preference to measure time varying phenomena such as
macroeconomic uncertainty in chapter 2. Before examining whether a non-parametric
measure of macroeconomic uncertainty is priced in the cross section of US stock
returns in chapter 4, chapter 3 inquires into the common empirical finding of a
negative uncertainty premium. To do so, chapter 3 exploits monthly data for the US
AMEX, Nasdaq and NYSE stocks between 1993 and 2022, to build a dynamic hedging
strategy across calm and turbulent sub-periods, examining the corresponding
uncertainty premia. All along, parametric and non-parametric macroeconomic
uncertainty measures are compared between (e.g. deploying VARs) and in terms of
their pricing effects (e.g. with suitable tests for nested and non-nested specifications).
The results indicate that the non-parametric measure of uncertainty has superior
explanatory and predictive power for stock returns compared to the traditional
parametric measures.
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Chapter 1

Introduction

What exactly is uncertainty? It represents situations where decision-makers are unable
to forecast potential outcomes or understand their associated probability distributions
(Cascaldi-Garcia et al. (2023)). This contrasts with risk, which involves unknown
outcomes but known probability distributions. Volatility, often linked with risk, is
actually a statistical measure of variations in observed outcomes. The critical
distinction between these concepts became evident during the market’s response to
the COVID-19 pandemic: a fundamental shock escalated into widespread panic,
effectively transforming risk into uncertainty. When market participants realize that
their previous assumptions about risk no longer hold true and uncertainty prevails,
their fear of unforeseen losses can wreak havoc on financial markets. From a broader
perspective, uncertainty profoundly influences consumer and business decisions,
affects how monetary and fiscal policies are executed and perceived, alters expected
returns on assets and alters risk assessments, and impacts international trade and
globalization. As noted by various studies, uncertainty plays a significant role in
economic decision-making and policy effectiveness. Bernanke (1983) emphasizes that
under uncertainty, irreversible investment decisions are profoundly affected by
fluctuating information, creating cyclical investment patterns. Auerbach and
Gorodnichenko (2012) highlight the varying effectiveness of fiscal multipliers in
different economic regimes, underscoring the importance of accounting for
predictable fiscal components during recessions. Additionally, Handley and Limao
(2015) demonstrate how trade policy uncertainty affects firms’ export investments,
using Portugal’s EC accession as a case study. Given its prevalence and significance,
understanding macroeconomic uncertainty has become a renewed focus for
economists and practitioners, aiming to improve economic forecasting and policy
intervention strategies (Bloom (2009)).
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1.1 Background

The literature on measuring uncertainty is still in its developing stages. Existing
research has largely depended on volatility and dispersion measures as proxies for
uncertainty. In his influential study, Bloom (2009) discovered a strong countercyclical
relationship between real activity and uncertainty, using stock market volatility as a
proxy. His VAR estimates indicate that uncertainty impacts output and employment
within six months following an innovation in these measures, initially depressing real
activity and then increasing it, leading to an overshoot of its long-run
level—consistent with models that highlight uncertainty as a driving force of
macroeconomic fluctuations. Furthermore, Bloom et al. (2018) highlighted a
correlation between real activity and uncertainty, using proxies such as dispersion in
firm-level earnings, industry-level earnings, total factor productivity, and forecasters’
predictions. A recurring theme in these studies is that these proxies for uncertainty are
strongly countercyclical. While these analyses provide valuable insights, it is
important to note that measures of dispersion and stock market volatility may not be
closely aligned with true economic uncertainty. In fact, one widely-used proxy, the
VIX, predominantly reflects financial market volatility driven by time-varying risk
aversion rather than true economic uncertainty Bekaert et al. (2013).

Contrasting with theories that portray uncertainty as a catalyst for economic
downturns, another perspective suggests that increased uncertainty is actually a
consequence of such downturns. The notion that economic downturns foster risky
behavior is supported by researchers like Bachmann et al. (2011) and Fostel and
Geanakoplos (2012). According to Bachmann et al. (2011), recessions are characterized
by heightened uncertainty and volatility at both macro and micro levels. Commonly,
this pattern is attributed to uncertainty shocks adversely affecting economic activity.
However, they propose an alternative hypothesis: negative shocks may induce risky
behavior, which in turn elevates observed volatility. Focusing on consumer price
changes, they introduce a model where firms, faced with imperfect information about
demand, learn about market conditions through sales volume. This model suggests
that economic downturns are opportune times for price experimentation, as the cost of
pricing errors is lower, making market exit more imminent. Empirical evidence from
Consumer Price Index (CPI) microdata supports their prediction that high price
volatility increases the likelihood of market exit.

Similarly, Van Nieuwerburgh and Veldkamp (2006), Fajgelbaum et al. (2017), and Ilut
and Saijo (2021) suggest that reduced access to reliable information during periods of
distress can weaken the ability to accurately forecast future outcomes.
Van Nieuwerburgh and Veldkamp (2006) argues that the end of economic booms
leads to sharp downturns due to reduced precision in forecasting, as low production
during recovery results in noisy information. This impairs learning, slows recovery,
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and creates asymmetry between booms and busts. Fajgelbaum et al. (2017) presents a
model where high uncertainty about economic fundamentals during low activity
periods slows information flow and discourages investment, creating ”uncertainty
traps” that extend recessions. Ilut and Saijo (2021) suggest that firms face uncertainty
about profitability, and information gathered through production influences economic
activity. This creates feedback loops, affecting forecasting precision and generating
countercyclical economic patterns. Together, these studies suggest that during
economic distress, the scarcity of reliable information significantly weakens the ability
to forecast future outcomes accurately, contributing to prolonged economic instability.
The uncertainty about future conditions can lead to the adoption of new and
potentially unfamiliar economic policies, as proposed by Pástor and Veronesi (2013),
which may themselves contribute to increased uncertainty. These perspectives
highlight a complex feedback loop, where economic downturns lead to heightened
uncertainty, potentially exacerbating economic instability.

Another line of research focuses on cross-sectional dispersion in the subjective
expectations of analysts or firms as a measure of uncertainty. In such context,
Bachmann et al. (2013) adopted this approach with a survey of German firms,
suggesting that uncertainty is more a result of recessions rather than a cause, in
opposition to theoretical models like those proposed by Bloom (2009) and Bloom et al.
(2018). D’Amico and Orphanides (2008) examined analyst uncertainty and
disagreement measures from the Survey of Professional Forecasters in an earlier study.
Although analysts’ forecasts are intriguing, several limitations exist when using them
to measure uncertainty. Firstly, subjective expectations are available for only a limited
number of series. Of the 132 monthly macroeconomic series considered in this
dissertation, fewer than a fifth have corresponding expectations series. Secondly, it is
uncertain whether survey responses accurately reflect the economy’s conditional
expectations. The surveyed forecasters often have known systematic biases or omit
relevant information, and financial incentives may further bias their forecasts. Thirdly,
disagreement in survey forecasts may more accurately represent differences in
opinion rather than actual uncertainty. As Diether et al. (2002) provide evidence,
stocks with higher dispersion in analysts’ earnings forecasts often yield lower future
returns, especially in small or previously underperforming stocks. This suggests that
dispersion in analysts’ forecasts may serve as a proxy for opinion differences about a
stock. Similarly, Mankiw et al. (2003) analyzed 50 years of inflation expectations data
and highlighted significant disagreement among both consumers and professionals,
indicating variation over time with inflation changes. This insight implies that a
thorough model of economic dynamics must incorporate these business-cycle
moments, as most macroeconomic models do not naturally generate disagreement.
The sticky-information model, in particular, aligns with many of these observations.

Furthermore, Lahiri and Sheng (2010) demonstrate that even unbiased forecasts can
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generate divergence between point forecast disagreement and average forecast error
uncertainty unless the variance of accumulated aggregate shocks over the forecast
horizon is zero. Using the Survey of Professional Forecasters, they show that variance
in these shocks can create a substantial gap between uncertainty and disagreement
during notable economic changes or when the forecast horizon is not extremely short.
Addressing these challenges, Bachmann et al. (2013) suggested additional uncertainty
proxies, such as an ex-post measure of forecast error variance derived from survey
expectations. In a similar vein, Scotti (2016) applied this approach to series with
real-time data availability.

While those studies focus on variation in outcomes around subjective survey
expectations for a few variables, Jurado et al. (2015) analysis centers on uncertainty
around objective statistical forecasts for hundreds of economic series. In their
influential work, Jurado et al. (2015) significantly enhance the methodology for
assessing macroeconomic uncertainty by employing cross-sectional aggregate
measures of conditional volatility. This innovative metric centers on statistical
forecasts derived from a broad spectrum of economic indicators. The framework’s
strength lies in its capacity to evaluate uncertainty across the entire economy,
aggregating conditional variance measures from a comprehensive set of economic
variables. This approach provides a more robust depiction of uncertainty compared to
traditional benchmarks, which often fail to capture prolonged unemployment levels,
such as those experienced during the 2007-2009 recession, as highlighted by Schaal
(2012).

According to the methodology used, recent contributions to the measurement of
uncertainty can be classified into four different categories. Beyond econometric-based
measures, as introduced by Jurado et al. (2015), there are alternative methods for
quantifying uncertainty, including text-based, survey-based, and market-based
measures, each offering unique perspectives depending on the type of uncertainty
under examination.

Text-based measures analyze the impact of policy changes, events, or news on market
uncertainty and risk. A notable example is the Economic Policy Uncertainty Index
proposed by Baker et al. (2016), calculated based on the proportion of news articles
discussing uncertainties in economic policy. Similarly, monetary policy uncertainty is
measured by the percentage of articles focused on U.S. monetary policy actions and
their implications, as detailed by Husted et al. (2020). Trade policy uncertainty is
evaluated by the share of articles on trade policy uncertainties, according to Caldara
et al. (2020). The World Uncertainty Index measures the occurrence of ”uncertainty” in
reports from 143 countries, utilizing data from the Economist Intelligence Unit, as
described by Ahir et al. (2022).
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Survey-based measures target the confidence levels among consumers or businesses
and examine how market expectations influence economic activities. A significant
example is the Survey of Business Uncertainty, which involves a panel survey
revealing firms’ one-year-ahead uncertainties regarding their sales and employment
(Altig et al. (2022)). Consumer-perceived uncertainty is captured through reports
about uncertainties concerning car purchases over the next 12 months, as studied by
Leduc and Liu (2016) using data from the University of Michigan Survey of
Consumers. Macroeconomic uncertainty is assessed from squared deviations of
surprises in macroeconomic data releases, analyzed by Scotti (2016) using Bloomberg
survey expectations. Professional forecasters’ uncertainty is derived from the
distribution tails of errors in forecasting U.S. GDP growth, utilizing data from the
Survey of Professional Forecasters by Rossi and Sekhposyan (2015).

Market-based measures explore financial market behaviors and dynamics to evaluate
uncertainty. Common examples include realized volatility, which is the sum of
squared intra-daily returns of the S&P 500, as explained by Andersen et al. (2006). The
Volatility Index (VIX) serves as an inferred gauge of market-expected volatility,
derived from S&P 500 index options provided by the Chicago Board Options
Exchange (CBOE). The variance risk premium, which reflects the difference between
option-implied and expected realized variances of S&P 500 returns, is discussed by
Bollerslev et al. (2009). Lastly, market-based monetary policy uncertainty is assessed
by examining the 90% confidence interval of the market-implied distribution for the
effective Fed Funds rate, as described by Swanson (2006).

In comparison to these methods, the key advantage of the econometric-based
measurement lies in its ability to incorporate a diverse array of economic indicators
for comprehensive analysis. It relies on observed data rather than subjective
questionnaires or news sources, helping to mitigate biases and the limitations
associated with narrower information sources. Consequently, this research focuses on
advancing the econometric-based approach to measuring uncertainty, aiming to
leverage its broad applicability and robust analytical foundation.

Hence, focusing on econometric-based measures, Jurado et al. (2015) offer an effective
approach to capturing macroeconomic and financial uncertainty through a robust
econometric framework. This method utilizes extensive cross-sections of economic
and financial variables to estimate conditional volatilities of time series, which are
aggregated to form indicators of macroeconomic or financial uncertainty. Formally,
Jurado et al. (2015) define h-period ahead uncertainty for a single variable as the
conditional volatility of the variable’s unforecastable component. This component is
the difference between its future value and its expectation based on current
information at time t. Aggregate macroeconomic uncertainty, thus, is averaged across
all macro variables. The resulting comprehensive aggregate uncertainty measure is
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broader than traditional proxies and is more effective at identifying and predicting
periods of economic distress than limited-variable measures.

1.2 Measuring Uncertainty

While Jurado et al. (2015) set a high standard in measuring macroeconomic
uncertainty, there remains room for further enhancement. Their use of traditional
linear statistical models, such as PCA and FAVAR, presents notable limitations. These
models often struggle to capture the nonlinear relationships among macroeconomic
variables, resulting in an incomplete measure of the unpredictable components.
Implementing a machine learning model, specifically a Long Short-Term Memory
(LSTM) neural network, allows for a more effective analysis of these nonlinear
interactions.

With advancements in statistical and computer sciences, a broad array of machine
learning algorithms has emerged, including neural networks (NNs). These algorithms
are particularly well-suited for managing high-dimensional but persistent datasets,
given sufficient computational power. Though their non-parametric nature and
reliance on nonlinear equations can present challenges in interpretation and
manipulation, LSTMs have proven effective in handling time series data, especially in
the context of volatility.

In this dissertation, we adopt the LSTM model as a methodological advancement. Our
analysis indicates that uncertainty measured using LSTM tends to register lower
levels than traditional linear statistical models during periods of low uncertainty.
Furthermore, the predictive accuracy of our LSTM-based measure in forecasting key
macroeconomic variables within a VAR framework is comparable to, and in some
cases surpasses, the measure developed by Jurado et al. (2015).

The primary objective of Chapter 2 in this dissertation is to enhance the capture of
predictable variation in macroeconomic and financial time series. To achieve this, we
propose using LSTM neural networks to measure macroeconomic uncertainty. Similar
to the approach in Jurado et al. (2015), our LSTM NNs aim to remove predictable
variation stemming from nonlinearities and interactions between macroeconomic and
financial variables, thereby improving the measurement of macroeconomic
uncertainty. Unlike the parametric framework based on principal component analysis
(PCA) and factor-augmented vector autoregressions (FAVAR) used by Jurado et al.
(2015), our approach leverages non-parametric methods for recursively forecasting
macroeconomic and financial time series. Our method involves two LSTM NNs and a
recursive procedure that generates estimates of macroeconomic uncertainty, which
more accurately reflect the underlying uncertainty in each economic variable. By
combining these refined estimates of idiosyncratic uncertainty from modeling the
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conditional variance of a wide range of economic variables into a single uncertainty
measure, we propose an improved measure of macroeconomic uncertainty. As an
added benefit, we demonstrate that this alternative measure, derived from applying
machine learning tools, allows for more effective identification of economic crises and
relatively stable periods.

Additionally, our proposed measure of macroeconomic uncertainty exhibits
promising forecasting properties for various macroeconomic variables, often
outperforming the uncertainty measure developed by Jurado et al. (2015). These
comparisons are statistically formalized using Diebold-Mariano tests, which evaluate
the differences in forecasting capabilities between our nonlinear framework and the
traditional linear framework. Moreover, Granger-causality tests are employed to
explore the capacity of macroeconomic uncertainty to predict out-of-sample
macroeconomic variables within a VAR setting.

To further demonstrate the advantages of the LSTM model in measuring uncertainty,
we propose two alternative frameworks as robustness checks in Chapter 2 by partially
integrating LSTM components into the original linear framework. In the first
framework, LSTM autoencoders are utilized to extract factors from macroeconomic
and financial time series, replacing the PCA component of the linear framework while
retaining the remaining structure. These new factors extracted by the LSTM
autoencoders are then used in the same FAVAR model, with macroeconomic
uncertainty estimated using the same dataset. Results indicate that incorporating the
LSTM autoencoder significantly enhances the performance of the original linear
framework compared to the PCA model. The estimates of macroeconomic uncertainty
show similarities to those produced by our primary framework with two LSTM
models (the LSTMs framework), yet a noticeable disparity remains. This suggests that
although the LSTM model outperforms PCA in factor extraction, the continued use of
the original FAVAR model limits the efficiencies observed in the full LSTM
framework. This first robustness check highlights the superior predictive capabilities
of the LSTM model over the FAVAR model in forecasting macroeconomic series, a
conclusion further supported by the results from the second robustness check.

In the second robustness check, we use the LSTMs framework as a reference for direct
comparison with the FAVAR model. Specifically, we implement a FAVAR model
incorporating the factors extracted by the LSTM autoencoder from the first robustness
check to forecast macroeconomic series while retaining the LSTM model for
forecasting financial series in the recursive system of the LSTMs framework.
Compared to the complete LSTM framework, which is our main methodological
contribution, this second robustness check strategically incorporates the FAVAR
model while preserving the LSTM components as much as possible. The findings
from this exercise indicate that, despite involving only one FAVAR model, the
estimates of macroeconomic uncertainty are notably inferior and lag behind those
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achieved with the complete LSTM framework. This outcome further emphasizes the
LSTM model’s superior performance relative to the FAVAR model, reinforcing the
LSTM’s effectiveness and robustness in handling and forecasting macroeconomic
uncertainties.

1.3 Pricing Uncertainty

In Chapter 2, we introduce a novel approach to measuring macroeconomic
uncertainty using an LSTM model. Then, in Chapters 3 and 4, we primarily
concentrate on evaluating uncertainty through the lens of cross-sectional stock
returns. This includes assessing macroeconomic and financial uncertainty, as
measured by Jurado et al. (2015), over an extended time period and analyzing
different market conditions, specifically turbulent versus calm periods. Additionally,
we evaluate the macroeconomic uncertainty derived from our model in Chapter 2,
comparing it to the measures provided by Jurado et al. (2015).

In a foundational work, Merton (1973) demonstrates that investors are motivated to
hedge against unpredictable future changes in consumption and investment
opportunities. In this framework, state variables that correlate with these changes are
reflected in capital market prices, with the covariance between a stock’s return and the
state variable being linearly related to its expected return. According to this approach,
common risk factors for pricing the cross-section of risky assets are state variables
derived from macroeconomic indicators. This is because fluctuations in these
indicators can significantly influence expected returns due to evolving economic
conditions and, consequently, the investment opportunities available in risky assets.
The expected return on risky assets varies with their sensitivity to these state variables.

Recent studies, such as those by Gomes et al. (2003), Bloom (2009), Allen et al. (2012),
Drechsler (2013), Jurado et al. (2015), and Ludvigson et al. (2021), provide both
theoretical and empirical evidence that variations in economic uncertainty serve as a
significant state variable with the capacity to predict future consumption and
investment decisions, along with other macroeconomic indicators. Other notable
contributions, including those by Ang et al. (2006), Ang et al. (2009), and Bali et al.
(2017), examine the impact of macroeconomic uncertainty on pricing individual stocks
and equity portfolios. These researchers employ different measures: Ang et al. (2006)
consider changes in the VIX index as a measure of aggregate volatility, while Bali et al.
(2017) use the macroeconomic uncertainty index proposed by Jurado et al. (2015),
defined as the conditional volatility of the forecast error from a factor-augmented
vector autoregressive (FAVAR) model applied to a broad set of economic and financial
indicators. Both groups of authors identify a significantly negative risk premium
associated with the uncertainty pricing factor.
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The uncertainty premium aligns with the intertemporal capital asset pricing model
(ICAPM) proposed by Merton (1973), Campbell (1993), and Campbell (1996). Ang
et al. (2006) discover that stocks with high sensitivities to innovations in aggregate
volatility tend to have lower average returns compared to those with low exposure,
even when controlling for traditional pricing factors such as size, book-to-market,
momentum, and liquidity. Similarly, Bali et al. (2017) contend that rising economic
uncertainty diminishes future investment and consumption opportunities. In
response to this unfavorable shift, investors are inclined to hold stocks whose returns
increase during periods of economic uncertainty. This preference for intertemporal
hedging suggests that investors are willing to pay higher prices and accept lower
returns for stocks with a higher covariance with economic uncertainty, or a higher
’uncertainty beta’. Both Ang et al. (2006) and Bali et al. (2017) also provide evidence of
time variation in the (negative) uncertainty premium, noting that it is significantly
higher during recessions and periods of heightened aggregate uncertainty compared
to expansionary and relatively calm periods.

Considering the time-varying property of risk premium related to uncertainty, we
anticipate that the risk premium on macroeconomic uncertainty—interpreted as
innovations in the conditional volatility of macroeconomic and financial shocks—not
only varies over time but also fluctuates around zero to satisfy investors’ dynamic
hedging needs during periods of elevated uncertainty. While this prediction may
appear to conflict with the findings of Ang et al. (2006) and Bali et al. (2017), who
report a consistently negative uncertainty premium across different uncertainty
regimes, our focus is on a different measure of uncertainty. Ang et al. (2006) use
innovations in the VIX as a proxy for aggregate uncertainty, whereas Bali et al. (2017)
employ the direct measure of uncertainty developed by Jurado et al. (2015), distinct
from the measure of its innovations that we use. Because the VIX index is widely
regarded as a fear index rather than a true measure of uncertainty, and the uncertainty
measure itself tends to show greater time dependence than the innovations in
uncertainty.

To support our hypothesis regarding the predictive role and dynamics of the
macroeconomic uncertainty risk premium, we employ three distinct empirical
strategies. First, we construct long-minus-short investment strategies based on the
cross-sectional rankings of stock returns from five non-overlapping periods of calm
and turbulent times between 1998 and 2022. These rankings are based on firms’
exposures to macroeconomic uncertainty, allowing us to evaluate the profitability of
these strategies across different uncertainty regimes. The portfolios are designed to be
long on stocks in the highest quintile of uncertainty beta exposure and short on those
in the lowest quintile, effectively ’buying high and selling low exposures.’ Second, we
estimate the dynamics of the uncertainty premium during these five sample periods
using Fama-MacBeth (Fama and MacBeth, 1973) cross-sectional regressions. Third, we
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construct a mimicking (hedging) portfolio using a methodology similar to Engle et al.
(2020) to estimate, on a monthly basis, the dynamics of the uncertainty premium. This
approach involves constructing an adjusted portfolio with base assets that closely
mirror the maximum level of variation in the uncertainty measure each month. Such
process is independent of the selection criteria for turbulent or calm evaluation
subsamples, which are defined by ad-hoc methods, the exogenous CFNAI index
methods, and the endogenous methods related to thresholds of uncertainty changes.

To test our main hypothesis, we analyze data on the cross-section of stock prices from
the CRSP database, encompassing all available stocks from NYSE, NASDAQ, and
AMEX. Our findings indicate that the beta exposure of stock returns to
macroeconomic uncertainty increases monotonically across different uncertainty
regimes, even after controlling for the Fama and French (2015) five-factor model
(hereafter referred to as FF5). Consistent with existing literature, these beta loadings
are negative for stocks in the lower quintiles and positive for those in the higher
quintiles when stocks are sorted by their uncertainty exposure. However, contrary to
previous studies, we observe that the risk premium on macroeconomic uncertainty is
negative during periods of declining conditional volatility (calm periods) and positive
during periods of rising conditional volatility (turbulent periods). This finding is
further supported by the performance dynamics of the 5-1 portfolio strategy, which
involves buying stocks in the highest quintile and selling those in the lowest quintile.
This strategy tends to result in negative average returns during calm periods and
positive average returns during turbulent periods. This outcome is largely attributed
to our choice of uncertainty proxy, which is based on the innovations to the
conditional volatility measure developed by Jurado et al. (2015). Contrary to the main
findings of Ang et al. (2006) and Bali et al. (2017), which suggest that the risk premium
of uncertainty is consistently negative with larger magnitude during turbulent times,
our findings with innovations in uncertainty provide a more plausible explanation
from a cross-period hedging perspective. Specifically, investors effectively pay for
insurance during calm periods and receive compensation during turbulent times.

These results are further validated through estimates of the uncertainty risk premium
obtained from Fama-MacBeth cross-sectional regressions applied to an augmented
FF5 model that incorporates our macroeconomic uncertainty proxy. We identify a
negative risk premium for this variable during calm periods (2003-2006 and
2012-2016) and a positive risk premium during turbulent periods (1998-2002,
2007-2011, and 2017-2022). Additional confirmation comes from applying a mimicking
portfolio approach similar to that of Engle et al. (2020). In this approach, the returns
on our mimicking portfolio are determined by projecting the macroeconomic
uncertainty state variable onto a set of base assets ranked by their exposure to
uncertainty, while controlling for the FF5 factors.
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Uncertainty has garnered increasing attention due to its prevalence and persistence,
leading to various advancements in its measurement, as reviewed by Cascaldi-Garcia
et al. (2023). In Chapter 3, we primarily focus on the econometric-based uncertainty
measures introduced by Jurado et al. (2015) for macroeconomic uncertainty and
Ludvigson et al. (2021) for financial uncertainty. Instead of using the conditional
volatility indices these authors developed, we consider the innovations to these
processes as proxies for economic uncertainty. This approach aligns with strategies
used by (i) Ang et al. (2006), who analyze first differences of the VIX index, and (ii)
Engle et al. (2020), who examine innovations to an autoregressive process of order one
fitted to an index measuring climate change news. In our work, we derive innovations
from fitting a stochastic volatility model to the errors of a FAVAR-type process.

As additional robustness checks, we apply the novel asset pricing model developed
by Giglio and Xiu (2021) to demonstrate that our uncertainty premium estimates are
resilient to potential omitted variable bias. In this model, asset pricing factors are
derived from principal components as a preliminary step before conducting the
two-pass regression by Fama and MacBeth (1973). We also examine our selection of
calm and turbulent episodes, discussing alternative methods for segmenting the
sample period. Furthermore, the robustness section evaluates the impact of microcaps
on the role of economic uncertainty in pricing the cross-section of stock returns.
Following the approach of Hou et al. (2015), we trim the bottom 20% of NYSE stocks
based on market value.

The significance of macroeconomic uncertainty in cross-sectional asset pricing is
further confirmed through recent statistical tests developed by Barillas and Shanken
(2017, 2018), and Barillas et al. (2020), which compare competing nested and
non-nested asset pricing models. We find robust statistical evidence in favor of
augmenting the FF5 model with econometric-based measures of macroeconomic and
financial uncertainty, using differences in squared Sharpe ratios and Bayesian
procedures. The model comparison exercise provides evidence from statistical tests
for non-nested models, indicating that the applicability of each uncertainty measure
for explaining the cross-section of stock returns varies with the uncertainty regime.
For instance, during the 2007-2011 financial crisis, the uncertainty measure derived
from innovations in financial uncertainty outperforms the macroeconomic measure.
Conversely, during the 2017-2022 period dominated by the COVID-19 pandemic, the
macroeconomic uncertainty measure proves to be more effective.
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1.4 Comparing LSTM-based Uncertainty with Linear
Measures

In Chapter 2, we introduce a novel LSTM-based measurement of macroeconomic
uncertainty. This approach more effectively captures predictable variations in
macroeconomic and financial data, reduces forecast errors, and enhances the overall
predictive accuracy of uncertainty measures. In Chapter 3, we examine and price the
linear measures of uncertainty proposed by Jurado et al. (2015) within the
cross-section of stock returns, demonstrating that uncertainty serves as a valid pricing
factor with risk premiums that vary over time. Consequently, in Chapter 4, we apply a
similar framework to price our LSTM-based macroeconomic uncertainty. This chapter
focuses on comparing the LSTM-based measure with linear measures, providing
evidence that incorporating machine learning models and such nonlinear factors can
improve the predictive power of linear asset pricing models while maintaining their
interpretability.

Since the introduction of the three-factor model by Fama and French (1993), the
multi-factor pricing framework has remained a central paradigm in asset pricing
research. However, with the ongoing increase in the complexity of financial markets,
traditional models have gradually shown their limitations. As noted in Fama and
French (2015), the linear assumption may miss nonlinear risk exposures. In addition,
the construction of factors faces numerous limitations and has been the subject of
extensive research. As Kozak et al. (2020) point out, traditional factors exhibit high
collinearity and significant information overlap. Many factors are highly correlated in
terms of economic logic or statistical characteristics (e.g., value factor and profitability
factor). While an increase in the number of factors might lead to an inflated in-sample
explanatory power, it often results in a decrease in out-of-sample predictive ability.
This collinearity makes it difficult to distinguish the economic significance of factor
premiums (e.g., whether returns stem from risk compensation or data mining).

Furthermore, McLean and Pontiff (2016) highlighted the issues of traditional factors
being prone to data mining pollution and the slowing pace of new factor discoveries.
They collected 97 stock return predictive factors published in academic journals,
covering the period from 1963 to 2014, and compared the performance of these factors
before publication, after publication (but before public dissemination), and after
public dissemination. They found that average factor returns decreased by about 32%
after publication (out-of-sample), with the decline being statistically significant. For
example, the momentum factor’s return dropped by nearly 50% post-publication.
Many factors performed well in-sample (before publication) but failed out-of-sample
(after publication), suggesting they may be the result of data mining. Some financial
ratio factors (such as accruals) were significant in early studies but could not be
replicated later. Over time, the economic significance of new factor discoveries (ratio
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of mean returns to volatility) has gradually diminished. For example, factors
discovered after 2000 have returns approximately 40% lower on average than those
discovered in the 1980s. Easily discoverable simple factors (e.g., market size, value)
have been extensively mined, leaving the remaining potential factors requiring more
complex data or methodologies, with significantly increased discovery costs.

To address these issues, an increasing number of studies involve PCA models, which
also improve on the traditional model’s reliance on manual feature selection and its
associated information omissions. Giglio and Xiu (2021) discussed that certain risk
factors (e.g., liquidity, consumption) should earn risk premiums according to asset
pricing theory. However, in practice, models often fail to fully capture all risk factors,
resulting in omitted variable bias in standard estimation methods. They proposed a
new three-step method that uses PCA to extract the factor space of test asset returns,
followed by additional regression to obtain observed factor risk premiums. This
method was applied to a large dataset containing 647 portfolios, including stocks,
bonds, and currencies. The results showed significant differences in the risk premium
conclusions compared to those obtained using standard methods in the existing
literature.

Similarly, Kelly et al. (2019) introduced a new method for modeling the cross-section
of stock returns, namely Instrumented Principal Component Analysis (IPCA). This
approach allows for observable characteristics to serve as instrumental variables for
unobservable dynamic loadings and enables the identification of latent risk factors
that are related to expected returns. Their study found that four IPCA factors could
explain the cross-section of average returns more accurately than existing factor
models, with most characteristics in the literature being statistically significant in the
IPCA specification. Not only does this model perform well in explaining systematic
risk, but it also effectively describes the differences in average returns between stocks.

These studies on PCA and latent factors provide strong evidence of information
omission by traditional model factors, and further research on IPCA and dynamic
loadings highlights issues within the multi-factor pricing framework related to the
static factor assumption that fixes factor loadings as constant parameters, hindering
the capture of the dynamics of asset risk in response to economic cycle fluctuations or
market structural changes. Although these latent factor methods effectively improve
the predictive ability of asset risk premiums, it is noteworthy that these latent factors
lack practical economic significance and are difficult to interpret, leading to the
”black-box” issue. Investors expect a clear explanation of investment logic to deal
with ever-changing market conditions. Therefore, we focus on a method that can both
leverage the machine learning model’s ability to handle complex data and retain a
certain level of interpretability in asset pricing.
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Based on our measurement and pricing of uncertainty, LSTM-based uncertainty is an
excellent entry point. First, the LSTM model is highly capable of predicting financial
data, which can be effectively used to construct factors thanks to its superior
predictive capability. Fischer and Krauss (2018) systematically studied the
performance of LSTM in financial time-series forecasting and demonstrated its
superiority over traditional linear models. Linear models (such as ARIMA, linear
regression), while widely used, face two major challenges in financial series
prediction: inadequate capture of nonlinear relationships—markets are affected by
multiple factors such as investor behavior and macroeconomic shocks, often
displaying nonlinear and nonstationary characteristics; difficulty modeling long-term
dependencies—traditional models struggle to capture the association between distant
time points effectively (e.g., the long-term impact of events on markets). As an
improved variant of RNN, LSTM can effectively model long-term dependencies due
to its gating mechanism (input gate, forget gate, output gate) and memory cell design.
They used high-frequency or daily time-series data from multiple financial markets
(such as stock prices, index returns, exchange rates), covering different market cycles,
and compared the LSTM model with linear models: ARIMA, linear regression,
LASSO; traditional machine learning models: support vector machines (SVM),
random forest; simple neural networks: conventional RNN, feedforward neural
network (FFNN). The results showed that in most financial time series, the LSTM had
lower prediction errors, higher directional prediction accuracy, and greater stability
during high volatility periods (e.g., financial crisis) than traditional models, as it could
capture the nonlinear panic transmission mechanism. Their results also suggest that
combining LSTM with fundamental data (like financial report texts) can extract
nonlinear factors, enhancing the explanatory power of multi-factor models.

Besides that, LSTM-based uncertainty comes with interpretability. In our Chapter 2,
we employe LSTM to improve predictions of macroeconomic and financial
time-series, subsequently refining the measurement of uncertainty. We use the LSTM
model to construct a nonlinear factor describing macroeconomic uncertainty while
verifying that uncertainty is an effective pricing factor with time-varying risk
premium through testing and pricing linear uncertainty measures in Chapter 3.
Compared to directly extracting factors from data using LSTM or PCA models, our
LSTM-based uncertainty is interpretable, because of the definition of the uncertainty
concept. We use the LSTM model to remove the predictable part of the time series as
much as possible, defining the conditional volatility of the unpredictable part as
uncertainty. Therefore, although LSTM-based predictions of sequence data are hard to
interpret, the factor we built on the unpredictability aligns with the economic
significance of linear uncertainty measures by Jurado et al. (2015).

In Chapter 4, we incorporate the LSTM-based uncertainty measure from Chapter 2 as
a risk factor into the asset pricing model. We then compare it to asset pricing models
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that use linear measures of uncertainty, as discussed in Chapter 3. Hence, our method
combines machine learning’s data handling capabilities with interpretability in asset
pricing by applying nonlinear methods to macroeconomic and financial data, measure
uncertainty, and introduce this as a pricing factor in a linear model, retaining the
model’s ability to explain risk premiums while infusing it with machine learning
insights.

Why use uncertainty as a baseline? First, as discussed in Chapter 2, uncertainty
captures global economic conditions effectively, such as those influenced by events
like the coronavirus pandemic and the Russo-Ukrainian conflict, which have greatly
impacted both macroeconomics and stock markets. Jurado et al. (2015) introduced an
econometric approach using the Factor-Augmented Vector Autoregressive (FAVAR)
method to capture subtle economic uncertainties. Building on this, we replace
traditional PCA and FAVAR with LSTM models, suited for high-dimensional data
with nonlinear changes during economic shifts. These advances enhance uncertainty
measurement, improving prediction capabilities in our research domain. Second, as
shown in Chapter 3, we demonstrate that linear measures of uncertainty based on
stock returns can serve as valid pricing factors with a fluctuating risk premium over
time. Hence, in Chapter 4, we incorporate the LSTM-based uncertainty measure into
the multifactor asset pricing model, examining its risk premium and then comparing
the LSTM-based uncertainty against linear measures of uncertainty based on the same
asset pricing model. Such comparison allows us to evaluate the explanatory ability
and predictive power of nonlinear versus linear factors, both reflecting similar
informational perspectives. Moreover, it enables us to determine whether machine
learning models can augment traditional linear factor models by developing more
effective factors. Through this analysis, we aim to assess the advantages of
incorporating machine learning into conventional asset pricing frameworks.

The main exercises in Chapter 4 are divided into two main parts: analyzing the risk
premiums associated with LSTM-based uncertainty and empirically comparing
LSTM-based uncertainty measures with traditional linear measures.

To validate our hypothesis regarding the predictive capability and dynamics of our
LSTM-based macroeconomic uncertainty risk premium, we employ three distinct
empirical strategies, with the same three empirical exercise conducted in Chapter 3 on
the linear measures. First, we construct a mimicking (or hedging) portfolio by ranking
the cross-section of stock returns which are based on firms’ exposure to LSTM-based
macroeconomic uncertainty. This involves creating a mimicking portfolio that projects
economic uncertainty measures directly against a selection of base asset returns and
such mimicking portfolio is further employed in the empirical comparison part.
Second, we explore the dynamics of the monthly uncertainty premium through
Fama-MacBeth cross-sectional regressions (Fama and MacBeth, 1973). This approach
allows us to assess how the uncertainty premium changes over time and across
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various market conditions. Lastly, we employ the novel asset pricing model proposed
by Giglio and Xiu (2021) to demonstrate the robustness of the uncertainty premium
estimates. This step ensures that our estimates remain reliable and unaffected by
potential omitted variable biases, providing a comprehensive analysis of the role of
uncertainty in asset pricing.

Our primary hypothesis is evaluated using cross-sectional stock price data sourced
from CRSP, which includes all available stocks listed on the NYSE, NASDAQ, and
AMEX. Our analysis shows that the beta exposure of stock returns to macroeconomic
uncertainty—estimated by the LSTM model—displays a consistent increase across
different uncertainty regimes, even after adjusting for the Fama and French (2015)
five-factor model (FF5). Consistent with existing literature and our empirical findings
using a linear uncertainty measure detailed in Chapter 3, these beta loadings are
negative for stocks in the lower quintiles and positive for those in the higher quintiles
based on their exposure to uncertainty. We observe the same departure from
traditional literature: the risk premium on macroeconomic uncertainty derived from
LSTM is negative during periods of decreasing conditional volatility (calm periods)
and positive during periods of increasing conditional volatility (turbulent periods).
This result stems from the choice of our uncertainty proxy based on innovations to the
LSTM-based macroeconomic uncertainty, as the same pattern emerges when using
innovations in linear uncertainty measures. Our findings are reinforced by the
estimates of the uncertainty risk premium derived from Fama-MacBeth cross-sectional
regressions applied to an FF5 model, which is enhanced with the LSTM-based
uncertainty proxy. Additionally, we employ the 3-Stage latent factor regression
methodology from Giglio and Xiu (2021), which also provides similar results.

The secondary aim of the Chapter 4 is to conduct a thorough comparison of our
LSTM-based macroeconomic uncertainty measure with the linear measures proposed
by Jurado et al. (2015), within the framework of asset pricing theory. We perform this
comparison through two primary approaches, from the risk premium perspective and
the explanatory power on cross-sectional stock returns. We assess the returns of stocks
with different loadings on both types of uncertainty and evaluate their associated risk
premiums during calm and turbulent periods. To identify these periods, we follow the
method suggested by Bali et al. (2017), using the median of the uncertainty measure.
By taking the medians of both the LSTM-based and linear macroeconomic measures,
we analyze the differences in stock returns and risk premiums when uncertainty
shocks are captured by each measure. This approach allows us to see how each
measure performs under varying economic conditions. Following that, we use the
asset pricing model comparison technique developed by Barillas and Shanken (2017,
2018); Barillas et al. (2020) to evaluate the explanatory power of the uncertainty
measures. By including these measures as an additional risk factor in the FF5 model,
we compare the predictive ability of these expanded 6-factor models against the
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baseline FF5 model and against each other, considering both nested and non-nested
settings. Through these analyses, we aim to determine which uncertainty measure
provides a more robust and reliable explanation of stock returns and risk premiums in
turbulent and calm periods, enhancing our understanding of the role of uncertainty in
asset pricing.

The results of our comparisons indicate that stocks with higher loadings on
macroeconomic uncertainty estimated by the LSTM model tend to deliver higher
returns during turbulent periods and lower returns during calm periods. The
disparity in returns between portfolios with the highest and lowest uncertainty
loadings is more pronounced when using the LSTM-based measure as a proxy for
macroeconomic uncertainty, compared to the linear measure. Accordingly, the
LSTM-based measure results in the same positive risk premiums during turbulent
months and negative premiums during calm months but larger in magnitude. This
means that investors can choose to pay higher (insurance) premia during calm periods
to secure greater compensation (positive uncertainty premia) in turbulent periods
when using the LSTM-based measure to hedge against macroeconomic uncertainty.
Furthermore, the LSTM-based uncertainty measure significantly enhances the
explanatory power of the FF5 model compared to the linear measure, with this
improvement being particularly evident during the 2007-2008 financial crisis. This
enhancement is attributed to the machine learning models’ ability to handle
large-dimensional data and capture nonlinear changes more effectively than linear
models. This capability allows the LSTM-based measure to better reflect the
complexities and dynamics of macroeconomic uncertainty, thereby providing a more
robust framework for analyzing asset prices.

The remainder of this dissertation is organized as follows: Chapter 2 introduces a
novel nonlinear measurement of macroeconomic uncertainty using LSTM models.
Chapter 3 evaluates and prices linear uncertainty measures in the context of
cross-sectional stock returns. Chapter 4 deals with pricing our novel LSTM-based
uncertainty measure and then focuses on comparing LSTM-based measures with
traditional linear measures.
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Chapter 2

Measuring Macroeconomic
Uncertainty

We deploy non-parametric Long Short-Term Memory (LSTM) models to measure
time-varying macroeconomic and financial uncertainty, benchmarking them against
Jurado et al. (2015)’s parametric factor augmented vector autoregressive (FAVAR)
framework. Diebold-Mariano and Granger-causality tests in vector autoregressive
specifications of the macroeconomy confirm that LSTMs outperform parametric
methods, better capturing predictable variation, reducing forecast errors, and
enhancing the predictive capabilities of uncertainty measures. The improvements
stem from both LSTMs’ superiority over principal component analysis (PCA) in factor
extraction and their ability to flexibly handle non-linearities and complex interactions
in data-rich environments.

2.1 Introduction

As introduced in Chapter 1, Jurado et al. (2015) formally define h-period ahead
uncertainty for a single variable as the conditional volatility of the unforecastable
component of its future value, i.e. the difference between the future value of the
variable and its expectation based on the information available at time t. Their
econometric framework consists of two main components: a PCA+FAVAR forecasting
part and a time-varying stochastic volatility modeling part. In the forecasting
component, they employ large cross-sections of macroeconomic and financial
variables as predictors. PCA model is employed to extract factors from these variables,
which are then used to construct a FAVAR model for forecasting macroeconomic
series. For the modeling of conditional volatility, a stochastic volatility model is
applied to estimate the time-varying conditional volatility of the forecast errors from
the FAVAR model. This estimated volatility serves as the measure of uncertainty for
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individual macroeconomic series. Aggregate macroeconomic uncertainty is calculated
as the average of these uncertainty measures across all macro variables.

Our main objective in Chapter 2 is to better capture predictable variation in
macroeconomic and financial time series with machine learning models. To do this,
our proposed approach implies to recursively forecast macroeconomic and financial
time series deploying non-parametric methods such as the LSTM neural networks,
instead of the parametric forecasting by PCA+FAVAR. Comparing with PCA+FAVAR,
our LSTM NNs are able to further remove predictable variation due to nonlinearities
and interactions between macroeconomic and financial variables, thereby isolating a
cleaner unpredictable component used to measure idiosyncratic uncertainty. By
integrating these refined estimates of idiosyncratic uncertainty—which are derived
from modeling the conditional variance of a comprehensive set of economic
variables—into a unified uncertainty measure, we propose an improved metric for
macroeconomic uncertainty. From empirical analysis, we show that this alternative
measure of uncertainty obtained from applying machine learning tools, allows for
more effective identification of economic crises and relatively calm periods.

Moreover, our proposed measure of macroeconomic uncertainty also possesses
appealing forecasting properties for a variety of macroeconomic variables,
outperforming in many instances the uncertainty measure developed in Jurado et al.
(2015). The comparisons are formalized statistically through the application of
Diebold-Mariano tests, which assess the difference in forecasting capabilities between
our nonlinear framework and the traditional linear framework, and Granger-causality
tests to explore the ability of macroeconomic uncertainty to predict out-of-sample
macroeconomic variables within a VAR setting.

To further substantiate the advantages of the LSTM model in uncertainty
measurement, we propose two alternative frameworks as robustness checks given by
partially integrating LSTM components into the original linear framework. In the first
robust framework, LSTM autoencoders are employed to extract factors from
macroeconomic and financial time series, effectively replacing only the PCA model in
the linear framework while retaining the rest of its structure. The new factors
extracted by the LSTM autoencoders are employed in the same FAVAR model, and
macroeconomic uncertainty is estimated using the same dataset. The results indicate
that incorporating the LSTM autoencoder significantly enhances the performance of
the original linear framework with the PCA model. The estimates of macroeconomic
uncertainty reveal some characteristics akin to those produced by our main
framework with two LSTM models (LSTMs framework), yet there remains a
noticeable disparity when compared to our primary framework. This finding implies
that although the LSTM model outperforms PCA, the retention of the original FAVAR
model in this robustness check framework hinders it from fully realizing the
efficiencies observed in the LSTMs framework. This first robustness check highlights
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the superior predictive capabilities of the LSTM model over the FAVAR model in
forecasting macroeconomic series, which is corroborated further by the results of the
second robustness check.

The second robustness check is performed using the LSTMs framework as a reference.
Specifically, to facilitate a direct comparison between LSTM and FAVAR, we use a
FAVAR model which incorporates the factors extracted by the LSTM autoencoder
from the first robustness check to forecast the macroeconomic series. Meanwhile, the
LSTM model used for forecasting the financial series in the recursive system of the
LSTMs framework is retained. Therefore, compared to the full LSTM framework - that
we propose as our main methodological contribution - this second robustness check
strategically employs the FAVAR model while maximally preserving the LSTM
components. The findings from this second robustness exercise indicate that, even
though it involves only one FAVAR model, the estimates of macroeconomic
uncertainty are notably inferior and lag behind those achieved using the complete
LSTM framework. This outcome further highlights the superior performance of the
LSTM model relative to the FAVAR model, reinforcing the LSTM’s effectiveness and
robustness in handling and forecasting macroeconomic uncertainties.

The remainder of Chapter 2 is organized as follows: First, Section 2.2 presents a
concise literature review that covers previous empirical and theoretical research on
uncertainty. Second, the methodology employed in this research, including the
framework of the LSTM model and its application in the measurement process, is
detailed in Section 2.3. Third, we conduct an empirical analysis and compare the
results of the estimated macroeconomic uncertainty with those of Jurado et al. (2015)
in Section 2.4. Fourth, the robustness checks are elaborated upon and discussed in
Section 2.5. Finally, Section 2.6 concludes with a summary of the major findings.

2.2 Literature Review

In this chapter, we explore and analyze existing research into uncertainty. One
prevalent theory posits that uncertainty may be a driving factor behind reduced
economic growth. Studies such as those by Sim et al. (2010) and Arellano et al. (2010)
demonstrate how uncertainty can impact financing constraints. Additionally, research
by Basu and Bundick (2017), Leduc and Liu (2016), and Fernández-Villaverde et al.
(2011) suggests that precautionary saving behaviors can be influenced by uncertainty.

Bloom (2009) identifies a pronounced countercyclical relationship between real
activity and stock market volatility, which is often considered a representative
indicator of uncertainty. Using a VAR specification for the dynamics of several
economic variables, these authors observe that uncertainty affects output and
employment in a manner where an increase in volatility initially reduces real
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economic activity, but subsequently leads to an increase, potentially causing an
overshoot in the long term. Further support for the countercyclical relationship
between uncertainty proxies and real activity is provided by Bloom et al. (2018), where
dispersion is used as a measure of uncertainty. Bloom’s findings indicate that
dispersion and stock market volatility are strongly countercyclical, though they do not
directly link to actual uncertainty. Bekaert et al. (2013) discusses the use of the VIX
index, one of the most popular proxies for uncertainty, suggesting that it is driven
more by time-varying risk aversion rather than uncertainty itself. This adds a layer of
complexity to understanding and measuring uncertainty’s true impact on economic
variables.

In contrast to theories that view uncertainty as a catalyst for economic downturns,
another school of thought suggests that higher uncertainty is actually a consequence
of such downturns. A notable study by Bachmann et al. (2013) finds that uncertainty
often results from recessions rather than being a precipitating factor, which stands in
contrast to the findings of Bloom (2009) and Bloom et al. (2018). The perspective that
economic downturns encourage risky behavior is supported by researchers like
Bachmann et al. (2011) and Fostel and Geanakoplos (2012). Similarly,
Van Nieuwerburgh and Veldkamp (2006), Fajgelbaum et al. (2017), and Ilut and Saijo
(2021) suggest that diminished access to reliable information during distress periods
can degrade the ability to forecast future outcomes accurately. The uncertainty over
future conditions can prompt the adoption of new and potentially unfamiliar
economic policies, as Pástor and Veronesi (2013) proposes, which may themselves
contribute to increased uncertainty. These perspectives highlight a complex feedback
loop where economic downturns lead to increased uncertainty, which in turn may
exacerbate economic instability.

Jurado et al. (2015) have significantly advanced the methodology for measuring
macroeconomic uncertainty by using cross-sectional aggregate measures of
conditional volatility. This new metric focuses on statistical forecasts obtained from a
broad array of economic indicators. The strength of their framework lies in its ability
to assess uncertainty across the entire economy by aggregating individual conditional
variance measures obtained from a large set of economic variables. This approach
offers a more robust depiction compared to traditional benchmarks which historically
fail to capture prolonged levels of unemployment, particularly those observed during
the 2007-2009 recession, as highlighted by Schaal (2012).

In addition to econometric-based measures of uncertainty as introduced in Jurado
et al. (2015), there are alternative approaches to quantifying uncertainty, including
text-based, survey-based, and market-based measures. Each offers unique insights
and methodologies depending on the type of uncertainty being examined. Text-based
measures involve analyzing how policy changes, events, or news impact market
uncertainty and risk. A prominent example is the economic policy uncertainty index
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proposed by Baker et al. (2016), which is calculated based on the share of news articles
discussing uncertainty regarding various aspects of economic policy. Survey-based
measures focus on examining confidence levels among consumers or businesses and
how market expectations influence economic activities. One significant example of
this approach is the survey of business uncertainty, which entails a panel survey
revealing the one-year-ahead uncertainties that firms have about their own sales and
employment (Altig et al. (2022)). Market-based measures explore financial market
behaviors and dynamics to assess uncertainty. These commonly include metrics like
realized volatility and the Volatility Index (VIX), which are widely used to gauge
market sentiment and expectations.

When compared to these methods, the advantage of econometric-based measurement
lies in its ability to incorporate a wide range of economic indicators for a
comprehensive analysis. It relies on observed data rather than subjective
questionnaire or news, which helps to avoid biases and the limitations of narrower
information sources. Consequently, this research focuses on enhancing the
econometric-based approach to measuring uncertainty, aiming to leverage its broad
applicative value and robust analytical foundation.

Despite setting a formidable standard in the measurement of uncertainty, we argue
that the approach by Jurado et al. (2015) invites further enhancement. Their reliance
on PCA and FAVAR models—traditional linear statistical models—introduces notable
limitations. Notably, these models struggle to capture the nonlinear relationships
among macroeconomic variables, resulting in an incomplete measure of the
unpredictable components. By incorporating a machine learning model, specifically
the LSTM model, it becomes possible to discern and analyze these nonlinear
interactions more effectively.

This research chooses the LSTM model as a methodological advancement, given its
proven capabilities with time series data, especially within the context of volatility.
Throughout our analysis, we find that uncertainty measured using LSTM exhibits
lower levels than those measured by linear statistical models during periods of low
uncertainty. Moreover, the predictive accuracy of our measure of uncertainty to
forecast key macroeconomic variables in a VAR setting is comparable and even
improves over Jurado et al. (2015)’s measure in some cases.

2.3 Methodology

In this study, our main benchmark is the framework proposed by Jurado et al. (2015),
hereafter referred to as PCA+FAVAR. A brief introduction to this framework is
provided below to furnish basic knowledge before we delve into our LSTM-enhanced
framework.
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2.3.1 Linear PCA+FAVAR Model

Let Uj,t(h) denote the h-period ahead uncertainty obtained from a variable xj,t.
Uncertainty for this variable is characterized by the conditional volatility of the time
series xj,t. More formally, let

Uj,t(h) =
√︃

E
(︂(︁

xj,t+h − E
(︁
xj,t+h | It

)︁)︁2 | It

)︂
,

where E
(︁
xj,t+h | It

)︁
denotes the expectation of the random variable xj,t+h evaluated at

period t+h conditional on the set of available information at time t. This set It contains
present and past information on the variable xj,t but also on the remaining variables
used to forecast the dynamics of the variable of interest.

Let X t = (x1,t, x2,t, ..., xN,t) denote all the predictors available, where N is the number
of macroeconomic and financial series used for the measurement of uncertainty. The
sequential procedure introduced by Jurado et al. (2015) is to extract the factors from X t

via PCA. Let
xj,t = λFFt + ex

j,t,

where Ft are the latent common factors, λF are the latent factor loadings and ex
j,t are

the idiosyncratic errors for the variable, xj,t. To capture potential nonlinearities, these
authors introduce two additional predictors, denoted by W t, given by the squares of
the first component of Ft and the first factor extracted from the squared values of X t

via another PCA model as introduced above.

To calculate the uncertainty in the series xj,t, its forecast for period h ≥ 1 is estimated
with a factor-augmented forecasting model.

xj,t+1 = Φx
j (L)xj,t + γF

j (L)Ft + γW
j (L)W t + vj,t+1.

In this formula, L represents the lag operator indicating that the dependent variable as
well as the observable and unobservable regressors are dynamic and include lags in
the predictive regression model. Furthermore, Jurado et al. (2015) also allow for the
presence of time-varying volatility in each of these variables. This feature introduces
time-varying uncertainty into the series xj,t. When these factors display autoregressive
dynamics, the forecasting model enriched with these factors is concisely described as a
FAVAR model. Let Zt =

(︁
F ′

t, W ′
t
)︁′, which aggregates both latent factors and additional

predictors and define Zt =
(︁
Zt, Zt−1, . . . , Zt−q+1

)︁′ and Xj,t =
(︁
xj,t, xj,t−1, . . . , xj,t−q+1

)︁′.
A suitable vector autoregressive specification for modeling the joint dynamics of all
the variables in the system is the following;(︄

Zt

Xj,t

)︄
=

(︄
ΦZ 0
λ′

j ΦX
j

)︄(︄
Zt−1

Xj,t−1

)︄
+

(︄
VZ

t

VX
j,t

)︄
.
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Xj,t = ΦX
j Xj,t−1 + VX

j,t

The h-step-ahead forecast of macroeconomic series will be the conditional mean under
quadratic loss.

Et
(︁
Xj,t+h

)︁
=
(︂

ΦX
j

)︂h
Xj,t

The forecast error variance at time t will be:

ΩX
j,t(h) = Et

[︂(︁
Xj,t+h − EtXj,t+h

)︁ (︁
Xj,t+h − EtXj,t+h

)︁′]︂ .

The one-step-ahead prediction errors of Zt and Xj,t are permitted to exhibit
time-varying volatility. Consequently, the stochastic volatility models are constructed
for the forecast errors, both VZ

t and VX
j,t . For any Vt+1 ∈ {VZ

t+1, VX
j,t+1}:

Vt+1 = σt+1εt+1, εt+1
iid∼ N(0, 1)

log σ2
t+1 = α + β log σ2

t + τηt+1, ηt+1
iid∼ N(0, 1),

In stochastic volatility models, a shock to the second moment is allowed to be
independent of the first moment, which implies that:

Et
(︁
σ2

t+h
)︁
= exp

[︄
α

h−1

∑
s=0

βs +
τ2

2

h−1

∑
s=0

β2s + βh log σ2
t

]︄
,

since εt
iid∼ (0, 1), it is fact that Et

(︁
V2

t+h

)︁
= Et

(︁
σ2

t+h

)︁
, then the forecast error variance for

h > 1 can be computed according to the decomposition of forecast error variance by
Jurado et al. (2015). The h-step-ahead forecast error variance for Xj,t+h can be
expressed as:

ΩX
j,t(h) = ΦX

j ΩX
j,t(h − 1)ΦX′

j + ΩZ
j,t(h − 1) + Et

(︂
VX

jt+hVX
jt+h

′
)︂
+ 2ΦX

j ΩXZ
j,t (h − 1) (2.1)

and the h-period ahead uncertainty at time t is defined as the square root of the
forecast error variance such that

UX
j,t(h) =

√︂
1′jΩ

X
j,t(h)1j,

with 1j being a N × 1 selection vector where only the j-th element is 1 and all other
elements are 0. In the first formula, ΩX

j,t(h) denotes the forecast error variance for Xj,t,
ΩZ

j,t(h) represents the forecast error variance for Zt and ΩXZ
j,t is the covariance

between VZ
t+1 and VX

j,t+1. The uncertainty in each macroeconomic series is estimated
via the formula above and aggregated to obtain Jurado et al. (2015) estimates of
macroeconomic uncertainty:

N

∑
j=1

ωjUX
j,t(h) (2.2)
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where ωj are suitable weights allocated to each idiosyncratic uncertainty measure. A
straightforward weighting approach is to assign an equal weight to each idiosyncratic
uncertainty measure, such that ωj = 1/N, for j = 1, . . . , N. However, if individual
uncertainties exhibit a factor structure, the weights can be determined using the
eigenvector associated with the largest eigenvalue of the N × N covariance matrix
derived from the matrix of individual uncertainties.

2.3.2 LSTM Model

In this subsection, we outline and discuss in detail the primary structure of the LSTM
model and our main framework for measuring uncertainty with the LSTM model.
Initially, we introduce the essential concepts and background of the LSTM model,
starting with a generic example of a neural network model. Subsequently, we delve
into the architecture of the cells within the LSTM neural network model. Building on
this foundation, we explore how LSTM models are employed in the estimation of
macroeconomic uncertainty.

Machine learning, a rapidly advancing branch of artificial intelligence, is evolving
continuously. Chen et al. (2024) proposes a model that integrates feedforward
networks, LSTM networks for recognizing economic state processes, and generative
adversarial networks, highlighting that machine learning can analyze time series data
with a breadth and precision that traditional econometric methods struggle to achieve.
With advancements in statistics, machine learning techniques have expanded beyond
the confines of traditional statistical models, enhancing their capability to capture
patterns in data and facilitate more precise predictions. The definition of machine
learning is broad but can be generally summarized into several key processes:
selecting an appropriate model based on the data, continuously optimizing this
model, and ultimately deploying the model to predict new datasets. Machine learning
finds extensive applications across various fields, including image recognition and
classification, speech recognition, natural language processing, and algorithmic
recommendations. In the context of time series analysis, which holds significant
importance in the area of economics and finance, machine learning-based methods
have shown promising improvements in performance, as suggested by Siami-Namini
et al. (2018). These advancements emphasize the potential of machine learning to
enhance analytical precision and effectiveness in these critical areas.

Neural networks represent a potent category of models within the realm of machine
learning techniques. Their structure is inspired by the human brain and mimics the
manner in which biological neurons transmit signals to one another. Typically, neural
networks comprise several layers: an input layer, multiple hidden layers, and an
output layer, all of which consist of numerous cells. This Chapter illustrates the
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concept using a neural network model with a simplified structure as an example,
providing a clear and brief explanation of its components and functions.

FIGURE 2.1: Neural network model

Figure 3.1 displays a neural network model featuring two hidden layers, where each
blue node or cell represents the fundamental units of the model. Each node
corresponds to an input value in the input layer or to a processed value through an
activation function in the hidden and output layers. The basic workflow within a cell
includes receiving inputs, applying weights, accumulating these weighted inputs, and
then processing them through an activation function. Subsequently, the final output is
relayed to a cell in the subsequent layer or to other nodes within the same layer. The
connections between various nodes are depicted by lines, which illustrate the
direction of information flow, typically from left to right. Each line is assigned a
weight that modulates the strength of the signal transmitted. In the figure, the varying
shades of the lines denote different weight values, visually indicating the degree of
influence each connection holds within the network.

To perform computations using a neural network, the input data begins at the input
layer, passes through each layer via a weighted sum and activation function, and
ultimately arrives at the output layer. Here, the model’s predictions are compared
with the true values, and the prediction error is used for computing a loss function.
The gradients of the loss function with respect to each weight are computed, and these
gradients are employed to update the weights, thereby minimizing the prediction
error across the entire network. This computational sequence involves forward
propagation (where data moves through the network and outputs are generated), loss
calculation (assessing prediction accuracy), backpropagation (propagating the error
back through the network for learning), and weight updates. These steps are repeated
across multiple epochs until the model’s performance on the training set stabilizes or
meets a predefined stopping criterion. Common types of neural networks include
Multi-Layer Perceptrons (MLP), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN). The focus of this research, however, will be on the
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LSTM (Long Short-Term Memory) neural network (NN), a specialized type of RNN
that is particularly effective in handling long-term dependencies in data.

The LSTM NN serves as the primary methodology in this research to replace
traditional linear statistical models, such as PCA and FAVAR, in the measurement of
uncertainty. The LSTM neural network is a specialized type of recurrent neural
network, developed by Hochreiter and Schmidhuber (1997) and further enhanced by
Gers et al. (2000), who introduced the concept of forgetting gates. This innovation
helps to effectively solve the issue of vanishing gradients that often plagues general
recurrent neural networks. The LSTM model is particularly adept at handling
long-term dependencies within a sequence and predicting sequence data, making it an
invaluable tool for analyzing macroeconomic data series. Similar to conventional
neural network models, the LSTM architecture is composed of specific cells. The main
structure of cells within an LSTM model is depicted in Figure 2.2:

FIGURE 2.2: The structure of LSTM cell, reproduced from Olah (2015)

In the LSTM cell, xt denotes the current input, Ht−1 and Ct−1 represent the output and
cell state (or memory) from the previous LSTM cell, respectively. Simultaneously, ht

and Ct are the output and cell state of the current cell, which will subsequently be
passed to the next cell. The operations within the cell are sequentially introduced from
left to right. The initial step within the cell involves determining which information to
discard from the previous cell state. This decision is governed by a sigmoid function,
denoted as σ, also known as the ’forget gate’. The forget gate considers both the
output from the previous cell and the current input to decide which information is no
longer necessary and can be omitted as the process moves forward. Thus,

ft = σ
(︁
W f [Ht−1, xt] + b f

)︁
σ (X) =

1
1 + e−X
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where W f represents the weight matrix and b f is the bias term associated with the
forget gate. The sigmoid function is capable of mapping variables to the interval (0, 1).
Through the computation facilitated by the sigmoid layer, we are able to identify
which aspects of the previous cell state are relevant and should therefore be retained,
allowing this information to flow into the current cell state.

The subsequent step involves determining what new information will be incorporated
into the cell state of the current cell. This process is divided into two parts. The first
part is handled by the ’input gate’, which employs another sigmoid layer to decide
which values should be updated, represented by it. The second part involves the
hyperbolic tangent function, commonly referred to as the tanh layer, to generate new
candidate values, denoted by ˜︁Ct.

it = σ (Wi [Ht−1, xt] + bi)

˜︁Ct = tanh (WC [Ht−1, xt] + bC)

tanh (X) =
eX − e−X

eX + e−X

In which, all the W and b represent corresponding weight matrices and bias terms,
respectively. The tanh function maps variables to the interval (−1, 1). Both it and ˜︁Ct

will be combined in order to create an update to the cell state of current cell in the
following step as shown in the formula below:

Ct = ft ∗ Ct−1 + it ∗ ˜︁Ct.

In this expression, the first term represents the portion of information from the
previous cell state to be forgotten, as determined at the beginning. The second term
represents the new candidate values generated in the current cell, scaled by the
amount of new information to be updated.

Ultimately, the determination of the output for the current cell is dependent on the cell
state. The LSTM model is constructed such that the initial output is determined by a
sigmoid layer; this output is then modulated by the cell state, using a tanh layer to
refine it.

ot = σ (Wo [Ht−1, xt] + bo)

Ht = ot ∗ tanh (Ct)

where Wo represents the weight matrix and bo donates the bias term associated with
the initial layer. The cell state undergoes processing through the tanh layer, which
yields values between -1 and 1 serving as the judgment condition. The initial output is
multiplied by this judgment condition, ensuring that only crucial parts are expressed
by the current cell. By defining and taking advantage of such cells, LSTM models can
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be constructed, enabling more complex operations. The LSTM models used in this
study will be illustrated upon in subsequent sections.

2.3.3 Measuring Macroeconomic Uncertainty using LSTM

This section explores the framework for measuring uncertainty using LSTM models.
Our framework is adapted from Jurado et al. (2015) PCA+FAVAR setting introduced
above. Our model incorporates two LSTM models to forecast macroeconomic and
financial series through recursive procedure. Let X represent the data series — the
predictors used to conduct our analysis. This series consists of two parts: the first part
is the macroeconomic data series, denoted by Xm, and the second part is the financial
data series, denoted by X f . Together, these series contain all available information for
estimating uncertainty at time t.

FIGURE 2.3: Forecasting with LSTM models

Figure 2.3 above illustrates the process of forecasting macroeconomic and financial
series h steps ahead using two LSTM models with recursive procedure. At time t, the
macroeconomic and financial series serve as inputs, and the two LSTM models
respectively output the estimates for these series at time t + 1. Subsequently, these
estimates are combined and re-inputted into the LSTM models to generate estimates
for time t + 2. Through this recursive process, the forecasts h steps ahead are derived,
following the constraints defined by the uncertainty model strictly, which only
considers the information available at time t. The methodology of our framework for
measuring macroeconomic uncertainty with LSTM models will be delineated step by
step, starting from the forecasting of macroeconomic and financial series.

Let Xm
t and X f

t denote the vector of macroeconomic and financial variables,
respectively. The predictive LSTM model can be expressed as

X̂m
t+1 = f M

(︂
Xm

t , X f
t

)︂
+ vm

t+1.
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In the above formula, f M(·, ·) represents the LSTM model that processes the vector of
time series, which predicts all the macroeconomic variables for the subsequent time
step. vm

t+1 = (vm
1,t+1, vm

2,t+1, ..., vm
n,t+1)

′ denotes the one-step-ahead forecast error vector
of Xm

t+1. The time-varying volatility is permitted within vm
i,t+1, and for any i ̸= j, we

have Cov(vm
i,t+1, vm

j,t+1) = 0, indicating that the forecast errors are uncorrelated.
Similarly, another LSTM model is employed for predicting the estimates of financial
variables at the next time step:

X̂ f
t+1 = f F

(︂
Xm

t , X f
t

)︂
+ v f

t+1

Here, f F(·, ·) represents the LSTM model designated for forecasting financial
variables, and v f

t+1 = (v f
1,t+1, v f

2,t+1, ..., v f
n,t+1) represents the one-step-ahead forecast

error vector for the corresponding financial variables, where each component v f
j,t+1 is

uncorrelated.

In this study, as we focus primarily on estimating macroeconomic uncertainty, our
attention is chiefly on the macroeconomic data series. However, the inclusion of
financial variables in the information set improves considerably the forecasting
performance of the macroeconomic variables. The recursive process for forecasting the
macroeconomic variables h periods ahead is as follows:

X̂m
t+2 = f M

(︂
X̂m

t+1, X̂ f
t+1

)︂
+ vm

t+2

= f M
(︂

f M
(︂

Xm
t , X f

t

)︂
, f F

(︂
Xm

t , X f
t

)︂)︂
+ vm

t+2

X̂m
t+3 = f M

(︂
X̂m

t+2, X̂ f
t+2

)︂
+ wm

t+3

= f M
(︂

f M
(︂

f M
(︂

Xm
t , X f

t

)︂
, f F

(︂
Xm

t , X f
t

)︂)︂
, f F

(︂
f M
(︂

Xm
t , X f

t

)︂
, f F

(︂
Xm

t , X f
t

)︂)︂)︂
+ vm

t+3

. . .

X̂m
t+h = f M

(︂
X̂m

t+h−1, X̂ f
t+h−1

)︂
+ vm

t+h

The estimated value of the macroeconomic variables at the t + 2 time step is forecasted
using the estimated values of both macroeconomic and financial variables at the t + 1
time step. This recursive procedure allows the estimation of the h-step-ahead
macroeconomic variable. It is important to note that the LSTM models are only trained
once for predicting the estimates at t + 1. The same models are then used recursively
to make further predictions without any modifications or retraining. This approach is
necessary to follow the original constraints within the PCA+FAVAR framework,
which considers only the available information at time t to generate the forecasts.

After forecasting the macroeconomic variables from time step t + 1 to t + h, the next
task involves modeling the time-varying volatility of the forecast error vm

j,t, and the
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forecast error variance, Ωm
j,t for every macroeconomic variable, xm

j,t. Given that the
forecast error exhibits time-varying stochastic volatility and uncorrelated across
predictors according to the assumption from Jurado et al. (2015), the log volatility is
expected to follow an autoregressive structure. When h = 1:

vm
j,t+1 = σm

j,t+1εm
j,t+1, εm

j,t+1
iid∼ N(0, 1)

log
(︂

σm
j,t+1

)︂2
= αm

j + βm log
(︂

σm
j,t

)︂2
+ τm

j ηm
j,t+1, ηm

j,t+1
iid∼ N(0, 1),

The shock to the second moment is allowed to be independent of the first moment in
the stochastic volatility model, which implies that

Et
(︁
σm

t+h
)︁2

= exp

[︄
αm

h−1

∑
s=0

(βm)s +
(τm)2

2

h−1

∑
s=0

(βm)2s + (βm)h log (σm
t )2

]︄

where εm
i,t+h

iid∼ (0, 1) such that Et
(︁
vm

t+h

)︁2
= Et

(︁
σm

t+h

)︁2 . For h > 1, the forecast error
variance for xm

i,t, denoted as Ωm
i,t(h), is computed by the recursion:

Ωm
i,t(h) = Φi

(︁
Ωm

i,t(h − 1)
)︁

Φ′
i + Et(vm

i,t+h, vm′
i,t+h). (2.3)

where Φi denotes the corresponding coefficients in f M(·, ·) when forecasting the
macro variables at next time step. Comparing the decomposition expression (2.1) of
the PCA+FAVAR approach and expression (2.3) of our framework, it is worth noticing
that the components related to factors in forecast error variance are omitted
reasonably, as the non-parametric LSTM models are deployed, which leads to lower
estimates of macro uncertainty as shown in the following sections.

Under our framework, macroeconomic uncertainty is obtained as in expression (2.2)
but aggregating the above idiosyncratic conditional volatility measures
Um

i,t(h) =
√︂

1′iΩ
m
i,t(h)1i obtained from expression (2.3). Compared with the

PCA+FAVAR approach, a notable enhancement in our framework is the adoption of
two LSTM models for forecasting macroeconomic and financial variables up to h time
steps ahead through recursive procedure, as opposed to using PCA and FAVAR
models. This shift capitalizes on the strengths of LSTM models, particularly their
superior capacity for handling large datasets and their adeptness in managing
nonlinearity, distinguishing them from linear models.

2.4 Empirical Implementation

This section introduces the dataset employed in this study, the structure of the LSTM
models used for empirical implementation, and the estimates of macroeconomic
uncertainty for three forecast horizons: h = 1, 3, and 12 steps ahead, respectively.
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Additionally, a forecast comparison is made, for each forecast horizon, with the
estimates of macroeconomic uncertainty presented in Jurado et al. (2015), which
serves as benchmark model. The comparisons are formalized statistically through the
application of Diebold-Mariano tests, which assess the difference in forecast ability
between our nonlinear framework and the traditional linear framework, and
Granger-causality tests to explore the ability of macroeconomic uncertainty to predict
out-of-sample macroeconomic variables within a VAR setting.

2.4.1 Data and Measurement of Macroeconomic Uncertainty

In this research, we consider a dataset consisting of 281 data series to estimate
macroeconomic uncertainty, maintaining consistency with Jurado et al. (2015) by
using the same dataset. This approach helps eliminate any discrepancies that could
arise from using different datasets. The dataset is divided into two parts: the first
contains 133 monthly macroeconomic series as introduced by Ludvigson and Ng
(2016), encompassing a comprehensive range of macroeconomic indicators such as
real income and output, manufacturing, trade sales, hours, real retail, inventories,
inventory-sales ratios, orders, labor costs, compensation, housing starts, price indexes,
bond and stock market indexes, foreign exchange rates, and others. The second part
comprises 148 monthly financial time series from the study by Ludvigson and Ng
(2007), featuring variables like the dividend-price ratio, earnings-price ratio, defaults,
term spreads, growth rates of aggregated dividends and prices, yields on corporate
bonds, Treasury yields, yield spreads, and cross-sections of industry, book-market,
size, and equity returns. These series extend from January 1960 to May 2022.

In the measurement of PCA+FAVAR, the factors were extracted from the whole
dataset which contained all the available information in the time series. Jurado et al.
(2015) subsequently use these factors along with the 133 macroeconomic series to
implement the FAVAR model and estimate uncertainty within each individual series.
Hence, in our LSTM-based framework of measuring uncertainty, we employ the all
the macroeconomic and financial series as the input of our LSTM models and forecast
macroeconomic and financial series at next time step with two LSTM model
respectively, as introduced by Figure 2.3.

Our framework to estimate macroeconomic uncertainty starts with a first LSTM
model, which processes macroeconomic series. This is illustrated in Figure 2.4 below.

This LSTM model comprises three layers, setting tanh activation functions in the cells,
as defined in Section 2.3.2. The initial layer serves as the input layer, accommodating
an input size of (6, 281). The dataset includes a total of 749 time steps, and has been
separated into smaller series, each with a time spread of 6 steps. These smaller
sequences each consist of 6 time steps and 281 series of macroeconomic and financial
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FIGURE 2.4: Structure of LSTM forecasting macroeconomic series

variables at every step. The second and third layers function as forecasters. The
output dimension of the second layer is (6, 230), while the third layer outputs (6, 133),
which constitutes the final output we require. The input dataset comprises
macroeconomic and financial data series from time step 1 to 748, with the labels being
the macroeconomic data series from time step 2 to 749. Thus, we use all available data
at time step t to predict the value of macroeconomic variables at time step t + 1.

A second LSTM model forecasts the financial data series. Although our primary focus
is on macroeconomic uncertainty, forecasting the macroeconomic series several
periods ahead necessitates including the financial series as an input into the LSTM
model due to our recursive structure. The structure of the second LSTM model is
illustrated in Figure 2.5 below.

FIGURE 2.5: Structure of LSTM forecasting financial series

The second LSTM model consists of four layers 1, with tanh activation functions in the
cells. As illustrated in Figure 2.5, the first layer is the input layer, featuring an input
size of (6, 281), identical to the first LSTM model. This input dimension reflects that
the dataset, encompassing both macroeconomic and financial series, is separated into
smaller sequences each containing 6 time steps and 281 series. The subsequent layers,
from the second to the fourth, serve forecasting and output purposes. The ultimate
output dimension is (6, 148), representing the forecasted financial data series for the
t + 1 time step. The input dataset mirrors that of the first LSTM model, spanning from

1Compared to Xm
t , there are certain multicollinearity problems in X f

t , To address these, we devise a
more complex LSTM model after pre-processing the data. The f F() incorporates an extra hidden layer,
refined hyperparameter tuning, and L1 regularization, which tends to generate sparse weight matrices
and helps with feature selection.
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time step 1 to 748, and uses the financial data series from time step 2 to 749 as labels.
Overall, the second LSTM model uses all available data at time step t to forecast the
financial series at the next time step.

Prior to initiating the training, and following the methodology employed by Jurado
et al. (2015), the entire dataset is standardized using the Z-score given by Zi =

(Xi−µi)
σi

,
where Xi is the orginal series, µi and σi are mean and standard deviation. The dataset
is divided into two segments: 80% for the training set and 20% for the test set. The
training phase involves 300 epochs, employed model optimization algorithm
(Adaptive Moment Estimation optimizer) to minimize the mean square error loss.
Additionally, dimensional reduction and weight matrix optimization methods such as
L1 and L2 normalization, are implemented in this LSTM model to curb overfitting
during training and improve the generalization ability. Post-training, the LSTM
models are employed to predict the estimated values of the macroeconomic and
financial series at time t + 1. The outputs from the LSTM models comprise numerous
small sequences, each sized (6, 133) or (6, 148), which can be reorganized by time step
to reconstruct the entire series at the t + 1 time step. Employing these two LSTM
models enables predictions of the macroeconomic and financial series at time t + 1.
Subsequently, the forecasts of the macroeconomic and financial series at the t + 1 time
step are inputted back into the LSTM models to generate predictions for both series at
time t + 2. This recursive process facilitates the generation of h-step-ahead forecasts
for the macroeconomic series and helps measure the associated forecast errors,
essential for quantifying uncertainty in the macroeconomic series

Panel A, B and C of Figure 2.6 display the estimates of macroeconomic uncertainty
represented by blue lines for h = 1, 3, and 12, compared against the macroeconomic
uncertainty measured by PCA+FAVAR, depicted in red dash-dot lines.

The horizontal dashed lines in the figures represent 1.64 standard deviations from the
mean of each series, delineating periods of relatively high uncertainty2. Four
significant peaks emerge from the time series estimates. These periods of heightened
uncertainty align with major crises known for their extensive and profound impacts:
the energy crisis around 1974, the recession stemming from monetary policy around
1981, the financial crisis around 2008, and the onset of the coronavirus pandemic
starting in 2020. Our LSTM-based framework effectively identifies all these crises,
corroborating historical records. As the forecast horizon h extends, the average level of
uncertainty generally increases. However, the variability or fluctuation of uncertainty
decreases, indicating that the forecast gradually converges towards the unconditional
mean as the forecast horizon approaches infinity, aligning with the measurements
obtained via PCA+FAVAR.

2Since macroeconomic uncertainty is calculated using the weighted uncertainty of individual series,
confidence intervals are not disclosed. Instead, the 1.64 standard deviations are derived from the uncon-
ditional sample standard deviation. This methodology follows the same approach as Jurado et al. (2015)
to identify periods of high uncertainty.
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FIGURE 2.6: Aggregated macroeconomic uncertainty

Figure 2.6 is divided into Panels A, B, and C, each illustrating aggregated macroeconomic uncertainty
derived from an LSTM-based framework (shown by blue lines) for horizons h = 1, 3, and 12. These are
compared to macroeconomic uncertainty measured using PCA+FAVAR (depicted with red dash-dot
lines). The horizontal lines on each panel indicate 1.64 standard deviations from the mean of the series,
marking periods of relatively high uncertainty.
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In comparison to the estimates by PCA+FAVAR, those derived from our LSTM
framework show stronger nonlinearity and more pronounced fluctuations,
particularly for h = 1 and 3. During periods of high uncertainty, our framework
adeptly detects and identifies surges in uncertainty. Our estimates either mirror or
exceed those derived from PCA+FAVAR in terms of magnitude. In contrast, during
periods of low uncertainty, our framework efficiently lowers the estimates of
macroeconomic uncertainty. The overall tendency of our nonlinear macroeconomic
uncertainty estimates is to remain significantly lower than those from PCA+FAVAR,
while still retaining the same or enhanced ability to explain and predict
macroeconomic variables, which will be discussed below. Before this, we present a
forecast evaluation exercise to compare the macro uncertainty estimates obtained from
the two models. To do this, we consider the Diebold-Mariano (DM) test.

2.4.2 Forecast Evaluation Exercise

A refined version of the DM test of equal predictive ability allows us to determine the
presence of superior predictive ability between pairs of forecasts. Thus, the null
hypothesis of the DM test can be written as H0 : g (ε1t) ≥ g (ε2t) whereas the
alternative hypothesis corresponds to HA : g (ε1t) < g (ε2t), and g(·) denotes some
suitable loss function such as the mean square prediction error. In this setting,
rejection of the null hypothesis is interpreted as evidence of superior predictive ability
of the model characterized by the error term ε1t.

The DM test is implemented as follows. Let dt = g (e1t)− g (e2t) denote the loss
differential between the two predictive loss functions evaluated with the residuals e1t

and e2t of the two forecast models, and let d̄ be its sample mean such that
d̄ = 1

T ∑T
t=1 [g (e1t)− g (e2t)]. To account for the presence of serial correlation in the

residuals, we compute the Newey-West estimator of the long run variance of dt

according to Newey and West (1987), given by

ŝd,T = σ̂d,0 + 2
q

∑
l=1
˜︁ωl σ̂d,l

with σ̂d,l =
1
T ∑T

t=l+1 dtdt−l for l = 0, 1, . . . and ˜︁ωl = 1 − l
q+1 a suitable kernel function;

q denotes the truncation lag. Consequently, the DM statistic is defined as

DM =
√

T
d̄√︁
ŝd,T

.

The critical values of the test are obtained under the least favourable case given by
equal predictive ability (g (ε1t) = g (ε2t)). In this case, the DM test statistic converges
to a N(0, 1) distribution and rejection of the null hypothesis is assessed by the left tail
of this distribution. Thus, Model 1 exhibits superior predictive performance compared
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to Model 2 if the p-value obtained from the left tail is smaller than the significance
level α. More specifically, let Model 1 be the LSTM approach and Model 2 the
PCA+FAVAR method. The outcomes of these tests for forecast horizons h = 1, 3, and
12 are presented in Table 2.1 below.

TABLE 2.1: DM test for macroeconomic uncertainty (LSTMs vs PCA+FAVAR)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

5.068 0.999 -10.003 0.000 -5.538 0.000

Table 2.1 shows that for h = 1 there are no statistically significant differences in
predictive ability across macroeconomic uncertainty estimates. A plausible
explanation is that although our framework generally reduces the estimates of
macroeconomic uncertainty during calm periods compared to the benchmark model,
the LSTM framework predicts increased uncertainty during the four prominent peaks
that correspond to the major crisis periods. The latter effect compensates for the
reduced uncertainty in the remaining periods such that the two methods report
similar average loss functions computed over the evaluation period. For forecast
horizons h = 3, 12, the macroeconomic uncertainty estimates by the LSTMs
framework are significantly lower than those obtained by the PCA+FAVAR across the
evaluation period. While the trend of macroeconomic uncertainty remains generally
consistent with that of PCA+FAVAR, the reduction primarily manifests for periods of
lower uncertainty at h = 3. For h = 12, our estimates of macroeconomic uncertainty
remain much lower across all stages. This difference suggests that LSTM models
exhibit superior predictive ability compared to PCA+FAVAR, a factor that becomes
increasingly relevant at longer forecast horizons.

The following empirical exercise aims to determine the forecast ability of our measure
of macroeconomic uncertainty. Similar to the approach by Jurado et al. (2015), we
incorporate key macroeconomic variables and macroeconomic uncertainty using
monthly data into the same VAR(11) model characterized by 10 macro variables and
the measure of uncertainty studied by these authors. The macroeconomic variables
are the log of real IP, log of employment, log of real consumption, log of PCE deflator,
log of real new orders, log of real wages, hours, federal funds rate, log of S&P 500
Index, the growth rate of M2. To evaluate the predictive effectiveness of the LSTM
derived uncertainty measure and its comparative strength against the PCA+FAVAR
derived uncertainty measure, we conduct a predictive performance assessment. This
involves employing Granger causality tests to verify the statistical significance of the
uncertainty measures and, more critically, applying the DM test to rigorously compare
their predictive power.

The null hypothesis for the Granger-causality test asserts that there is no predictive
ability in the VAR specification from the uncertainty measures to the macroeconomic
variables, while the alternative hypothesis suggests that the macroeconomic
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uncertainty measures possess predictive power over these variables. Table 2.2
displays the p−values from the Granger-causality tests for the VAR(11) model, which
is augmented with various macroeconomic uncertainty measures. The first three
columns report the p−values utilizing the uncertainty measures by Jurado et al.
(2015), constructed from different forecast horizons (U1J, U3J and U12J). The
remaining three columns present the results for analogous models that incorporate
macroeconomic uncertainty measures developed by the LSTMs framework (U1L, U3L
and U12L).

TABLE 2.2: VAR(11) Granger-causality p-values (LSTMs)

U1J U3J U12J U1L U3L U12L
log(real IP) 0.000 0.000 0.000 0.000 0.000 0.000
log(employment) 0.000 0.000 0.000 0.000 0.000 0.000
log(real consumption) 0.000 0.000 0.000 0.000 0.000 0.000
log(PCE deflator) 0.000 0.000 0.000 0.000 0.000 0.000
log(real new orders) 0.019 0.000 0.001 0.000 0.000 0.000
log(real wage) 0.081 0.217 0.075 0.147 0.206 0.260
hours 0.000 0.000 0.000 0.000 0.000 0.001
federal funds rate 0.000 0.000 0.001 0.000 0.000 0.002
log(S&P 500 Index) 0.002 0.000 0.001 0.002 0.002 0.002
growth rate of M2 0.000 0.000 0.000 0.000 0.000 0.008

The results from Table 2.2 reveal that most macroeconomic variables demonstrate
significant Granger-causality with both types of macroeconomic uncertainty estimates.
The only exception is log wages, for this variable none of the uncertainty measures
shows predictive ability. This empirical finding may be the result of the sticky
character of wages that do not rapidly react to changes in the macroeconomic outlook.

Building upon the strong results obtained from the Granger-causality tests, the next
empirical exercise compares the forecasts of the ten macroeconomic variables obtained
from the VAR(11) model, augmented to incorporate the different macroeconomic
uncertainty estimates. The comparison is carried out using the DM tests under the
competing specifications (LSTMs and PCA+FAVAR). The results of these tests are
detailed in Table 2.3 below.

The results presented in Table 2.3 are based on the two-sided version of the DM test.
To compare the predictive ability of the models under the alternative hypothesis we
consider the sign of the DM statistic reported in the table. A statistically significant
negative DM statistic implies that the VAR(11) model incorporating macroeconomic
uncertainty from the LSTM framework possesses better predictive performance,
whereas a statistically significant positive DM statistic indicates superior predictive
ability of the VAR(11) model including the macroeconomic uncertainty measure
obtained from the PCA+FAVAR. In 24 out of 30 instances, the VAR(11) model that
includes macroeconomic uncertainty estimates from the LSTM framework
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TABLE 2.3: DM test for VAR(11) models (LSTMs vs PCA+FAVAR)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log (real IP) 6.429 0.000 2.074 0.038 0.298 0.766
log (employment) −4.172 0.000 −1.232 0.218 −0.545 0.586
log (real consumption) −6.083 0.000 −0.471 0.638 1.665 0.096
log (PCE deflator) −1.320 0.187 −2.201 0.028 −0.526 0.599
log (real new orders) −6.206 0.000 −2.598 0.010 −1.508 0.132
log (real wage) −6.997 0.000 −0.027 0.979 2.164 0.031
hours 0.282 0.778 1.050 0.294 −0.394 0.694
federal funds rate −2.893 0.004 0.459 0.646 0.943 0.346
log(S&P 500 Index) 6.596 0.000 3.100 0.002 0.597 0.551
growth rate of M2 3.682 0.000 1.040 0.299 0.691 0.490

demonstrate superior or comparable forecast ability compared to those using
estimates from the PCA+FAVAR. The results from these tests provide strong empirical
evidence in favour of the LSTM-induced uncertainty measure for forecasting purposes
compared to Jurado et al. (2015) uncertainty measure.

Considering the significant advantages of the LSTM model over linear models in
measuring uncertainty, an additional empirical exercise is to employ the LSTM model,
instead of the VAR(11) model, for predicting the above macroeconomic variables.
Unlike the VAR(11) model, the LSTM can adeptly capture and learn nonlinear
relationships as well as manage long-term dependencies in lengthy data sequences.
While the VAR(11) model tries to accommodate long-term dependencies by the lag
length, this approach typically leads to a marked rise in model complexity and often
falls short of achieving the efficacy of LSTM techniques. Consequently, to conduct a
more thorough comparison of the predictive ability of the macroeconomic uncertainty
measures on macroeconomic variables, further analysis using the LSTM model is
necessary. In the following analysis, we use the macroeconomic variables and
macroeconomic uncertainty estimated from our LSTMs framework alongside those
from Jurado et al. (2015), to compile two distinct datasets—each containing eleven
variables—and train two separate LSTM models to predict the ten macroeconomic
variables. By employing the DM test to assess the predictive performance of these
LSTM models, we aim not only to determine the uncertainty measure with superior
predictive ability but also to illustrate their practical effectiveness within a nonlinear
predictive modeling context. The objective of this exercise is to gauge the predictive
ability of the two uncertainty measures in a nonlinear setting given by the LSTM that
replaces the linear VAR specification.

The findings from these analyses are collated and displayed in Table 2.4 below, which
helps further substantiate the predictive efficiency and robustness of the applied
models.

Table 2.4 implements the DM test that compares the predictive ability of the two
competing uncertainty measures in a nonlinear LSTM setting. There are only 5
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TABLE 2.4: DM test for LSTM-VAR(11) models (LSTMs vs PCA+FAVAR)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log (real IP) −3.9496 0.0001 −14.7853 0.000 −2.2647 0.0238
log (employment ) −5.1876 0.000 −14.9482 0.000 −0.9009 0.3679
log (real consumption) −8.0636 0.000 −12.1360 0.000 −0.7853 0.4326
log (PCE deflator ) −7.1100 0.000 −15.9269 0.000 −2.6523 0.0082
log (real new orders) −11.4145 0.000 9.2127 0.000 −3.7954 0.0002
log (real wage ) −5.6710 0.000 −13.9576 0.000 −1.1965 0.2319
hours 7.8513 0.000 10.0987 0.000 1.1657 0.2441
federal funds rate 21.0856 0.000 5.4253 0.000 −0.5471 0.5845
log(S&P 500 Index) −3.6717 0.0003 −8.1042 0.000 2.8128 0.0050
growth rate of M2 −23.6882 0.000 −12.3132 0.000 −2.2770 0.0231

scenarios in which the null hypothesis of equal predictive ability could not be rejected.
In contrast, in 19 instances, the double LSTM model (LSTM to obtain the
macroeconomic uncertainty and LSTM to forecast the macroeconomic variables)
outperformed the LSTM model that uses the macroeconomic uncertainty measures
obtained from PCA+FAVAR. In the remaining 6 cases the LSTM model with
PCA+FAVAR-derived uncertainty exhibited superior predictive ability compared to
the double LSTM approach.

2.5 Robustness

To assess the robustness of our framework with LSTM models and further explore
why the LSTM model demonstrates significant advantages over linear models, we
propose two alternative frameworks. One uses an LSTM autoencoder to substitute the
PCA model in the measurement approach of Jurado et al. (2015), and the other
employs a FAVAR model in place of an LSTM model within our main framework.
Both alternative frameworks and their respective results are discussed in this section3

2.5.1 LSTM vs PCA: Robustness Check 1

In this section, the LSTM model replaces the PCA model in the PCA+FAVAR
specification proposed by Jurado et al. (2015). The objective of this robustness exercise
is to further elucidate the contribution of the LSTM model to measuring
macroeconomic uncertainty. In this case, we explore the potential of this nonlinear
method to extract factors. The main advantage compared to standard PCA is the
ability to capture nonlinearities in the unobserved components.

3In addition to the alternative frameworks discussed in this section, another potential robustness check
could involve mimicking the structure of PCA and FAVAR models using two LSTM models, which would
differ from our non-parametric main framework. However, such a robustness check is not considered in
this section. The reasoning is that mimicking the structure of the FAVAR model with LSTM models is
unnecessary, given the impressive capability of LSTM models in handling large-dimensional time series
data.



42 Chapter 2. Measuring Macroeconomic Uncertainty

FIGURE 2.7: Neural network representation of PCA and LSTM autoencoder

Figure 2.7 illustrates the structure of the PCA model as an autoencoder alongside the
structure of the LSTM autoencoder. For the PCA model, the left part of the figure
depicts the process of factor extraction, with the input and output layers representing
the original and estimated datasets, respectively, and the middle layer denoting the
factors extracted from the dataset. Compared to the PCA model, the LSTM model
used to extract factors is more complex, incorporating additional hidden layers. The
original dataset is encoded by the LSTM model to extract factors, and then decoded
back to the estimated dataset at the output layer. By continuously optimizing the
structure and training of the model to minimize the loss function, an effective LSTM
autoencoder can be developed, and the output from the middle layer will be used as
the factors.

Let X denote the entire dataset used in this research. Specifically, Xm represents the
macroeconomic dataset and X f represents the financial dataset. We employ the LSTM
model to extract a vector of factors, Ft, from the information set {Xm, X f }. More
formally,

Ft = f E
(︂

Xm
t , X f

t

)︂
xi,t = λFFt + ex

i,t

The first formula delineates the encoder component of our LSTM model, which
extracts factors from the observables. The subsequent formula describes the decoder
component, which employs a linear model to reconstruct the original dataset from
these factors. In this context, λF represents the factor loadings and ex

i,t denotes the
idiosyncratic error terms associated to each variable. An important hyperparameter of
the LSTM model is the number of cells in the code layer, that determines the number
of factors extracted. Following factor extraction, a factor-augmented forecasting
model similar to Jurado et al. (2015) FAVAR model can be devised. Let xm

j,t+1 represent
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one of the macroeconomic series that we aim to forecast. Then,

xm
j,t+1 = Φx

j (L)xm
j,t + γF

j (L)Ft + γW
j (L)W t + vm

j,t+1

In this formula, L denotes the lag operator; Ft refers to the factors, while W t represents
an additional predictor that includes the square of the first factor in Ft, as well as the
first factor derived from the squared values of X t. This model mimicks the
specification of the FAVAR model proposed in Jurado et al. (2015), but employ the
nonlinear factors extracted by the LSTM autoencoder instead of the linear factors
obtained from PCA.

There are two LSTM models designated to replace the PCA models in factor
extraction. Before detailing the structure of the LSTM models, it is necessary to
determine the number of factors. In the research by Jurado et al. (2015), the number of
factors was chosen based on the methodology established by Bai and Ng (2002), which
set the convergence rate for factor estimates and provided several criteria for selecting
the number of factors in datasets with large cross sections and time dimensions.
According to information criteria selection rules, Jurado et al. (2015) selected 14
factors. Of these, 12 factors were initially extracted using the PCA model; the 13th

factor was the square of the first among these 12 factors, and the 14th factor was the
first factor extracted from the squared values of the entire dataset by the PCA model.

For comparison, we decide to extract the same number of factors but employing the
LSTM model instead. In a second stage, we expand the number of factors to 18 using
the panel criteria in Bai and Ng (2002)4. The structure of the LSTM model for
extracting 12 factors is depicted in the left part of Figure 2.8 below.

The LSTM model employed comprises seven layers, with all activation functions
being tanh, except for those in the last layer. From the second to the fifth layers, the
LSTM model performs the task of extracting factors. The input size is (10, 281), which
includes all macroeconomic and financial time series. The total time steps are 749, and
the data series are separated into small sequences with a time step span of 10 prior to
input. In these four layers, the dimensionality of the data series is reduced to a vector
of 12, which can be regarded as our 12 factors, thus completing the dimensionality
reduction process. The sixth layer involves simply repeating the vector 10 times to
form a matrix, which is used to restore the factors. The last layer facilitates the
restoration process, wherein the factor matrix is transformed back to the size of
(10, 281) through a linear function. The input dataset is the entire data series, and the
labels mirror the input dataset. This setup is designed so that in the LSTM model, the
dataset is compressed into factors and then restored, with the loss being computed
from the variance generated during this process.

4As a further robustness check, we also consider a model with 18 or 20 factors, which is the upper
bound considered by Jurado et al. (2015). The results from this additional empirical exercise are presented
in Appendix ??.
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(A) (B)

FIGURE 2.8: Structure of LSTM autoencoders

The other LSTM model used in the Robustness 1 framework is similar, but processes
the dataset differently as factors are extracted from the squared values of the data
series. The structure of this LSTM model is delineated in the right part of Figure 2.8.
This model also consists of seven layers and employs tanh activation functions, except
for in the output layer. From layers one to five, the input data series is compressed
into a vector of 12. The second layer includes a dropout feature to aid in preventing
overfitting. The succeeding layers of the LSTM then restore the factors back into the
data series.

Prior to training, the dataset is standardized using their Z-scores so as to prevent
disproportionately large metric values overshadowing other important features. The
training dataset comprises 70% of the entire dataset, and the test set comprises 30%.
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The training procedure involves 500 epochs, conducting the model optimization
algorithm (ADAM optimizer). The loss is calculated via MSE, and dimensional
reduction and weight matrix optimization methods (L1 and L2 normalization) are
implemented to avoid overfitting. Post-training, we input the entire dataset and
extract the vectors from the fourth layer. Upon completion of the training for the
LSTM models, the 14 factors required are obtained, which are used to construct the
FAVAR model for forecasting macroeconomic series. This setup enables us to model
stochastic volatility and estimate macroeconomic uncertainty as described in the
Robustness 1 framework. The estimates of macroeconomic uncertainty derived from
the Robustness 1 framework are presented in Figures 2.9 below, comparing them with
estimates from the full LSTM framework and PCA+FAVAR.

The estimates of macroeconomic uncertainty by the Robustness 1 framework
represented in yellow lines are largely similar to those by PCA+FAVAR, yet they
display more pronounced nonlinearities and stronger fluctuations, as evidenced by
the increased estimates during four crises and reduced estimates during calm periods.
It is reasonable to find such similarities between the two sets of estimates since the
FAVAR model is retained in both frameworks, exerting a stronger influence on the
prediction of macroeconomic sequences than the PCA model. Nonetheless, the factors
extracted by the LSTM autoencoder still contribute positively to the measurement of
uncertainty. This enhancement observed in the Robustness 1 framework, relative to
the PCA+FAVAR estimates, can be attributed solely to the involvement of the LSTM
autoencoder. To substantiate our inference, DM tests are conducted on the uncertainty
forecasts obtained from both the Robustness 1 and PCA+FAVAR frameworks.

TABLE 2.5: DM test for macroeconomic uncertainty (Robustness 1 vs PCA+FAVAR)

h = 1 h = 3 h = 12

DM p-value DM p-value DM p-value

9.079 0.999 −8.777 0.000 −5.011 0.000

The results presented in Table 2.5 demonstrate that the Robustness 1 framework
significantly reduces the estimates of macroeconomic uncertainty for forecast horizons
h = 3 and 12. The same predictive effectiveness checks discussed in Section 2.4.2 are
conducted now for this exercise. Thus, Table 2.6 presents the p-values from the
Granger-causality tests for the VAR(11) model augmented with various measures of
macroeconomic uncertainty. The first three columns of Table 2.6 display p-values
using the uncertainty measures derived by Jurado et al. (2015) obtained under
different forecast horizons. The latter three columns consider counterpart models
incorporating macroeconomic uncertainty measured by the LSTM autoencoder with
14 factors.

The empirical findings in Table 2.6 demonstrate that replacing the PCA model with
the LSTM autoencoder improves the predictive ability of the corresponding



46 Chapter 2. Measuring Macroeconomic Uncertainty

FIGURE 2.9: Aggregated macroeconomic uncertainty by LSTM autoencoder

Figure 2.9 is divided into Panels A, B, and C, each illustrating aggregated macroeconomic uncertainty
derived from the Robustness 1 LSTM autoencoder + FAVAR framework (shown by yellow lines) for
horizons h = 1, 3, and 12. These are compared to macroeconomic uncertainty measured using LSTMs
and PCA+FAVAR (depicted with blue straight lines and red dash-dot lines). The horizontal lines on each
panel indicate 1.64 standard deviations from the mean of the series, marking periods of relatively high
uncertainty.
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TABLE 2.6: VAR(11) Granger-causality p-value (Robustness 1)

U1J U3J U12J U1R1F14 U3R1F14 U12R1F14
log(real IP) 0.000 0.000 0.000 0.000 0.000 0.000
log(employment) 0.000 0.000 0.000 0.000 0.000 0.000
log(real consumption) 0.000 0.000 0.000 0.000 0.000 0.000
log(PCE deflator) 0.000 0.000 0.000 0.000 0.000 0.000
log(real new orders) 0.019 0.000 0.001 0.000 0.000 0.007
log (real wage) 0.081 0.217 0.075 0.020 0.018 0.056
hours 0.000 0.000 0.000 0.000 0.000 0.003
federal funds rate 0.000 0.000 0.001 0.001 0.001 0.000
log(S&P 500 Index) 0.002 0.000 0.001 0.000 0.000 0.000
growth rate of M2 0.000 0.000 0.000 0.000 0.000 0.003

uncertainty measures in several instances. Specifically, for certain variables such as
wages, the macroeconomic uncertainty estimates from Robustness 1 for h = 1 and
h = 3 exhibit significant explanatory power, unlike the estimates by PCA+FAVAR.

The next exercise compares the predictive ability of the uncertainty measure by Jurado
et al. (2015) against the uncertainty measure from applying the LSTM autoencoder
with 14 factors. These results are documented in Tables 2.7.

TABLE 2.7: DM test for VAR(11) model (Robustness 1 vs PCA+FAVAR)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log(real IP) 5.988 0.000 2.079 0.038 −1.759 0.079
log(employment) 5.362 0.000 1.923 0.055 −1.767 0.078
log(real consumption) −5.191 0.000 −2.647 0.008 −5.168 0.000
log(PCE deflator) 1.703 0.089 0.300 0.765 −3.192 0.002
log(real new orders) 11.633 0.000 5.357 0.000 2.149 0.032
log(real wage) −11.633 0.000 −5.894 0.000 −5.809 0.000
hours 10.379 0.000 4.477 0.000 1.726 0.085
federal funds rate 9.609 0.000 3.968 0.000 −0.324 0.746
log(S&P 500 Index) 5.352 0.000 2.369 0.018 −0.505 0.614
growth rate of M2 −11.084 0.000 −4.745 0.000 −1.056 0.291

The VAR(11) model that incorporates uncertainty estimates from the Robustness 1
framework exhibit superior predictive power for most variables and forecast horizons,
illustrating the superiority of the LSTM technology to extract the factors and, hence, to
obtain estimates of macroeconomic uncertainty that exhibit better forecast ability
compared to the standard PCA+FAVAR setting. The only exceptions are at h = 12 for
the federal funds rate, the S&P 500 financial index, and the growth rate of money
supply.

To assess the robustness of the number of factors in the Robustness 1 framework on
the estimates of macroeconomic uncertainty, we re-estimated the model using the
same framework but extracted 18 and 20 factors instead. The 18 factors were selected
based on the panel criteria outlined in Bai and Ng (2002), while the 20 factors represent
the upper bound considered by Jurado et al. (2015). The structures of the LSTM
autoencoder for extracting 18 and 20 factors are similar to that for extracting 14 factors;
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the primary distinction lies in the vector size within the LSTM model. Panel A, B and
C in Figures 2.10 display the corresponding estimates of macroeconomic uncertainty.

The comparison of the macroeconomic uncertainty estimates from the Robustness 1
framework using 14, 18, and 20 factors reveals very minor differences which suggest
that the improvement from increasing the number of factors is negligible. Tables 2.8
details the corresponding p-values from the Granger-causality tests for the VAR(11)
model augmented with various measures of macroeconomic uncertainty in
Robustness Check 1. The first three columns of Table 2.8 display p-values using the
uncertainty measures when considering 18 factors in Robustness 1 framework from
different forecast horizons. The latter three columns consider counterpart models
incorporating macroeconomic uncertainty measured by LSTM autoencoder setting
with 20 factors.

TABLE 2.8: VAR(11) Granger-causality p-value for (Robustness 1 with 18 & 20 factors)

U1R1F18 U3R1F18 U12R1F18 U1R1F20 U3R1F20 U12R1F20
log(real IP) 0.000 0.000 0.000 0.000 0.000 0.000
log(employment) 0.000 0.000 0.000 0.000 0.000 0.000
log(real consumption) 0.000 0.000 0.000 0.000 0.000 0.000
log(PCE deflator) 0.000 0.000 0.000 0.000 0.000 0.000
log(real new orders) 0.000 0.000 0.016 0.000 0.000 0.005
log (real wage) 0.022 0.027 0.122 0.016 0.015 0.061
hours 0.000 0.000 0.005 0.000 0.000 0.001
federal funds rate 0.002 0.001 0.000 0.000 0.000 0.000
log(S&P 500 Index) 0.000 0.000 0.000 0.000 0.000 0.000
growth rate of M2 0.000 0.000 0.010 0.000 0.000 0.002

Comparing these results with those for the 14 factors case detailed in Table 2.6, it
becomes evident that increasing the number of factors in the Robustness 1 framework
does not enhance the explanatory power of the uncertainty measures.

The comparative results of the forecasting performance between VAR(11) models
augmented with macroeconomic uncertainty measures by Jurado et al. (2015) and
those using the LSTM autoencoder with 18 and 20 factors are documented in Tables
2.9, and 2.10, respectively.

TABLE 2.9: DM test for VAR(11) models (Robustness 1 with 18 factors vs PCA+FAVAR)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log (real IP) 5.939 0.000 2.381 0.018 0.166 0.868
log (employment) 5.293 0.000 2.199 0.028 0.122 0.903
log (real consumption) −4.967 0.000 −2.015 0.044 −2.453 0.014
log (PCE deflator) 1.790 0.074 0.701 0.484 −0.756 0.450
log (real new orders) 11.588 0.000 5.206 0.000 2.401 0.017
log (real wage) −11.367 0.000 −5.398 0.000 −5.055 0.000
log (hours) 10.178 0.000 4.290 0.000 2.026 0.043
federal funds rate 9.698 0.000 4.328 0.000 1.520 0.129
log(S&P 500 Index) 5.577 0.000 2.620 0.009 0.757 0.449
growth rate of M2 −11.105 0.000 −4.865 0.000 −1.879 0.061
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FIGURE 2.10: Aggregated macroeconomic uncertainty by LSTM autoencoder with 14,
18 and 20 Factors

Figure 2.10 is divided into Panels A, B, and C, each illustrating aggregated macroeconomic uncertainty
derived from the Robustness 1 LSTM autoencoder + FAVAR framework with 14, 18 or 20 factors for
horizons h = 1, 3, and 12. The horizontal lines on each panel indicate 1.64 standard deviations from the
mean of the series, marking periods of relatively high uncertainty.
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TABLE 2.10: DM test for VAR(11) models (Robustness 1 with 20 factors vs
PCA+FAVAR)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log (real IP) 5.267 0.000 1.722 0.085 −0.735 0.463
log (employment) 4.844 0.000 1.615 0.107 −0.750 0.454
log (real consumption) −5.793 0.000 −3.193 0.002 −3.944 0.000
log (PCE deflator) 1.166 0.244 −0.083 0.934 −1.915 0.056
log (real new orders) 11.861 0.000 5.319 0.000 2.243 0.025
log (real wage) −12.717 0.000 −6.897 0.000 −5.598 0.000
log (hours) 10.130 0.000 4.293 0.000 1.868 0.062
federal funds rate 9.186 0.000 3.745 0.000 0.616 0.538
log(S&P 500 Index) 5.335 0.000 2.207 0.028 0.157 0.876
growth rate of M2 −11.036 0.000 −4.621 0.000 −1.472 0.141

The predictive capability of the uncertainty measures remains equivalent to the case
with 14 factors, showing no significant improvement. Therefore, we suggest that the
14 factors selected based on the information criteria selection rule exhibit robustness.

The following empirical exercise aims to compare the forecast ability of our proposed
model given by the full LSTM framework against the model discussed in this section
that mimics Jurado et al. (2015) approach but uses an LSTM model to extract the
common unobserved factors. The results of the comparison using the DM test are
presented in Table 2.11.

TABLE 2.11: DM test for macroeconomic uncertainty (LSTMs vs Robustness 1)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

1.779 0.962 −7.557 0.000 −5.3188 0.000

The results in Table 2.11 support the hypothesis that the macroeconomic uncertainty
obtained from the LSTMs framework is significantly lower than under the mixed
framework that comprises the LSTM autoencoder and the FAVAR model, particularly
for h = 3 and 12. This observation aligns with Panel B and C in Figures 2.9. For h = 1,
although the difference is not statistically significant, the LSTM-based measure
presents more extreme nonlinear changes than the measure by Robustness 1
framework.

Table 2.12 presents the results of the Granger-casuality tests, in which the first three
columns report the p-values using macroeconomic uncertainty obtained from the
LSTMs framework and the latter three columns consider models incorporating
macroeconomic uncertainty constructed using the mixed Robustness 1 framework.

The predictive power of both macroeconomic uncertainty measures is strong and
consistent across most scenarios, except for the variable wages, as previously
highlighted. The macroeconomic uncertainty estimated by Robustness 1 displays
statistically significant predictive power for h = 1 and h = 3, which is further
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TABLE 2.12: VAR(11) Granger-causality p−values (LSTMs & Robustness 1)

U1L U3L U12L U1R1F14 U3R1F14 U12R1F14
log(real IP) 0.000 0.000 0.000 0.000 0.000 0.000
log(employment) 0.000 0.000 0.000 0.000 0.000 0.000
log(real consumption) 0.000 0.000 0.000 0.000 0.000 0.000
log(PCE deflator) 0.000 0.000 0.000 0.000 0.000 0.000
log(real new orders) 0.000 0.000 0.000 0.000 0.000 0.007
log(real wage) 0.147 0.206 0.260 0.020 0.018 0.056
hours 0.000 0.000 0.001 0.000 0.000 0.003
federal funds rate 0.000 0.000 0.002 0.001 0.001 0.000
log(S&P 500 Index) 0.002 0.002 0.002 0.000 0.000 0.000
growth rate of M2 0.000 0.000 0.008 0.000 0.000 0.003

confirmed when increasing the number of factors within Robustness 1 framework, as
detailed in Appendix ??.

TABLE 2.13: DM test for VAR(11) models (LSTMs vs Robustness 1)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log (real IP) -5.871 0.000 -2.064 0.039 1.714 0.087
log (employment ) -5.526 0.000 -1.966 0.050 1.702 0.089
log (real consumption) 5.000 0.000 2.704 0.007 5.144 0.000
log (PCE deflator ) -1.786 0.074 -0.355 0.723 3.127 0.002
log (real new orders) -10.131 0.000 -4.422 0.000 -1.714 0.087
log (real wage ) -11.226 0.000 -5.290 0.000 -2.177 0.030
hours 11.565 0.000 6.166 0.000 5.755 0.000
federal funds rate -10.131 0.000 -4.422 0.000 -1.714 0.087
log(S&P 500 Index) -5.085 0.000 -2.293 0.022 0.537 0.591
growth rate of M2 9.834 0.000 4.449 0.000 1.061 0.289

The last exercise in this section, reported in Table 2.13, shows the results of the DM
tests for the comparison of the predictive ability of the relevant uncertainty measures
for forecasting the macro variables in a VAR(11) model. The results provide strong
support to the view that the macroeconomic uncertainty obtained from the LSTMs
framework is superior or comparable to the mixed approach in 22 out of 30 instances.
Hence, the results of the Robustness 1 framework can be considered to be half way
between the full LSTM framework and the PCA+FAVAR approach.

2.5.2 LSTM vs FAVAR: Robustness Check 2

To further investigate the superiority of non-parametric LSTM model comparing with
FAVAR model, we propose another robustness check based on both the LSTMs
framework and Robustness 1 framework, which aims to facilitate a deeper
comparison. In this robustness check, the LSTM model f m(·, ·), used for forecasting
macroeconomic variables at the next time step in the recursive process within the
LSTM framework, is replaced by an LSTM autoencoder and a factor-augmented
forecasting model, as specified in the Robustness 1 framework. Hence, the robustness
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check 2 employs a parametric forecasting model enhanced by nonlinear factors, so as
to prove the superiority of non-parametric LSTM model when comparing the
uncertainties obtained from LSTMs framework and Robustness 2 approach. Figure
2.11 below illustrates the process in the second robustness exercise.

FIGURE 2.11: Robustness 2 framework

In the second robustness exercise, the one-step-ahead forecasts of macroeconomic
variables leverage the LSTM autoencoder and the FAVAR system from the Robustness
1 approach, while the one-step-ahead forecasts for financial variables use the LSTM
model from our main framework. For multi-step forecasts, an iterative process is
employed: factors are extracted up to the (h-1)th step, then used to forecast both
macroeconomic and financial variables at step h, which then facilitate factor extraction
for the (h+1)th step predictions.

The procedure is as follows. Let X = (Xm, X f ) represent the complete dataset,
processed via the LSTM autoencoder:

F∗
t = f E

(︂
Xm

t , X f
t
∗)︂

xi,t = λFF∗
t + ex

i,t.

In this context, the term X f
t
∗

refers to the various financial series from Robustness
Check 1 used in factor extraction and F∗

t denotes the corresponding factors extracted.
For one-step ahead forecasts, we employ the financial dataset at time t as input to an
LSTM autoencoder. For h > 1, however, the future values X f ∗

t+h are estimated using
the LSTM model outlined in Section 2.3.3, which will be further discussed in
subsequent sections.

Following factor extraction, the factor-augmented forecasting model can be devised
with F∗

t and W∗
t , which are the additional predictors constructed using the X f ∗

t

different from Robustness Check 1.
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Let xm
j,t+1 represent one of the macroeconomic series that we aim to forecast. Then,

xm
j,t+1 = Φx

j (L)xm
j,t + γF

j (L)F∗
t + γW

j (L)W∗
t + vm

j,t+1

where L denotes the lag operator. For conveniently describing the recursive process
within the Robustness 2 framework, the next-step forecast of macroeconomic variables
is succinctly represented as:

X̂m
t+h = f FA

(︂
X̂m

t+h−1, F∗
t+h−1, W∗

t+h−1

)︂
+ vm

t+h

Here, f FA(·, ·) denotes the factor-augmented forecasting model mimicking the
specification of the FAVAR model for predicting macroeconomic variables. The term
vm

t+h denotes the forecast error, which is allowed to exhibit time-varying volatility.

Regarding the future values X f ∗
t+h for h > 1, the LSTM model, f F(·, ·), outlined in

Section 2.3.3 is employed:

X̂ f ∗
t+h = f F(X̂m

t+h−1, X̂ f ∗
t+h−1) + v f

t+h

In which the X̂m
t+h−1 is the estimated macroeconomic variables from f FA(·, ·), hence

the estimates of financial variables is different from our main framework using LSTM
model to forecast macroeconomic variables and denoted by X̂ f ∗

t+h.

In this exercise, the estimates of macroeconomic uncertainty obtained under the latter
approach are compared against the original estimates from our proposed framework
employing the DM test. Panel A, B and C in Figure 2.12 illustrate the macroeconomic
uncertainty as estimated by Robustness 2 for h = 1, 3, and 12, in comparison to
macroeconomic uncertainty estimated by our main framework consisting of two
LSTM models.

For h = 3 and 12, the results of the DM test in Table 2.14 provide overwhelming
evidence of the superiority of the LSTM macroeconomic uncertainty measure
compared to the uncertainty measure obtained under the approach developed in
Robustness check 2.

TABLE 2.14: DM test for macroeconomic uncertainty by LSTMs against
LSTM&FAVAR

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

2.133 0.984 −11.022 0.000 −5.651 0.000

To evaluate the difference in predictive power between the macroeconomic
uncertainty obtained by the LSTMs framework and Robustness 2 when forecasting ten
important macroeconomic variables, we constructed identical VAR(11) and LSTM
models as previously mentioned, containing macroeconomic uncertainty by
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FIGURE 2.12: Aggregated macroeconomic uncertainty by LSTM&FAVAR

Figure 2.12 is divided into Panels A, B, and C, each illustrating aggregated macroeconomic uncertainty
derived from the Robustness 2 LSTM&FAVAR framework (shown by yellow lines) for horizons h = 1, 3,
and 12. These are compared to macroeconomic uncertainty measured using LSTMs (depicted with blue
straight lines). The horizontal lines on each panel indicate 1.64 standard deviations from the mean of the
series, marking periods of relatively high uncertainty.
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Robustness 2. DM tests were conducted to assess the differences, with the results
displayed in the tables below.

TABLE 2.15: DM test for VAR(11) models (LSTMs vs Robustness 2)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log (real IP) -12.427 0.000 -5.264 0.000 -0.678 0.498
log (employment) -0.814 0.416 -0.305 0.760 -1.525 0.128
log (real consumption) -4.615 0.000 -6.599 0.000 -0.839 0.402
log (PCE deflator) -6.303 0.000 -3.272 0.001 -1.284 0.200
log (real new orders) -7.799 0.000 -3.872 0.000 -1.322 0.186
log (real wage) 5.630 0.000 5.400 0.000 2.013 0.045
hours -0.948 0.344 -0.473 0.636 -0.186 0.852
federal funds rate 0.598 0.550 1.851 0.065 -1.419 0.156
log(S&P 500 Index) 6.818 0.000 2.533 0.012 -0.937 0.349
growth rate of M2 -2.756 0.006 -1.542 0.124 -1.391 0.165

TABLE 2.16: DM test for LSTM-VAR(11) models (LSTMs vs Robustness 2)

h = 1 h = 3 h = 12
DM p-value DM p-value DM p-value

log (real IP) -18.664 0.000 -6.849 0.000 -6.202 0.000
log (employment) -17.821 0.000 -6.931 0.000 -5.618 0.000
log (real consumption) -18.833 0.000 -6.526 0.000 -4.860 0.000
log (PCE deflator) -19.608 0.000 -6.571 0.000 -5.550 0.000
log (real new orders) -12.769 0.000 -0.017 0.986 -3.596 0.000
log (real wage) -14.793 0.000 -6.828 0.000 -4.429 0.000
hours 6.236 0.000 4.736 0.000 0.271 0.787
federal funds rate 8.168 0.000 5.637 0.000 -3.557 0.000
log(S&P 500 Index) -13.924 0.000 -7.955 0.000 -6.102 0.000
growth rate of M2 1.807 0.071 6.728 0.000 4.218 0.000

From Table 2.15, it is evident that the macroeconomic uncertainty obtained from the
LSTMs framework outperforms the procedure introduced under the Robustness check
2. In 25 instances, the VAR(11) model incorporating macroeconomic uncertainty from
the LSTMs framework demonstrates the same or better predictive capability than the
competitor. The results in Table 2.16 further validate that macroeconomic uncertainty
by the LSTMs framework is superior, noting 27 situations where the LSTM model
incorporating macroeconomic uncertainty from the LSTMs framework shows the
same or enhanced predictive ability.

Utilizing the FAVAR model to forecast the macroeconomic dataset, we observe a
significant increase in the estimates of macroeconomic uncertainty at h = 3 and 12,
while the predictive power for forecasting ten macroeconomic variables is diminished.
As a linear model, the FAVAR model may not capture the non-linear relationships
within the macroeconomic dataset as effectively as the LSTM model.
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2.6 Conclusion

In Chapter 2, we propose a nonlinear framework for measuring macroeconomic
uncertainty using neural network models. Specifically, two LSTM models and a
recursive procedure are employed to forecast macroeconomic and financial time
series, respectively. The time-varying volatility of the forecast error is modeled to
estimate the uncertainty underlying each series and is aggregated to construct an
econometric measure of macroeconomic uncertainty. Moreover, to further study and
illustrate the advantages of LSTM models over linear time series models and ensure
robustness, two additional nonlinear frameworks are proposed.

The first robustness check involves comparing the LSTM and PCA models, using the
LSTM autoencoder to replace the PCA in the linear measurement of macroeconomic
uncertainty. Factors extracted by the LSTM autoencoder are used to conduct the same
FAVAR model as the linear measurement to estimate macroeconomic uncertainty and
facilitate a horizontal comparison.

The second robustness check involves comparing the LSTM and FAVAR models. In
this setup, the FAVAR model, configured with factors from the LSTM autoencoder in
the first robustness check, is used to forecast the macroeconomic series, and the LSTM
model from our main framework is used to forecast the financial series. The estimates
of macroeconomic uncertainty from our main framework, the two robustness checks,
and the econometric-based linear framework are compared and analyzed horizontally.

Based on the results of the estimates of macroeconomic uncertainty and the
applications of Granger-causality and Diebold-Mariano tests, the estimates of
macroeconomic uncertainty obtained under our framework are significantly lower
overall, highlighting the presence of nonlinear dynamics and interactions between the
variables. The proposed models are more capable of efficiently identifying economic
crises and calm periods, while maintaining or even enhancing the explanatory and
predictive abilities of uncertainty measurement compared to those measured by linear
models for macroeconomic variables.

The core contributions to the existing body of knowledge from this study are
threefold: First, considering the estimates of macroeconomic uncertainty, the LSTM
model is proposed as a forecasting model for large-dimensional datasets. As
macroeconomic uncertainty is primarily measured by forecast error variance, our
LSTM models fit the macroeconomic and financial datasets better than the FAVAR
model, as indicated by the smaller forecast errors and our estimates of macroeconomic
uncertainty. Second, our research applies the LSTM model in the measurement of
macroeconomic uncertainty and demonstrates that using LSTM models can reduce
the estimated value of macroeconomic uncertainty, and their explanatory and
predictive power are on par with those measured by linear frameworks. Third,
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compared to linear models, the LSTM model proves to be more effective in extracting
factors and forecasting time series.
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Chapter 3

Hedging Economic Uncertainty from
Cross-section of Stock Returns

We examine the pricing of economic uncertainty in the cross-section of stock returns.
Uncertainty is proxied by innovations to the macroeconomic and financial measures
in Jurado et al. (2015) and Ludvigson et al. (2021). In contrast to existing literature, a
negative uncertainty risk premium is found in calm periods, turning positive in
turbulent ones. These findings are rationalized by means of a hedging portfolio that
delivers positive returns in turbulent periods to compensate for the cost of insuring
the portfolio in calm periods. We also provide statistical evidence of the uncertainty
factors’ added value and their relative predictive power across uncertainty regimes.

3.1 Introduction

In Chapter 3, we focus on examining and pricing the econometric-based uncertainty
by Jurado et al. (2015) with cross sections of stock returns. Currently, there are several
representative studies about pricing uncertainty. Ang et al. (2006) use the innovations
in VIX to proxy for uncertainty (Classified as market-based measure of uncertainty by
Cascaldi-Garcia et al. (2023)) and price it with daily frequency data, while the Bali
et al. (2017) examine the macroeconomic uncertainty by Jurado et al. (2015) and price
it on a monthly basis. Both of these research find a negative cross-sectional
relationship that stocks with high sensitivities to uncertainty have low average returns
(compared to stocks with low exposure), hence the uncertainty has a negative risk
premium. The key mechanism behind such negative risk premiums of uncertainty is
that an increase in economic uncertainty reduces future investment and consumption
opportunities. To hedge against such an unfavorable shift, investors prefer to hold
stocks with returns that increase in times of economic uncertainty. Such intertemporal
hedging demand implies that investors are willing to hold stocks with higher
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covariance with economic uncertainty, paying higher prices and accepting lower
returns for stocks with higher ’uncertainty beta’. Ang et al. (2006) and Bali et al. (2017)
also provide evidence of time variation in the (negative) uncertainty premium, finding
it to be larger in magnitude during recessions and periods of high aggregate
uncertainty than in expansionary and relatively calm times.

We partially agree with the perspective that the risk premium associated with
uncertainty is both time-varying and tends to be negative during periods of calm due
to the demand for hedging. However, during turbulent times, we believe investors
should receive compensation for holding stocks that have higher exposure to
uncertainty rather than incurring higher costs compared to calmer periods. Since
people have already paid for insurance to hedge against potential increases in
uncertainty during calm times, this insurance should provide payouts when
uncertainty rises, rather than requiring additional payments. Consequently, the risk
premium associated with uncertainty transitions from negative to positive as
conditions shift from calm to turbulent. Our hypothesis contrasts with the findings of
Ang et al. (2006) and Bali et al. (2017), and several potential explanations exist for this
discrepancy. Firstly, the VIX index is often viewed more as a fear index than a pure
uncertainty index and may inherently include components of jump risk. This
structural bias could lead to skewed results when analyzing the risk premiums related
to uncertainty. Secondly, our measurement research in Chapter 2 identifies an inherent
time dependence within the uncertainty index, which could introduce bias in
estimations. These limitations in current research have driven our investigation into
the risk premium associated with uncertainty.

Our key point is supported by the similar research of Engle et al. (2020), hedging
against climate changes. These authors explore the dynamic characteristics of climate
to construct a mimicking portfolio that hedges against the realizations of climate risk
using publicly traded assets. The proposed dynamic hedging approach is similar to
Black and Scholes (1973) and Merton (1973), but instead of buying a security that
directly pays off in the event of a future climate disaster, the hedging strategy builds
portfolios whose short-term returns hedge news about climate change over the
holding period. By hedging period by period the innovations in news about long-run
climate change, an investor can ultimately cover her long-run exposure to climate risk.
The mimicking portfolio proposed by these authors is based on exploring which
stocks rise in value and which stocks fall in value when negative news about climate
change materializes. Then, investors aim to construct investment portfolios that
overweight stocks that perform well on the arrival of such negative news to profit in
climate risk episodes. The results in Engle et al. (2020) suggest that the risk premium
on innovations to climate risk is positive in the presence of negative shocks to climate
risk and negative in calm periods characterized by the absence of climate events.
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Following a similar rationale, we expect that the risk premium on macroeconomic
uncertainty - interpreted as innovations to the conditional volatility of macroeconomic
and financial shocks - not only is time varying but also fluctuates around zero to meet
investors’ dynamic hedging demands in periods of high uncertainty. To support our
hypothesis on the predictive role and dynamics of the macroeconomic uncertainty risk
premium, we follow three different empirical strategies. We first compute
long-minus-short investment strategies formed on rankings of the cross-section of
stock returns monthly between 1998 and 2022. The rankings are based on firms’
exposures to macroeconomic uncertainty, assessing the profitability of these strategies
across uncertainty regimes. These portfolios are long on the fifth quintile of stocks
ranked on the uncertainty beta exposure and short on stocks in the first quintile.
Second, we estimate the dynamics of the monthly uncertainty premium estimated
from Fama-MacBeth (Fama and MacBeth, 1973) cross-sectional regressions. Third, we
construct a mimicking (hedging) portfolio following a similar procedure to Engle et al.
(2020) and estimate, on a monthly basis, the presence of dynamics in the uncertainty
premium.

Our main hypothesis is tested with data on the cross-section of stock prices obtained
from CRSP and including all available stocks from NYSE, NASDAQ, and AMEX. We
find that the beta exposure of stock returns to macroeconomic uncertainty, after
controlling for the FF5 factors by Fama and French (2015), is monotonically increasing
across uncertainty regimes. In line with existing literature, these beta loadings are
negative for stocks in the lower quintiles and positive for stocks in the higher quintiles
of the distribution of stocks sorted on their uncertainty exposure. However, in contrast
to this literature, we find that the corresponding risk premium on macroeconomic
uncertainty is negative in periods of decreasing conditional volatility (calm periods)
and positive in periods of increasing conditional volatility (turbulent periods). This
result is mainly due to our choice of uncertainty proxy that is given by the innovations
to the conditional volatility measure developed in Jurado et al. (2015). Intuitively, the
expected excess return on risky assets is obtained as the product of the uncertainty
beta loading and the macroeconomic uncertainty measure. Because our proxy of
macroeconomic uncertainty is a sequence of innovations, it takes positive and
negative values over time, by construction. Therefore, the excess return for stocks in
the lower quintiles is expected to be positive when the sequence of innovations takes
negative values (calm episodes) and negative when the sequence of innovations
proxying macroeconomic uncertainty takes positive values (turbulent episodes). For
stocks in the higher quintiles, the rationale is the opposite: the excess return is
expected to be positive when the innovations are positive and negative when the
innovations are negative. Hence, 5-1 investment strategies yield negative average
returns in calm periods and positive average returns in turbulent periods.

These results are confirmed from estimates of the uncertainty risk premium obtained
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from Fama-MacBeth cross-sectional regressions applied to the FF5 model that is
augmented with the macroeconomic uncertainty proxy. We find a negative risk
premium on the latter variable during calm periods (2003-2006 and 2012-2016) and a
positive risk premium during turbulent periods (1998-2002, 2007-2011 and 2017-2022).
A further confirmation of these empirical findings is obtained from applying a
mimicking portfolio approach similar to Engle et al. (2020). The returns on our
mimicking portfolio are obtained from projecting the macroeconomic uncertainty state
variable on a set of base assets ranked on exposure to uncertainty, controlling for the
FF5 factors. The dynamics of the returns on this hedging portfolio confirm the
findings discussed above and show a cyclical behavior around zero with negative
values in calm periods and positive values during turbulent periods.

As additional robustness checks, we apply the novel asset pricing model developed
by Giglio and Xiu (2021) to show the insensitivity of the uncertainty premium
estimates to potential omitted variable bias. We also analyze our choice of calm and
turbulent episodes and discuss alternative methods to split the sample period with
corresponding results, such as the CFNAI index. The robustness section also assesses
the effect of microcaps on the role of economic uncertainty for pricing the cross-section
of stock returns. As in Hou et al. (2015), we trim the bottom 20% of NYSE stocks
sorted on market value and find that removing microcaps from the cross-section of
returns quantitatively but not qualitatively alters our findings on the fluctuations of
the uncertainty premium estimates around zero.

The importance of macroeconomic uncertainty for cross-sectional asset pricing is
confirmed by recent statistical tests developed in Barillas and Shanken (2017, 2018)
and Barillas et al. (2020), comparing nested and non-nested asset pricing models
respectively. We find (overwhelmingly) robust statistical evidence in support of
augmenting the FF5 model with econometric-based measures of macroeconomic and
financial uncertainty, obtained from differences of squared Sharpe ratios and Bayesian
procedures. The model comparison exercise also provides evidence from statistical
tests for non-nested models, suggesting that the suitability of each uncertainty
measure for explaining the cross-section of stock returns depends on the uncertainty
regime. For example, during the 2007-2011 crisis, we find that the measure of
uncertainty built from innovations to financial uncertainty is superior to the
macroeconomic uncertainty measure. In contrast, during the 2017-2022 period,
characterized by the COVID-19 pandemic, the opposite is true.

The rest of this Chapter is organized as follows. Section 3.2 examines how
macroeconomic uncertainty is priced in the cross-section of stock returns monthly
spanning the period 1998 to 2022 and characterized by the occurrence of calm and
turbulent episodes. Section 3.3 presents several robustness checks to assess the
sensitivity of the results to an alternative definition of economic uncertainty based on
financial innovations, a different methodology to estimate the risk premium, a
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reduced cross-section of returns without microcaps, and discusses the choice of the
evaluation periods. Section 3.4 introduces a model comparison exercise to statistically
assess the role of the macroeconomic and financial uncertainty mimicking portfolios
as additional risk factors in Fama-French empirical asset pricing models. The exercise
enables comparison in terms of the predictive ability of macroeconomic and financial
uncertainty measures in nested and non-nested settings. Finally, Section 3.5 concludes.

3.2 Pricing Economic Uncertainty in the Cross-section

3.2.1 Theoretical Background

This section discusses the methodology to price aggregate uncertainty in the
cross-section of risky assets along with data and variable definitions. The main
approaches found in the literature to price the cross-section of stock returns are
Fama-Macbeth (Fama and MacBeth, 1973) cross-sectional regressions and the
construction of a mimicking portfolio that maximizes the correlation between the
pricing anomaly (e.g. climate risk, macro uncertainty) and a set of base asset returns.
More recently, Giglio and Xiu (2021) have proposed a three-stage procedure to price
the cross-section of stock returns. This method extends the Fama-Macbeth approach
by considering a preliminary step to estimate a set of unobservable pricing factors
using principal components. This methodology combines the principal component
analysis with two-pass cross-sectional regressions to provide consistent estimates of
the risk premium for any observed factor. In this section, we focus on the first two
methods to compute the risk premium on economic uncertainty and implement Giglio
and Xiu (2021)’s approach as a robustness check in Section 3.3.

We denote by ri
t the excess returns over the risk-free rate on stock i at time t. These

returns are assumed to follow a linear multifactor model, in which asset returns are
driven by innovations in the pricing factors { fkt, ukt} and an idiosyncratic term εi

t:

ri
t = ai +

K

∑
k=1

βi
k ( fkt − E[ fkt]) + βi

u (ut − E[ut]) + εi
t, (3.1)

where ai denotes the risk premium on risky asset i and βi
k are asset i’s risk exposures

to k = 1, . . . , K risk factors. Similarly, βi
u denotes the risk exposure to the uncertainty

factor, or asset i’s sensitivity to uncertainty risk; fkt − E[ fkt] denote the factor
innovations and ut − E[ut] represents the innovations in the factor capturing economic
uncertainty risk. In this basic setup, the risk exposures are constant over time. This is
relaxed in the empirical application in which the pricing methods are updated on a
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monthly basis using rolling regressions. The risk premium is given by

ai =
K

∑
k=1

βi
kλk + βi

uλu, (3.2)

where λk is the price of risk of each of the k factors, λu is the price of macro
uncertainty risk, and βi

k and βi
u are now interpreted as the quantity of risk associated

to the pricing factors.

3.2.2 Data and Variable Definitions

To investigate how economic uncertainty is priced in the cross-section of stock returns
we consider a sample that includes all common stocks traded on the NYSE, AMEX,
and NASDAQ exchanges from 1993 through 2022. We eliminate stocks with a price
per share less than $5 or more than $1, 000. The monthly return and volume data are
from the CRSP. We adjust stock returns for delisting to avoid survivorship bias. In
contrast to Ang et al. (2006), we only use monthly returns to match the frequency of
the uncertainty measures reported in Jurado et al. (2015).

The sample data is divided into five evaluation periods of similar length with the aim
of covering different uncertainty regimes. The first period covers the dotcom stock
market bubble that peaked on Friday, March 10, 2000. This period of sustained
increase in stock prices coincided with the widespread adoption of the World Wide
Web and the Internet, resulting in the rapid growth of valuations in new dot-com
startups. The second interval spans the years 2003 to 2006 and covers a period of low
and relatively stable inflation and low volatility of financial markets. This period
contained the longest economic expansion since World War II. Unfortunately, the
financial crisis of 2007-08 broke the calm of the Great Moderation and came to be
known as the Great Recession. The latter is the third episode considered in our
analysis that spans from 2007 through December 2011. This period also captures short
episodes of financial distress such as the European sovereign debt crisis that took
place in the European Union from 2009 until the mid to late 2010s. This crisis was
characterized by several Eurozone member states (Greece, Portugal, Ireland and
Cyprus) that were unable to repay or refinance their government debt or to bail out
over-indebted banks. The fourth period is defined by the interval 2012-2016 and
covers a period of booming stock markets and relative calm in financial markets. The
last episode that spans from 2017 to 2022 includes a global economic recession given
by the outbreak of the COVID-19 pandemic from February 2020. This was followed by
a sustained period of economic slowdown that saw stagnation of economic growth
and consumer activity. The robustness of the results to this specific choice of
evaluation periods is discussed below.
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Following Bali et al. (2017), for each stock and month in the different evaluation
periods, we estimate the uncertainty beta from monthly rolling regressions of excess
stock returns on the different measures of economic uncertainty over a 60−month
fixed window while controlling for the FF5 factors. Thus, the first regression to obtain
the pre-formation beta loadings runs from January 1993 to December 1997. Monthly
data on the risk-free rate, proxied by the one-month US Treasury bill rate, and the FF5
pricing factors are obtained from Kenneth French’s data library. These factors are
given by the excess market return (MKT), the size factor (SMB) that is given by a
portfolio return constructed from a small-minus-large investment strategy, the value
factor (HML) that is given by a long-minus-short portfolio that exploits differences in
profitability based on stocks’ book-to-market ratio, the profitability factor (RMW)
given by a robust-minus-weak portfolio return, and the investment factor (CMA) that
is constructed as a conservative-minus-aggressive portfolio return.

Economic uncertainty is proxied by the innovations to the measures developed in
Jurado et al. (2015) and Ludvigson et al. (2021). These authors differentiate between
macroeconomic and financial uncertainty. To estimate macroeconomic uncertainty
Jurado et al. (2015) develop a factor-augmented predictive regression model from a
rich set of macroeconomic and financial time series that include, among others, real
output, income, employment, consumer spending, price indexes, bond and stock
market indexes, and foreign exchange measures. These authors interpret economic
uncertainty as the conditional volatility of the unpredictable component of the future
value of each series, and then aggregate individual conditional volatilities into a
macro uncertainty index for horizons of one-, three- and 12-months. Financial
uncertainty is constructed in a similar way but using only information from a large set
of financial variables as detailed in Ludvigson et al. (2021)1.

Our measures of economic uncertainty follow Ang et al. (2006) and Engle et al. (2020)
and focus on innovations to a state variable with ability to predict the cross-section of
returns, see Bali et al. (2017). Ang et al. (2006) use the first differences of VIX to remove
the strong persistence in the volatility index and Engle et al. (2020) remove the
presence of serial correlation in their measure of climate risk news by considering the
innovations from an AR(1) process. In a similar vein, we fit the following stochastic
volatility process to model the time series of conditional volatilities obtained in Jurado
et al. (2015):

log
(︂

σ
j
t+1

)︂2
= γ

j
0 + γ

j
1 log

(︂
σ

j
t

)︂2
+ η

j
t+1, η

j
t+1

iid∼ N(0, τ j), (3.3)

with σ
j
t+1 the conditional volatility of the forecast error term of a FAVAR process

applied to time series of macroeconomic (j = m) or financial variables (j = f ). The
innovations η

j
t+1 to the conditional volatility process are our main measure of

1The macroeconomic and financial uncertainty data can be accessed at
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes.

https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
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macroeconomic uncertainty (ηm
t+1) and financial uncertainty (η

f
t+1); τ j is the standard

deviation of the innovations and γ0 and γ1 are the coefficients driving the presence of
serial dependence in the conditional volatility process.

The above approach to obtain our economic uncertainty measures is not intended to
fully remove the serial dependence in the shocks. In fact, exhibiting time series
persistence is a necessary condition for time series effects because investors will only
dynamically adjust their risk premium in response to shocks that are informative
about future levels of economic uncertainty. This is particularly relevant for the
periods under study, as we identify calm uncertainty regimes as episodes exhibiting
decreasing uncertainty and hence characterized by persistent negative shocks in
model (3.3). Similarly, turbulent periods are characterized by sharp increases in
uncertainty that will be reflected in model (3.3) by runs of positive shocks.

The dynamics of our benchmark uncertainty measures ηm
t+1 and η

f
t+1, reported in

Figure 3.1 with blue and red lines, respectively, provide clear indication of time series
persistence over the different evaluation periods. This is given by the presence of
short-term trends that are negative during calm periods and positive for turbulent
periods. Interestingly, although both time series exhibit positive comovement there is
certain decoupling that suggests that the uncertainty measures react differently to
economic shocks and may be considered as complementary uncertainty measures. For
example, the fluctuations in the financial uncertainty measure during the 2007-2008
crisis are much stronger than for the macroeconomic uncertainty proxy. In contrast,
the latter measure reacts earlier to the outbreak of the COVID-19 pandemic compared
to the financial uncertainty proxy that reaches a peak soon afterwards.

FIGURE 3.1: One-month-ahead innovations in macroeconomic and financial uncer-
tainty

These sequences are obtained from model (3.3) using the conditional volatility measures developed in
Jurado et al. (2015) and Ludvigson et al. (2021) over the period 1998 to 2022. Blue line for the
macroeconomic uncertainty measure (ηm

t+1) and red line for the financial uncertainty measure (η f
t+1).
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3.2.3 Empirical Analysis

Our goal is to test whether the cross-section of average returns depends on their
exposure to economic uncertainty and whether these returns vary with the
uncertainty regime. To do this, we first consider our measure of macroeconomic
uncertainty, denoted hereafter as MU, and follow a procedure similar to Ang et al.
(2006) to estimate the pre-formation regression between the excess returns on the
cross-section of stocks and the FF5 factor augmented with our uncertainty measure.
The empirical model that we examine is

ri
t = βi

0 + βi
mkt MKTt + βi

smbSMBt + βi
hml HMLt + βi

rmwRMWt + βi
cmaCMAt + βi

mu MUt + ϵi
t,

(3.4)
with i = 1, . . . , n, where n is the number of assets in the cross-section. The quantity of
interest in this regression is the sensitivity of the excess returns to variations in the
uncertainty measure over time. This is captured by the uncertainty loading βmu. The
uncertainty index developed in Jurado et al. (2015) is constructed with monthly data.
This implies that our uncertainty measure also has this frequency forcing, in turn, the
time series regression equation (3.4) to use monthly observations. A suitable
methodology using our dataset is to consider monthly rolling regressions over a
60−month fixed window starting from January 1993. A similar approach is followed
in Bali et al. (2017) for the analysis of economic uncertainty in a similar setting.

3.2.3.1 Ranking the Cross-section into Quintile Portfolios

We sort firms from the cross-section of returns on the uncertainty loadings βmu

obtained from the above time series regression applied to all stocks. The objective of
this empirical exercise is to construct a set of base assets that are sufficiently disperse
in exposure to economic uncertainty. Pástor and Stambaugh (2003), Ang et al. (2006)
and Bali et al. (2017) follow similar approaches as pre-formation regressions to sort
stocks from the cross-section. Firms in the first quintile have the lowest beta loadings
on uncertainty whereas firms in the highest quintile have the highest coefficients. For
each quintile, we construct value-weighted portfolios and form post-ranking portfolio
returns for the next month.

Table 3.1 reports several summary statistics for each quintile portfolio sorted by past
βmu obtained from the previous 60−month regression window. Panels A to E report
the statistics for each of the five evaluation periods considered in our empirical
analysis. The first two columns report the average return and standard deviation of
the value-weighted portfolio return for each quintile. The average returns reported in
the first column are increasing over the quintile portfolios for the high uncertainty
periods 1998-2002, 2007-2011 and 2017-2022, and negative for the low uncertainty
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periods. Similarly, the average return of the 5-1 portfolio strategy is positive for the
high uncertainty periods and negative for the low uncertainty periods. These
strategies are statistically significant at 5% for 1998-2002 and 2017-2022. The third
column reports the time series average of the pre-formation uncertainty loadings βmu

obtained from running regression (3.4) using as test assets the quintile portfolios
evaluated over all 60−month rolling windows starting from 1993. The only difference
with the previous regression is that we consider the formed quintile portfolios as test
assets instead of the cross-section of returns. By construction, the factor loadings on
macroeconomic uncertainty are monotonically increasing with the magnitude of the
coefficients varying across evaluation periods. The magnitude of the coefficients is
larger for the first period and remains in the interval (−6%, 6%) for the remaining
sample periods. An interesting pattern emerges across evaluation periods. The
pre-formation beta loadings are negative for the lower quintiles and turn positive for
the higher quintiles. Similar results are obtained in Ang et al. (2006) for innovations to
VIX over a different evaluation period and Bali et al. (2017) for the raw uncertainty
measure of Jurado et al. (2015). The presence of negative and positive beta loadings
amplifies the magnitude of the return on the long-minus-short portfolio because it
takes full advantage of the spread in average returns across quintiles.

3.2.3.2 Mimicking Portfolio Approach

The monotonicity in pre-formation beta loadings and the corresponding differences in
profitability between top and bottom quintile portfolios suggest that macroeconomic
uncertainty may have power to predict the risk premium in the cross-section of stock
returns. However, these results need to be confirmed within the framework of an
unconditional factor model. To do this, we construct an ex-post factor that mimics
macroeconomic uncertainty by projecting monthly measures of our uncertainty proxy
MU on a set of base assets, see Breeden et al. (1989). The portfolio weights are
obtained as parameter estimates ˆ︁w of an OLS regression between the MU factor and
the vector of quintile portfolio returns Xt:

MUt = c + w′Xt + vt, (3.5)

with vt the error term. The mimicking portfolio return is obtained as the linear
projection of the uncertainty measure on the base assets RMUt = ˆ︁w′Xt. Returns are
constructed as excess returns so the coefficients w are interpreted as weights in a
zero-cost portfolio. The multifactor asset pricing model is obtained by replacing MUt

by RMUt in expression (3.4) and presented below for completeness:

ri
t = βi

0 + βi
mkt MKTt + βi

smbSMBt + βi
hml HMLt + βi

rmwRMWt + βi
cmaCMAt + βi

rmuRMUt + εi
t.

(3.6)
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The pre-formation factor loadings βrmu are obtained by running this regression over
60−month rolling windows covering each evaluation period. The reported
coefficients in the next-to-last column of Table 3.1 are time series averages of the factor
beta loading estimates obtained from each rolling regression over the evaluation
period using the quintile portfolios as test assets. The results are similar to the
pre-formation beta loadings reported in Column 3 but the magnitude of the
coefficients is significantly larger for the extreme quintiles. To examine ex-post factor
exposure to macroeconomic uncertainty risk consistent with an unconditional factor
model approach, we need to calculate post-ranking uncertainty betas over the full
evaluation periods and not only using 60−month rolling regressions. The last column
of Table 3.1 shows similar patterns of post-formation factor loadings obtained from the
time series regression (3.6) that uses the five quintile portfolio returns as test assets.

3.2.3.3 Pricing Macroeconomic Uncertainty

Table 3.1 suggests that macroeconomic uncertainty is a priced factor that varies over
time. The next step to formally assess this is to estimate the price of economic
uncertainty using Fama and MacBeth (1973) cross-sectional regressions:

ri = c+ βi
mktλMKT + βi

smbλSMB + βi
hmlλHML + βi

rmwλRMW + βi
cmaλCMA + βi

rmuλRMU + ϵi,
(3.7)

where the λs represent unconditional prices of risk of the various factors. Engle et al.
(2020), in their appendix, also discuss a similar approach to price the occurrence of
shocks to climate news. However, in contrast to these authors, our framework
considers a tradable factor RMUt instead of the state variable MUt. This implies that
the regressor in (3.7) is βrmu obtained from the first stage regression instead of βmu.
Both approaches lead to similar interpretations given that RMUt is the portfolio return
that is maximally correlated to MUt, however, the use of a portfolio return in the
cross-sectional regression allows us to obtain further insights. For example, in the
latter case, the uncertainty risk premium λRMU can be interpreted as the average
return of the hedging portfolio RMUt computed over each evaluation period. This
interpretation is not valid if the cross-sectional pricing regression includes the raw
uncertainty proxy MUt instead.

Table 3.2 presents the unconditional cross-correlations between the pricing factors.
Panel A reports the unconditional correlations computed over the period 1998-2022
and Panel B computes the correlations between RMU and the FF5 factors for each
evaluation period. The unconditional correlation of the mimicking portfolio return
with MKT and SMB is negative. This result also holds across subsamples and
increases in magnitude in periods of financial distress. Episodes with positive returns
on these factor portfolios are corresponded by negative returns on the uncertainty
mimicking portfolio. These empirical findings provide further evidence on the role of
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TABLE 3.1: Portfolios sorted by exposure to macro uncertainty

Panel A. 1998-2002

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 0.3337 4.9109 -10.3837 -16.8527 -14.6253
2 0.3750 4.5993 -2.2925 -2.1257 -3.0908
3 -0.1356 5.0838 -2.4098 -2.8173 -3.3723
4 -0.0141 5.9841 2.6627 2.1994 2.4438
5 1.8503 8.0180 7.0383 14.7105 16.3221
5-1 1.5166

[2.7496]

Panel B. 2003-2006

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 1.3870 3.1648 -6.5613 -12.2143 -15.8916
2 1.3664 2.8415 -3.6210 -3.8340 -3.5744
3 1.4391 3.1147 -2.6745 -4.8721 -4.9730
4 1.3269 3.0220 3.1451 4.1355 4.3580
5 1.0552 3.2488 6.8887 19.3259 13.5811
5-1 -0.3319

[-0.8472]

Panel C. 2007-2012

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 -0.3883 8.2087 -6.9287 -17.0256 -18.3317
2 0.3589 6.0683 -1.9212 -3.6412 -4.3951
3 0.2742 4.8341 -0.5972 -2.4954 -0.8518
4 0.5264 5.3070 2.5653 4.2123 3.8429
5 0.9505 5.4122 5.3868 12.3000 10.5344
5-1 1.3388

[1.0177]

Panel D. 2012-2016

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 1.3882 3.8460 -4.3625 -18.9237 -17.4776
2 1.2220 3.3612 -1.3361 -5.0397 -5.8922
3 1.1097 2.8610 0.1800 -0.2079 -0.2918
4 1.4713 3.0390 2.2973 3.5609 5.1329
5 0.7783 3.4051 4.1600 9.6917 11.4019
5-1 -0.6099

[-1.1497]

Panel E. 2017-2022

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 0.0723 5.2673 -5.0615 -16.6689 -16.2592
2 0.8873 4.1908 -1.9841 -4.9459 -2.9668
3 1.3013 4.4052 -0.2995 -0.9516 -0.9262
4 1.5447 5.2038 1.4776 4.6199 5.0425
5 2.4313 5.5845 3.7299 12.8208 13.6963
5-1 2.3589

[3.0676]

Panel F. 1998-2022

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 0.5179 5.4475 -6.6417 -16.5110 -16.1931
2 0.8210 4.3955 -2.1705 -3.9348 -4.2885
3 0.7783 4.2172 -1.0862 -2.1438 -2.3121
4 0.9642 4.7504 2.3872 3.7416 3.6926
5 1.4418 5.4950 5.3578 13.5284 13.6432
5-1 0.9239

[1.6836]

Note: We form value-weighted quintile portfolios every month by regressing excess individual stock
returns on MU, controlling for FF5 factors as in equation (3.4), using monthly data over 60−month
rolling regressions. Stocks are sorted into quintiles based on coefficient βmu from lowest (quintile 1) to
highest (quintile 5). The statistics in columns labeled Mean and Std. Dev. are measured in monthly
percentage terms and apply to total, not excess, simple returns. The row 5-1 refers to difference in
monthly returns between portfolio 5 and 1. The pre-formation betas refer to value-weighted βmu or βrmu
within each quintile portfolio and are obtained from rolling regressions with quintile portfolios as test
assets. The last column reports ex-post βrmu factor loadings over each evaluation period, where RMU is
factor mimicking portfolio obtained from (3.5). We compute ex-post betas by running FF5 model
augmented with RMU factor. Robust t-statistics, adjusted according to Newey and West (1987), are
reported in square brackets. The sample period is divided into five evaluation periods.
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the macroeconomic uncertainty mimicking portfolio as a hedging instrument in
periods of heightened uncertainty in which standard pricing factors such as MKT and
SMB, typically providing a positive return, may yield negative returns. The
unconditional correlation with the other pricing factors is slightly positive. As shown
in Panel B, the sign of these correlations changes over time across sample periods but,
in general, the magnitude is small suggesting that the HML, RMW and CMA factors
are independent of the uncertainty pricing factor.

TABLE 3.2: Factor correlations

Panel A. Cross-correlations between factors 1998-2022

MKT SMB HML RMW CMA RMU

MKT 1 0.2666 -0.0905 -0.3904 -0.3335 -0.4855
SMB 0.2666 1 0.0174 -0.4683 0.0114 -0.1736
HML -0.0905 0.0174 1 0.3989 0.6153 0.0264
RMW -0.3904 -0.4683 0.3989 1 0.2692 0.1647
CMA -0.3335 0.0114 0.6153 0.2692 1 0.1077
RMU -0.4855 -0.1736 0.0264 0.1647 0.1077 1

Panel B. Cross-correlations with RMU

Period MKT SMB HML RMW CMA RMU
1998-2002 -0.3207 -0.0328 0.3719 0.2168 0.4139 1
2003-2006 -0.3504 -0.3061 0.1982 0.1689 -0.0166 1
2007-2012 -0.7090 -0.3846 -0.1084 0.3208 -0.0093 1
2012-2016 -0.4838 -0.1678 -0.0891 0.2179 -0.0496 1
2017-2022 -0.4356 -0.1133 -0.0973 -0.0985 -0.0298 1

Note: The table reports correlations of the RMU factor with the FF5 risk factors. The variable RMU
represents the monthly return on the mimicking portfolio obtained from regression (3.5). The factors
MKT, SMB, HML, RMW and CMA are the FF5 factors. Panel A reports the unconditional correlations
computed over the period 1998-2022 and Panel B computes the correlations between RMU and the FF5
factors for each evaluation period.

To estimate the factor premiums λs, we first construct a set of test assets with returns
ri

t, whose factor loadings on macroeconomic uncertainty risk are sufficiently disperse
so that the cross-sectional regressions are informative. Following Ang et al. (2006), at
the end of each month, the cross-section of stocks is sorted first into five quintiles
based on βmkt and then within each quintile into βmu quintiles to yield 25 portfolios
that are used as test assets in the cross-sectional asset pricing model. Both loadings
βmkt and βmu are obtained from the regression equation (3.4) applied to monthly data
over the past 60 months. The Fama-MacBeth procedure is estimated in two stages. In
a first stage, the betas in (3.7) are obtained from the time series regression (3.4) using
the full sample. In the second stage, the risk premia are estimated from the
cross-sectional regression (3.7) using monthly data.
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Table 3.3 reports the price of risk associated to the six factor model given by the Fama
and French (2015) pricing model augmented with the uncertainty mimicking portfolio
RMU. The results reveal important heterogeneity in the risk premium associated to
each factor over the evaluation period. The risk premium on the market portfolio is
positive in all periods except in the calm 2012-2016 period. During this period, test
assets with more exposure to this factor require a lower expected return compared to
test assets that exhibit a lower beta exposure to the market portfolio. The magnitude
of the risk premium on this factor is larger during the high uncertainty periods
2007-2011 and 2017-2022 compared to the remaining periods under evaluation.
Similarly, we find strong evidence of a positive risk premium on the size factor across
evaluation periods. In contrast, the risk premium on the book-to-market risk factor is
negative in the high uncertainty periods 1998-2002 and 2007-2011 and positive in the
remaining periods. The sign and magnitude of the risk premium on RMW and CMA
also show time variation across evaluation periods.

TABLE 3.3: Fama-Macbeth factor risk premiums using RMU

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022 1998-2022

const 0.4284 1.2453 0.7662 1.4218 0.9975 0.9610
[1.2827] [7.0930] [3.3202] [5.3482] [3.8517] [6.9207]

MKT 0.1841 0.1991 0.3294 -0.3526 0.3181 0.1355
[0.2538] [0.3407] [0.3808] [-1.1338] [0.5089] [0.4528]

SMB 3.2248 0.7834 0.1346 0.2504 1.1118 1.1142
[3.5997] [0.8735] [0.1972] [0.3880] [1.4237] [2.6617]

HML -0.3648 0.9288 -1.3769 0.7848 0.7484 0.1201
[-0.2305] [1.2563] [-2.2744] [1.8957] [1.7255] [0.2859]

RMW 0.0712 -1.4712 -0.8105 0.0644 -0.6105 -0.5143
[0.0373] [-1.4219] [-1.2182] [0.1453] [-1.4834] [-1.0687]

CMA -0.0268 0.9600 -0.4218 -0.1662 0.2905 0.0951
[-0.0196] [1.9884] [-0.8511] [-0.4035] [0.6310] [0.2812]

RMU 0.0350 -0.0048 0.0644 -0.0094 0.0813 0.0355
[1.3482] [-0.2766] [0.8903] [-0.3589] [2.3275] [1.7602]

Note: The table reports the Fama and MacBeth (1973) factor premiums on 25 portfolios sorted first on
βmkt and then on βmu for the FF5 model augmented with the RMU risk factor obtained as a mimicking
portfolio return from regression (3.5) using macroeconomic uncertainty MU as proxy. Robust t-statistics
that account for the first-stage estimation in the factor loadings, adjusted according to Newey and West
(1987), are reported in square brackets. Each column reports the estimates of the factors risk premium for
different evaluation.

Interestingly, the estimated risk premium obtained for the uncertainty risk factor
RMU is positive in high uncertainty regimes and negative in the low uncertainty
regime taking place between 2003 and 2006, suggesting that test assets with more
exposure to economic uncertainty have lower expected returns (higher prices) in calm
periods than in turbulent periods. The variation in the risk premium on this risk factor
over time suggests that a dynamic hedging strategy can be implemented by investing
in the mimicking portfolio RMU. Investors require a positive expected excess return
on this portfolio in high uncertainty periods to compensate for the negative expected
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returns realized by the portfolio in low uncertainty periods. Investors pay a premium
in low uncertainty regimes to dynamically hedge against high uncertainty periods.

TABLE 3.4: Ex-post factor loadings on RMU for 2007-2011

Pre-ranking on βmu

Pre-ranking on βmkt Low 1 2 3 4 High 5

Low 1 -10.7503 -1.8150 -1.2948 7.2287 16.4946
[-4.0165] [-1.8494] [-0.8803] [3.5392] [8.4647]

2 -14.3055 0.8148 -2.3684 5.2664 13.7770
[-4.6116] [0.2848] [-2.4754] [3.0884] [5.1361]

3 -15.5728 -4.1505 -0.6087 2.8103 11.3135
[-7.5760] [-2.4403] [-0.1790] [1.9911] [3.5606]

4 -20.4733 -4.6844 -0.1342 4.2198 7.9285
[-4.3363] [-2.3698] [-0.0763] [2.2083] [2.7688]

High 5 -20.7484 -9.9361 -6.0013 -0.4732 8.2238
[-9.1371] [-3.5750] [-1.4010] [-0.1222] [2.5477]

Note: The table reports ex-post factor loadings on βrmu obtained from the first-stage Fama and MacBeth
(1973) regression using the time series specification (3.7) applied to 25 portfolios sorted first on βmkt and
then on βmu using the risk factor MU as proxy for economic uncertainty. Robust t-statistics, adjusted
according to Newey and West (1987), are reported in square brackets. The sample period is from January
2007 to December 2011.

Table 3.4 reports the factor loadings βrmu for each of the 25 base assets used in the
first-pass time series regression from Fama and MacBeth (1973). Due to space
constraints, we only report the loadings computed over the period January 2007 to
December 2011, that reflects an episode of high turbulence in financial markets, but
qualitatively similar results are obtained for the remaining sample periods. There is
strong monotonicity in the uncertainty factor loadings for each quintile of stock
returns sorted on market beta. For example, for the bottom βmkt quintile, the
parameter estimates range from −10.75 to 16.49 and for the corresponding top market
quintile, the first-stage factor loading parameter estimates range between −20.75 and
8.22. There is wide dispersion in the uncertainty factor loadings across market quintile
portfolios. Similar monotonicity results are obtained for the first-stage beta estimates
for each quintile portfolio ranked on βmu, in this case the beta loadings decrease across
quintile portfolios. Interestingly, we find a clear monotonic pattern for most of the 25
values of the first-stage factor loadings that starts from −20.75 for the pair (High 5,
Low 1) portfolio and ends with the value 16.49 for the pair (Low 1, High 5) portfolio,
with the only exception of some values in the middle column. The results on this table
confirm that portfolios formed on market return and macroeconomic uncertainty beta
loadings exhibit exposure to macroeconomic uncertainty risk that is captured by the
mimicking portfolio RMU.

The risk premium λRMU in the cross-sectional regression (3.7) can be interpreted as the
discount rate applied to the uncertainty beta factor loadings. This coefficient can be
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also estimated from the time series average of the mimicking portfolio return RMU2

over the evaluation period. Using this strategy, a noisy measure of the monthly risk
premium is the excess return of the mimicking portfolio. Figure 3.2 presents the
dynamics of the mimicking portfolio returns over the period 1998 to 2022. The results
illustrate graphically the fluctuations in the uncertainty risk premium over time and
the dynamics of the mimicking portfolio returns. Green lines describe the dynamics of
the returns over turbulent periods and red lines over calm episodes. The blue line is
obtained by applying a locally estimated scatterplot smoothing (LOESS) method that
is obtained by fitting a weighted polynomial regression to the dynamics of the
mimicking portfolio returns. This nonparametric regression method allows the fit to
adapt to local variations while still preserving the overall trend. The dynamics of the
smooth curve shed important insights on the evolution of the uncertainty risk
premium over time. First, calm periods are associated to episodes of negative returns
of the mimicking portfolio and turbulent periods to episodes of positive returns.
Second, our division of the sample into five non-overlapping evaluation periods is
ad-hoc and does not fully reflect the underlying differences in stock markets between
calm and turbulent periods. For instance, the period 2007-2011 should be further
classified into a tubulent and calm period, as revealed by the evolution of the
uncertainty risk premium within that interval. The period 2007-2009 shows a steep
increase in the return of the mimicking portfolio that can be interpreted as a positive
risk premium on economic uncertainty whereas the episode 2010-2011 shows negative
returns of the mimicking portfolio that reflect a negative risk premium on uncertainty.

Panel A of Table 3.5 reports the least squares parameter estimates of the time series
regression (3.5) using the ex-post quintile portfolios computed over the full sample
period (1998-2022). Therefore, these estimates are invariant to the choice of
breakpoints defining each evaluation period. After suitable standardization of the
portfolio weights - obtained by dividing by the largest estimate (0.038) - we see that
the composition of the mimicking portfolio is (−1,−0.1,−0.12, 0.15, 0.65) that yields
similar portfolio weights compared to the 5-1 portfolio given by (−1, 0, 0, 0, 1). The
mimicking portfolio can be further refined by noting that the middle parameter
estimates are not statistically significant. In this case the mimicking portfolio can be
constructed using only the bottom and top quintiles. For comparison purposes, the
dynamics of the 5-1 portfolio constructed on macroeconomic uncertainty are reported
in the bottom panel of Figure 3.2. The dynamics of both portfolios are very similar
with just minor differences in magnitude across investment strategies.

Panel B of Table 3.5 reports average market capitalization of the quintile portfolios
over the evaluation periods. For each month, the aggregate market capitalization of
stocks in a given quintile is calculated. This value is divided by the total market

2A similar strategy can be used to test the suitability of time series asset pricing equations using the
Fama-MacBeth two-pass regression approach.
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FIGURE 3.2: Dynamics of mimicking portfolio return RMU

Top panel reports the dynamics of the mimicking portfolio return RMU obtained from the regression
equation (3.5). Bottom panel reports the dynamics of 5-1 portfolio constructed from sorting the
cross-section of stock returns into five quintiles ranked on βmu. The sample period is 1998 to 2022.

capitalization of the cross-section of stocks in that month. Subsequently, for each
subsample, the monthly average ratio for all months within each quintile is computed
and reported in the above table. The market capitalization of each quintile portfolio is
stable across evaluation periods with the bottom and top quintiles reporting smaller
market capitalization than the middle quintile portfolios. This result may suggest that
stocks with small market capitalization have a prominent role on the construction of
the mimicking portfolio and, hence, on the dynamics of the risk premium. This
hypothesis is studied in more detail below and rejected using a subset of the
cross-section of stock returns.
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TABLE 3.5: Properties of mimicking portfolio, RMU

Panel A. Mimicking portfolio weights
X1 X2 X3 X4 X5

w -0.0380 -0.0041 -0.0045 0.0059 0.0245
[-7.2602] [-0.5734] [-0.6095] [0.8412] [4.9952]

Panel B. Distribution of market capitalization
X1 X2 X3 X4 X5

1998–2002 0.1450 0.1738 0.2243 0.2673 0.1895
2003–2006 0.1607 0.1969 0.2050 0.2770 0.1605
2007–2011 0.1402 0.2003 0.2648 0.2404 0.1543
2012–2016 0.1192 0.2087 0.2729 0.2564 0.1429
2017–2022 0.1568 0.2573 0.2567 0.2016 0.1276
All Sample 0.1438 0.2085 0.2465 0.2467 0.1544

Note: Panel A reports the OLS parameter estimates of the regression equation (3.5). The dependent
variable is the macroeconomic uncertainty measure MU and the sample period 1998 to 2022. Robust
t-statistics, adjusted according to Newey and West (1987), are reported in square brackets. Panel B
reports the monthly average ratio of market capitalization of each quintile portfolio. For each month, the
aggregate market capitalization of stocks in each quintile is calculated and divided by the total market
capitalization of the cross-section of stocks in that month.

3.3 Robustness Exercises

This section conducts several robustness checks. First, we specify an alternative proxy
of economic uncertainty given by the innovations to the financial uncertainty index
proposed in Ludvigson et al. (2021). Second, we implement Giglio and Xiu (2021)’s
three-stage procedure to correct for biases arising from the potential misspecification
of the FF5 asset pricing model used as benchmark. The third robustness check consists
of removing microcaps from the cross-section of stock returns to assess the extent to
which the results are driven by small stocks. The last exercise provides a detailed
analysis of the time-varying property of uncertainty’s risk premium, with turbulent
and calm months defined by different criteria formally.

3.3.1 Sensitivity of the Cross-section to Financial Uncertainty Proxy

We first investigate the robustness of our results to the choice of economic uncertainty
measure. The following exercise replaces the innovations to the macroeconomic
uncertainty measure developed in Jurado et al. (2015) by the innovations to the
financial uncertainty measure proposed by Ludvigson et al. (2021). This last measure
is constructed in a similar way to the macroeconomic uncertainty index, but is based
on a large set of financial variables only. To obtain the sequence of innovations
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defining our proxy of uncertainty, we use the same empirical strategy discussed above
given by fitting a stochastic volatility model of order one to the financial uncertainty
index, and retaining the zero-mean innovations to this process.

Table 3.6 reports the descriptive statistics of the quintile portfolios ranked on the
financial uncertainty beta loadings and the regression coefficients obtained from the
pre-formation rolling regressions using the quintile portfolios as test assets. The main
difference with Table 3.1 is that the dispersion in parameter estimates of the beta
loadings is smaller than for the macroeconomic uncertainty measure. Except for the
first period in Panel A, we observe monotonicity in the average return of the quintile
portfolios. Portfolios with higher exposure to financial uncertainty have lower
average returns in Panels B and D, and higher returns in Panels C and E. Similarly, the
5-1 investment portfolios are negative for Panels B and D, and positive and
statistically significant at 1% for Panels C and E. The differences in profitability across
long-minus-short investment strategies are greater than for the macroeconomic
uncertainty measure, which suggest that the financial uncertainty pricing factor may
have more predictive power about the cross-section of stock returns than the
macroeconomic uncertainty factor.

To obtain an investment portfolio mimicking the dynamics of the financial uncertainty
index, FU, we follow the same procedure introduced in (3.5) and regress the sequence
of financial innovations against the set of quintile portfolios constructed from the
pre-formation beta loadings using 60−month rolling regressions. We denote the
corresponding mimicking portfolio as RFU. Table 3.7 presents the cross-correlations
between the uncertainty measures MU and FU and the corresponding mimicking
portfolio returns RMU and RFU. The correlation between the uncertainty measures
and their corresponding mimicking portfolio returns are between 0.5 and 0.6. The
correlation between the macroeconomic and financial uncertainty measures takes
similar values. These results suggest that although the different uncertainty measures
capture similar changes in the information set there are also sizeable differences across
the uncertainty proxies that point out the importance of considering each measure of
uncertainty as a separate pricing factor. This is formalized in the following
Fama-MacBeth cross-sectional regression.

Table 3.8 reports the coefficients of the cross-sectional regression (3.7) using the return
on the financial mimicking portfolio RFU as additional pricing factor. The set of test
assets is given by 25 investment portfolios ranked according to the beta loadings of the
market and the exposure to the financial uncertainty loadings over each evaluation
period. The risk premium on the financial uncertainty factor is positive in turbulent
periods and negative in calm periods. The magnitude of the risk premium is also
greater than for the asset pricing model that considers the macroeconomic uncertainty
proxy. The coefficients of the remaining factors’ risk premium is also different with
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respect to Table 3.3. This is because the test assets are obtained from a different ranking
of the cross-section of returns that is based on the financial uncertainty beta loadings.

As an additional robustness check, we report in Figure 3.3 the dynamics of the
mimicking portfolio returns based on the financial uncertainty measure and the
corresponding 5-1 investment portfolio. The dynamics of both portfolios are similar to
those of the macroeconomic uncertainty mimicking portfolios. The risk premium on
uncertainty is positive and large over the first years of the 2007-2011 financial crisis
episode and also for 2017-2022. Interestingly, the magnitude of the portfolio returns is
larger for the financial crisis period compared to the mimicking portfolio constructed
from macroeconomic uncertainty. This result suggests that financial uncertainty may
be more informative than macroeconomic uncertainty in periods of financial
turbulence whereas macroeconomic uncertainty may be more relevant in periods of
wide economic distress such as during the COVID-19 pandemic3.

3.3.2 The Role of Omitted Factors

Omitted variable bias arises in standard risk premia estimators whenever the model
used in the estimation does not fully account for all priced sources of risk in the
economy. To correct for possible biases derived from incomplete choices of the space
of pricing factors, Giglio and Xiu (2021) propose a three-pass method to estimate the
risk premium of an observable factor, which is valid even when not all factors in the
model are specified or observed. This procedure is implemented in this section as an
alternative to the FF5 model. These pricing factors are replaced by a set of
unobservable factors that are recovered by principal components applied to the
cross-section of asset returns. This robustness exercise contrasts with existing methods
in the literature that conduct robustness checks to assess the sensitivity of the
estimated risk premia to alternative definitions of the pricing factors or by including
additional variables such as momentum, liquidity, investment, and profitability
factors of Fama and French (1993), Carhart (1997), Pástor and Stambaugh (2003), and
Hou et al. (2015), among others. In this sense, Giglio and Xiu (2021) is more powerful
than these methods in correcting for omitted variable biases in estimating the risk
premium of uncertainty.

Table 3.9 reports the time series average of the uncertainty risk premium estimates
obtained from Giglio and Xiu (2021)’s procedure over each evaluation period. The
availability of different number of assets in the cross-section for each month of the
sample period does not allow us to conduct PCA once and extract a single set of
factors that is valid over the full sample period 1998 to 2022. Instead, we implement
the same rolling window scheme followed in our main framework (or in Bali et al.

3Section 3.4 offers further statistical evidence on the relative predictive ability of MU and FU over these
two turbulent evaluation periods.
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TABLE 3.6: Portfolios sorted by exposure to financial uncertainty

Panel A. 1998-2002

Rank Mean Std. Dev. Pre-Formation β f u Pre-Formation βr f u Post-Formation βr f u

1 0.7124 6.7302 -3.6025 -7.7299 -8.1980
2 -0.5064 5.9259 -1.0694 -4.9531 -4.0490
3 0.1971 5.0866 -1.5110 -1.9920 -2.7907
4 -0.0167 5.0615 -0.2035 -0.3434 -0.3154
5 1.2162 6.7693 1.3748 2.8525 2.3161
5-1 0.5037

[0.3327]

Panel B. 2003-2006

Rank Mean Std. Dev. Pre-Formation β f u Pre-Formation βr f u Post-Formation βr f u

1 1.7289 2.3957 -1.8520 -7.2068 -3.6290
2 1.5053 3.7817 -1.1583 -4.3510 -6.8892
3 1.2663 2.9696 -1.0826 -2.1162 0.3032
4 1.0799 2.7829 -0.3939 0.6860 1.1076
5 0.7915 3.1688 1.6247 2.8474 4.8480
5-1 -0.9374

[-4.6960]

Panel C. 2007-2012

Rank Mean Std. Dev. Pre-Formation β f u Pre-Formation βr f u Post-Formation βr f u

1 -1.1701 7.4377 -1.7951 -5.0654 -4.8387
2 0.2474 6.0331 -1.1986 -4.4248 -4.1211
3 0.2659 5.3742 -0.1828 -0.8567 -1.5341
4 0.6897 5.1138 1.0625 1.6105 1.4179
5 1.5197 6.2462 2.1372 4.7877 4.9773
5-1 2.6898

[2.3838]

Panel D. 2012-2016

Rank Mean Std. Dev. Pre-Formation β f u Pre-Formation βr f u Post-Formation βr f u

1 1.7556 3.8055 -1.8051 -5.3005 -5.2168
2 1.3264 3.3014 -0.9193 -3.2081 -2.0035
3 1.1862 3.0216 -0.1467 -1.0368 -1.4034
4 1.0161 2.8869 0.7306 0.9696 1.1727
5 0.8666 3.1419 2.3266 5.6750 6.3717
5-1 -0.8890

[-1.4509]

Panel E. 2017-2022

Rank Mean Std. Dev. Pre-Formation β f u Pre-Formation βr f u Post-Formation βr f u

1 0.6521 5.3549 -1.8718 -5.5120 -6.0099
2 1.0396 4.2858 -0.7720 -2.1174 -2.6281
3 1.0562 4.3385 -0.2376 -0.7026 -0.2229
4 1.4675 4.6741 0.7051 2.1922 2.1184
5 1.9212 6.6313 1.8538 6.0797 5.6146
5-1 1.2692

[2.7209]

Panel F. 1998-2022

Rank Mean Std. Dev. Pre-Formation β f u Pre-Formation βr f u Post-Formation βr f u

1 0.6938 5.6211 -2.1947 -6.1111 -6.2563
2 0.6947 4.8530 -1.0145 -3.7655 -3.4288
3 0.7785 4.3205 -0.6082 -1.3003 -1.4892
4 0.8462 4.2924 0.4164 1.0528 0.9125
5 1.2914 5.5247 1.8731 4.5366 4.5449
5-1 0.5976

[1.0068]

Note: We form value-weighted quintile portfolios every month by regressing excess individual stock
returns on FU, controlling for the FF5 factors as in equation (3.4), using monthly data over 60−month
rolling regressions. Stocks are sorted into quintiles based on the coefficient β f u from lowest (quintile 1) to
highest (quintile 5). The statistics in the columns labeled Mean and Std. Dev. are measured in monthly
percentage terms and apply to total, not excess, simple returns. The row 5-1 refers to the difference in
monthly returns between Portfolios 5 and 1. The pre-formation betas refer to the value-weighted β f u or
βr f u within each quintile portfolio and are obtained from rolling regressions with the quintile portfolios
as test assets. The last column reports ex-post βr f u factor loadings over each evaluation period, where
RFU is the factor mimicking portfolio obtained from (3.5). We compute the ex-post betas by running the
FF5 model augmented with the RFU factor. Robust t-statistics, adjusted according to Newey and West
(1987), are reported in square brackets. The sample period is divided into five evaluation periods.
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TABLE 3.7: Correlations between macroeconomic and financial measures

MU FU RMU RFU

MU 1 0.5369 0.5926 0.2998
FU 0.5369 1 0.3811 0.6255
RMU 0.5926 0.3811 1 0.4735
RFU 0.2998 0.6255 0.4735 1

Note: The table reports pairwise correlations among the uncertainty measures MU and FU and the
corresponding mimicking portfolio returns RMU and RFU obtained from regression equation (3.5). The
sample period is 1998 to 2022.

TABLE 3.8: Fama-Macbeth factor risk premiums using RFU

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022 1998-2022

const 0.0937 1.0513 0.7555 1.1889 0.9027 0.7895
[0.1484] [5.3063] [1.6771] [4.6385] [2.7889] [3.9086]

MKT 0.2772 0.0702 -0.1076 0.1416 0.5479 0.1956
[0.2874] [0.1715] [-0.1201] [0.3712] [0.7818] [0.5854]

SMB 1.2687 -0.1049 1.0071 -0.0958 0.3674 0.5112
[0.9593] [-0.1507] [2.7735] [-0.2709] [0.5132] [1.3833]

HML -0.6769 1.2632 -1.0555 0.0482 0.2559 -0.0823
[-0.4587] [2.1388] [-1.2376] [0.0963] [0.4984] [-0.1992]

RMW 0.1607 -0.8594 1.0776 -0.1372 -0.4332 -0.0100
[0.1142] [-1.9237] [2.1104] [-0.2358] [-1.2938] [-0.0266]

CMA -0.9013 0.6497 0.0626 -0.9930 0.1639 -0.2337
[-0.8874] [1.2848] [0.0158] [-1.6078] [0.3336] [-0.7081]

RFU 0.0975 -0.1372 0.2352 -0.1046 0.1231 0.0513
[0.7791] [-5.3629] [1.3428] [-1.5447] [1.6996] [0.8909]

Note: The table reports the Fama and MacBeth (1973) factor premiums on 25 portfolios sorted first on
βmkt and then on β f u for the FF5 model augmented with the RFU risk factor obtained as a mimicking
portfolio return from regression (3.5) using financial uncertainty FU as proxy. Robust t-statistics that
account for the first-stage estimation in the factor loadings, adjusted according to Newey and West
(1987), are reported in square brackets. Each column reports the estimates of the factors risk premium for
a different evaluation period.

(2017)) to conduct the three-stage estimation exercise and price uncertainty
dynamically. In the first stage, the unobserved factors are dynamically extracted from
60−month rolling windows together with the corresponding factor loadings. These
loadings are used in a second stage to compute the risk premium associated to each of
the unobserved pricing factors for the same rolling window, denoted as λug. In the
third stage, we run a time series regression between the mimicking portfolio returns
RMUt (or RFUt) and the estimated factors over the same rolling sample to obtain the
loadings βgx. The monthly uncertainty risk premium λgx is obtained by multiplying
the estimated risk premium from the unobserved estimated factors with the loadings
from the latter time series regression such that λgx = λ′

ugβgx. This exercise is repeated
over the full sample period. For each rolling window, the number of factors is set to
explain 99.9% of the variance of the cross-section of returns. The average number of
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FIGURE 3.3: Dynamics of mimicking portfolio return RFU

Top panel reports the dynamics of the mimicking portfolio return RFU obtained from the regression
equation (3.5). Bottom panel reports the dynamics of 5-1 portfolio constructed from sorting the
cross-section of stock returns into five quintiles ranked on β f u. The sample period is 1998 to 2022.

factors across rolling windows is greater than 30. The objective of considering such a
large number of factors is to guarantee that the estimates of the uncertainty risk
premium are free from potential biases due to the omission of relevant pricing factors.
The results in Table 3.9 confirm the evidence from previous exercises that suggests
that the uncertainty risk premium is negative in calm periods and positive in
turbulent periods.

But even if we restrict the number of factors to a range between 7 and 9 (cumulating
70% to 80% of the variance) and repeat the estimation of the uncertainty risk premium
using Giglio and Xiu (2021)’s estimation procedure, we obtain very similar dynamics
for the uncertainty risk premium to those observed in the top panels of Figures 3.2 and
3.3. For ease of comparison, the two panels in Figure 3.4 display four curves given by
(i) the macro (financial) uncertainty mimicking factor RMU (RFU); (ii) the
corresponding LOESS smoothed curve; (iii) the risk premium estimates obtained from
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TABLE 3.9: Macroeconomic and financial uncertainty risk premia by 3-Stage approach

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022 1998-2022

RMU 0.0325 -0.0025 0.0013 -0.0165 0.0094 0.0052
[14.5883] [-1.0131] [0.4896] [-5.4013] [3.4783] [2.8853]

RFU 0.1135 -0.0152 0.0092 -0.0060 0.0092 0.0235
[17.4746] [-1.5995] [1.4266] [-0.6483] [2.1440] [4.6489]

Note: We employ a fixed 60-month rolling window analysis consistent with our main framework and
conduct the same three-stage approach as in Giglio and Xiu (2021) to estimate the monthly risk
premiums of macroeconomic and financial uncertainty. The number of latent factors in each rolling
window is defined dynamically by the cumulative variance explained by these latent factors in PCA.
This table reports the average risk premiums of the five evaluation periods, and the Newey and West
(1987) adjusted t-statistic is reported in square brackets.

the three-stage procedure considering seven unobserved factors, and (iv) its
corresponding LOESS smoothed curve.4 Comparing the risk premium estimates
across asset pricing models in both panels reveals similar dynamics. Interestingly, for
the top panel, the FF5 model augmented with the macroeconomic uncertainty factor
yields higher returns and lower volatility than the model that estimates the factors
dynamically5. The latent factor asset pricing model also reveals two separate
uncertainty episodes during the 2007-2011 evaluation period, and reacts less markedly
during the COVID-19 pandemic uncertainty window.

The findings obtained from the bottom panel share some similarities with the analysis
of the macroeconomic uncertainty risk premium but there are also some distinct
features that are worth mentioning. The risk premium from the latent factor model
using financial uncertainty is highly volatile compared to the mimicking portfolio
return RFU and is positive over the period 2003-2006 and mainly negative during
2007-2011. For the remaining periods, both estimates of the uncertainty risk premium
reflect similar patterns. There are also significant differences between the risk
premium estimates of the latent factor model augmented with macroeconomic
uncertainty (top panel) and the latent factor model with financial uncertainty (bottom
panel) that reveal that the beta exposures (βgx) of the RMU and RFU pricing factors to
the latent seven factor model are very different. These observations suggest that
financial uncertainty risk premium estimates obtained from the latent seven factor
model are not as reliable as the risk premium estimates of macroeconomic uncertainty.

As a final remark on this section, we note that although the factor model approach
proposed by Giglio and Xiu (2021) alleviates potential biases in the risk premium
estimates due to the omission of relevant pricing factors, the static risk premium
estimates reported in Table 3.9 may change with the choice of the evaluation periods,

4The dynamics of the uncertainty risk premia for the asset pricing models that consider 8 and 9 latent
factors are very similar and not reported for space considerations.

5Yet, Giglio and Xiu (2021) show that it is possible to improve the performance of the latent factor
models by optimally choosing the number of factors, instead of fixing them ’ad hoc’.
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as apparent from the dynamics in Figure 3.4. Different strategies to deal with this
problem are discussed in the next section.

FIGURE 3.4: Dynamics of risk premiums estimated by different approaches

In this figure, top panel reports the dynamics of monthly risk premiums on macroeconomic uncertainty
and bottom panel reports the monthly risk premiums on financial uncertainty. Green lines for the
mimicking portfolio returns obtained from macro and financial uncertainty, respectively. Red lines for
the risk premium estimates obtained from the latent factor model obtained from Giglio and Xiu (2021)
three-stage procedure. The LOESS smoothed curves are also reported for each approach. Estimates from
the latter approach are obtained from 60−month rolling windows and fixing the number of latent factors
to 7 throughout the whole sample period 1998 to 2022.

3.3.3 The Effect of Microcaps

Microcaps are widely acknowledged to have the highest equal weighted returns and
the largest cross-sectional dispersions in returns and pricing anomalies. Panel B of
Table 3.5 also reports evidence that suggests that small firms may have a prominent
role on the construction of the economic uncertainty factor.
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Therefore, to assess empirically if the above results are driven by these stylized facts
on microcap firms our second robustness exercise consists of assessing the
replicability of the above results for a restricted cross-section of stock returns given by
removing microcap firms. Following standard practice in the literature, see Hou et al.
(2015), we consider a subset of the cross-section of all stocks listed in the NYSE that is
obtained by removing stocks below the 20th percentile in terms of market
capitalization. Table 3.10 reproduces the empirical exercise in Tables 3.1 and 3.6 using
only the restricted cross-section of stock returns. The results do not present significant
differences with respect to the analysis of the full cross-section of returns. There is
monotonicity in the average returns of the quintile portfolios ranked on the
pre-formation uncertainty beta loadings. Panels A, C and E report positive average
returns for the 5-1 investment strategy, and Panels B and D report negative average
returns. The magnitude of the average returns is smaller than in the previous analysis
suggesting that the inclusion of microcap stocks magnifies the differences between top
and bottom portfolios. We also observe monotonicity in the pre-formation and
post-formation factor loadings and the dispersion of the coefficients is similar to the
results obtained for the full cross-section.

The robustness exercise on the dynamics of the risk premium to the selection of stocks
in the cross-section is completed in Table 3.11 by reporting the parameter estimates of
the cross-sectional Fama-MacBeth regression after removing microcap stocks. The
sign of the coefficients associated to the factor loadings βrmu is consistent with
previous results and shows a negative risk premium for calm periods and a positive
risk premium for turbulent periods. Importantly, removing microcap stocks affects the
magnitude of the risk premium that is smaller in this exercise than for the full
cross-section of stock returns. This result is consistent with the average profitability of
the 5-1 strategies computed in Table 3.10.

3.3.4 Choice of Evaluation Periods

In all our main research, we construct the mimicking portfolio of uncertainty and
estimate the risk premium of uncertainty on a monthly basis. We then group these
monthly excess returns into five turbulent and calm evaluation periods to facilitate
discussion of the time-varying nature of the risk premium. Each evaluation period is
determined ad hoc, and we emphasize that this grouping is independent of the
estimation of both the mimicking portfolio and the risk premium. In other words, the
reported values are simply the averages of the monthly estimated excess returns in
each evaluation period, and these values are not affected by how the monthly
estimates are grouped. In this section, we formally define turbulent and calm months
using two approaches, including an exogenous method based on the Chicago FED
National Activity Index (CFNAI), and an alternative method that relies on a threshold
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TABLE 3.10: Portfolios sorted by exposure to macro uncertainty without microcaps

Panel A. 1998-2002

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 0.2885 4.9012 -9.5192 -16.3936 -15.3156
2 0.6780 4.5845 -2.3261 -2.9238 -3.0741
3 -0.2885 4.9216 -1.0598 -1.3123 -3.4146
4 0.1879 6.3974 0.9253 -0.6755 -0.1789
5 1.5136 7.5169 7.3534 14.8549 14.879
5-1 1.2251

[1.5164]

Panel B. 2003-2006

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 1.2873 3.1615 -6.2988 -12.8732 -14.5321
2 1.4290 2.9486 -3.7453 -4.7624 -5.7695
3 1.4637 2.9975 -0.8938 -1.4268 2.5913
4 1.2530 2.9046 1.0881 1.1964 -0.5345
5 1.1307 3.2470 6.6514 17.4271 14.4566
5-1 -0.1566

[-0.4886]

Panel C. 2007-2012

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 -0.4461 8.1402 -6.5079 -16.8483 -17.9029
2 0.3166 6.0682 -2.1923 -4.3538 -5.2923
3 0.3439 5.0057 0.0580 1.0333 0.9558
4 0.5149 5.2792 1.8075 2.0697 2.2895
5 1.0283 5.2306 5.1675 12.5086 11.0088
5-1 1.4744

[1.1362]

Panel D. 2012-2016

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 1.4979 3.8287 -4.4456 -18.1326 -16.9263
2 1.2289 3.3053 -0.9387 -5.1928 -5.6681
3 1.0827 2.8651 0.1856 0.4706 0.0373
4 1.4146 2.9730 2.0214 1.4543 4.1225
5 0.9674 3.4761 3.8933 10.6857 12.4689
5-1 -0.5304

[-0.7947]

Panel E. 2017-2022

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 0.1671 5.4052 -5.1163 -16.4194 -15.8980
2 0.9065 4.0575 -1.6094 -4.5646 -2.9620
3 1.3107 4.4841 -0.4601 -0.6111 -0.8004
4 1.4393 5.0894 1.4794 3.8395 2.7013
5 2.4622 5.6175 3.5297 13.4066 14.3214
5-1 2.2951

[3.0247]

Panel F. 1998-2022

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Post-Formation βrmu

1 0.5236 5.4536 -6.3635 -16.2713 -16.2726
2 0.8905 4.3657 -2.0897 -4.3457 -4.5852
3 0.7617 4.2299 -0.4036 -0.3292 -1.2773
4 0.9565 4.7939 1.4800 1.6235 2.0447
5 1.4466 5.3212 5.2398 13.6215 13.3988
5-1 0.9230

[1.6908]

Note: We form value-weighted quintile portfolios every month by regressing excess stock returns on MU,
controlling for the FF5 factors as in equation (3.4), using monthly data over 60−month rolling
regressions. The sample considers a subset of the cross-section of all stocks listed in the NYSE that is
obtained by removing stocks below the 20th percentile in terms of market capitalization. Stocks are
sorted into quintiles based on the coefficient βmu from lowest (quintile 1) to highest (quintile 5). The
statistics in the columns labeled Mean and Std. Dev. are measured in monthly percentage terms and
apply to total, not excess, simple returns. The row 5-1 refers to the difference in monthly returns between
portfolio 5 and portfolio 1. The pre-formation betas refer to the value-weighted βmu or βrmu within each
quintile portfolio and are obtained from rolling regressions with the quintile portfolios as test assets. The
last column reports ex-post βrmu factor loadings over each evaluation period, where RMU is the factor
mimicking portfolio obtained from (3.5). We compute the ex-post betas by running the FF5 model
augmented with the RMU factor. Robust t-statistics, adjusted according to Newey and West (1987), are
reported in square brackets. The sample period is divided into five evaluation periods.



86 Chapter 3. Hedging Economic Uncertainty from Cross-section of Stock Returns

TABLE 3.11: Fama-Macbeth factor risk premiums without microcaps

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022 1998-2022

const 0.9038 0.9063 0.6728 1.2875 1.0010 0.9569
[1.9654] [3.3605] [2.3688] [5.9678] [3.8712] [6.2385]

MKT -0.7389 -0.1346 0.2919 -0.0594 0.3307 -0.0537
[-0.9363] [-0.2999] [0.4070] [-0.1642] [0.5911] [-0.1896]

SMB 3.4497 -0.2543 -0.4055 0.1063 0.4095 0.6953
[2.0918] [-0.2785] [-0.7216] [0.2254] [0.4287] [1.2622]

HML 2.0798 1.0580 -1.1491 0.5922 0.2146 0.5339
[0.9858] [1.8525] [-2.3867] [1.1470] [0.3492] [1.0105]

RMW -0.3909 0.0438 -0.2611 -0.5415 0.3112 -0.1698
[-0.4601] [0.0584] [-0.3286] [-1.0282] [0.8324] [-0.5432]

CMA 1.1326 1.6166 -0.7249 0.0883 -0.2993 0.3021
[0.9314] [2.4169] [-1.5700] [0.2064] [-0.5782] [0.8436]

RMU 0.0381 -0.0266 0.0675 -0.0144 0.0807 0.0321
[1.1693] [-1.5687] [0.9548] [-0.5351] [2.4621] [1.5576]

Note: The table reports the Fama and MacBeth (1973) factor premiums computed from the cross-section
of stocks listed in the NYSE after stocks in the bottom 20% of the distribution in terms of market
capitalization. The dependent variable in the cross-sectional regression is given by 25 portfolios sorted
first on βmkt and then on βmu for the FF5 model augmented with the RMU risk factor obtained as a
mimicking portfolio return from regression (3.5) using MU as proxy for economic uncertainty. Robust
t-statistics that account for the first-stage estimation in the factor loadings are reported in square
brackets. Each column reports the estimates of the factors risk premium for a different evaluation period.

value for the uncertainty index itself, MU or FU respectively. By applying these
statistical criteria, we identify turbulent and calm months more precisely and then
compare the risk premium of uncertainty during turbulent versus calm periods in
detail.

There are 292 months in the entire sample, and the turbulent or calm months are
identified using either the CFNAI index or a threshold of the uncertainty index. Then,
for these selected turbulent and calm months—which are typically
noncontinuous—we employ a cross-section regression to estimate the risk premiums
instead of using the Fama–MacBeth regression in our main analysis. Specifically,
rather than running the cross-sectional regression in each month as in the second stage
of Fama–MacBeth and then averaging the monthly estimated risk premiums, we
conduct a single cross-sectional regression for turbulent or calm months using the
average excess returns of our test assets, which consist of 25 portfolios sorted by βMKT

and βMU .

Regarding the exogenous definition based on the CFNAI index, we use both the
monthly index’s three-month moving average (CFNAI-MA3) and the diffusion in
CFNAI. According to the Federal Reserve Bank of Chicago, the thresholds are set at
-0.7 for CFNAI-MA3 and -0.35 for diffusion in CFNAI. Thus, months with
CFNAI-MA3 below -0.7 or diffusion in CFNAI below -0.35 are defined as turbulent,
while all others are classified as calm. By these criteria, CFNAI-MA3 yields 27
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turbulent months and 271 calm months, and the diffusion in CFNAI identifies 38
turbulent months and 254 calm months.

Table 3.12 presents the estimated risk premiums for macroeconomic and financial
uncertainty from cross-section regressions in turbulent and calm months, as defined
by the CFNAI-MA3 and diffusion in CFNAI, respectively. For macroeconomic
uncertainty, Panels A and B show that the risk premium is positive and significant in
turbulent months, consistent with our main findings, whereas it hovers around zero
and is not significant in calm months. For financial uncertainty in Panel C and D, the
risk premium is positive in turbulent months and negative in calm months, both
significant and again in line with our main findings. The magnitudes of these risk
premiums differ somewhat from the Fama–MacBeth estimates, and the risk premium
of RMU is close to zero in calm months. The difference stems from the selection
criteria of the CFNAI index, whereby only extremely turbulent months are classified
as such, while months with relatively mild uncertainty shocks are deemed calm.
Nonetheless, the risk premiums in turbulent months remain larger in magnitude than
in calm months, reinforcing the evidence for the time-varying property of
uncertainty’s risk premium under the exogenous definition.

For the alternative definition based on the threshold value of the uncertainty index,
we follow the suggestion in Jurado et al. (2015), setting the threshold as the mean of
the uncertainty index plus 1.65 times its standard deviation. Months with an
uncertainty index above this threshold are defined as turbulent, and the remaining
months are correspondingly defined as calm. Under this definition by threshold of
uncertainty index, there are 18 turbulent months and 274 calm months identified for
MU, while 14 turbulent months and 278 calm months are identified for FU.

Table 3.13 presents the estimated risk premiums for RMU and RFU using
cross-sectional regressions in turbulent versus calm months, as determined by the
threshold of uncertainty index. Relative to the exogenous approach, the signs of the
risk premiums in turbulent and calm months remain consistent, though the
magnitudes differ partly because fewer turbulent months are identified by the
threshold. Nonetheless, the results again show an increase in risk premiums when
moving from calm to turbulent months, supporting our main findings.

3.4 Comparing Asset Pricing Models

We obtain two main conclusions from the previous exercise. Economic uncertainty is a
priced factor in the cross-section of stock returns and, more importantly, the associated
risk premium is negative in calm periods and positive in turbulent periods. The
pricing factor can be proxied by a hedging portfolio with weights obtained from
projecting the uncertainty measures on a set of test assets. The magnitude and
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TABLE 3.12: Risk premium by cross-sectional regression in turbulent vs calm, defined
by CFNAI

Panel A. RMU turbulent vs calm, defined by CFNAI-MA3 (-0.7)

Turbulent (21 months) const MKT SMB HML RMW CMA RMU

Risk premium 0.9977 0.2032 1.9728 -0.7073 -0.5914 0.4831 0.1691
[2.3880] [0.3030] [1.4770] [-0.5350] [-0.4120] [0.3630] [7.9030]

Calm (271 months) const MKT SMB HML RMW CMA RMU
Risk premium 1.0002 0.6624 0.0460 0.1397 0.4098 0.2460 0.0023

[30.8960] [12.7500] [0.4440] [1.3630] [3.6870] [2.3820] [1.4080]

Panel B. RMU turbulent vs calm, defined by Diffusion in CFNAI (-0.35)

Turbulent (38 months) const MKT SMB HML RMW CMA RMU
Risk premium 1.3367 1.1332 1.0188 -0.6223 -0.6897 -0.2632 0.1085

[4.8050] [2.6310] [1.0220] [-0.6310] [-0.9050] [-0.3710] [7.8520]

Calm (254 months) const MKT SMB HML RMW CMA RMU
Risk premium 0.9496 0.5540 0.0598 0.1836 0.4915 0.3417 0.0002

[22.8190] [8.5960] [0.4010] [1.2440] [4.3100] [3.2170] [0.1170]

Panel C. RFU turbulent vs calm, defined by CFNAI-MA3 (-0.7)

Turbulent (21 months) const MKT SMB HML RMW CMA RFU
Risk premium 0.6448 0.7497 2.6789 -2.6133 0.7447 -1.8693 0.2672

[1.7330] [1.2770] [3.0740] [-1.7840] [0.5370] [1.7450] [4.9730]

Calm (271 months) const MKT SMB HML RMW CMA RFU
Risk premium 1.0275 0.6200 -0.0087 0.2874 0.3063 0.4282 -0.0119

[35.6370] [13.6340] [-0.1290] [2.5310] [2.8500] [5.1580] [-2.8470]

Panel D. RFU turbulent vs calm, defined by Diffusion in CFNAI (-0.35)

Turbulent (38 months) const MKT SMB HML RMW CMA RFU
Risk premium 1.2604 0.7655 1.6458 -0.3311 0.6786 0.4062 0.1538

[4.0210] [1.5300] [1.7920] [-0.3110] [0.6900] [0.5740] [3.3810]

Calm (254 months) const MKT SMB HML RMW CMA RFU
Risk premium 0.9610 0.6090 -0.0340 0.1401 0.2868 0.2416 -0.0136

[20.4910] [8.1360] [-0.2480] [0.8790] [1.9510] [2.2830] [-1.9930]

Note: The table reports the factor premiums estimated by cross-sectional regressions in turbulent and
calm months for RMU and RFU, corresponding to Panels A–D. Turbulent months are defined by the
statistical criteria of CFNAI-MA3 < −0.7 or diffusion in CFNAI < −0.35, and all other months are
designated as calm. The dependent variable in each cross-sectional regression is the average excess
return of 25 portfolios, which are sorted first on βmkt and then on βmu. The regressions follow the FF5
model augmented with the RMU risk factor, obtained as a mimicking portfolio return from regression
(3.5) using MU as a proxy for economic uncertainty (and β f u for the estimations involving RFU). Robust
t-statistics, adjusted according to Newey and West (1987), are reported in square brackets.

statistical significance of the risk premium varies across uncertainty regimes but is
robust to the characterization of the economic uncertainty measure.

To confirm these results and provide further statistical support to the above findings,
we carry out a model comparison exercise. The objective of this exercise is twofold.
First, we assess the added predictive ability of the economic uncertainty risk factors
against the FF5 model that acts as benchmark. This is done in a nested setting using
the recent methodologies discussed in Barillas and Shanken (2017) based on the
difference of squared Sharpe ratios and Barillas and Shanken (2018) through the
comparison of posterior probabilities of each model candidate. Second, we also
compute the posterior probabilities of a battery of model candidates that include
different combinations of the FF5 model augmented with our macro and financial
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TABLE 3.13: Risk premium by cross-sectional regression in turbulent vs calm, defined
by uncertainty (threshold = mean + 1.65*std)

Panel A. RMU turbulent vs calm, defined by threshold of MU

Turbulent (18 months) const MKT SMB HML RMW CMA RMU

Risk premium 0.3626 -0.0932 2.6688 -1.1245 -0.2908 2.1981 0.1054
[1.1140] [-0.2050] [ 2.1590] [-1.0420] [-0.2800] [1.9610] [7.3790]

Calm (274 months) const MKT SMB HML RMW CMA RMU
Risk premium 1.0419 0.6768 0.0214 0.1578 0.3791 0.1359 0.0083

[48.7440] [22.6290] [0.2640] [2.2260] [5.5470] [1.8450] [8.8940]

Panel B. RFU turbulent vs calm, defined by threshold of FU

Turbulent (14 months) const MKT SMB HML RMW CMA RFU
Risk premium -0.4527 -1.6759 2.3749 -2.3599 0.3949 -0.5005 0.2033

[-0.9660] [-2.1220] [2.8980] [-1.3970] [ 0.3170] [-0.3220] [3.4550]

Calm (278 months) const MKT SMB HML RMW CMA RFU
Risk premium 1.0732 0.7454 0.0743 0.2016 0.3349 0.3015 -0.0016

[45.4530] [18.7410] [1.800] [2.3690] [5.3390] [3.8500] [-0.5430]

Note: The table presents the factor premiums estimated by cross-sectional regressions in turbulent and
calm months for RMU and RFU. Turbulent months are defined using the threshold criterion such that
MU or FU falls below its designated threshold, with the remaining months classified as calm. The
dependent variable in each cross-sectional regression is the average excess return on 25 portfolios sorted
first by βmkt and then by βmu. The model specification follows the FF5 framework, augmented by the
RMU risk factor, which is obtained as the mimicking portfolio return from regression (3.5) using MU as a
proxy for economic uncertainty (and by β f u for estimations involving RFU). Robust t-statistics, adjusted
according to Newey and West (1987), are reported in square brackets.

uncertainty measures, see Barillas et al. (2020) for the implementation of this
procedure.

Barillas and Shanken (2017) show that it is sufficient to regress the pricing factor
candidate into the FF5 model to determine its additional value to predict the
cross-section of stock returns. The factor increases the predictive ability of the
benchmark asset pricing model if it is not spanned by the FF5 model. This is
statistically assessed by testing the significance of the coefficient alpha (abnormal
excess returns not explained by the asset pricing model) in the following time series
regression:

RMUt = α + βmkt MKTt + βsmbSMBt + βhml HMLt + βrmwRMWt + βcmaCMAt + ϵt.
(3.8)

Table 3.14 reports the estimates of this regression over the five evaluation periods. If
the null hypothesis given by α = 0 is statistically rejected then the proposed additional
factor increases the predictive ability of the benchmark model. In contrast, if the null
hypothesis is not rejected then the FF5 model is capable of explaining the returns of
the mimicking portfolio and, hence, the additional pricing factor is spanned by a linear
combination of the existing risk factors. This table also reports the estimates of the
factor regression that considers the financial uncertainty mimicking portfolio, RFU, as
the pricing factor proxying economic uncertainty. The results provide overwhelming
evidence on the added value of the uncertainty pricing factors. The coefficient alpha is
statistically significant for most periods and both asset pricing models. The evidence
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is stronger for the macroeconomic uncertainty risk factor than for the financial
uncertainty factor. The latter uncertainty factor does not seem to add value to the FF5
model in 1998-2002 and 2012-2016 and marginally does at 5% significance level during
the period 2017-2022. Interestingly, the sign of the alpha coefficient is also informative
about the sign of the uncertainty risk premium. This is so because the intercept of the
time series regression equation can be interpreted as the mean return of the mimicking
portfolio once we control for the effect of the remaining pricing factors.

TABLE 3.14: Regression analysis of RMU & RFU across evaluation periods

alpha MKT SMB HML RMW CMA

Panels A. 1998-2002

RMU 0.0394 0.0054 -0.0069 0.0032 0.0003 -0.0069
[2.5327] [0.6944] [-0.5971] [0.3334] [0.0318] [-0.3775]

RFU 0.1183 -0.0257 -0.0070 0.0187 -0.0146 -0.0600
[0.9323] [-1.4011] [-0.3435] [0.7869] [-1.2613] [-2.9736]

Panels B. 2003-2006
RMU -0.0199 -0.0152 -0.0093 0.0157 -0.0104 -0.0025

[-2.4846] [-3.6720] [-1.5673] [2.8167] [-2.4119] [-0.2666]
RFU -0.0615 -0.0630 0.0174 -0.0575 -0.0512 -0.0215

[-4.4971] [-5.6298] [2.1489] [-3.8001] [-4.2302] [-1.6906]
Panels C. 2007-2011

RMU 0.0648 -0.0393 -0.0102 0.0273 -0.0091 -0.0230
[2.1821] [-9.3380] [-1.3878] [3.1437] [-1.3843] [-2.4022]

RFU 0.2587 -0.0958 0.0029 0.0880 -0.0342 -0.1158
[4.0623] [-10.6268] [0.1964] [10.2993] [-0.9786] [-4.2357]

Panels D. 2012-2016
RMU -0.0103 -0.0193 0.0025 0.0024 0.0128 -0.0170

[-0.5664] [-6.8975] [0.4944] [0.2493] [2.7566] [-1.5490]
RFU -0.0400 -0.0723 -0.0299 -0.0195 -0.0155 -0.0203

[-0.9245] [-8.6359] [-1.7926] [-1.8134] [-0.7320] [-1.5223]
Panels E. 2017-2022

RMU 0.0763 -0.0158 0.0037 0.0004 0.0004 -0.0134
[2.6819] [-7.3302] [0.4970] [0.1134] [0.0905] [-3.5749]

RFU 0.0968 -0.0331 0.0034 0.0061 -0.0056 -0.0357
[1.9080] [-6.9733] [1.9260] [0.4242] [-0.3928] [-1.3594]

Note: The table reports the factor loadings from the time series factor regressions (4.8) that consider RMU
and RFU, respectively, as dependent variables and the FF5 model as regressors. Both economic and
financial uncertainty factors are obtained from the mimicking portfolio approach in regression equation
(3.5). Panels A to E report the estimates of the factor loadings over different evaluation periods. Robust
t-statistics, adjusted according to Newey and West (1987), are reported in square brackets.

The above comparison can be formalized statistically. Applying the results in Gibbons
et al. (1989), we know that the standardized squared alpha coefficient can be
expressed as the difference in squared Sharpe ratios between the FF5 model
augmented with the economic uncertainty risk factor and the FF5 benchmark model.
In this case suitable Wald type tests are sufficient to determine the statistical
significance of the uncertainty factor in a nested setting.
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The Barillas and Shanken (2017), Barillas and Shanken (2018), Barillas et al. (2020)
propose a series of statistical tests based on the maximum achievable squared Sharpe
ratio and the Bayes inference to evaluate various risk factors in asset pricing models,
which includes comparisons of both nested and nonnested settings. Specifically, the
comparison of nested models in this study focuses on analyzing the FF5 model against
the 6-factor model, which incorporates all factors from the FF5 model plus a
mimicking factor for innovations in uncertainty. The comparison of nonnested models
explores the competition among all 6-factor models that include mimicking factors for
different types of uncertainty or volatility. We will discuss these statistical tests related
to our empirical conduction in our research, starting with the Sharpe ratio test.

For the Sharpe ratio tests in nested setting, suppose an given asset pricing model:

R = α + β f + ε

The α coefficient, the intercept term in the regression of the test assets’ excess returns
on the factors, is recognized as the deviation of the test asset’s returns from those
predicted by the asset pricing model. Therefore, the α coefficient reflects the
performance of asset pricing models or factors and measures mispricing. A non-zero α

indicates a deviation, suggesting that the asset pricing model is not perfect and could
be enhanced to achieve a higher Sharpe Ratio.

For two asset pricing models, M1 and M2:

M1 : R = α1 + β1 f1 + ε1

M2 : R = α2 + β2 f2 + ε2

Ideally, α1 and α2 should be zero, and the factors, f1 and f2, should attain the
maximum achievable Sharpe ratio, indicating no mispricing in both asset pricing
models. In an optimal setting, the factors within these models would cover the
tangency portfolio for the entire investment universe, thereby maximizing the
achievable Sharpe ratio. However, suppose both M1 and M2 are potentially imperfect
and exhibit varying performances. The extent of model mispricing can be evaluated
through a quadratic expression involving the alphas, which represents the potential
for enhancing the squared Sharpe ratio. M1 is considered to outperform M2 if the
improvement in the Sharpe ratio from addressing mispricing by M1 is less than the
improvement derived from mispricing by M2, as described.

Sh2 ( f1, f2, R)− Sh2 ( f1)<Sh2 ( f2, f1, R)− Sh2 ( f2)

Sh2 (·) signifies the maximum squared Sharpe ratio achievable from portfolios
composed of the given returns. The formula positions M1 on the left side and M2 on
the right side, illustrating the Sharpe ratio improvement achieved by incorporating
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factors from one model into the factor set of the other (specifically, adding f2 into M1

and f1 into M2). Additionally, the formula considers adding the same test assets to
both factor sets. Since these added test assets are identical for both sides of the
equation, they can be omitted, resulting in the following adjustment to the formula:

Sh2 ( f1, f2)− Sh2 ( f1)<Sh2 ( f2, f1)− Sh2 ( f2)

Therefore, the critical mispricing for comparing models relates to the misalignment of
factors in one model with those in another. The returns of the test assets, denoted as R,
are inconsequential in this evaluation, as the ranking of models and the discrepancies
in metrics persist irrespective of varying test asset selections. This remains valid
whether or not the test assets are accurately priced by either model. Both inequalities
can be employed to compare asset pricing models based on model mispricing. Clearly,
these are equivalent to the direct comparison of model Sharpe ratios:

Sh2 ( f1)>Sh2 ( f2)

In this context, M1 is considered the superior model, assuming that a higher Sharpe
ratio is achievable by investing in f1 compared to f2. Currently, the comparison of
nested asset pricing models based on Sharpe ratios is accomplished. The model that
demonstrates a higher Sharpe ratio or requires a smaller improvement in the
maximum achievable Sharpe ratio can be regarded as the better model.

Regarding the Sharpe ratio test in nonnested setting, for the two nonnested models A
and B, which include factors fAt and fBt respectively,

MA : Rt = αAt + βA fAt + εAt

MB : Rt = αBt + βB fBt + εBt

it is assumed that all time series, including the factor returns and test assets returns,
are jointly stationary and ergodic with finite fourth moments. The squared maximum
Sharpe ratios achievable from the factors are given by:

θ2
A = µ′

AV−1
A µA

θ2
B = µ′

BV−1
B µB

Where, the µs represent the nonzero means of the two sets of factors, and the Vs are
the invertible covariance matrices. The corresponding sample quantities will be:

θ2
A
ˆ = µ′

A
ˆ V−1

A
ˆ µÂ

θ2
B
ˆ = µ′

B
ˆ V−1

B
ˆ µB̂
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Where, V̂ is the maximum likelihood estimator of V, the population covariance
matrix. For the two nonnested models, the asymptotic distribution of the difference in
their sample squared Sharpe ratios is given by:

√
T
(︂[︂

θ2
A
ˆ − θ2

B
ˆ
]︂
−
[︁
θ2

A − θ2
B
]︁)︂ A∼ N (0, E

[︁
d2

t
]︁
)

dt = 2 (uAt − uBt)−
(︁
u2

At − u2
Bt
)︁
+
(︁
θ2

A − θ2
B
)︁

in which uAt = µ′
AV−1

A ( fAt − µA) and uBt = µ′
BV−1

B ( fBt − µB).

Based on the asymptotic distribution of the difference between two nonnested models,
a direct test of θ2

A = θ2
B can be conducted to evaluate the models. If the difference in

squared Sharpe ratios is significant, a superior model supported by a higher Sharpe
ratio will be substantiated. The foundation for testing nonnested models lies in the
asymptotic variance. However, when two models include overlapping factors,
differentiating between scenarios where the null hypothesis might hold becomes
crucial from both economic and statistical perspectives.

One scenario is that the common factors span the (true) maximum Sharpe ratio
portfolio based on factors from both models. In this setting, the squared Sharpe ratio
of each model equals that of the common-factors model, making the other factors
redundant. To assess this spanning condition, an alpha-based test can be utilized,
where the factors excluded from each model collectively serve as the left-hand-side
returns. If the spanning condition is rejected, it suggests that some or all of the
additional factors contribute to an increased squared Sharpe ratio, and the equality
between the models may or may not be maintained.

In situations where the spanning is not supported, as indicated by E
[︁
d2

t
]︁
> 0, a direct

test of θ2
A = θ2

B utilizing the established framework is feasible. Alternatively, if there is
a prior belief that exact spanning is implausible, ruling it out ahead of time, the direct
test becomes the preferable approach. Empirical analyses consistently reject the
spanning condition via the alpha-based test in all cases considered. Thus, our focus
typically shifts to the direct test in practical applications.

In addition to the Sharpe ratio test, the Bayes test developed by Barillas and Shanken
(2018) offers another effective method. This test is based on the joint alpha restriction
for a set of test assets within a Bayesian framework. The prior beliefs about the extent
of mispricing in the asset pricing models are economically motivated. The posterior
probability that α is restricted to be zero is shown to be a function of the Gibbons Ross
Shanken (GRS) F-statistic. The Barillas and Shanken test extends from nested models
to nonnested models, providing a robust approach to model comparison and
validation.

In the nested setting of such Bayes test, similarly to the Sharpe ratio test, the core
concept of the Bayes test is that the comparison of asset pricing models containing
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tradable factors focuses primarily on determining whether one asset pricing model
can adequately price the factors in the other models. This approach evaluates the
efficacy of models based on their ability to explain the variability and returns of
factors considered by competing frameworks.

For a given multifactor model with N test assets and K factors:

rt = α + β ft + εt

Where rt represents the excess returns of the test asset, ft is the vector of factors, and εt

represents the residuals, which follow a normal distribution. Both rt and εt are vectors
of length N, while α is also a vector of N. The factor ft is a vector of length K, and β is
a matrix of dimensions N × K. Under the null hypothesis of zero-alpha, the expected
returns are linearly related to the βs as follows:

E (rt) = βE ( ft)

where E ( ft) represents the factors’ risk premium, a vector of length K. The GRS test of
the null hypothesis, based on the F-statistic with degrees of freedom N and
T − N − K, will equal the Wald statistic times (T − N − K)/(NT).

W = T
α̂′ ∑̂

−1
α̂

1 + Sh (F)2

α̂′ ∑ˆ −1
α̂ =

(︂
Sh (F, R)2 − Sh (F)2

)︂
Where, Sh(F)2 denotes the maximum squared sample Sharpe ratio achievable over
portfolios composed of factors; Σ̂ is the covariance matrix estimated by maximum
likelihood estimates. Sh(F, R)2 represents the squared Sharpe ratio calculated over
both the factors and the returns of test assets. This formula implies that under the null
hypothesis, where α = 0, the tangency portfolio derived from both the factors and the
returns of the test assets aligns with the tangency portfolio that is based solely on the
factors.

Under the alternative hypothesis, where α ̸= 0, the F-statistic follows a noncentral F
distribution and includes a noncentrality parameter λ:

λ
(︂

1 + Sh (F)2
)︂
)/T = α′∑−1

α = sh (F, R)2 − sh (F)2

The sh(F, R)2 and sh(F)2 represent the population Sharpe ratios. Under the null
hypothesis where λ = 0, the tangency portfolio corresponding to the factor and asset
returns is equivalent to the one based solely on the factors.
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Then, the Bayesian procedure can be established, initiating with diffuse priors for β

and Σ. The diffuse prior for β and Σ refers to Jeffreys (1998), is shown as follows.

P
(︁

β, ∑
)︁

∝
⃓⃓
∑
⃓⃓−(N+1)/2

Under the null hypothesis, the prior for α concentrates at zero. For the alternative
hypothesis, we assume a multivariate normal informative prior for α, conditional on β

and ∑.

P
(︁
α|β, ∑

)︁
= MVN

(︁
0, k ∑

)︁
The parameter k reflects the belief regarding the potential magnitude of deviations
from the expected return relation. For a test asset, this formula indicates that k
represents the prior expectation of the squared alpha divided by the residual variance,
which is the expected increase in the maximum squared Sharpe ratio by adding the
asset to the given factor. Consequently, when setting the maximum value of the
Sharpe ratio, denoted as Shmax, the square root of the maximum expected squared
Sharpe ratio under the alternative hypothesis, the required k will be:

k =
(︂

Sh2
max − Sh ( f )2

)︂
/N

The next step involves estimating the Bayes factor, which quantifies the relative
support between the null hypothesis H0 : α = 0 and the alternative hypothesis
H1 : α ̸= 0.

BF = ML (H0) /ML (H1)

For the specified multifactor model and given priors for β and Σ, the restricted
marginal likelihood ML (H0), where α is constrained to zero, is equivalent to:

⃓⃓
F′F
⃓⃓−N/2|SR|−(T−K)/2

The unrestricted marginal likelihood ML (H1), where α is unconstrained to zero, is
equivalent to: ⃓⃓

F′F
⃓⃓−N/2|S|−(T−K)/2Q

Here, SR and S represent the cross-product matrices of the OLS residuals under the
respective hypotheses. The scalar Q is given by:

Q =

(︃
1 +

a
(a + k)

(W/T)
)︃ T−K

2 (︂
1 +

a
k

)︂−N/2

a =
(︂

1 + Sh (F)2
)︂

/T

Where, W, as previously mentioned, is the GRS F-statistic multiplied by
(NT)/(T − N − K). The Bayes factor for the null hypothesis against the alternative
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hypothesis is estimated as follows:

BF =
ML (H0)

ML (H1)
=

1
Q

(︃
|S|
|SR|

)︃(T−K)/2

Under the prior value k0 and let the Qk0 equal to the value of Q, the Bayes factor for k0

against k will be:

BFk0,k = Qk0 /Q

The Bayes factor evaluates the preference for testing a factor-pricing model against a
more general alternative, namely, the extent to which the model’s zero-alpha
restriction aligns with the empirical estimates. To compare measures of uncertainty
based on asset pricing models, a further Bayes test called the relative test is necessary.
This test allows us to compare one factor-pricing model against other such models.
The relative test for comparing measures of uncertainty based on the FF5 model
serves as an example to elucidate the framework of the relative test.

M : r = α1 + β1[MKT, SMB, HML, RMW, CMA] + ε1

Ma : r = α2 + β2[MKT, SMB, HML, RMW, CMA, RMU] + ε2

Relative : RMU = α∗ + β∗[MKT, SMB, HML, RMW, CMA] + ε∗

Where, M represents the FF5 model and Ma refers to the six-factor model after
incorporating the mimicking factor of macroeconomic uncertainty, RMU, as the sixth
factor into the FF5 model (Or mimicking factor of financial uncertainty, RFU). The
relative test primarily relies on the Relative model, in which the additional factors
RMU are used as test assets and estimated by the factors in the FF5 model. If α∗ = 0,
the tangency portfolio (and associated Sharpe ratio) based on all the factors in Ma can
be achieved through investment in the factors from M, which has fewer factors. If
α∗ ̸= 0, a higher (squared) Sharpe ratio can be obtained by exploiting all the factor
investment opportunities, which means all the factors in FF5 model and the additional
factor, RMU.

Hence, following the same concept as used in the Sharpe ratio test and the Barillas and
Shanken test, the relative test is conducted to evaluate α∗ in the Relative model. The
null hypothesis in the relative test is α∗ = 0, which suggests that M is the superior
model, since the FF5 model can achieve the same performance or Sharpe ratio but
using fewer factors than the six-factor model. The alternative hypothesis in the
relative test is α∗ ̸= 0, indicating that the six-factor model, Ma, will outperform the FF5
model, since a higher Sharpe ratio can be achieved. This increase in performance
reflects the potential improvement of the FF5 model when RMU or RFU is added as
the sixth factor.

Through the Bayes factor and the posterior probability for the null and alternative
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hypotheses in the relative test, the Bayes test indicates the preference for a hypothesis
or the more suitable asset pricing model. Suppose the Bayes factor favors the null
hypothesis with a zero α∗. In this scenario, the factors uninvolved in the six-factor
model are priced perfectly by the factors in the original FF5 model, suggesting that the
FF5 model is superior as it provides the same pricing ability using fewer factors.
Conversely, if the Bayes factor prefers the alternative hypothesis, it indicates that the
multifactor model including all the factors (the six-factor model) performs better. This
preference arises because the factors uninvolved in the original FF5 model cannot be
perfectly priced, leading to more significant mispricing than in the original model.

For the nonnested setting of Bayes test, based on the framework discussed in the
section on nested models, it is possible to conduct the Bayes test of a factor model
against a more general alternative as well as between two nested factor models, which
are the foundation of the Barillas and Shanken test for comparing nonnested models.
The comparison between nonnested models can be achieved by examining a
collection of asset pricing models, both nested and nonnested, and decomposing the
marginal likelihood for each model. For example, when comparing the factors in FF3
models, there is a collection of four models which includes the CAPM model, FF3
model and two nonnest models {MKT HML} and {MKT SMB}.

r = α1 + β1MKT + ε1

r = α2 + β2[MKT, HML] + ε2

r = α3 + β3[MKT, SMB] + ε3

r = α4 + β4[MKT, HML, SMB] + ε4

Given the marginal likelihood, MLj, for each model j in the collection with the
corresponding prior probability P

(︁
Mj
)︁
, the posterior probability under Bayes’ rule is

given by:
P
(︁

Mj | D
)︁
= {MLj × P

(︁
Mj
)︁
}/{∑

i
MLi × P (Mi)}

Where D represents the entire sample of factors and test assets. This formula requires
that the posterior probability of every model be conditional on the same data D, hence
the restrictions of each model apply not only to the omitted factors denoted as f ∗ but
also to the test assets represented by r, when computing the ML. Conversely, the ML
for the encompassed factors f relies on their unrestricted joint density. Hence, the
aspect of multivariate regression becomes crucial.

f = α + βMKT + ε

Suppose that the multivariate regressions of f on MKT, f ∗ on (MKT, f ) and r on
(MKT, f , f ∗) satisfy the distributional conditions. The ML for a model M containing
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factor f is given by:

ML = MLU ( f | MKT)× MLR ( f ∗ | MKT, f )× MLR (r | MKT, f , f ∗)

Where the restricted and unrestricted regression ML can be estimated according to the
framework in the last section, respectively. For MLU ( f | MKT), the f serves as the
left-hand-side returns and MKT as the right-hand-side returns in the calculation.
Similarly, MLR ( f ∗ | MKT, f ) is computed by configuring f ∗ as the left-hand-side
returns and (MKT, f ) as the right-hand-side returns. The posterior model
probabilities are calculated by substituting the corresponding ML values for each
model. By using uniform prior model probabilities, we ensure that no model receives
preferential treatment, an approach that suits this research context well. This method
places greater emphasis on the influence of the data on our beliefs concerning the
models. From the posterior probabilities, it becomes possible to rank all the asset
pricing models in the collection and make comparisons.

It is vital to highlight a key distinction between the framework of nonnested model
comparison and other, more typical asset-pricing test methods, including variations of
the classical GRS test and Bayesian tests for nested model comparisons discussed in
the last section. These conventional tests focus mainly on whether alpha equals zero
when regressing excess returns on the model factors.

In contrast, the comparison of nonnested models introduces an additional
criterion—that all of the model’s factors must be truly essential for pricing. This leads
to the unrestricted component of a model’s ML, assuming that every included factor
improves the attainable Sharpe ratio. The comprehensive joint measure of model
likelihood is therefore calculated as the product of both restricted and unrestricted
components. Thus, our task involves not only identifying which set of factors
generates the highest Sharpe ratio but also evaluating whether a model achieves this
efficiently and economically, considering our prior beliefs about alphas.

Panel A of Table 3.15 reports the test statistic and corresponding p-value for both
proxies of uncertainty across the five evaluation periods. The p-values of the
asymptotic tests based on the difference of squared Sharpe ratios in the row Sharpe Diff
vs FF5 confirm the insights obtained from the time series regressions and show
statistically the value of including economic uncertainty as an additional pricing
factor. This is observed for both measures of economic uncertainty and across all
sample periods. The above results also suggest that appropriate proxies for
uncertainty may depend on the economic outlook. Thus, macroeconomic uncertainty
may be more suitable to explain the cross-section of returns during periods of
economic distress whereas financial uncertainty may be more relevant in periods of
financial turmoil. To add further support to these claims, we compare both
FF5-augmented models in a non-nested setting. Barillas et al. (2020) show that, under
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TABLE 3.15: Model comparison based on Sharpe ratio and Bayes tests (RMU & RFU)

Panel A: Six-factor models vs FF5

1998-2002 2003-2006 2007-2012 2012-2016 2017-2022

FF5+RMU FF5+RFU FF5+RMU FF5+RFU FF5+RMU FF5+RFU FF5+RMU FF5+RFU FF5+RMU FF5+RFU

Squared Sharpe 0.1900 0.2054 0.4848 0.5143 0.4357 0.6838 0.1951 0.2139 0.5429 0.261
Sharpe Diff vs FF5 0.0338 0.0491 0.0353 0.0648 0.1426 0.3907 0.0092 0.0281 0.3752 0.0934

[0.0014] [0.0002] [0.0027] [0.0005] [0.0013] [0.0000] [0.0046] [0.0014] [0.0062] [0.0002]
Sharpe Diff vs FF6 -0.0153 -0.0295 -0.2481 -0.0189 0.2890

[0.0002] [0.0004] [0.0001] [0.0014] [0.0001]
Bayes Factor 0.9025 0.7945 1.0212 0.8014 0.3070 0.0382 1.1365 0.9525 0.0612 0.5081
Post. prob. vs FF5 0.5256 0.5572 0.4947 0.5551 0.7651 0.9632 0.4681 0.5122 0.9423 0.6631

Panel B: Tests based on non-nested posterior probabilities

1998-2002 2003-2006 2007-2012 2012-2016 2017-2022

FF5 0.2181 0.2276 0.0200 0.2642 0.0285
FF5+RMU 0.2416 0.2229 0.0651 0.2325 0.4652
FF5+RFU 0.2744 0.2840 0.5236 0.2774 0.0560
FF5+RMU + RFU 0.2659 0.2655 0.3916 0.2260 0.4503

Note: Panel A reports the statistics and p-values of different tests for model comparison across the five
evaluation periods. The first row reports the squared Sharpe ratios obtained from the FF5+RMU and
FF5+RFU asset pricing models. The second row reports the difference of squared Sharpe ratios between
the former models and the FF5 benchmark. The p-values in this case are obtained from a nested Wald
test using Gibbons et al. (1989) procedure. The fourth row reports the difference of squared Sharpe ratios
between FF5+RMU and FF5+RFU. The p-values in this case are obtained from a Normal test using
Barillas et al. (2020) non-nested procedure. Rows 6 and 7 report the Bayes Factor statistics and posterior
probabilities of models FF5+RMU or FF5+RFU, depending on the column, against the FF5 model.
Robust p-values are reported in square brackets. Panel B reports the posterior probabilities of different
model candidates in a non-nested setting. Posterior probabilities are computed using the Bayesian
approach and assumptions in Barillas and Shanken (2018). FF5+RMU + RFU denotes a seven factor
asset pricing model obtained by augmenting FF5 model with the macro and financial uncertainty factors
constructed as mimicking portfolios.

the null hypothesis given by equality of the squared maximum Sharpe ratios
attainable from the two sets of non-nested factors, the difference of squared Sharpe
ratios follows a zero-mean Normal distribution. The row Sharpe Diff vs FF6 in Panel A
of Table 3.15 reports the difference of squared Sharpe ratios and corresponding
p-values for the FF5+RMU model against FF5+RFU. The results provide strong
evidence in favor of the latter model except for the period 2017-2022. This result shows
that, during the outbreak of the COVID-19 pandemic, a wider measure of economic
uncertainty such as our macroeconomic uncertainty proxy carried more informational
content on the cross-section of stock returns than the financial uncertainty proxy.

Panel A also reports the Bayes Factor (BF) computed as the ratio of maximum
likelihood functions under the null and alternative hypotheses and the value of the
posterior probability (pp) of the augmented six-factor models against the FF5
benchmark. The posterior probability of the alternative FF5 model is 1 − pp. To
compute these posterior probabilities, we follow the Bayesian procedure in Barillas
and Shanken (2018) and fit the FF5 model to the set of 25 test assets discussed above.
A popular diffuse prior for β and Σ, see also Jeffreys (1998), is P (β, ∑) ∝ |∑|−(n+1)/2,
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where n is the number of test assets. The parameter β denotes the vector of factor
loadings in the FF5 specification and Σ is the covariance matrix of the vector of
residuals obtained from fitting the FF5 asset pricing model to the set of test assets.
Under the null hypothesis α = 0 (restricted model), the prior for alpha is concentrated
to zero. For the alternative hypothesis (unrestricted model), the informative prior for α

conditional on β and Σ is assumed to be a multivariate normal distribution
MVN (0, kΣ). The parameter k represents the prior expectation of the squared alpha
divided by the residual variance and reflects individuals’ beliefs about the potential
magnitude of deviations from the expected return relationship. Suitable choices for k
are discussed in Barillas and Shanken (2018). The results in Table 3.15 provide support
for the augmented asset pricing model that includes economic uncertainty as an
additional pricing factor. However, there are differences in predictive ability across
uncertainty proxies and evaluation periods. Thus, the support for the economic
uncertainty measure obtained from the posterior probability is usually stronger for the
financial uncertainty measure than for the macroeconomic uncertainty measure except
for 2017-2022.

The following exercise aims to determine the robustness of this result to a battery of
model candidates in a non-nested framework. The alternative models that we
consider in Panel B of Table 3.15 are (i) FF5 model, (ii) FF5+RMU, (iii) FF5+RFU, (iv)
FF5+RMU + RFU. The latter model is given by the FF5 factor model augmented with
both macroeconomic and financial uncertainty factors. The posterior probabilities
between non-nested models are computed using the methodology in Barillas and
Shanken (2018). For each evaluation period, the sum of the probabilities assigned to
each model is equal to one. The results vary across periods but the overall conclusion
is in line with previous findings: the FF5 model augmented with the financial
uncertainty pricing factor (mimicking portfolio return) receives the highest posterior
probability in most periods with the exception of 2017-2022. In the latter period, the
asset pricing model with the macroeconomic uncertainty proxy clearly outperforms
the FF5+RFU model. The differences in the distribution of posterior probabilities
between 2007-2012 and 2017-2022 are also worth discussing. During the first turbulent
period the financial uncertainty factor adds explanatory power to the FF5 model to
predict the cross-section of returns. This is a clear indication that the source of distress
in financial markets was due to shocks in the financial sector. In contrast, in 2017-2022,
uncertainty in the financial sector is not as relevant for explaining the cross-section of
stock returns. In this period, economic uncertainty was due to shocks to the wider
economy triggered by the outbreak of the COVID-19 pandemic that spread across the
entire economy. In this case, most posterior probability is assigned to the FF5 model
augmented with the macroeconomic uncertainty pricing factor.
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3.5 Conclusion

In Chapter 3, we find that stocks with high past exposure to aggregate economic
uncertainty have lower expected returns than stocks with low exposures in calm
periods, and higher expected returns in turbulent periods. This result is interpreted as
evidence of an insurance premium paid by investors in low uncertainty regimes to
hedge against higher uncertainty periods. This evidence is further exploited to
construct pricing risk factors based on variables that proxy macroeconomic and
financial uncertainty. Our indicators of economic uncertainty are given by innovations
to well known econometric-based measures of aggregate conditional volatility
introduced by Jurado et al. (2015) and Ludvigson et al. (2021).

Our empirical findings provide overwhelming support to the existence of a
time-varying risk premium on economic and financial uncertainty. The magnitude
and sign of this premium on the cross-section of risky assets vary with the uncertainty
regime and choice of uncertainty proxy. The magnitude is, in general, stronger for
financial uncertainty than for macroeconomic uncertainty and the sign is negative for
calm periods and positive for turbulent periods. This evidence is robust to the
methodology used for estimating the risk premium and, to a large extent, the presence
of unobserved factors, although our proposed approach is the Fama and French (2015)
five factor model augmented with the economic uncertainty risk factors. Our
empirical results on the relationship between the uncertainty risk premium and the
uncertainty regime appear robust to the choice of evaluation period, as revealed by
the dynamics of the macroeconomic and financial mimicking portfolio returns.

The predictive ability of the economic uncertainty risk premium is also supported
statistically. Thus, we find overwhelming statistical evidence in support of
augmenting the FF5 model with our measures of macroeconomic and financial
uncertainty. The suitability of each uncertainty measure for explaining the
cross-section of stock returns depends on the uncertainty regime and the type of shock
producing the turbulent episode. Thus, our financial uncertainty measure is found to
explain better the cross-section of stock returns than the corresponding
macroeconomic uncertainty proxy during the 2007-2011 financial crisis period
whereas the latter uncertainty measure is superior during the 2017-2022 period
characterized by the COVID-19 pandemic and a sustained period of stagflation.
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Chapter 4

Pricing LSTM-measured
Macroeconomic Uncertainty

We examine the pricing of economic uncertainty in the cross-section of stock returns,
when uncertainty is proxied by innovations to the non-parametric counterparts of the
macroeconomic and financial volatility measures of Jurado et al. (2015) and Ludvigson
et al. (2021). Long short-term memory neural networks (LSTMs) extract additional
forecastable variation from uncertainty indices’ conditional expectations, relative to
Jurado et al. (2015) and Ludvigson et al. (2021) parametric counterparts (PCA
extracted factors informing a FAVAR econometric specification). Yet, we show that
both deliver negative uncertainty risk premia in calm periods and positive ones in
turbulent times, stemming from a hedging portfolio that funds the cost of insuring the
portfolio in calm periods with the positive excess returns accrued during uncertain
ones. Comparing both, we provide (nested and non-nested) statistical evidence in
support of the relatively bigger risk premia of non-parametric uncertainty factors
(when exposed to similar uncertainty shocks) as well as of their better predictive
performance, particularly during financial crisis.

4.1 Introduction

As the complexity of financial markets continues to escalate, the limitations of
multi-factor pricing frameworks are gradually becoming apparent. These issues
include the static factor assumption, where factor loadings are assumed to be constant
and unable to capture the dynamic impact of economic cycles or market structure
changes on asset risk. Additionally, traditional factor construction presents challenges
such as high multicollinearity, the rapid obsolescence of newly discovered factors, and
the difficulty of extracting remaining potential factors, leading to information
omission. To address these issues, an increasing number of studies focus on applying
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machine learning models in asset pricing. While these methods can enhance the
ability to predict risk premiums, they also face insurmountable black-box limitations,
as discussed in 4.2.1.

In contrast to these studies, we propose in Chapter 2 a method for constructing
nonlinear factors using the LSTM model. We use the LSTM model to forecast
macroeconomic and financial data and further measure uncertainty. By leveraging the
LSTM model’s superior predictive ability for time-series data, we aim to eliminate the
predictable components within the forecasting as much as possible. LSTM-based
uncertainty, calculated from the conditional volatility of the unpredictable
components, retains the same economic significance as linear uncertainty measures
and is an interpretable factor constructed through nonlinear methods in asset pricing
models. Incorporating nonlinear factors into multi-factor pricing models will result in
significant improvements.

According to our analysis in Chapter 2, LSTM-based uncertainty offers better
explanatory and predictive capabilities for macroeconomic variables. Uncertainty has
already been validated in Chapter 3 as a pricing factor with a time-varying risk
premium. Therefore, we believe that LSTM-based uncertainty, compared to linear
uncertainty measures, will exhibit a similar time-varying risk premium and offer
better explanatory and predictive capabilities for risk premiums. By comparing
LSTM-based and linear uncertainty measures, we will also verify the feasibility of
using LSTM to construct factors.

To validate our hypothesis regarding the predictive function and dynamics of our
LSTM-based macroeconomic uncertainty risk premium, we employ three distinct
empirical strategies prior to comparing the LSTM-derived uncertainty measure with
the linear measure. Initially, we create a mimicking (or hedging) portfolio by ranking
the cross-section of stock returns. These rankings are determined by firms’ exposure
to LSTM-based macroeconomic uncertainty, using a methodology akin to that of Engle
et al. (2020), and are estimated on a monthly basis. This involves creating a mimicking
portfolio as direct projections of economic uncertainty measures against a selection of
base asset returns. Secondly, we examine the dynamics of the uncertainty premium
over these five periods through Fama-MacBeth (Fama and MacBeth, 1973)
cross-sectional regressions. Lastly, we employ the novel asset pricing model proposed
by Giglio and Xiu (2021) to demonstrate the robustness of the uncertainty premium
estimates, ensuring they remain unaffected by potential omitted variable biases.

Our primary hypothesis is evaluated using cross-sectional stock price data obtained
from CRSP, which includes all available stocks listed on the NYSE, NASDAQ, and
AMEX. Our analysis reveals that the beta exposure of stock returns to macroeconomic
uncertainty estimated by the LSTM model, exhibits a monotonic increase across
different uncertainty regimes, even after adjusting for the Fama and French (2015) FF5
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model. Consistent with existing literature and our empirical findings using a linear
uncertainty measure detailed in Chapter 3, these beta loadings are negative for stocks
in the lower quintiles and positive for those in the higher quintiles, based on their
exposure to uncertainty. However, we observe the same result as Chapter 3 and
divergence from the traditional literature: the risk premium on macroeconomic
uncertainty by LSTM is negative during periods of decreasing conditional volatility
(calm periods) and positive during periods of increasing conditional volatility
(turbulent periods).

These findings are corroborated by estimates of the uncertainty risk premium derived
from Fama-MacBeth cross-sectional regressions applied to an FF5 model augmented
with the LSTM-based uncertainty proxy, as well as through the 3-Stage latent factor
regression methodology from Giglio and Xiu (2021). We observe a negative risk
premium for the uncertainty proxy during calm periods (2003-2006 and 2012-2016)
and a positive risk premium during turbulent periods (1998-2002, 2007-2011, and
2017-2022).

The other main objective of this research is to offer a thorough comparison between
our LSTM-based macroeconomic uncertainty measure and the linear measures
proposed by Jurado et al. (2015), within the context of asset pricing theory. This
comparison is conducted in two primary ways. First, we evaluate the risk premium
perspective by comparing the returns of stocks with varying loadings on both types of
uncertainty and their associated risk premiums during calm and turbulent periods.
Specifically, we identify calm and turbulent months formally based on the CFNAI
index as Section 3.3.4 and the median of the uncertainty measure, as suggested by Bali
et al. (2017), then compare differences in stock returns and risk premiums when
uncertainty shocks are captured by both measures. Secondly, we assess the
explanatory power of the uncertainty measures on cross-sectional stock returns using
the asset pricing model comparison technique proposed by Barillas and Shanken
(2017, 2018); Barillas et al. (2020). Including these uncertainty measures as an
additional risk factor in the FF5 model, we compare the predictive ability of these
6-factor models against the FF5 model and against each other in both nested and
non-nested settings.

The results of these comparisons reveal that stocks with higher loadings on
macroeconomic uncertainty estimated by the LSTM model exhibit higher returns
during turbulent periods and lower returns during calm periods. The return disparity
between portfolios with the highest and lowest uncertainty loadings is more
pronounced when using the LSTM-based measure as a proxy for macroeconomic
uncertainty, compared to the linear measure. Consequently, the LSTM-based measure
yields positive risk premiums during turbulent months and negative premiums
during calm months, with larger absolute values. Investors can choose to pay higher
insurance during calm periods to secure greater compensation in turbulent periods
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when using the LSTM-based measure to hedge against macroeconomic uncertainty.
Additionally, during the 2007-2011 financial crisis and the calm evaluation periods of
2003-2006 and 2012-2016, the LSTM-based uncertainty measure enhances the
explanatory power of the FF5 model effectively compared to the linear measure, as
evidenced by the significantly larger Sharpe ratio and higher posterior probability in
Bayesian model comparison tests. This improvement stems solely from the
application of machine learning models to measure uncertainty, which excel in
handling large-dimensional data and nonlinear changes compared to linear models.

The structure of this Chapter is as follows: Section 4.2 reviews the literature on using
machine learning models for asset pricing and outlines the theoretical basis for
assessing and pricing macroeconomic uncertainty. Section 4.3 analyzes how
LSTM-based macroeconomic uncertainty is priced across the cross-section of stock
returns over five non-overlapping subsamples between 1998 and 2022, characterized
by calm and turbulent episodes. Section 4.4 presents the model comparison exercise to
statistically evaluate the risk premiums associated with LSTM and linear frameworks,
comparing the explanatory power of the LSTM-based measure against linear
measures, which also include financial uncertainty. Finally, Section 4.5 offers
conclusions.

4.2 Theoretical Background

4.2.1 Literature Review

This section offers a broader review of the applications of machine learning models in
the field of asset pricing. It categorizes these methods into feature-based machine
learning approaches and end-to-end deep learning approaches.

In the category of feature-based methods, most approaches focus on dimensionality
reduction for high-dimensional data. For example, the 3-Stage latent factor regression
used in this context is a dimensionality reduction framework that employs Principal
Component Analysis (PCA). PCA is a statistical technique used to simplify complex
data sets by transforming them into a series of linearly uncorrelated variables called
principal components. This helps address the challenges posed by the interaction of
multiple variables in traditional financial data analysis and prediction. PCA assists in
resolving multicollinearity issues in multivariate regression equations for financial
time series data, making it an effective method for handling large multivariable
datasets.

Lettau and Pelger (2020) extends PCA by combining it with arbitrage pricing to
explain the non-arbitrage factors in data, offering a model for expected excess returns
on high-dimensional financial panel data. It considers pricing errors in expected
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returns, and by adding a non-arbitrage penalty term to PCA, it addresses the low
signal-to-noise ratio in financial data while acquiring information related to kernel
pricing. Ait-Sahalia and Xiu (2017) proposes a method to estimate common factors in
high-dimensional data using high-frequency data, even as sampling frequency and
covariance matrix dimensions increase. This approach represents the covariance
matrix of stock portfolios as a low-rank common structure with a sparse residual
matrix. The factors revealed by PCA explain a larger proportion of asset returns and
provide better out-of-sample estimation than those from observable portfolio factors,
such as market portfolios, Fama-French portfolios, or ETF portfolios. These studies
illustrate PCA’s strength in capturing the most meaningful sub-signals amidst random
signals by including them in uncorrelated random variables with gradually
decreasing variance, proving effective for high-frequency, high-dimensional financial
data. PCA can decompose matrices of large panel datasets to extract latent factors
without the need for pre-specification of observable common factors, reducing
expertise requirements for researchers.

Similar to PCA, Singular Value Decomposition (SVD) is another effective method for
dimensionality reduction widely used in machine learning. It is applied in areas such
as feature decomposition, compression, noise reduction, recommendation systems,
and natural language processing. Wang (2017) proposes a tunable SVD algorithm that
extracts financial factors from stock return models. By adjusting algorithm
parameters, it reduces sensitivity to data matrix errors, enhancing the model’s
robustness and effectiveness.

Independent Component Analysis (ICA), a more recent mathematical tool, is an
extension of PCA. While PCA focuses on second-order statistics of financial data, ICA
is better at identifying intrinsic features in higher-order, non-Gaussian distribution
data. It effectively uncovers relationships among random variables, observed data,
and hidden variables. For stock market data, identifying the most independent signals
can minimize risks and achieve optimal portfolio allocation. Back and Weigend (1997)
applies ICA to multivariable financial time series in stock investment portfolios. ICA’s
main idea is to map observed multivariate time series linearly into an independent
component space. This captures features that cause significant changes in stock prices
and those with high frequency but little contribution to overall stock levels. Noise size
depends on amplitude rather than frequency, providing a new perspective for
understanding mechanisms impacting stock market data.

To handle the high dimensionality of financial market data, a common approach is to
first reduce high-dimensional data into a lower dimension. This reduced data is then
classified or predicted, and subsequently transformed back into high-dimensional
data to address the issues of dimensionality and overfitting. Autoencoders and
Support Vector Machines (SVM) are examples of such methods, using nonlinear
approaches for dimensionality reduction, unlike PCA.
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In Gu et al. (2021), an autoencoder is used to compress returns into a low-dimensional
set of factors. This introduces a conditional autoencoder model for individual stock
returns, allowing asset characteristic covariates to have a nonlinear effect on factor
exposure. Nonlinear features are mapped through covariate neural networks and
expressed in beta form, creating an autoencoder with economic insights. By
embedding neural networks, the traditional autoencoder is enhanced under beta
constraints. Suimon et al. (2020) discusses a flexible curve model to describe yield
rates, providing insights into government bond market pricing. In Huang (2012), a
stock selection method using Support Vector Regression (SVR) and Genetic Algorithm
(GA) is proposed. This approach ranks stocks based on returns using SVM, selecting
the top-ranking stocks to form a portfolio. The Genetic Algorithm is used for feature
selection and global optimization within the parameter space to find the optimal
parameter solution, thus identifying the best subset of input variables.

Besides handling data dimensionality, Bayesian classification is a probability-based
approach. Fulop and Yu (2017) implements a Bayesian learning method, assuming
that during normal periods, asset prices divided by dividends follow a dynamic
regression process around a long-term mean. In bubble periods, asset prices fluctuate
wildly, and Bayesian learning is used for real-time joint estimation of the model’s
latent states and parameters. An empirical analysis on the S&P 500 shows this method
effectively detects market bubbles.

Machine learning classification theories are also widely applied in asset pricing. Nti
et al. (2019) examines how macroeconomic variable fluctuations affect liquidity in
Ghana’s stock market, proposing a model that uses these variables to predict the stock
market with a hybrid RF and RNN machine learning model. This approach addresses
multicollinearity issues of macro factors in market predictions. Krauss et al. (2017)
evaluates the effectiveness of deep neural networks, gradient boosting trees, and
random forests for statistical arbitrage on the S&P 500 dataset. The empirical results
indicate that random forests outperform gradient boosting trees and deep neural
networks.

Compared to feature-based machine learning methods, end-to-end approaches can
extract features directly from large amounts of raw data, representing data from
various sources in matrix form. By merging these vectors as a unified input, they
enhance data diversity. Deep learning excels in extracting complex features and fitting
nonlinear functions, with some methods eliminating intricate internal logic design.
The evolution of financial big data has made end-to-end methods well-suited for big
data and high-frequency financial data analysis.

Gudelek et al. (2017) proposes using a Convolutional Neural Network (CNN) to
predict ETF price changes. It generates image snapshots within a limited time
window each day, using common trend indicators, momentum indicators, and
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fundamental analysis metrics as input features. The use of multiple ETFs expands the
dataset size and reduces information variance. To explore correlations across different
markets, Hoseinzade and Haratizadeh (2018) presents a specialized CNN framework
applicable to various data sources, such as the S&P 500, NASDAQ, Dow Jones NYSE,
Dow Jones DJI, and Russell Index. These are combined into a three-dimensional
tensor table, allowing each prediction model to use all information within the tensor
to forecast a specific market’s future trends. Kim and Kim (2019) employs different
representations of the same data, generating stock time series and stock chart images
(including candlestick charts, high and low price line charts, and volume bar charts).
By integrating LSTM and CNN models, it predicts stock prices and creates model
variations to adapt to changing data. These studies reveal that while CNN’s predictive
performance is average, it effectively integrates diverse data sources from multiple
perspectives, stabilizing the model and enhancing algorithm robustness.

Reinforcement learning is a subfield of machine learning focused on making decisions
based on environmental inputs to maximize expected returns. Cao et al. (2021)
examines using reinforcement learning to derive optimal hedging strategies for
derivatives when transaction costs are involved. Cao and Zhai (2022) develops a deep
neural network-enhanced recurrent model to estimate both short-term and long-term
trading impacts, evaluating the effect of prices on stock returns.

Advances in computing have expanded data sources. Multi-source textual data often
feature high redundancy, low informational density, large volumes, and high
frequency, making them useful for monitoring market sentiment, public opinion
analysis, and investor viewpoints. Ding et al. (2015) represents documents as dense
vectors, utilizes an event embedding neural tensor network for training, and applies a
deep convolutional neural network to semantically combine input event sequences to
predict stock price changes. As large language models rapidly evolve, they not only
handle text but also have some capacity for images and structured data. Increasingly,
research aims to leverage multimodal data to dynamically capture complex
relationships between key events and market responses, enhancing the accuracy and
interpretability of return predictions.

It’s important to note that machine learning methods often face a trade-off between
accuracy and model complexity. Simpler models like linear regression are highly
interpretable but cannot handle complex data relationships. In contrast, deep neural
networks can manage these complexities but may become ”black boxes,” relying on
metrics like accuracy rather than traditional asset pricing evaluation standards.
Investors, however, prefer clear explanations of investment logic to navigate changing
market conditions. Our research aims to compute pricing factors using machine
learning models as introduced in Chapter 2, while maintaining asset pricing on a
linear factor model basis. This approach retains some explanatory power for
understanding risk premiums.
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4.2.2 Pricing LSTM-based Uncertainty

This section outlines the methodology used to price aggregate uncertainty in the
cross-section of risky assets, alongside data and variable definitions. Two main
approaches commonly identified in the literature for pricing the cross-section of stock
returns are Fama-MacBeth (Fama and MacBeth, 1973) cross-sectional regressions and
the creation of a mimicking portfolio that optimizes the correlation between the
pricing anomaly (e.g., climate risk, macroeconomic uncertainty) and a set of base asset
returns. More recently, Giglio and Xiu (2021) introduced a three-stage method to price
the cross-section of stock returns. This approach builds upon the Fama-MacBeth
method by incorporating an initial stage that estimates a set of unobservable pricing
factors using principal component analysis. This methodology merges principal
component analysis with two-pass cross-sectional regressions to yield consistent
estimates of the risk premium for any observed factor. In this research, we apply all
these methods to compute the risk premium on macroeconomic uncertainty as
determined by the LSTM model in Section 4.3.

We denote ri
t as the excess return over the risk-free rate for stock i at time t. These

returns are modeled under a linear multifactor framework, where asset returns are
influenced by innovations in the pricing factors { fkt, ukt} and an idiosyncratic
component εi

t:

ri
t = ai +

K

∑
k=1

βi
k ( fkt − E[ fkt]) + βi

u (ut − E[ut]) + εi
t, (4.1)

where ai denotes the risk premium for the risky asset i and βi
k represents asset i’s risk

exposure to the k = 1, . . . , K risk factors. Similarly, βi
u denotes the asset’s sensitivity to

uncertainty risk, capturing its exposure to the uncertainty factor; fkt − E[ fkt]

represents the factor innovations, while ut − E[ut] reflects innovations in the
uncertainty risk factor. In this basic setup, risk exposures are considered constant over
time. However, this assumption is relaxed in the empirical application by updating
the pricing methods on a monthly basis using rolling regressions. The risk premium
can be expressed as:

ai =
K

∑
k=1

βi
kλk + βi

uλu, (4.2)

where λk is the price of risk for each of the k factors, and λu is the price of
macroeconomic uncertainty risk. Here, βi

k and βi
u are viewed as the quantity of risk

associated with the respective pricing factors.

To examine how LSTM-based macroeconomic uncertainty is priced across the
cross-section of stock returns, we consider a comprehensive sample of common stocks
traded on the NYSE, AMEX, and NASDAQ exchanges from 1993 to 2022. We exclude
stocks with a share price less than $5 or exceeding $1, 000. The dataset comprises
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monthly return and volume data sourced from CRSP, with stock returns adjusted for
delisting to mitigate survivorship bias. Differing from Ang et al. (2006), our analysis
exclusively uses monthly returns to align with the frequency of our uncertainty
measures.

The sample data is segmented into five evaluation periods of roughly equal length,
designed to encompass various uncertainty regimes. The first period captures the
dotcom stock market bubble, peaking on Friday, March 10, 2000. This era experienced
a substantial rise in stock prices, driven by the widespread adoption of the World
Wide Web and the Internet, which fueled the rapid valuation growth of new dot-com
startups. The second period, from 2003 to 2006, is marked by low and stable inflation
and minimal financial market volatility, coinciding with the long economic expansion
since World War II. Unfortunately, the Great Moderation’s tranquility was disrupted
by the 2007-08 financial crisis, referred to as the Great Recession, forming the third
period in our analysis from 2007 to December 2011. This era also includes short-lived
financial turmoil, such as the European sovereign debt crisis from 2009 into the
mid-to-late 2010s, characterized by several Eurozone states (Greece, Portugal, Ireland,
and Cyprus) facing challenges in repaying or refinancing government debt or bailing
out over-indebted banks. The fourth period, spanning 2012-2016, is defined by
booming stock markets and relative financial market stability. The final period, from
2017 to 2022, encompasses a global economic recession caused by the COVID-19
pandemic outbreak in February 2020, followed by prolonged economic slowdown,
manifesting as stagnation in economic growth and consumer activity. A more
thorough investigation into the definition of calm and turbulent evaluation periods
and the corresponding results are presented in Section 4.4.1.

In line with Bali et al. (2017), we estimate the uncertainty beta for each stock and each
month within the different evaluation periods by conducting monthly rolling
regressions of excess stock returns on the LSTM-based measure of macroeconomic
uncertainty, while controlling for the FF5 factors, over a fixed 60-month window.
Accordingly, the first regression to determine the pre-formation beta loadings spans
from January 1993 to December 1997. The monthly risk-free rate, represented by the
one-month US Treasury bill rate, along with the FF5 pricing factors, is sourced from
Kenneth French’s data library. These factors include the excess market return (MKT),
the size factor (SMB), defined by a portfolio return derived from a small-minus-large
investment strategy, the value factor (HML), representing a high-minus-low portfolio
that leverages differences in profitability based on stocks’ book-to-market ratios, the
profitability factor (RMW), defined by a robust-minus-weak portfolio return, and the
investment factor (CMA), constructed as a conservative-minus-aggressive portfolio
return.

Our estimation of macroeconomic uncertainty using an LSTM nonlinear framework
builds upon the econometric-based measures from Jurado et al. (2015) and Ludvigson
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et al. (2021), who distinguish between macroeconomic and financial uncertainty.
Jurado et al. (2015) developed a factor-augmented predictive regression model
utilizing a comprehensive set of macroeconomic and financial time series, which
includes variables such as real output, income, employment, consumer spending,
price indexes, bond and stock market indexes, and exchange rates. Economic
uncertainty is interpreted as the conditional volatility of the unpredictable component
of the future value of each series. These individual conditional volatilities are then
aggregated into a macroeconomic uncertainty index for horizons of one, three, and
twelve months. Financial uncertainty is similarly derived, relying on a broad set of
financial variables, as detailed in Ludvigson et al. (2021). In our previous research
presented in Chapter 2, we proposed a nonlinear framework employing two LSTM
models with a recurrence structure, in contrast to the linear factor-augmented
predictive regression, to forecast these macroeconomic and financial time series. We
adhere to the same definition of uncertainty, thus modeling the conditional volatility
of the unpredictable forecast errors from the LSTM models, as in Jurado et al. (2015).

To gauge economic uncertainty, we adopt approaches similar to those in Ang et al.
(2006) and Engle et al. (2020), which emphasize innovations to a predictive state
variable for the cross-section of returns, as explained in Bali et al. (2017). Specifically,
Ang et al. (2006) mitigate the persistence in the volatility index by using the first
differences of the VIX, while Engle et al. (2020) address serial correlation in climate
risk news by applying an AR(1) process to capture innovations. Similarly, we employ
a stochastic volatility model to characterize the time series of conditional volatilities,
specified as follows:

log (σm
t+1)

2 = γm
0 + γm

1 log (σm
t )2 + ηm

t+1, ηm
t+1

iid∼ N(0, τm), (4.3)

where σm
t+1 represents the conditional volatility of the forecast error term from our

LSTM forecasting model applied to macroeconomic time series. The innovations ηm
t+1

are used as a primary measure of macroeconomic uncertainty; τ j denotes the standard
deviation of these innovations, and γm

0 and γm
1 are the parameters capturing serial

dependence in the conditional volatility process.

Our methodology for deriving uncertainty measures is not designed to completely
eliminate the serial dependence in shocks. Instead, a certain degree of time series
persistence is essential for capturing time series effects since investors are likely to
adjust their risk premiums dynamically only in reaction to shocks that provide
information about future economic uncertainty levels. This is particularly significant
for the periods analyzed, as we define calm uncertainty regimes as those occasions
marked by declining uncertainty, which are depicted by persistent negative shocks in
model (4.3). Conversely, turbulent periods are distinguished by sudden surges in
uncertainty, represented by sequences of positive shocks in model (4.3).
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The dynamics of our LSTM-based macroeconomic uncertainty measure, denoted as
ηm

t+1, alongside the linear measure from Jurado et al. (2015)—illustrated in Figure 4.1
with blue and red lines, respectively—demonstrates conspicuous time series
persistence across different evaluation periods. This persistence is marked by
short-term trends that are negative during calm periods and positive during turbulent
periods. Notably, although both time series serve as proxies for macroeconomic
uncertainty under similar definitions and exhibit high correlation, they diverge in the
magnitude of identified uncertainty shocks. The LSTM-based measure indicates a
more pronounced shock during the 2007-2008 financial crisis and a milder shock
during the COVID-19 pandemic compared to the linear measure by Jurado et al.
(2015). In less volatile periods, such as those between these significant shocks, our
LSTM-based measure captures greater disturbances. Our prior empirical analysis in
Chapter 2 provides evidence that the LSTM-based measure possesses comparable or
superior explanatory and predictive capabilities concerning key macroeconomic
variables than the linear measure by Jurado et al. (2015). We will first conduct an
empirical analysis of our LSTM-based macroeconomic uncertainty, examining its
pricing implications in the cross-section of returns, followed by a thorough
comparison between the LSTM-based and linear measures within the context of asset
pricing theory.

FIGURE 4.1: One-month-ahead innovations in LSTM-based macroeconomic uncer-
tainty

The sequences displayed are derived from model (4.3), using the conditional volatility measures
generated by our LSTM-based nonlinear framework and the linear framework from Jurado et al. (2015),
spanning the period from 1998 to 2022. The blue line represents the LSTM-based macroeconomic
uncertainty measure, while the red line corresponds to the linear macroeconomic uncertainty measure.
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4.3 Empirical Analysis

To investigate the role of macroeconomic uncertainty measured by LSTM as a factor in
asset pricing models, and to assess whether the risk premiums associated with this
measure vary according to the uncertainty regime, we conduct three main analyses in
this section: the mimicking portfolio approach, the Fama-Macbeth regression, and the
3-Stage latent factor regression. Initially, we develop an empirical model, considering
the LSTM-based macroeconomic uncertainty measure, henceforth denoted as MUL.
We adopt a procedure similar to Ang et al. (2006), estimating the pre-formation
regression between excess returns on cross-sectional stocks and the Fama-French
five-factor model (FF5), augmented with our MUL measure, represented by the
innovations in uncertainty. Given the constraints of the monthly frequency in
econometric-based uncertainty measurement, we employ monthly rolling regressions
over a fixed 60-month window, aligning with the approach from Bali et al. (2017),
rather than daily analysis as in Ang et al. (2006). The primary empirical model we
examine is the following:

ri
t = βi

0 + βi
mkt MKTt + βi

smbSMBt + βi
hml HMLt + βi

rmwRMWt + βi
cmaCMAt + βi

mul MULt + ϵi
t,

(4.4)
where i = 1, . . . , n, and n indicates the number of assets in the cross-section. The focus
of this regression is on the sensitivity of excess returns to temporal changes in the
uncertainty measure, captured by the uncertainty loading βmul .

In our empirical model (4.4), we employ the FF5 model as the baseline, opting for it
over the CAPM model for estimating pre-loadings and instead of the FF3 model used
for ex-post loadings by Ang et al. (2006). In contrast, Bali et al. (2017) considers a
7-factor model that includes the market factor MKT, size factor SMB, high-minus-low
factor HML, winner-minus-losers factor UMD, liquidity factor LIQ, investment factor
RI\A, and profitability factor RROE. While our empirical model accounts for fewer
factors, the subsequent 3-Stage asset pricing exercise ensures robustness, effectively
addressing all the omitted factors.

4.3.1 Mimicking Portfolio Approach

We categorize firms from the cross-section of returns based on the uncertainty
loadings βmul , derived from the monthly rolling time series regression performed on
all stocks. The objective of this empirical analysis is to establish a set of base assets
with diverse exposure to uncertainty. This methodology is akin to the approaches
used by Pástor and Stambaugh (2003), Ang et al. (2006), and Bali et al. (2017), who
conduct pre-formation regressions to sort stocks from the cross-section; however, we
incorporate our macroeconomic uncertainty measure, enhanced by the LSTM model.



4.3. Empirical Analysis 115

Firms are sorted into five quintiles, with those in the first quintile exhibiting the lowest
loadings on uncertainty βmul , and those in the fifth quintile showing the highest
loadings. For each quintile, we construct value-weighted portfolios and determine the
post-ranking portfolio returns.

Table 4.1 presents summary statistics for each quintile portfolio, sorted by their
loadings βmul , as estimated from the preceding 60-month regression window. Panels
A through E detail statistics for each of the five evaluation periods defined in our
empirical analysis, categorized as either calm or turbulent. The first two columns
show the average return and standard deviation for each value-weighted quintile
portfolio. Consistent with findings in Chapter 3, average returns increase across
quintile portfolios during high uncertainty periods (1998-2002, 2007-2011, and
2017-2022), while they decrease during low uncertainty periods. Similarly, the average
returns for the 5-1 portfolio strategy are positive in these high uncertainty periods and
negative in low uncertainty periods. These strategies, or the differences between
quintile portfolios with the highest and lowest uncertainty loadings, are statistically
significant at the 5% level for 2003-2006, 2012-2016, and 2017-2022, and at the 10%
level for 1998-2002. The third column provides the time series average of
pre-formation uncertainty loadings, βmul , derived from regression (4.4) using the
quintile portfolios as test assets, evaluated over 60-month rolling windows starting in
1993. Unlike the cross-section of returns used in previous regressions, quintile
portfolios are considered as test assets here. By design, the macroeconomic
uncertainty loadings of quintile portfolios increase monotonically, with coefficients
varying across evaluation periods. Interestingly, pre-formation beta loadings are
negative for the lower quintiles and positive for the higher ones. Similar patterns are
reported in Ang et al. (2006) for VIX innovations during different periods, and in Bali
et al. (2017) for the raw uncertainty measure of Jurado et al. (2015), as well as in our
own empirical findings in Chapter 3. The existence of both negative and positive beta
loadings enhances the return on the high-minus-low (uncertainty exposure) portfolio
by fully exploiting the spread in average returns across quintiles.

Building on the empirical findings in Chapter 3, which analyzed econometric-based
macroeconomic and financial uncertainty, as well as similar analyses for LSTM-based
macroeconomic uncertainty shown in Table 4.1, the observed increase in
pre-formation beta loadings and the differences in average returns between the top
and bottom quintile portfolios imply that the LSTM-based macroeconomic uncertainty
potentially has predictive power over risk premiums in cross-sectional stock returns.
This potential can be further validated within the framework of an unconditional
factor model. We generate an ex-post factor that mirrors the LSTM-based
macroeconomic uncertainty by projecting our monthly proxy, MUL, onto a set of base
assets. The portfolio weights are obtained as parameter estimates ω̂ from an OLS
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TABLE 4.1: Portfolios sorted by exposure to macro uncertainty by LSTM

Panel A. 1998-2002

Rank Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul Post-Formation βrmul

1 0.2715 5.9779 -9.0026 -18.7070 -15.8581
2 -0.1568 4.8795 -4.6729 -9.3631 -6.8632
3 0.6923 5.4476 -0.1042 -1.3259 -1.8885
4 0.4980 6.2081 1.6360 -0.1418 2.5533
5 1.1718 7.9125 5.8550 14.8512 15.3839
5-1 0.9003

[1.7180]

Panel B. 2003-2006

Rank Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul Post-Formation βrmul

1 1.5582 3.2783 -6.0724 -13.9672 -15.5681
2 1.2666 3.1704 -4.3475 -5.4735 -10.3296
3 1.4983 2.6772 0.1941 -0.6732 -1.9466
4 1.4092 2.9852 4.2546 4.3710 8.2784
5 0.8089 3.0123 6.2025 18.0958 11.4056
5-1 -0.7493

[-4.2208]

Panel C. 2007-2011

Rank Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul Post-Formation βrmul

1 -0.7199 7.9415 -5.2021 -17.3321 -19.7108
2 0.0254 5.1986 -1.9688 -5.9046 -3.8806
3 0.2274 5.3769 0.4239 -1.4387 0.1743
4 0.8764 5.3243 1.9884 4.2284 2.9051
5 1.3943 5.8010 4.5028 14.0697 13.6552
5-1 2.1142

[1.6142]

Panel D. 2012-2016

Rank Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul Post-Formation βrmul

1 1.9618 3.8761 -4.1819 -17.7098 -16.1222
2 1.2968 2.9423 -0.8108 -5.0777 -6.1412
3 1.1210 2.9912 0.5236 -1.1647 -2.2465
4 1.2532 3.1592 2.2360 3.4154 5.2221
5 0.8141 3.7552 6.5251 14.5613 14.7713
5-1 -1.1477

[-2.4815]

Panel E. 2017-2022

Rank Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul Post-Formation βrmul

1 0.1648 5.0498 -6.0437 -16.3839 -16.1368
2 0.8086 4.2478 -3.1527 -6.0578 -5.9857
3 1.2992 4.6383 -0.9382 -2.1585 -0.9427
4 1.5721 4.8930 1.5254 4.5042 4.2788
5 2.4368 5.6774 5.6647 14.7809 15.3630
5-1 2.2719

[4.3020]

Panel F. 1998-2022

Rank Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul Post-Formation βrmul

1 0.6032 5.5939 -6.1009 -16.9313 -16.1636
2 0.6249 4.2379 -2.9370 -6.4080 -6.1099
3 0.9504 4.4398 -0.0004 -1.3912 -1.0589
4 1.1161 4.7289 2.2379 3.2472 3.6104
5 1.3616 5.5851 5.7303 15.1490 15.4250
5-1 0.7584

[1.3583]

Note: Every month, we construct value-weighted quintile portfolios by regressing individual stock excess
returns on MUL, while controlling for the FF5 factors as specified in equation (4.4). We employ monthly
data over 60-month rolling regression periods. Stocks are categorized into quintiles based on the
coefficient βmul , ranging from the lowest (quintile 1) to the highest (quintile 5). In the columns labeled
Mean and Std. Dev., statistics are presented in monthly percentage terms reflecting total, not excess,
simple returns. The row labeled 5-1 indicates the difference in monthly returns between portfolio 5 and
portfolio 1. Pre-formation betas represent the value-weighted βmul or βrmul for each quintile portfolio,
obtained from rolling regressions using quintile portfolios as test assets. The final column presents the
ex-post βrmul factor loadings for each evaluation period, where RMUL corresponds to the factor
mimicking portfolio derived from (4.5). We calculate the ex-post betas by augmenting the FF5 model
with the RMUL factor. Robust t-statistics, adjusted according to Newey and West (1987), are reported in
square brackets. Our analysis divides the sample period into five distinct evaluation periods.
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regression between the MUL factor and the vector of quintile portfolio returns Xt:

MULt = c + ω′Xt + vt, (4.5)

where vt represents the error term. The mimicking portfolio returns or mimicking
factor is derived by linearly projecting the LSTM-based uncertainty measure onto the
base assets, resulting in RMULt = ˆ︁ω′Xt. These returns are constructed as excess
returns, enabling the coefficients, ω, to serve as weights in a zero-cost portfolio. The
multifactor asset pricing model is then obtained by substituting MULt with the
mimicking factor RMULt in equation 4.4, as shown below:

ri
t = βi

0 + βi
mkt MKTt + βi

smbSMBt + βi
hml HMLt + βi

rmwRMWt + βi
cmaCMAt + βi

rmul RMULt + εi
t.

(4.6)
The pre-formation factor loadings βrmul are computed by conducting this regression
over the same 60-month rolling windows. The corresponding coefficients, reported in
the next-to-last column of Table 4.1, represent the time series average of these
pre-formation factor loadings, estimated from each rolling regression using the
quintile portfolios as test assets. The pre-formation factor loadings βrmul reveal the
same monotonic behavior seen in βmul between the top and bottom quintile portfolios,
with βrmul exhibiting significantly greater magnitude.

To evaluate the ex-post factor loadings related to LSTM-based macroeconomic
uncertainty, consistent with an unconditional factor model approach, we estimate the
post-ranking uncertainty betas over the full evaluation subsamples rather than only
using 60-month rolling regressions. The last column of Table 4.1 reveals the
post-formation βrmul estimated from the time series regression 4.6 using the five
quintile portfolios as test assets, which display similar patterns.

Through the mimicking portfolio approach and corresponding empirical models, we
initially demonstrate that the LSTM-based macroeconomic uncertainty has the
capacity to predict risk premiums in cross-sectional stock returns. This leads to the
construction of the mimicking portfolio or factor for the LSTM-based macroeconomic
uncertainty, providing an investable portfolio that adheres to asset pricing theory
principles as compared to the index itself. Consequently, the mimicking factor,
denoted as RMUL, can be further utilized in Fama-Macbeth regressions or latent
factor regressions to investigate its time-varying risk premiums, or in comparisons
with other econometric-based uncertainty measures.

4.3.2 Fama-Macbeth Regression

Following the observed time-varying cross-sectional relationship between loadings on
LSTM-based macroeconomic uncertainty and average stock returns—where stocks
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with higher uncertainty loadings exhibit lower average returns during calm periods
and higher returns during turbulent periods—the LSTM-based macroeconomic
uncertainty emerges as a priced factor that varies over time. To further explore these
time-varying risk premiums, we employ the Fama and MacBeth (1973) cross-sectional
regression:

ri = c+ βi
mktλMKT + βi

smbλSMB + βi
hmlλHML + βi

rmwλRMW + βi
cmaλCMA + βi

rmulλRMUL + ϵi,
(4.7)

where λs denote the unconditional risk premiums of the factors. Unlike in existing
literature, such as Bali et al. (2017) and Engle et al. (2020), where the state variable (in
our case, MUL) is incorporated in the Fama-Macbeth regressions, we opt for the
tradable mimicking factor RMUL. This approach means that the regressor in (4.7) is
βrmul from the first stage regression, rather than βmul . Since RMUL is designed to have
maximal correlation with MU, both approaches are expected to yield similar results.
However, employing the mimicking factor in the Fama-Macbeth regression provides
additional insights. Notably, the uncertainty risk premium λRMUL can be interpreted
as the average excess return of the hedging portfolio RMUL, computed over each
evaluation subsample. Such an interpretation would not be valid if the cross-sectional
pricing regression included the non-tradable raw uncertainty index MUL instead,
because it violates the multifactor model assumption that all factors must be
investable portfolios.

Table 4.2 presents the unconditional cross-correlations between pricing factors, with
Panel A displaying the correlations across the entire sample and Panel B detailing the
correlations between RMUL and the FF5 factors within each evaluation subsample.
The unconditional correlation between the mimicking factor RMUL and both MKT
and SMB is consistently negative throughout subsamples, with the magnitude
intensifying during turbulent periods. An exception is noted in the RMUL and SMB
correlation for the 2017-2022 period, where these factors appear independent of one
another. Conversely, the unconditional correlation of RMUL with other pricing
factors, such as HML, RMW, and CMA, is slightly positive, though the sign of these
correlations varies across subsamples over time and maintains a small magnitude, as
demonstrated in Panel B. This suggests an independence of HML, RMW, and CMA
from RMUL.

To estimate the factor premiums λs, we begin by constructing a set of test assets with
returns ri

t, ensuring that their factor loadings on macroeconomic uncertainty risk are
sufficiently varied to yield informative cross-sectional regressions. Following the
methodology of Ang et al. (2006), we sort the cross-section of stocks at the end of each
month into five quintiles based on βmkt. Within each quintile, stocks are further sorted
into quintiles based on βmul , resulting in 25 portfolios that serve as test assets in the
cross-sectional asset pricing model. These loadings, βmkt and βmul , are derived from
regression equation (4.4), applied to monthly data over the preceding 60 months. The
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TABLE 4.2: Correlations of RMUL with FF5 factors

Period MKT SMB HML RMW CMA
1998-2002 -0.0609 -0.2302 0.2086 0.1817 0.0808
2003-2006 -0.4795 -0.3339 0.1339 0.2027 -0.0379
2007-2011 -0.6742 -0.2961 0.0226 0.2663 -0.0087
2012-2016 -0.4413 -0.2130 -0.0934 0.1294 -0.1261
2017-2022 -0.3866 0.0231 0.0129 -0.1727 0.0375
The whole sample -0.3702 -0.2029 0.0597 0.1584 0.0321

Note: The table presents the correlations between the RMUL factor and the FF5 risk factors. Here, RMUL
denotes the monthly return on the mimicking portfolio derived from regression (4.5). The factors MKT,
SMB, HML, RMW, and CMA represent the established FF5 factors. The last row shows the
unconditional correlations calculated over the entire 1998-2022 period, while the first to fourth rows
detail the correlations between RMUL and each of the FF5 factors across the distinct evaluation periods.

Fama-MacBeth procedure is performed in two stages. During the first stage, the betas
in (4.7) are obtained from the time series regression (4.4) using the full sample. In the
second stage, the risk premia are estimated via the cross-sectional regression (4.7)
using monthly data.

Table 4.3 presents the risk premiums associated with the six-factor model based on the
Fama and French (2015) pricing model, augmented by the LSTM-based uncertainty
mimicking portfolio RMUL. The results highlight significant heterogeneity in the risk
premium for each factor throughout the evaluation periods. The risk premium on the
market portfolio is positive across all periods, except during the calm 2012-2016
period, where test assets with greater exposure to this factor demand a lower expected
return compared to those with lower beta exposure. The magnitude of the market
factor’s risk premium is notably larger during the high uncertainty periods compared
to other periods. Likewise, there is substantial evidence of a positive risk premium on
the size factor across the evaluation periods. Conversely, the risk premium for the
book-to-market factor is negative in the high uncertainty periods of 1998-2002 and
2007-2011 but positive in other periods. The sign and magnitude of the risk premiums
on RMW and CMA also vary over time across different evaluation periods.

Table 4.3 reveals that the estimated risk premium for the LSTM-based macroeconomic
uncertainty, represented by RMUL, is positive during turbulent subsamples and
negative during calm subsamples. This suggests that test assets with higher exposure
to economic uncertainty tend to have lower expected returns and consequently higher
prices in calm periods as opposed to turbulent periods. The variation in the risk
premium over time for LSTM-based macroeconomic uncertainty implies the potential
for a dynamic hedging strategy by investing in the mimicking portfolio RMUL. In
turbulent periods, investors require a positive expected excess return from this
portfolio to offset the negative expected returns experienced in calm periods,
effectively suggesting that investors are willing to pay a premium in calm periods to
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TABLE 4.3: Fama-Macbeth factor risk premiums using RMUL

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022 1998-2022

const 0.3970 1.0697 0.6519 1.5305 1.0172 0.9288
[1.1786] [4.5677] [1.8492] [4.3989] [3.8327] [5.6371]

MKT 1.2403 -0.2333 0.3717 -0.1476 0.4232 0.3553
[1.5800] [-0.7276] [0.4198] [-0.3438] [0.4687] [1.0110]

SMB 1.4663 -0.2560 1.0585 2.0994 0.5579 1.0303
[2.1054] [-0.4693] [1.4495] [3.4436] [0.5900] [2.7529]

HML -0.2531 1.8799 -0.5991 0.7724 -0.3759 0.2102
[-0.1427] [2.4974] [-0.9310] [2.4893] [-0.4144] [0.4393]

RMW -3.3238 0.0818 -0.9944 -0.8547 -0.1277 -1.0775
[-2.3143] [0.0885] [-1.6478] [-1.1187] [-0.1546] [-2.1492]

CMA -1.3964 0.1935 -0.6298 0.3226 0.2165 -0.2708
[-2.5459] [0.2992] [-0.9669] [0.8955] [0.3675] [-0.9499]

RMUL 0.0564 -0.0230 0.0874 -0.0341 0.0769 0.0356
[1.1459] [-1.2200] [1.3681] [-2.3187] [3.4411] [1.7230]

Note: The table presents the Fama and MacBeth (1973) factor premiums for 25 portfolios sorted initially
by βmkt and subsequently by βmul . This is within the framework of the FF5 model, which is enhanced by
the RMUL risk factor. The RMUL factor is derived as a mimicking portfolio return from regression (4.5),
using LSTM-based macroeconomic uncertainty MUL as a proxy. Robust t-statistics, adjusted according
to Newey and West (1987) to account for first-stage estimation in the factor loadings, are reported in
square brackets. Each column provides the estimates of the factor risk premiums for different evaluation
periods.

hedge against potential turbulence. This finding aligns with the cross-sectional
relationship between stock returns and loadings on macroeconomic uncertainty by
LSTM, as illustrated in Table 4.2, and is corroborated by similar results reported in
Chapter 3, using econometric-based uncertainty measures by Jurado et al. (2015).

TABLE 4.4: Ex-post factor loadings on RMUL for 2007-2011

Pre-ranking on βmul

Pre-ranking on βmkt Low 1 2 3 4 High 5

Low 1 -6.4810 -4.2984 0.5583 7.6363 17.1941
[-2.7967] [-1.5591] [0.2231] [2.6296] [6.4268]

2 -15.5090 -2.6191 0.1100 4.0129 15.3480
[-4.8404] [-0.9454] [0.0740] [1.0517] [5.4505]

3 -16.5052 -2.3447 1.0935 2.8665 11.5981
[-5.9711] [-1.2280] [0.6069] [1.3351] [5.0111]

4 -27.4854 -8.5137 -2.1616 5.0009 10.1644
[-3.7795] [-3.0120] [-0.6048] [2.4705] [4.6830]

High 5 -22.3386 -7.4986 1.1574 4.7209 16.5842
[-6.6430] [-3.9969] [0.3596] [1.2432] [3.2654]

Note: The table displays the ex-post factor loadings βrmul , derived from the first-stage Fama and MacBeth
(1973) regression using the time series specification (4.7). These loadings are applied to 25 portfolios,
which are sorted initially by βmkt and subsequently by βmul , utilizing the risk factor MUL as a proxy for
economic uncertainty. Robust t-statistics, adjusted according to Newey and West (1987), are provided in
square brackets to ensure reliability of the estimates. The analysis covers the sample period from January
2007 to December 2011.
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Table 4.4 presents the factor loadings βrmul for each of the 25 base assets used in the
first-pass time regression modeled after Fama and MacBeth (1973), during the
2007-2011 subsample. This subsample containing the financial crisis is employed as an
illustrative example for the linear RMU in Table 3.4 of Section 3.2.3.3, we choose the
same subsample here because the RMUL significantly outperforms the others during
the 2007-2011 by the further comparison between LSTM-based and linear measures in
Section 4.4.2, warranting further consideration.

A pronounced monotonicity in the uncertainty factor loadings is observed for each
quintile of stock returns sorted by market beta. For the quintile portfolios with the
lowest loadings on the MKT factor in the top row, the estimated factor loadings βrmul

range from -6.48 to 17.19. In contrast, for the quintile portfolios with the highest
loadings on the MKT factor in the bottom row, the βrmul values range from -22.34 to
16.58. The presence of monotonicity persists across portfolios controlled by varying
MKT factor loadings, indicating a broad dispersion in uncertainty factor loadings
across market quintile portfolios. Regarding the five portfolios along the diagonal,
from the ”High 5 Low 1” to the ”Low 1 High 5,” the first-stage factor loadings βrmul

progress from -22.34 to 17.19, demonstrating a clear increasing pattern. These findings
verify that the 25 portfolios, formed on the basis of market returns and LSTM-based
macroeconomic uncertainty, exhibit substantial exposure to macroeconomic
uncertainty risk, as encapsulated by the mimicking factor RMUL.

Comparing with the ex-post factor loadings on RMU in Table 3.4, the ex-post loadings
on RMUL shows stronger monotonicity when controlling for the same level of
pre-ranking βmkt, that in each row of Table 4.4, the ex-post loadings on RMUL are
monotonically increasing along with the increasing pre-ranking βmul . The ex-post
loadings on RMUL are larger in magnitude than the ex-post loadings on RMU at the
same location in most cases. These results might reflect that the 25 portfolios are more
dispersed here, due to the higher uncertainty identified by MUL than MU during
2007-2011, as shown in Figure 4.1.

The risk premium λRMUL can also be estimated as the time series average of the
mimicking portfolio return RMUL1 over the evaluation period. Figure 4.2 illustrates
the dynamics of the mimicking portfolio returns from 1998 to 2022. The graphical
representation highlights the fluctuations in the uncertainty risk premium over time
as well as the dynamics of the mimicking portfolio returns. Green lines depict the
returns during turbulent periods, while red lines represent calm episodes. A blue line
is drawn using a locally estimated scatterplot smoothing (LOESS) method, fitting a
weighted polynomial regression to the mimicking portfolio returns. This
nonparametric method adapts to local variations while maintaining the overall trend,
providing key insights into the evolution of the uncertainty risk premium. The

1A similar methodology can test the effectiveness of time series asset pricing equations using the Fama-
MacBeth two-pass regression approach.
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estimated risk premium by Fama-Macbeth regression is on monthly basis, then we
take the average for 5 evaluation periods for the convenience to discuss the difference
between calm and turbulent time. A more detailed comparison is provided in Section
4.4.1. In general, the uncertainty risk premium exhibits time-varying properties, with
calm periods typically showing negative returns for the mimicking portfolio and
turbulent periods associated with positive returns.

FIGURE 4.2: Dynamics of mimicking portfolio return RMUL

The top panel illustrates the dynamics of the mimicking portfolio return RMUL, which is derived from
the regression equation (4.5). Meanwhile, the bottom panel shows the dynamics of the 5-1 portfolio,
created by sorting the cross-section of stock returns into five quintiles based on their βmul rankings. This
analysis covers the sample period from 1998 to 2022.

Panel A of Table 4.5 presents the least squares parameter estimates from the time
series regression (4.5), using the ex-post quintile portfolios over the entire sample
period (1998-2022). Consequently, these estimates remain consistent, irrespective of
the breakpoints used to define each evaluation period. When the portfolio weights are
duly standardized—by dividing them by the largest estimate (0.028)—the resulting
composition of the mimicking portfolio is (−1,−0.68,−0.15, 0.28, 0.93). This yields
comparable portfolio weights to those of the 5-1 portfolio, which is constructed as
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(−1, 0, 0, 0, 1). In this scenario, the mimicking portfolio can essentially be created using
only the bottom and top quintiles. For the sake of comparison, the dynamics of the 5-1
portfolio based on macroeconomic uncertainty are depicted in the bottom panel of
Figure 4.2. The dynamics of both portfolios exhibit remarkable similarity, with only
minor differences in magnitude observed across different investment strategies.

TABLE 4.5: Properties of mimicking portfolio, RMUL

Panel A. Mimicking portfolio weights
X1 X2 X3 X4 X5

w -0.0279 -0.0191 -0.0041 0.0078 0.0259
[-6.2665] [-2.6624] [-0.5890] [1.2785] [5.9814]

Panel B. Distribution of market capitalization
X1 X2 X3 X4 X5

1998–2002 0.1187 0.1830 0.2601 0.2636 0.1746
2003–2006 0.1512 0.1606 0.2684 0.2630 0.1568
2007–2011 0.1425 0.2047 0.2687 0.2499 0.1342
2012–2016 0.1038 0.2097 0.2763 0.2756 0.1345
2017–2022 0.1498 0.2484 0.2543 0.2250 0.1224
All Sample 0.1327 0.2036 0.2653 0.2547 0.1437

Note: Panel A presents the OLS parameter estimates for the regression equation (4.5), where the
dependent variable is the macroeconomic uncertainty measure MUL. The analysis spans the sample
period from 1998 to 2022, with robust t-statistics provided in square brackets for reference. Meanwhile,
Panel B reports the monthly average ratio of market capitalization for each quintile portfolio. For each
month, the total market capitalization of stocks within each quintile is calculated and then divided by the
entire market capitalization of all stocks in the cross-section for that month, reflecting the relative size of
each quintile portfolio within the market.

Panel B of Table 4.5 presents the average market capitalization of the quintile
portfolios over the evaluation periods. For each month, the total market capitalization
of stocks within a given quintile is calculated and then normalized by dividing it by
the total market capitalization of all stocks in that month’s cross-section. The monthly
average ratio for all months within each quintile is subsequently computed for each
subsample and reported in the table. Consistently across evaluation periods, the
bottom and top quintile portfolios exhibit smaller market capitalizations compared to
the middle quintile portfolios.

4.3.3 3-Stage Latent Factor Regression

Omitted variable bias occurs in standard risk premium estimators when the
estimation model fails to incorporate all priced risk sources in the economy. To
address biases stemming from an incomplete selection of pricing factors, Giglio and
Xiu (2021) propose a three-pass method for estimating the risk premium of an
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observable factor. This method remains valid even if not all model factors are
specified or observed. In this section, we implement this procedure as an alternative
to the FF5 model. Instead of the standard pricing factors, we employ a set of
unobservable factors obtained via principal component analysis applied to the
cross-section of asset returns. The 3-Stage latent factor regression represents a
departure from traditional methods that rely on robustness checks, which typically
evaluate the sensitivity of estimated risk premiums to various definitions of pricing
factors or by incorporating additional variables like momentum, liquidity, investment,
and profitability factors as suggested by Fama and French (1993), Carhart (1997),
Pástor and Stambaugh (2003), and Hou et al. (2015), among others. Giglio and Xiu
(2021)’s method surpasses these techniques in accurately addressing omitted variable
biases during the estimation of the risk premium of uncertainty.

The main framework of Giglio and Xiu (2021) is based on a three-stage procedure,
firstly extracting the principal components of by returns by conducting the PCA
model, where the principal components or so called the latent factors is a full set of
factors which could explain the returns without any omitted factors bias; secondly, a
cross-sectional regression of average returns onto the estimated latent factors loadings
is conducted to estimate the risk premiums of the estimated latent factors; thirdly, the
risk premiums of observable factors is estimated by the product of corresponding
loadings on the latent factors and the estimated risk premiums of latent factors. The
main framework of Giglio and Xiu (2021) assumes the constant loadings and risk
premia for the given sample, but allows for time-varying risk premia and risk
exposures by conducting certain conditional models. When pricing the time-varying
risk premiums of uncertainty in our case, it brings the cost of greater statistical
complexity to employ the appropriate conditioning information when modeling.
Hence, we follow the same rolling window analysis as our main framework to
conduct the 3-Stage exercise and price uncertainty dynamically. Moreover, the
noncontinuous stock returns make it impossible to conduct PCA for the whole period
and take in account for all available stocks at the same. If we extract latent factors
from the continuous stocks only, such latent factors will have limited predictive power
to the noncontinuous stocks and there will always be omitted factors existing. Hence,
we employ the rolling window analysis and repeat the 3-Stage exercise for each
monthly window, which helps avoid the statistical complexity of using conditional
models to estimate time-varying risk premiums while also allowing us to include as
many noncontinuous stocks as possible. Specifically, the same 60-month rolling
window is used which is consistent with our main framework and Bali et al. (2017),
then we conduct the same 3-Stage exercise for each monthly window and use the
estimated risk premiums of uncertainty as the estimates at the end of each monthly
window. Hence, for a given monthly window, the loadings and risk premia is
assumed to be consistent as Giglio and Xiu (2021), and the rolling window brings the
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dynamic to the monthly estimated risk premiums. In particular, our rolling-3-Stage
framework is as follows:

For the first PCA stage, suppose R is the n × T matrix of demeaned excess returns,
where T = [ti, ti+1, ..., ti+59] representing the ith rolling windows with 60-month’s time
spread, and extract the latent factors, L̂, p × T matrix by conducting the PCA of the
matrix n−1T−1RTR

L̂ = T1/2 (︁ξ1 : ξ2 : ... : ξp
)︁T and β̂l = T−1RL̂T

where ξ1, ξ2, ..., ξp are the normalized eigenvectors corresponding to the largest p̂
eigenvalues. In Giglio and Xiu (2021), the number of latent factors, p, is determined by
a consistent estimator p̂. For our 3-Stage exercise, we control p either by the
cumulative variance explained of these latent factors in PCA within each rolling
window or by fixing p across all rolling windows using an ad-hoc approach. And
hence the excess returns can be expressed as

R = βlλ
T
l + βl L + U

R = βl L + U

For the second cross-sectional regression stage, the risk premiums of latent factors, λl ,
is estimated by a cross-sectional regression of average returns onto the estimated
factor loadings, β̂l :

λ̂l =
(︂

β̂
T

l β̂l

)︂−1
β̂
T

l r

In the third time series regression stage, run a time series regression of mimicking
factors of uncertainty, RMUL, onto the latent factors to estimate the loadings of
uncertainty on latent factors, γl .

RMUL = γl L + Z

So, the estimator of loadings and fitted value of the mimicking factors of uncertainty
can be expressed as:

γ̂l = RMULL̂T
(︂

L̂L̂T
)︂−1

and RMULˆ = γ̂l L̂

The risk premiums of uncertainty are estimated by the product of their loadings on
latent factors and the risk premiums of latent factors:

λ̂RMUL,ti+59 = γ̂lλ̂l

which has a more compact form estimator as

λ̂RMUL,ti+59 = RMULL̂T
(︂

L̂L̂T
)︂−1 (︂

β̂
T

l β̂l

)︂−1
β̂
T

l r
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Table 4.6 provides the time series average of the uncertainty risk premium estimates
derived from the Giglio and Xiu (2021) approach for each evaluation period. For each
rolling window, we set the number of factors to explain 99.9% of the variance in the
cross-section of returns. The average number of factors across rolling windows
exceeds 30, ensuring that the uncertainty risk premium estimates remain unaffected
by the omission of relevant pricing factors. The results in Table 4.6 corroborate
previous findings, indicating that the uncertainty risk premium is negative during
calm periods and positive during turbulent periods.

TABLE 4.6: LSTM-based uncertainty risk premia by 3-Stage approach

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022 1998-2022

RMUL 0.0314 -0.0093 0.0004 -0.0074 0.0119 0.0061
[14.9506] [-3.9900] [0.1624] [-2.7871] [5.9639] [3.7515]

Note: We use a fixed 60-month rolling window analysis consistent with our primary framework and
employ the three-stage approach outlined in Giglio and Xiu (2021) to estimate the monthly risk
premiums associated with macroeconomic and financial uncertainty. The number of latent factors in each
rolling window is dynamically determined by the cumulative variance explained by these factors in the
PCA. This table reports the average risk premiums across the five evaluation periods, with the Newey
and West (1987) adjusted t-statistics provided in square brackets for robustness check.

Even when we constrain the number of factors to a range between 7 and 9 (capturing
70% to 80% of the variance) and re-estimate the uncertainty risk premium using Giglio
and Xiu (2021)’s procedure, we observe similar dynamics for the uncertainty risk
premium to those shown in the top panels of Figures 4.2. For ease of comparison,
Figure 4.3 features three panels displaying four curves: (i) the LSTM-based
macroeconomic uncertainty mimicking factor RMUL; (ii) the corresponding
LOESS-smoothed curve; (iii) the risk premium estimates derived from the three-stage
procedure with 7, 8 and 10 unobserved factors; and (iv) theirs LOESS-smoothed
counterpart. Comparing risk premium estimates across models in these panels, we
find consistent dynamics. Notably, the FF5 model augmented with the macroeconomic
uncertainty factor results in higher returns and lower volatility compared to the
dynamically estimated factors model. Moreover, the latent factor asset pricing model
identifies two distinct uncertainty episodes within the 2007-2011 evaluation period
and exhibits a subtler reaction during the COVID-19 pandemic uncertainty window.

As a concluding observation for this section, it is important to note that while the
factor model approach proposed by Giglio and Xiu (2021) mitigates potential biases in
risk premium estimates arising from the omission of relevant pricing factors, the static
risk premium estimates reported in Table 4.6 may vary with different evaluation
period selections, as evidenced by the dynamics illustrated in Figure 4.3.
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FIGURE 4.3: Dynamics of risk premiums estimated by different approaches

This figure comprises three panels that depict the dynamics of monthly risk premiums on
macroeconomic uncertainty using different numbers of latent factors. The green lines represent the
mimicking portfolio returns derived from regression (4.5), while the red lines indicate the risk premium
estimates obtained through the latent factor model using the three-stage procedure proposed by Giglio
and Xiu (2021). Additionally, LOESS smoothed curves are shown for each approach. Estimates from the
latter method are calculated using 60-month rolling windows, with the number of latent factors fixed at
7, 8, and 10 across the entire sample period from 1998 to 2022.



128 Chapter 4. Pricing LSTM-measured Macroeconomic Uncertainty

4.4 Comparison of Uncertainty by LSTM and Linear
Framework

Building on our previous empirical analysis, we use the cross-section of stock returns
to assess and price the LSTM-based macroeconomic uncertainty, arriving at two
principal conclusions consistent with the findings in Chapter 3. First, the LSTM-based
macroeconomic uncertainty measure is a priced factor in the cross-section of stock
returns. Second, the associated risk premium is time-varying, being estimated as
negative during calm periods and positive during turbulent periods. This pricing
factor can be represented by a hedging portfolio, with weights derived from projecting
the uncertainty measures onto a set of test assets. While the magnitude and statistical
significance of the risk premium vary across different uncertainty regimes, robustness
remains with respect to the characterization of the economic uncertainty measure.

To validate these findings and conduct a key empirical comparison between the
macroeconomic uncertainty measured by the LSTM-based framework and the linear
framework, we evaluate the time-varying risk premiums over calm and turbulent
periods, alongside a model comparison exercise in this section. Table 4.7 presents the
cross-correlations between the macroeconomic uncertainty measures MUL and MU,
as well as their corresponding mimicking portfolio returns RMUL and RMU. The
correlations between the uncertainty indices and their corresponding mimicking
portfolio returns are relatively high, which aligns with expectations since we employ
the same econometric definition and framework as Jurado et al. (2015), albeit
employing a time-series machine learning model to measure macroeconomic
uncertainty. Despite both measures capturing similar shifts in the macroeconomic
information set, slight differences induced by the use of the nonlinear LSTM model
persist, which is a focal point of interest for further investigation in this research.

TABLE 4.7: Correlations between LSTM-based and linear measures

MUL MU RMUL RMU

MUL 1 0.8910 0.5729 0.5621
MU 0.8910 1 0.5371 0.5926
RMUL 0.5729 0.5371 1 0.7608
RMU 0.5621 0.5926 0.7608 1

Note: The table reports pairwise correlations among the uncertainty measures MUL and MU and the
corresponding mimicking portfolio returns RMUL and RMU obtained from regression equation (4.5).
The sample period is 1998 to 2022.
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4.4.1 Differences in Risk Premiums

In this section, we compare the macroeconomic uncertainty estimated by the LSTM
framework and a linear framework by examining the difference in their respective
mimicking portfolio returns and risk premiums during the same calm and turbulent
months. Such examination involves identifying calm and turbulent months using two
methods: an exogenous approach based on the CFNAI index and an endogenous
approach relying on the median of uncertainty measures.

As introduced in Section 3.3.4, the exogenous criteria for defining calm and turbulent
months employs both the three-month moving average of the monthly index
CFNAI-MA3, and the diffusion index of CFNAI. We apply the same criteria here to
compare the risk premiums of RMUL and RMU during these defined turbulent and
calm periods.

Table 4.8 presents the estimated risk premiums for RMUL derived from
cross-sectional regressions during turbulent and calm months. In both turbulent and
calm months, the risk premiums for RMUL are significantly positive and negative,
respectively, aligning with our main findings and reinforcing the evidence for the
time-varying nature of uncertainty’s risk premium. The differences in magnitude
compared to the Fama–MacBeth estimates arise from the CFNAI index’s classification
criteria, which only designate extreme turbulence, while less severe uncertainty
shocks are considered calm. When comparing these to the risk premiums of RMU
from Table 3.12, the RMUL risk premiums are notably larger in magnitude and even
negative and significant during calm months, unlike those for RMU. Thus, the
LSTM-based measure proves to be a more effective proxy for macroeconomic
uncertainty than the linear measure, allowing investors to hedge more effectively
against increases in uncertainty.

Regarding the endogenous definition of calm and turbulent months, following Bali
et al. (2017), we define calm and turbulent months using the median of uncertainty
measures (or innovations in uncertainty). To compare the mimicking portfolio returns
and risk premiums of both macroeconomic uncertainty measures under equivalent
levels of uncertainty shocks, we first identify calm and turbulent months for each
measure based on their medians and then focus on the overlapping months where
both measures indicate calm or turbulent periods simultaneously. This approach
results in 140 months designated as turbulent and 91 months as calm for both
uncertainty measures. It is important to note that while defining calm and turbulent
periods based on the median of uncertainty measures may lack the robustness of more
formal statistical criteria or macroeconomic indices like those from NBER, our aim is
to observe differences in the asset loadings and corresponding average returns when
considering macroeconomic uncertainty derived from different frameworks.
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TABLE 4.8: Risk premium of RMUL in turbulent vs calm periods, defined by CFNAI

Panel A. turbulent vs calm, defined by CFNAI-MA3 (-0.7)

Turbulent (21 months) const MKT SMB HML RMW CMA RMUL

Risk premium 0.5763 -0.2389 4.2373 -0.9474 1.3371 1.5678 0.2127
[1.4580] [-0.2940] [2.7960] [-0.6830] [0.7510] [1.2320] [7.7220]

Calm (271 months) const MKT SMB HML RMW CMA RMUL
Risk premium 1.0328 0.6966 -0.1295 0.1583 0.2604 0.1619 -0.0044

[33.7270] [11.0520] [-1.1020] [1.4720] [1.8860] [1.6420] [-2.0510]

Panel B. turbulent vs calm, defined by Diffusion in CFNAI (-0.35)

Turbulent (38 months) const MKT SMB HML RMW CMA RMUL
Risk premium 1.0599 1.3561 1.9998 -1.6173 0.4345 -0.0073 0.1619

[3.1350] [2.1360] [2.0560] [-1.5360] [0.4340] [-0.0070] [9.5550]

Calm (254 months) const MKT SMB HML RMW CMA RMUL
Risk premium 0.9910 0.5206 -0.0870 0.3325 0.3233 0.3034 -0.0113

[19.5970] [5.4820] [-0.5980] [2.1100] [2.1600] [1.8880] [-4.4590]

Note: The table reports the factor premiums estimated by cross-sectional regressions in turbulent and
calm months for RMUL, corresponding to Panels A and B. Turbulent months are defined by the
statistical criteria of CFNAI-MA3 < −0.7 or diffusion in CFNAI < −0.35, and all other months are
designated as calm. The dependent variable in each cross-sectional regression is the average excess
return of 25 portfolios, which are sorted first on βmkt and then on βmul . The regressions follow the FF5
model augmented with the RMUL risk factor, obtained as a mimicking portfolio return from regression
(4.5) using MUL as a proxy for economic uncertainty. Robust t-statistics, adjusted according to Newey
and West (1987), are reported in square brackets.

We select the five quintile portfolios constructed in Section 4.3 for overlapping
months. Table 4.9 presents the summary statistics for these quintile portfolios during
the same turbulent and calm months for macroeconomic uncertainty measured by
LSTM in Panel A and by the linear framework in Panel B. Compared to the results in
Table 4.1, which defined subsamples in an ad-hoc manner and included more noisy
data within each evaluation period, these results display stronger monotonicity. In
turbulent months, the average returns of stocks within the five quintile portfolios
increase monotonically, while they decrease monotonically in calm months as the
loadings on macroeconomic uncertainty rise, as indicated by the pre-formation βs of
both uncertainty indices and their corresponding mimicking factors. Consequently,
the average returns of the 5-1 portfolios are of greater magnitude due to the exclusion
of noisy moments. Additionally, when comparing the results for macroeconomic
uncertainty as measured by LSTM and the linear framework, the average returns of
the 5-1 portfolio associated with LSTM-based macroeconomic uncertainty consistently
exhibit greater magnitudes. This means that investors receive higher compensation
during turbulent periods and incur greater costs during calm periods when
employing the LSTM-based uncertainty measure for hedging against the same source
of macroeconomic uncertainty. The LSTM-based hedge portfolio proves more
effective, benefiting from the superior capability of machine learning models to
manage large-dimensional datasets, as discussed in Chapter 2.

Table 4.9 indicates that stocks with higher loadings on macroeconomic uncertainty
tend to have higher average returns during turbulent months and lower returns
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TABLE 4.9: Portfolios sorted by exposure to macroeconomic uncertainty in turbulent
and calm periods

Panel A. Macroeconomic uncertainty from innovations in LSTM-based measure
Turbulent Periods Calm Periods

Rank Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul Mean Std. Dev. Pre-Formation βmul Pre-Formation βrmul

1 -0.6076 6.2180 -6.1677 -16.8223 2.4146 4.5519 -6.3613 -16.9576
2 -0.0184 4.5022 -2.9254 -6.4683 1.6942 3.7712 -3.1181 -6.5669
3 0.6804 4.5689 -0.1961 -1.7482 1.2982 4.3803 0.1794 -0.9839
4 1.1825 5.3240 2.1603 3.6560 0.9737 4.0354 2.3873 2.6883
5 2.4003 6.1288 5.5018 14.8837 0.5583 4.9308 5.8962 15.4515
5-1 3.0079 -1.8563

Panel B. Macroeconomic uncertainty from innovations in Jurado et al. (2015) FAVAR measure
Turbulent Periods Calm Periods

Rank Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu Mean Std. Dev. Pre-Formation βmu Pre-Formation βrmu

1 -0.5895 6.1664 -6.6633 -16.6363 2.2281 4.3033 -6.8333 -16.3157
2 0.3371 4.7081 -2.0795 -3.7548 1.7237 3.8197 -2.2854 -4.2151
3 0.4172 4.4614 -1.0413 -2.0068 1.2969 3.8889 -1.4014 -2.2974
4 0.9831 5.2293 2.2788 3.9671 0.8080 4.3524 2.5022 3.3955
5 2.3019 6.2883 5.1557 13.2985 0.9047 4.6641 5.5746 13.8967
5-1 2.8914 -1.3235

Note: Turbulent and calm periods are defined using the median of the uncertainty measure, following
Bali et al. (2017), and the overlapping months for both uncertainty measures are selected as the
subsamples of interest. Five quintile portfolios are constructed through rolling monthly regressions as
described in Section 4.3. The statistics under the columns labeled Mean and Std. Dev are expressed in
monthly percentage terms, calculated for the overlapping turbulent and calm months identified for both
uncertainty measures. The pre-formation betas are estimated via rolling monthly regressions and
reported as the average values corresponding to the turbulent and calm months.

during calm periods. When using the LSTM-based measure instead of the linear
measure, the average returns of the 5-1 portfolios maintain the same signs but are
larger in absolute value. This suggests that the LSTM-based uncertainty measure is a
more effective factor for hedging against macroeconomic uncertainty. To further
evaluate this, Table 4.10 reports the risk premiums of both uncertainty measures, as
estimated by the Fama-Macbeth regression, during the defined overlapping turbulent
and calm months.

Firstly, consistent with our previous findings, the estimated risk premiums for
macroeconomic uncertainty measures are positive during turbulent periods and
negative during calm periods. This pattern suggests that assets with greater exposure
to macroeconomic uncertainty have lower expected returns or higher prices during
calm periods compared to turbulent periods, thus confirming the dynamic hedging
rationale associated with macroeconomic uncertainty.

Secondly, akin to the average returns of the 5-1 portfolios, and compared to the
innovations in Jurado et al. (2015) linear macroeconomic uncertainty measure, the risk
premiums of LSTM-based measure are of similar signs but larger in absolute value in
both turbulent and calm months. Investors may choose to pay higher (insurance)
premia during calm periods to secure greater compensation (positive uncertainty
premia) in turbulent periods from investing in the mimicking portfolio RMUL.



132 Chapter 4. Pricing LSTM-measured Macroeconomic Uncertainty

TABLE 4.10: Risk premiums by Fama-Macbeth in turbulent and calm periods

Panel A. RMUL
Turbulent Periods Calm Periods

Mean Std. Dev. Mean Std. Dev.

const 1.0757 3.5184 0.5378 2.9517
MKT 0.4577 8.0696 0.8162 5.9231
SMB 1.9685 8.2595 0.6203 6.6299
HML 0.0240 10.3125 0.7162 8.5224
RMW -1.8363 10.0376 -0.0955 7.4413
CMA -0.5040 6.1171 -0.1742 5.8860
RMUL 0.1232 0.2093 -0.0839 0.1569

Panel B. RMU
Turbulent Periods Calm Periods

Mean Std. Dev. Mean Std. Dev.

const 0.9559 3.1224 0.7382 2.5752
MKT 0.1688 7.5188 0.6962 4.9592
SMB 2.0185 7.4825 1.7405 6.3356
HML 0.5487 7.9974 0.0503 7.3651
RMW -1.0099 7.8276 0.1108 6.8114
CMA -0.0649 7.2549 0.2558 5.4665
RMU 0.1203 0.2322 -0.0752 0.1493

Note: The table provides the Mean and Std. Dev of the monthly risk premiums for macroeconomic
uncertainty measures during overlapping turbulent and calm periods, as estimated by the Fama and
MacBeth (1973) regression. The risk factors RMUL and RMU represent the mimicking factors for
macroeconomic uncertainty, derived from the LSTM-based measure MUL and the linear framework
measure MU, respectively. These factors are priced individually using different sets of 25 portfolios, each
sorted initially by βmkt and subsequently by βmul or βmu, which serve as test assets.

4.4.2 Differences based on Asset Pricing Models

In this section, we perform a model comparison exercise with a dual objective. First,
we evaluate the enhanced predictive capability of the LSTM-based macroeconomic
uncertainty against the FF5 model, which serves as a benchmark. This assessment as
introduced in Section 3.4 is conducted within a nested framework using recent
methodologies suggested by Barillas and Shanken (2017), which focus on the
difference in squared Sharpe ratios, and Barillas and Shanken (2018), which compare
posterior probabilities of each model candidate. Second, we calculate the posterior
probabilities for a range of model candidates that incorporate various combinations of
the FF5 model, augmented with macroeconomic uncertainty measures obtained from
LSTM, as well as econometric-based macroeconomic and financial measures from a
linear framework. This procedure follows the implementation guidelines outlined by
Barillas et al. (2020).
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Barillas and Shanken (2017) demonstrate that to determine the additional value of a
pricing factor candidate in predicting the cross-section of stock returns, it is sufficient
to regress this factor onto the FF5 model. The factor enhances the benchmark asset
pricing model’s predictive ability if it is not explained by the FF5 model. This is
statistically evaluated by testing the significance of the alpha coefficient (abnormal
excess returns not accounted for by the asset pricing model) in the following time
series regression:

RMULt = α + βmkt MKTt + βsmbSMBt + βhml HMLt + βrmwRMWt + βcmaCMAt + ϵt.
(4.8)

Table 4.11 presents the estimates of this regression across the five evaluation periods.
A statistical rejection of the null hypothesis α = 0 indicates that the proposed
additional factor enhances the benchmark model’s predictive ability. Conversely, if the
null hypothesis is not rejected, it implies that the FF5 model adequately explains the
returns of the mimicking portfolio, suggesting that the additional pricing factor is
spanned by a linear combination of the existing risk factors. The results strongly
support the added value of the LSTM-based macroeconomic uncertainty, with alpha
being statistically significant in most periods. Interestingly, the alpha coefficient’s sign
also provides insights into the sign of the uncertainty risk premium, as the intercept of
the time series regression can be interpreted as the mean return of the mimicking
portfolio once the effects of other pricing factors are controlled for.

The comparison mentioned above can be statistically formalized. As per the findings
in Gibbons et al. (1989), the standardized squared alpha coefficient can be expressed as
the difference in squared Sharpe ratios between the FF5 model augmented with the
economic uncertainty risk factor and the standard FF5 benchmark model. In this
context, suitable Wald-type tests are sufficient to assess the statistical significance of
the uncertainty factor within a nested model framework. Panel A of Table 4.12
presents the test statistic and corresponding p-value across the five evaluation
periods. The p-values from the asymptotic tests, based on the difference in squared
Sharpe ratios shown in the row Sharpe Diff vs FF5, confirm the insights gained from
the time series regressions. They statistically demonstrate the value of incorporating
macroeconomic uncertainty measured by LSTM as an additional pricing factor,
observed consistently across all evaluation periods.

The results above indicate that the macroeconomic uncertainty measured by the LSTM
framework serves as an appropriate proxy during the subsamples of 2003-2006,
2007-2011, and 2012-2016, in comparison to the linear framework’s uncertainty
measure. For the periods 1998-2002 and 2017-2022, while the LSTM-based
macroeconomic uncertainty slightly lags behind the linear framework by a difference
of only 0.01 in the squared Sharpe ratio, the gap is relatively minor. For the
uncertainty measures derived from the linear framework, the optimal proxies for
uncertainty depend on the economic context, as shown in Chapter 3. The linear
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TABLE 4.11: Regression analysis of RMUL across evaluation periods

alpha MKT SMB HML RMW CMA

Panels A. 1998-2002

RMUL 0.0334 -0.0009 -0.0102 0.0162 -0.0063 -0.0080
[1.7474] [-0.1267] [-0.8170] [2.6918] [-0.4989] [-0.5235]

Panels B. 2003-2006

RMUL -0.0226 -0.0209 -0.0052 0.0079 -0.0101 0.0008
[-2.2549] [-4.3414] [-1.1930] [1.9260] [-2.8135] [0.1813]

Panels C. 2007-2011

RMUL 0.0925 -0.0367 -0.0029 0.0350 -0.0117 -0.0336
[3.5327] [-10.6598] [-0.4528] [6.0584] [-2.0011] [-4.3744]

Panels D. 2012-2016

RMUL -0.0323 -0.0166 -0.0038 0.0051 0.0032 -0.0218
[-2.4230] [-10.3346] [-0.9104] [0.5339] [0.5626] [-2.1997]

Panels E. 2017-2022

RMUL 0.0700 -0.0132 0.0064 0.0029 -0.0044 -0.0098
[4.0803] [-6.7917] [0.9432] [0.6713] [-1.2393] [-2.8703]

Note: The table presents the factor loadings from the time series factor regressions (4.8), with RMUL as
the dependent variable and the FF5 model factors serving as regressors. The LSTM-based uncertainty
factors are derived using the mimicking portfolio approach specified in regression equation (3.5). Panels
A to E provide the estimates of these factor loadings across different evaluation periods. Robust t-values,
adjusted according to Newey and West (1987), are included in square brackets to ensure the reliability of
the estimates.

framework’s macroeconomic uncertainty is more effective in explaining the
cross-section of returns during economic distress, whereas financial uncertainty is
more pertinent during financial crises. However, the LSTM-based macroeconomic
uncertainty demonstrates enhanced predictive capacity for cross-sectional returns in
both economic distress and financial turmoil periods. This improvement is attributed
to the advanced machine learning model used in the measurement, as confirmed by
further non-nested comparisons.

To substantiate these claims further, we compare all FF5-augmented models in a
non-nested setting. Barillas et al. (2020) demonstrate that under the null
hypothesis—assuming equality of the squared maximum Sharpe ratios derivable from
two sets of non-nested factors—the difference in squared Sharpe ratios follows a
zero-mean Normal distribution. The row Sharpe Diff vs FF6 in Panel A of Table 4.12
presents the difference in squared Sharpe ratios and corresponding p-values for the
FF5+RMUL model compared against FF5+RMU and FF5+RFU. The findings
provide compelling evidence in favor of the FF5+RMUL model for the period
2007-2011. This indicates that during the financial crisis, although the financial
uncertainty proxy contained more informational content regarding the cross-section of
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stock returns than the macroeconomic uncertainty2, the RMUL still outperformed the
RFU significantly, owing to the LSTM employed in the measurement.

Panel A also illustrates the Bayes Factor (BF), calculated as the ratio of maximum
likelihood functions under the null and alternative hypotheses, and the value of the
posterior probability (pp) of the augmented six-factor models compared to the FF5
benchmark. The posterior probability of the alternate FF5 model is given by 1 − pp. To
determine these posterior probabilities, we adhere to the Bayesian procedure outlined
in Barillas and Shanken (2018). A widely used diffuse prior for β and Σ, as discussed
in Jeffreys (1998), is P (β, ∑) ∝ |∑|−(n+1)/2, where n denotes the number of test assets.
The parameter β signifies the vector of factor loadings in the FF5 specification, and Σ
is the covariance matrix of residuals derived from implementing the FF5 asset pricing
model to the set of test assets. Under the null hypothesis α = 0 (restricted model), the
prior for alpha is concentrated at zero. For the alternative hypothesis (unrestricted
model), the informative prior for α, conditioned on β and Σ, is presumed to follow a
multivariate normal distribution MVN (0, kΣ). Here, the parameter k reflects the prior
expectation of the squared alpha divided by the residual variance, capturing beliefs
about potential deviations from the expected return relationship. Suitable values for k
are discussed in Barillas and Shanken (2018). The findings in Table 4.12 lend support
to the augmented asset pricing model that incorporates macroeconomic uncertainty
measured by LSTM as an additional pricing factor.

The following exercise aims to evaluate the robustness of the results across multiple
model candidates in a non-nested framework. Panel B of Table 4.12 considers
alternative models: (i) FF5 model, (ii) FF5+RMUL, (iii) FF5+RMU, (iv) FF5+RFU, (v)
FF5+RMUL + RFU, and (vi) FF5+RMU + RFU. These models augment the FF5
factor model with macroeconomic uncertainty factors from LSTM and/or the linear
framework and financial uncertainty factors. The posterior probabilities among
non-nested models are calculated using the method in Barillas and Shanken (2018).
For each period, the probabilities assigned to all models sum to one. The results vary
across periods, but overall, the conclusions align with previous findings:

Firstly, during calm evaluation periods, the FF5 model augmented with the RMUL
pricing factor receives the highest posterior probability, with RFU also adding
explanatory power to predict the cross-section of returns, while RMU does not. Given
the ad-hoc definition of these periods, calm subsamples may still include some noise.
Hence, comparing the posterior probabilities of FF5+RMUL and FF5+RMUL + RFU
is insightful. The noisy moments possibly relate more to financial uncertainty in
2003-2006, as including RFU into the FF5+RMUL model improves its explanatory
power. However, for 2012-2016, adding RFU to the FF5+RMUL model decreases its

2The FF5 model augmented with financial uncertainty from the linear framework had a significantly
larger squared Sharpe ratio than FF5 augmented by macroeconomic uncertainty from the same frame-
work.
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explanatory power, as indicated by a lower posterior probability. A similar pattern is
observed for RMU when comparing posterior probabilities of FF5+RMU and
FF5+RMU + RFU.

Secondly, for the period 2007-2011, reflecting significant uncertainty, RMUL, RMU,
and RFU all enhance the FF5 model’s explanatory power. The linear framework’s
macroeconomic and financial uncertainty shows the latter stems mainly from the
financial crisis, aligning with real-world events. However, the LSTM-based
framework significantly improves macroeconomic uncertainty, offering stronger
explanatory power than the linear framework’s financial uncertainty. Notably, this
enhancement is solely due to the application of machine learning models, as the
FF5+RMUL model can still be refined by incorporating RFU.

Thirdly, during the turbulent periods 1998-2002 and 2017-2022, financial crises and
macroeconomic distress are pivotal. Financial uncertainty excels in explaining returns
during the first subsample, while macroeconomic measures have superior explanatory
power in the latter. Despite RMU generally outperforming, the differences in
posterior probabilities between RMUL and RMU are relatively small and comparable.

4.5 Conclusion

We observe that stocks with high past exposure to macroeconomic uncertainty
measured by LSTM tend to have lower expected returns than those with low
exposures during calm periods, and conversely, higher expected returns during
turbulent periods. This finding suggests that investors pay an insurance premium in
low uncertainty regimes to hedge against heightened uncertainty in turbulent periods.
We leverage this evidence to build pricing factors using Fama-Macbeth regression and
a 3-Stage latent factor regression. Our analysis of LSTM-based macroeconomic
uncertainty yields consistent results with econometric-based measures of aggregate
conditional volatility, such as those introduced by Jurado et al. (2015) and Ludvigson
et al. (2021), as discussed in Chapter 3.

Our empirical findings robustly support the existence of a time-varying risk premium
on macroeconomic uncertainty captured by LSTM. The magnitude and sign of this
premium on the cross-section of risky assets shift with the uncertainty regime and the
choice of uncertainty proxy, whether LSTM-based or linear. Generally, the
LSTM-based macroeconomic uncertainty shows a stronger magnitude, with a
negative sign during calm periods and positive during turbulent periods. This
conclusion holds true across different methodologies for estimating the risk premium
and, to a large extent, even with the presence of unobserved factors, albeit with the
preferred approach being the Fama and French (2015) five-factor model enhanced
with economic uncertainty risk factors. The relationship between the uncertainty risk
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TABLE 4.12: Model comparison based on Sharpe ratio and Bayes tests (RMUL)

Panel A: Six-factor models vs FF5

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022

FF5+RMUL FF5+RMUL FF5+RMUL FF5+RMUL FF5+RMUL

Squared Sharpe 0.1768 0.5180 0.7467 0.2888 0.5288
FF5+RMUL vs FF5 0.0205 0.0684 0.4536 0.1029 0.3612

[0.0053] [0.0051] [0.0001] [0.0080] [0.0079]
FF5+RMUL vs FF5+RMU -0.0133 0.0332 0.3110 0.0937 -0.0140

[0.0195] [0.0025] [0.0057] [0.0025] [0.0037]
FF5+RMUL vs FF5+RFU -0.0286 0.0037 0.0629 0.0748 0.2679

[0.0003] [0.0004] [0.0000] [0.0013] [0.0001]
Bayes Factor 0.9962 0.7781 0.0243 0.4935 0.0669
Post. prob. vs FF5 0.5009 0.5624 0.9763 0.6696 0.9373

Panel B: Non-nested comparison of all models

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022

FF5 0.1561 0.1412 0.0074 0.1340 0.0152
FF5+RMUL 0.1567 0.1814 0.3056 0.2716 0.2276
FF5+RMU 0.1656 0.1382 0.0242 0.1179 0.2490
FF5+RFU 0.1763 0.1761 0.1945 0.1407 0.0300
FF5+RMUL + RFU 0.1703 0.1984 0.3230 0.2210 0.2372
FF5+RMU + RFU 0.1715 0.1647 0.1454 0.1147 0.2410

Panel C: Non-nested comparison of six-factor models

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022

FF5+RMUL 0.3143 0.3659 0.5829 0.5122 0.4494
FF5+RMU 0.3322 0.2788 0.0461 0.2224 0.4914
FF5+RFU 0.3536 0.3553 0.3710 0.2654 0.0592

Panel D: Non-nested comparison of seven-factor models

1998-2002 2003-2006 2007-2011 2012-2016 2017-2022

FF5+RMUL + RFU 0.4933 0.5464 0.6896 0.6584 0.4960
FF5+RMU + RFU 0.5067 0.4536 0.3104 0.3416 0.5040

Note: Panel A reports the statistics and p-values of different tests for model comparison across the five
evaluation periods. The first row reports the squared Sharpe ratios obtained from the FF5+RMUL asset
pricing model. The second row reports the difference of squared Sharpe ratios between the former
models and the FF5 benchmark. The p-values in this case are obtained from a nested Wald test using
Gibbons et al. (1989) procedure. The fourth and sixth row reports the difference of squared Sharpe ratios
between FF5+RMUL and FF5+RMU or FF5+RMUL and FF5+RFU. The p-values in these case are
obtained from a Normal test using Barillas et al. (2020) non-nested procedure. Rows 8 and 9 report the
Bayes Factor statistics and posterior probabilities of models FF5+RMUL against the FF5 model. Robust
p-values are reported in square brackets. Panel B, C&D report the posterior probabilities of different
model candidates in non-nested setting. Posterior probabilities are computed using the Bayesian
approach and assumptions in Barillas and Shanken (2018). FF5+RMUL + RFU and FF5+RMU + RFU
denote the seven factor asset pricing models obtained by augmenting FF5 model with the
macroeconomic uncertainty by LSTM or linear framework respectively, and financial uncertainty.

premium and the uncertainty regime appears consistent across evaluation periods, as
illustrated by the dynamics of the mimicking portfolio returns.

In terms of comparing our enhanced LSTM-based framework to the linear framework
for measuring uncertainty, the predictive ability of the LSTM-based risk premium is
statistically supported. There is significant statistical evidence in favor of augmenting
the FF5 model with our LSTM-based macroeconomic uncertainty measure.
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Chapter 5

Conclusions

5.1 Main Findings

In this thesis, we present an extensive study of uncertainty, focusing specifically on the
econometric-based measurement of uncertainty. In addition, we examine its impact on
the predictive performance of macroeconomic variables and the returns on financial
assets.

In Chapter 2, we address macroeconomic uncertainty measurement by Jurado et al.
(2015) and propose enhancements using the LSTM model. Such nonlinear machine
learning model is designed to capture complex changes in large-dimensional
time-series data. For financial uncertainty measurement, Ludvigson et al. (2021)
employ a similar linear framework as Jurado et al. (2015) using a FAVAR model for
forecasting financial series instead. Although our nonlinear framework is not applied
to financial variables, we offer a baseline example and guidance, providing a
foundation for improving the linear forecasting framework, which is entirely feasible
for forecasting financial variables and measuring financial uncertainty in a similar
manner.

Our approach enhances econometric-based uncertainty measurement by using a
nonlinear framework with machine learning models to forecast high-dimensional
time series and eliminate predictable components. We employ two LSTM models and
a recursive procedure to predict macroeconomic and financial variables. This contrasts
with the linear approach using PCA and FAVAR models as in Jurado et al. (2015). We
model the time-varying volatility of forecast errors using the same stochastic volatility
model to estimate individual macroeconomic series uncertainty, aggregating it into
the econometric measure of macroeconomic uncertainty. While our measurement
aligns with the definition and assumptions of Jurado et al. (2015), the key difference is
our nonlinear forecasting procedure.



140 Chapter 5. Conclusions

Our LSTM-enhanced frameworks exhibit heightened sensitivity to nonlinear changes
in macroeconomic uncertainty during both calm and turbulent periods, offering more
accurate and dynamic estimates compared to traditional linear models. Specifically,
these models produce significantly lower uncertainty estimates during calm periods
and forecasts extending 3 to 12 steps ahead. This improved sensitivity allows our
models to better capture intricate nonlinear dynamics, outperforming PCA and
FAVAR models, which tend to overestimate uncertainty in calm times and
underestimate it during turbulence due to their linear constraints.

Our findings highlight the advantages of nonlinear frameworks incorporating LSTM
models over linear models, particularly when dealing with large-dimensional data
and nonlinear interactions. By focusing on conditional forecast error variance, LSTM
models coupled with a recursive procedure demonstrate superior performance,
evidenced by smaller forecast errors and reduced macroeconomic uncertainty
estimates. Notably, our framework not only maintains but often surpasses the
explanatory and predictive power for macroeconomic variables offered by traditional
linear approaches, emphasizing the enhanced capability of LSTM models in handling
macroeconomic and financial complexities for a more accurate measure of uncertainty.

To validate and showcase the advantages of nonlinear machine learning models over
traditional linear models, we propose alternative nonlinear frameworks replacing
linear components like PCA or FAVAR with LSTM models. These new frameworks
yield uncertainty estimates that sit statistically between our nonlinear approach and
Jurado et al. (2015)’s linear model, providing robust evidence for the superiority of
nonlinear approaches.

Specifically, in our first robustness check, we replace the linear PCA model with an
LSTM autoencoder in the framework for measuring uncertainty. This LSTM
autoencoder extracts nonlinear factors which are used in the same linear FAVAR
model to forecast macroeconomic variables. The following procedure of estimating
uncertainty are the same except for forecasting parts. This setup allows us to directly
compare the effectiveness of factor extraction between the LSTM autoencoder and
PCA, with all other components unchanged. Results indicate that LSTM outperforms
PCA in extracting factors, yielding better uncertainty measures. However, despite
improvements, there remains a significant gap when compared to our main
framework, suggesting that LSTM also surpasses the FAVAR model in time series
forecasting, a conclusion supported by our second robustness check.

In the second check, we substitute one LSTM model in our recursive forecasting
framework with a FAVAR model enhanced by nonlinear factors from the LSTM
autoencoder. The remaining LSTM model continues to forecast financial variables.
This configuration allows a direct comparison between LSTM and FAVAR models for
forecasting large-dimensional data. Confirming findings from the first check, the
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LSTM proves more effective than FAVAR, as evidenced by more accurate uncertainty
measurements from our main framework. Thus, the LSTM model demonstrates
superior performance over linear models in both factor extraction and time series
forecasting.

In Chapter 3, we transition from measuring uncertainty to evaluating and pricing
linear macroeconomic uncertainty by Jurado et al. (2015). This sets the groundwork
for the comparison between LSTM-based and linear measures in Chapter 4.

Building on the research by Ang et al. (2006) and Bali et al. (2017) on pricing
uncertainty, we identify key limitations. Ang et al. (2006) use VIX innovations as a
proxy for uncertainty with daily stock returns, but the VIX is criticized for inefficacy
and is often labeled as a fear index. Conversely, Bali et al. (2017) use an
econometric-based uncertainty measure from Jurado et al. (2015), but their approach
may suffer from autocorrelation due to modeling conditional forecast error variance
with time-varying stochastic volatility. Hence, our indicators of economic uncertainty
are derived from innovations to well-established econometric-based measures of
aggregate conditional volatility, as introduced by Jurado et al. (2015) and Ludvigson
et al. (2021).

We find that stocks with higher past exposure to aggregate economic uncertainty tend
to yield lower expected returns than those with minimal exposure during calm
periods, but higher expected returns during turbulent periods. This finding is
interpreted as evidence of an insurance premium that investors pay in low uncertainty
regimes to hedge against periods of heightened uncertainty. We further leverage this
evidence to develop pricing risk factors using variables that serve as proxies for
macroeconomic and financial uncertainty.

Our empirical findings strongly support the existence of a time-varying risk premium
associated with economic and financial uncertainty. The magnitude and direction of
this premium across a range of risky assets vary according to the uncertainty regime
and the choice of uncertainty proxy. Generally, the premium is more pronounced for
financial uncertainty than for macroeconomic uncertainty, with a negative sign during
calm periods and a positive sign during turbulent periods. This evidence holds true
across different methodologies used for estimating the risk premium and, to a large
extent, considers the presence of unobserved factors. Our preferred approach is the
Fama and French (2015) five-factor model, enhanced with economic uncertainty risk
factors. Our empirical results regarding the relationship between the uncertainty risk
premium and the uncertainty regime remain robust regardless of the evaluation
period, as demonstrated by the dynamics of the macroeconomic and financial
mimicking portfolio returns.

The predictive ability of the economic uncertainty risk premium is also supported
statistically by the model comparison tests from Barillas and Shanken (2017), Barillas
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and Shanken (2018), and Barillas et al. (2020). Thus, we find overwhelming statistical
evidence in support of augmenting the FF5 model with our measures of
macroeconomic and financial uncertainty. The suitability of each uncertainty measure
for explaining the cross-section of stock returns depends on the uncertainty regime
and the type of shock producing the turbulent episode. Thus, our financial uncertainty
measure is found to explain better the cross-section of stock returns than the
corresponding macroeconomic uncertainty proxy during the 2007-2011 financial crisis
period whereas the latter uncertainty measure is superior during the 2017-2022 period
characterized by the COVID-19 pandemic and a sustained period of stagflation.

In Chapter 4, we examine and price our nonlinear estimates of macroeconomic
uncertainty, derived from LSTM models, following the same path for the robustness to
compare with the linear measures as examined in Chapter 3. The innovations in
LSTM-based uncertainty are employ as the proxy and incorporated as a sixth factor
within the FF5 model, we apply the same rolling window regression methodology
using monthly data to analyze the cross-sectional relationship between stock returns
and their loadings on LSTM-based uncertainty. This analysis reveals a consistent
time-varying relationship: stocks with higher exposure to LSTM-based uncertainty
tend to have lower expected returns during calm periods and higher expected returns
during turbulent periods. This finding aligns with the results for linear
macroeconomic and financial measures discussed in Chapter 3.

After constructing the five quintile portfolios and the mimicking portfolio for
LSTM-based uncertainty, the risk premiums estimated through the Fama-MacBeth
regression and the latent factor pricing model further confirm the existence of
time-varying risk premiums on LSTM-based uncertainty. These premiums exhibit
negative values during calm periods and positive values during turbulent periods.
While there are differences in magnitude when compared to estimates derived from
linear measures, the consistent change in sign across calm and turbulent periods
underscores a robust and persistent relationship. This indicates that the observed
time-varying cross-sectional relationship and risk premiums are inherent and stable
properties of these econometric-based uncertainty measures, especially when they
adhere to the same definitions and assumptions.

In addition to pricing LSTM-based uncertainty, a key component of our analysis
involved comparing the LSTM-based uncertainty with linear measures. To do this, we
augmented the FF5 model with mimicking factors of different uncertainty indices and
conducted comparisons using both nested and non-nested tests. Our primary findings
reveal that LSTM-based uncertainty significantly enhances the FF5 model, consistently
outperforming estimates from linear frameworks. This holds true across both calm
and turbulent periods. Unlike the results in Chapter 3, where the linear measure of
macroeconomic uncertainty was more effective during the 2017-2022 period marked
by the COVID-19 pandemic and stagflation, and financial uncertainty excelled during
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the 2007-2011 financial crisis, the LSTM-based macroeconomic uncertainty measure
demonstrates a clear advantage across these subsamples. This outcome underscores
the superior ability of LSTM models to capture nonlinear variations in
large-dimensional data, which translates into impressive predictive power for stock
returns and significantly enhances the performance of asset pricing models.
Compared to other nonlinear asset pricing methods that use machine learning models,
our approach effectively integrates nonlinearity by introducing a nonlinear factor into
existing factor models, while maintaining a level of explainability that is crucial within
asset pricing theory.

In conclusion, this thesis presents comprehensive research aimed at enhancing the
econometric-based measurement of uncertainty by leveraging nonlinear machine
learning models. These models offer improved handling of large-dimensional data
and capture nonlinear variations more effectively, addressing the limitations inherent
in traditional linear models. Furthermore, the study provides detailed evidence of the
time-varying risk premiums associated with uncertainty, thus addressing gaps in
existing research. Finally, the thesis introduces a novel nonlinear factor, demonstrating
its potential to significantly enhance asset pricing models.

5.2 Further Research

In reflecting on the limitations of this research, several key aspects warrant
consideration for future exploration. Firstly, while our analysis has primarily
concentrated on econometric-based measures of uncertainty, it’s crucial to
acknowledge the potential benefits of incorporating a broader spectrum of uncertainty
measures. Econometric-based methods have been valuable in providing structured
quantitative insights. However, they may not fully capture the spectrum of
uncertainty present in complex, real-world environments. Future studies could enrich
the analysis by including text-based measures of uncertainty, which leverage the vast
amount of unstructured data available in news articles, financial reports, and social
media. These sources can provide nuanced insights into market sentiment and
perceived risk that traditional econometric indicators might miss. Additionally,
market-based measures, which directly reflect investor sentiment through financial
instruments like options and futures, could offer a more immediate and possibly more
accurate gauge of market uncertainty. Secondly, while we have employed the LSTM
model, known for its strengths in capturing time-series data dependencies due to its
recurrent structure, there is a promising avenue for exploring other advanced machine
learning models. Alternative models such as Recurrent Neural Networks (RNNs) and
Transformer models offer unique advantages. RNNs, while similar to LSTMs, come
with variations that might uncover different aspects of data patterns. Meanwhile,
Transformer models have revolutionized the approach to sequence data with their
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attention mechanisms, allowing them to handle dependencies across vast datasets
effectively. Their widespread adoption in large language models underscores their
robustness and adaptability, making them worthy of exploration for financial data
analysis as well. These models could potentially provide deeper insights into the
nonlinear patterns characteristic of economic and financial datasets. Thirdly, our
empirical analysis has been limited to data available up through 2022. This restriction
is primarily due to data availability at the time of research. Yet, the landscape of global
macroeconomic events continues to evolve, with significant occurrences such as the
Ukraine War presenting new variables that could impact both uncertainty and asset
pricing. The implications of such events are profound, influencing global economic
stability and investor behavior. A more detailed examination of these post-2022
developments is necessary, as they could alter risk assessments and financial models
significantly. Understanding how these events impact market sentiment and investor
confidence could provide critical insights for future economic modeling and risk
management strategies. To sum up, expanding the scope of uncertainty measures,
exploring advanced machine learning methodologies, and updating empirical
analyses to include recent macroeconomic events are all promising directions for
future research. Each of these steps would contribute to a more comprehensive
understanding of uncertainty’s role in financial markets, potentially leading to
improved forecasting models and more robust asset pricing strategies. As the financial
landscape continues to change, these considerations will help ensure that research
remains relevant and responsive to new challenges and opportunities.

For further research, there are two promising directions that offer substantial potential
for advancing our understanding of asset pricing and financial market dynamics.
First, enhancing the latent factor asset pricing framework proposed by Giglio et al.
(2023) through the integration of machine learning models presents an exciting
opportunity. Traditionally, the PCA (Principal Component Analysis) model has been
employed to extract latent factors; however, recent advancements in machine learning
suggest that models like the LSTM-autoencoder could provide significant
improvements. As demonstrated in Chapter 2, our comparisons have shown that the
LSTM-autoencoder surpasses the PCA model in extracting factors from
large-dimensional datasets. This superiority is largely attributed to its enhanced
capability for capturing nonlinear changes, which are often prevalent in complex
financial data. By adopting a similar machine learning-based approach within the
latent factor framework, researchers can potentially achieve a more nuanced and
comprehensive analysis of the omitted factors that influence asset pricing. This
advancement could lead to improved predictive models and a deeper understanding
of the underlying dynamics that drive market behavior.

Second, exploring the idiosyncratic volatility of stock returns presents another
intriguing avenue for research. The study by Ang et al. (2006) emphasizes that
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idiosyncratic volatility is linked to negative risk premiums when accounting for the
VIX index, which is commonly used as a measure of market uncertainty. However, the
current research framework still has gaps concerning the incorporation of various
uncertainty measures. Our findings indicate that econometric-based uncertainty
measures can often provide more nuanced and relevant insights than the VIX index,
especially during periods of heightened market turbulence. Therefore, substituting
the VIX with econometric-based uncertainty measures, alongside other types of
uncertainty, to perform an analysis of idiosyncratic volatility could be highly
beneficial. By controlling for these alternative uncertainty measures instead of relying
solely on the VIX index, we may arrive at more accurate and reasonable outcomes.
This approach could offer a deeper understanding of how idiosyncratic volatility
interacts with different forms of uncertainty, ultimately leading to more robust asset
pricing models. Such research could illuminate the intricate dynamics of market risk
and investor behavior, allowing for more sophisticated strategies in risk management
and investment decisions.
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