
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
School of Mathematical Sciences

AdS/CFT at Loop Order

by

Ernesto Bianchi
ORCiD: 0000-0002-8758-1105

A thesis for the degree of
Doctor of Philosophy

June 2025

http://www.southampton.ac.uk
http://orcid.org/0000-0002-8758-1105




University of Southampton

Abstract

Faculty of Social Sciences
School of Mathematical Sciences

Doctor of Philosophy

AdS/CFT at Loop Order

by Ernesto Bianchi

Since the early days of AdS/CFT, rigorous obtention of tree-level holographic
correlators from a given bulk theory is known through the process of holographic
renormalization, however the picture where quantum corrections are also taken into
account is currently lacking. It is the purpose of this thesis to fill this gap in the
literature and propose a method of holographic renormalization valid to all orders in
the bulk loop expansion, where it is found that the same prescription from classical
order is valid provided one replaces the classical action by the effective action. This
gives a first principle derivation of Witten-Feynman rules for diagrams in AdS
analogous to those in flat space.

In addition to the usual IR divergences present in holography, at loop order there are
also UV divergences coming from the short-distance singularities of the bulk
propagators, and this led us to construct a novel AdS invariant regularization scheme
which we denote as geodesic point-splitting. Its derivation from a regularized action
in AdS and its connection with an IR regulator for the dual CFT is also discussed.

The quantum corrections to the correlators take the form of loop Witten diagrams in
AdS, and we show they obey the conformal Ward identities to all loop orders by
explicitly writing a general loop diagram in the expected CFT form. Direct
computation of loop Witten diagrams is challenging, and we also make progress in
this direction by providing new and exact results for the most basic yet essential loop
vertices in AdS appearing in almost every theory. How these are constrained by AdS
symmetry is also discussed.

As an example of our methods, we work out in detail the case of a scalar Φ4 theory in
the bulk, obtaining the renormalized 2-point function of the dual operator to 2 loops
and the 4-point function to 1 loop, for operators of arbitrary dimension ∆ > d/2 and
bulk spacetime dimensions up to d + 1 = 7.

http://www.southampton.ac.uk
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Chapter 1

Introduction

One of the main challenges of current theoretical physics is the construction of a
quantum theory of gravity, motivated by the study of black holes and perhaps more
profoundly by the origin of our universe. Standard techniques of quantization
manage to elucidate the first quantum effects of gravity at large distances, however as
one forces these methods to smaller distances incurable divergences appear, losing all
predictive power. In modern language of effective field theory, gravity has an
irrelevant coupling resulting in the theory being non-renormalizable. This is exciting
as it suggests gravity in the UV is not simply the Einstein-Hilbert action with a few
tweaked parameters but something radically new, possibly redefining our notions of
space and time. This is also however uncertain, as then how to proceed in this
direction is not clear, difficulted by the lack of access to experimental data and with
mathematical consistency the only guidance.

Current efforts attempt to make progress in the formulation of quantum gravity from
many different angles, but what has proven to be useful is to look at its known
non-perturbative properties, standing out among them its holographic nature
[102, 100]: the information of a gravitational region of spacetime can be stored in a
non-gravitational surface that surrounds it. This is remarkable, as it allows one to map
questions about gravity to a different, usually much more familiar, scenario. This
motivates the study of holography, and in particular the concrete examples where it
has been explicitly realized.

The most celebrated example of holography is the AdS/CFT correspondence [80],
where a gravitational theory in Anti-de Sitter spacetime may be equivalently
described by a non-gravitational conformal field theory living at its boundary. In this
example, the usual UV divergences of quantum field theories present in the boundary
theory are mapped to IR divergences of the bulk theory due to the infinite volume of
AdS, resulting in a UV/IR or strong/weak duality [101]. Foundational work on this
matter has focused on the construction of a renormalized dictionary, known as
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holographic renormalization [44, 98], between these two theories at leading order in
the duality, taking classical gravity on the bulk side and thus describing a
strongly-coupled CFT at the boundary. In this approximation, structural evidence is
found that supports the correspondence, with the divergences renormalized by a finite
number of local covariant counterterms, and with the resulting holographic boundary
correlators obtained from an AdS computation obeying the conformal Ward identities.

Holography may ultimately lead to quantum gravity, and this requires a better
understanding of the holographic dictionary beyond the classical approximation,
where quantum effects of gravity on the bulk side are taken into account. A rigorous
renormalization scheme of AdS/CFT at loop order is currently lacking in the
literature, and this would provide stronger evidence for the conjectured holographic
nature of gravity.

It is the objective of this thesis to fill this gap in the literature and propose a method of
holographic renormalization valid to all orders in the bulk loop expansion. This
material has been organized as follows:

In Chapter 2, we review the standard method of holographic renormalization in
AdS/CFT valid in the classical approximation, introducing the usual IR regulator in
the bulk and boundary counterterms, the renormalized on-shell action, and the exact
holographic 1-point functions once divergences have been renormalized. As an
example, the case of an interacting scalar field with Dirichlet boundary condition is
discussed in detail, obtaining novel and exact formulas for the boundary counterterms
and holographic 1-point functions, for arbitrary interaction terms in the Lagrangian
and values of ν ≡ ∆ − d/2 > 0, including the special cases ν ∈ N.

In Chapter 3, we perform the first analysis of AdS/CFT at loop order by studying the
conformal structure of a general loop Witten diagram. The close connection between
AdS and CFT suggests one can write AdS isometries in the language of conformal
transformations. Such language is indeed constructed with AdS isometries seen as
constrained conformal transformations, making the conformal properties of AdS
objects manifest. We use this to show that a general loop Witten diagram obey the
conformal Ward identities by explicitly writing it in the form of a CFT n-point
function. How conformal invariance at the boundary follows from bulk
diffeomorphism in this new language is also discussed.

In Chapter 4, we present the general method of holographic renormalization in
AdS/CFT valid to all orders in the bulk loop expansion. Subleading corrections in the
correspondence also involve UV divergences in the bulk and we construct a novel
AdS invariant regularization scheme, denoted geodesic point-splitting. Its derivation
from a regularized action in AdS and its connection with an IR regulator for the dual
CFT is also discussed. We introduce the counterterms needed to renormalize these
new divergences, the obtention of the renormalized 1PI on-shell effective action in the
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bulk, and the modified holographic dictionary at loop order, with the CFT data
renormalized due to quantum corrections in AdS.

In Chapter 5, we show new and exact computations of many bulk vertices appearing
in loop Witten diagrams. These include the convergent integrals

∫
G
∫

G
∫
· · · , the IR

divergent integrals
∫

KK and
∫

GK for arbitrary and integer values of ν, and the UV
divergent integrals

∫
GN ,

∫
GNK and

∫
GNKK, including in the latter the terminating

and logarithmic cases. The power of AdS isometries in bulk vertices has not been fully
appreciated, and we show how these constrain the form of these integrals.

In Chapter 6, as an illustration of our methods we consider the example of a scalar Φ4

theory. Holographic renormalization at loop order is performed for this theory,
obtaining explicit formulas for the counterterms, for the renormalized bulk
parameters, and for the renormalized holographic correlators, with the CFT data
corrected order by order in the bulk coupling. This is done up to two loops in the
2-point function and up to 1-loop in the 4-point function, for dual operators of
arbitrary dimension ∆ > d/2 and bulk spacetime dimensions up to d + 1 = 7.

In Chapter 7, we conclude with a discussion of the main points of the thesis, and
possible future directions.

The conventions throughout the thesis are c = h̄ = ℓAdS = 1, unless otherwise stated.
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Chapter 2

AdS/CFT at tree-level

The AdS/CFT correspondence dictionary [70, 103] relates quantities that are formally
divergent. At leading, tree-level order in the bulk there are IR divergences due to the
infinite volume of the spacetime, which are mapped to the usual UV divergences of
QFT at the boundary. To construct a sensible dictionary between both sides these
divergences must be renormalized. The relevant object in the bulk and at tree-level is
the renormalized on-shell action SRen

AdS[φ
I
(0)] as a function the fields φI

(0) parametrizing
the boundary conditions for the bulk fields ΦI . This then acts as a generating function
of connected correlators of primary operators O∆I . The on-shell equations are
obtained by minimizing the bulk gravitational action, δSRen

AdS/δΦI = 0, while keeping
fixed the fields that parametrize the boundary conditions. The construction of a
holographic dictionary that is valid at the renormalized level is known as holographic
renormalization [44, 98], and it is the purpose of this introductory chapter to review
the general methodology valid at classical order. The case for scalar fields is discussed
in more detail, as they will be the relevant object of study in the rest of the thesis.

2.1 Holographic renormalization at classical order

2.1.1 Regularization

Infrared divergences come from the infinite volume of AdS as one approaches its
conformal boundary situated at z = 0 in Poincaré coordinates, with z the bulk radial
direction. We will adopt the usual scheme and regularize the AdS volume by adding a
hard cut-off ε ≪ 1 to the bulk radial direction away from the conformal boundary [73]:
z ≥ ε > 0.
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2.1.2 Counterterms

In this regularization scheme, divergent terms are regulated to the surface z = ε.
These may then be subtracted with the addition of a boundary counterterm B[ΦI ; ε]

located at this region, where AdS covariance implies it can be written in terms of the
bulk fields ΦI and the induced metric at the regulated surface.

2.1.3 Renormalized on-shell action

At classical order, the theory on AdS is approximated by its saddle-point

ZAdS[φ
I
(0)] = e−SAdS[ΦI ] , (2.1)

which is a formal expression as it is ill-defined due to the IR divergences. Regularizing
it for instance with the IR regulator ε, leads to the regularized action SReg

AdS[φ
I
(0); ε]

whose divergences can be absorbed with the boundary counterterm B[ΦI ; ε], leading
to the subtracted action

SSub
AdS[φ

I
(0); ε] = SReg

AdS[φ
I
(0); ε] + B[ΦI ; ε] . (2.2)

Once IR divergences have been renormalized, the renormalized on-shell action is then
obtained in the limit of vanishing regulator

SRen
AdS[φ

I
(0)] = lim

ε→0
SSub

AdS[φ
I
(0); ε] , (2.3)

as a function of the boundary conditions φI
(0).

2.1.4 Exact 1-point functions

Once SRen
AdS has been constructed, the holographic dictionary reads

ZCFT[φ
I
(0)] = ZAdS[φ

I
(0)] =⇒ WCFT[φ

I
(0)] = SRen

AdS[φ
I
(0)] , (2.4)

where the φI
(0) are identified as the sources for some conformal operators O∆I in the

dual theory. Correlation functions for O∆I may then be computed from the theory on
AdS by functionally differentiating SRen

AdS with respect to φI
(0), leading to the exact

holographic 1-point function in the presence of sources

⟨O∆I (x⃗)⟩φI
(0)

=
−1

√g(0)

δSRen
AdS[φ

I
(0)]

δφI
(0)(x⃗)

, (2.5)

with g(0)ij the metric at the boundary theory.
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This summarizes the standard holographic renormalization procedure in very general
terms. In the next section, we will review in more detail the case for scalar fields under
Dirichlet boundary conditions.

2.2 Example: scalar field

2.2.1 Holographic renormalization

Consider the example of an interacting scalar theory in the bulk

SAdS[Φ] =
∫

dd+1x
√

g
[

1
2

∂µΦ∂µΦ +
m2

2
Φ2 + V(Φ)

]
. (2.6)

Adding the IR regulator ε and boundary counterterm B, the renormalized on-shell
action reads

SRen
AdS[Φ] = lim

ε→0

∫
z≥ε

dd+1x
√

g
[

1
2

∂µΦ∂µΦ +
m2

2
Φ2 + V(Φ)

]
+ B[Φ; ε] , (2.7)

with B properly chosen as to renormalize all the divergences from the action. The
variation of SRen

AdS consists only in a boundary term

δSRen
AdS[φ(0)] = lim

ε→0
δB[Φ; ε]−

∫
z=ε

ddx
√

g ∂zΦδΦ , (2.8)

as the resulting bulk term in the variation vanishes given the classical equation of
motion for Φ

(−□+ m2)Φ = −V ′(Φ) . (2.9)

There are 2 independent Green’s functions associated to the differential operator
(−□+ m2): G∆ and G∆̄, with ∆ and ∆̄ the greater/lower solutions to m2 = ∆(∆ − d).
Imposing Dirichlet boundary conditions for the bulk field Φ picks the former,
allowing us to write the equation above as the integral equation

Φ(x) = Φ0(x)−
∫

dd+1x′
√

g′ G∆(x, x′)V ′ (Φ(x′)
)

, (2.10)

where Φ0 solves the homogeneous case: (−□+ m2)Φ0 = 0. The full solution for Φ
may then be obtained in powers of Φ0 by recursively replacing the expression for Φ
on V ′(Φ)

Φ(x) = Φ0(x)−
∫

dd+1x′
√

g′ G∆(x, x′)V ′ (Φ0(x′)
)
+ · · · . (2.11)

In Poincaré coordinates gµν = δµν/z2, the near-boundary expansion of Φ0 is worked
out in powers of the radial coordinate z. For arbitrary values of ν ≡ ∆ − d/2 > 0, it
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takes the form

Φ0(x) = zd−∆
⌊ν⌋

∑
n=0

Γ(ν − n)
Γ(ν) n!

(
z2∂2

4

)n

φ(0)(x⃗) + z∆ φ(2ν)(x⃗) +O(z∆<) , (2.12)

where ⌊ν⌋ is the integer part of ν, and ∂2 is the flat Laplacian. Here φ(0) and φ(2ν) are
the 2 linearly independent solutions of the homogeneous equation, and by Dirichlet
boundary conditions one is fixing the value of φ(0) at the boundary z = 0. When
ν ∈ N, the 2 series become degenerate and one must add a logarithmic term at order
z∆ to have a solution

Φ0(x) = zd−∆
ν−1

∑
n=0

Γ(ν − n)
Γ(ν) n!

(
z2∂2

4

)n

φ(0)(x⃗)

+ z∆

[
φ(2ν)(x⃗)− 2

νΓ(ν)2

(
∂2

4

)ν

φ(0)(x⃗) ln(µz)

]
+O(z∆<) , (2.13)

where µ is an arbitrary scale.

The explicit form of the Green’s function G∆(x, x′), also known as bulk-to-bulk
propagator, is given by

G∆(x, x′) =
c∆

2∆+1ν
ξ∆

2F1

(
∆
2 , ∆+1

2

∆ − d
2 + 1

; ξ2

)
, ξ =

2zz′

z2 + z′2 + (x⃗ − x⃗ ′)2 , (2.14)

where 2F1 is Gauss’ hypergeometric function, and c∆ ≡ Γ(∆)/[π
d
2 Γ(ν)]. It is a function

of the bi-scalar ξ and as such, it is invariant under simultaneous isometry
transformations of the points x and x′. It has a near-boundary expansion of the form

G∆(x, x′) =
z∆

2ν
K∆(x′, x⃗) +O(z∆<) , (2.15)

where the function K∆(x′, x⃗) is known as bulk-to-boundary propagator

K∆(x′, x⃗) = c∆

[
z′

z′2 + (x⃗ ′ − x⃗)2

]∆

. (2.16)

One may readily see the near-boundary expansion of the full solution Φ takes the
same form as the expansion for the free case Φ0, with the normalizable mode φ(2ν)

replaced by

φV
(2ν)(x⃗) = φ(2ν)(x⃗)− 1

2ν

∫
dd+1x′

√
g′ K∆(x′, x⃗)V ′ (Φ0(x′)

)
+ · · · , (2.17)

receiving contributions from the interactions. For scalar fields with this asymptotic,
plugging it in the variation (2.8) leads to a number of IR divergences which are
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renormalized by a finite number of local covariant boundary counterterms of the form

B[Φ; ε] =
∫

z=ε
ddx

√
γ

[
(d − ∆)

2
Φ2(x) +

1
2

⌊ν⌋

∑
n=1

cn(ν)Φ(x)□n
γΦ(x)

]
, (2.18)

with γij = δij/ε2 the induced metric on the regulated surface. A direct computation of
cn(ν) yields

cn(ν) =
1

4nΓ(ν)2

n

∑
i=1

Γ(2ν − i)Γ(ν − i)2

Γ(2ν − 2i)(i − 1)!

n−i

∑
j=0

bjbn−i−j , (2.19)

in terms of the coefficients bn which are determined recursively starting from b0

b0 = 1 , bn>0 = −
n−1

∑
i=0

Γ(ν − n + i)
Γ(ν)(n − i)!

bi . (2.20)

For instance, the first few numbers are

c1(ν) =
1

2(ν − 1)
, c2(ν) =

1
8(ν − 1)2(ν − 2)

, · · · . (2.21)

It would be interesting to solve the recursion formula and find a closed-form
expression for bn, as that would lead in turn to a closed-form for the numbers cn(ν).
Nevertheless, using the formulas above they may be determined up to the desired
value.

The numbers cn(ν) have poles at ν = n, and for ν ∈ N the last counterterm of the
series becomes logarithmic

1
2

c⌊ν⌋(ν)Φ(x)□⌊ν⌋
γ Φ(x) → − 21−2ν

Γ(ν)2 Φ(x)□ν
γΦ(x) ln(µε) . (2.22)

In this case, finite additions to B[Φ; ε] are possible and these are captured by changes
in the arbitrary scale µ, representing the scheme-dependence associated with the
logarithmic subtractions. For special ∆’s and bulk interaction terms, additional
contributions to the logarithmic terms are present and these are related to conformal
anomalies due to higher-point functions [26]. Once this renormalization process has
been carried out, the resulting boundary term is now finite and the limit ε → 0 may be
safely taken, leading to the renormalized variation

δSRen
AdS[φ(0)] = −

∫
ddx 2νφV

(2ν)(x⃗)δφ(0)(x⃗) , (2.23)

up to local terms in φ(0) when ν ∈ N, that may be absorbed in the scale µ.
Functionally differentiating with respect to φ(0) then leads to the exact holographic
1-point function in presence of sources

⟨O∆(x⃗)⟩φ(0) = 2νφV
(2ν)(x⃗) . (2.24)
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Explicit computation of the holographic correlators requires exact (as opposed to
asymptotic) solutions to the bulk field equations, and these will be determined next.

2.2.2 Renormalized correlators

To construct an exact solution for the field Φ, boundary conditions must be
supplemented. We will impose Dirichlet boundary conditions at the conformal
boundary and regularity in the interior of AdS

Dirichlet: Φ(z → 0, x⃗) → zd−∆ φ(0)(x⃗) , (2.25)

Regularity: Φ(z → ∞, x⃗) → 0 . (2.26)

These conditions completely fix the free part of the field, Φ0, to be of the form

Φ0(x) =
∫

ddy K∆(x, y⃗)φ(0) (⃗y) , (2.27)

with K∆ the bulk-to-boundary propagator. The exact solution for Φ is then read from
(2.11)

Φ(x) =
∫

ddy K∆(x, y⃗)φ(0) (⃗y)

−
∫

dd+1x′
√

g′ G∆(x, x′)V ′
[∫

ddy K∆(x′, y⃗)φ(0) (⃗y)
]
+ · · · , (2.28)

expressed in increasing powers of φ(0). This is a convenient representation as terms of
a given order in φ(0) will contribute to a specific holographic correlator: contributions
to the (n + 1)-point function come from the terms of order φn

(0) in Φ. If one is
interested in lower-point functions, then keeping the first few terms in (2.28) is
sufficient.

To compute correlators we need to expand Φ and identify the mode φV
(2ν), now as a

functional of φ(0). The expansion of G∆ was given in (2.15), while for K∆ it is more
easily derived from its representation in momentum

K∆(x, y⃗) =
z

d
2

2ν−1Γ(ν)

∫ dd p
(2π)d pνKν(pz)e−i p⃗(x⃗−y⃗) , (2.29)

where Kν(pz) is the modified Bessel function of second kind. The expression for φV
(2ν)

may then be obtained using the series representation (B.3) of the Bessel function and
computing the resulting momentum integrals using the results of appendix C, leading
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to the identification

φV
(2ν)(x⃗) =

∫
ddy

c∆

|⃗x − y⃗|2∆ φ(0) (⃗y)

− 1
2ν

∫
dd+1x′

√
g′ K∆(x′, x⃗)V ′

[∫
ddy K∆(x′, y⃗)φ(0) (⃗y)

]
+ · · · . (2.30)

Naively, this expression seems to be valid for all values of ν > 0, however for ν ∈ N a
more careful treatment shows the first term in φV

(2ν) is ill-defined as a distribution, i.e.,
its Fourier transform diverges. This can be seen, for instance, from properly expanding
this term around ν integer: ν = n + ϵ, n ∈ N, obtaining an expansion in ϵ of the form

1
|⃗x − y⃗|d+2n+2ϵ

∼ 1
ϵ
□nδ(x⃗ − y⃗) +O(ϵ0) . (2.31)

As ϵ → 0, the leading term in the expansion diverges and the LHS is ill-defined as a
distribution at the coincident point x⃗ = y⃗. For a more detailed analysis of this issue,
see the discussion in appendix C.

In the case ν ∈ N, one must use instead the series representation (B.4) of the Bessel
function, which leads to

φV
(2ν)(x⃗) =

∫
ddy RM

[
c∆

|⃗x − y⃗|2∆

]
φ(0) (⃗y)

− 1
2ν

∫
dd+1x′

√
g′ K∆(x′, x⃗)V ′

[∫
ddy K∆(x′, y⃗)φ(0) (⃗y)

]
+ · · · . (2.32)

Here RM denotes the renormalized version of the function, defined in (C.24) for a
value of M2 = 4µ2eψ(1)+ψ(ν+1), and where µ is the arbitrary scale introduced before. It
has the property that RM[ f (|⃗x − y⃗|)] = f (|⃗x − y⃗|) for x⃗ ̸= y⃗, however unlike the bare
function, it is well-behaved as a distribution including the singular point x⃗ = y⃗ and as
such it has a Fourier transform, which is given by (C.23).

From the exact 1-point function of the dual operator O∆ in (2.24), functionally
differentiating with respect to φ(0) and setting the sources to 0, leads to the
holographic 2-point function

⟨O∆ (⃗y1)O∆ (⃗y2)⟩ =


2νc∆

|⃗y1 − y⃗2|2∆ , ν /∈ N

RM

[
2νc∆

|⃗y1 − y⃗2|2∆

]
, ν ∈ N

(2.33)

valid for ∆ > d/2. These are precisely the CFT 2-point functions for a scalar operator
of conformal dimension ∆.
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For higher-point functions, we need the specific form of the potential V(Φ) in the
Lagrangian. As an example, consider the case of a quartic interaction

V(Φ) =
λ

4!
Φ4 . (2.34)

In this case, the mode φV
(2ν)(x⃗) in (2.30) (or (2.32) when ν ∈ N) evaluates to

φV
(2ν)(x⃗) =

∫
ddy

c∆

|⃗x − y⃗|2∆ φ(0) (⃗y)

− λ

12ν

∫
dd+1x′

√
g′ K∆(x′, x⃗)

[∫
ddy K∆(x′, y⃗)φ(0) (⃗y)

]3

+ · · · . (2.35)

The leading interaction term results in a contribution to the holographic 4-point
function for the dual operator

⟨O∆ (⃗y1)O∆ (⃗y2)O∆ (⃗y3)O∆ (⃗y4)⟩ = −λ
∫

dd+1x
√

g K∆(x, y⃗1)K∆(x, y⃗2)K∆(x, y⃗3)K∆(x, y⃗4) .
(2.36)

Diagrammatically, these contributions may be represented in terms of Witten
diagrams (see fig. 2.1) analogous to those in flat space, consisting in lines starting from
the insertion points at the boundary and with the interactions taking place in the bulk.

y⃗1 y⃗2

y⃗1

y⃗4y⃗2

y⃗3

FIGURE 2.1: Witten diagrams contributing to the connected holographic 2- and 4-point
functions dual to Φ4 theory in AdS.

Contact Witten diagrams constructed from bulk-to-boundary propagators are known
as D-functions, defined by the integral

D∆1,...,∆n ≡
∫

dd+1x
√

g K∆1(x, y⃗1) · · · K∆n(x, y⃗n) , (2.37)

where K(x, y⃗i) = z/[z2 + (x⃗ − y⃗i)
2]. Since D-functions appear as contributions to

conformal correlators, they must have the expected form of a CFT n-point function.
This is indeed the case, as we will prove in the next chapter using AdS symmetry
arguments.

Of special interest is the case n = 4. A direct treatment of the integral computes this
D-function as a sum of Appell F4 hypergeometric functions, which may be written
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more compactly in terms of the function H(α, β, γ, δ; u, v) introduced in [53] (see also
[52])

D∆1,∆2,∆3,∆4 =
π

d
2

2

Γ
(

∆T−d
2

)
∏
n

Γ(∆n)

u
1
2 (∆1+∆2− 1

3 ∆T)v
1
2 (∆2+∆3− 1

3 ∆T)

∏
i<j

(y2
ij)

1
2 (∆i+∆j− 1

3 ∆T)

× H
(

∆2,
∆T

2
− ∆4, ∆1 + ∆2 −

∆T

2
+ 1, ∆1 + ∆2; u, v

)
, (2.38)

where ∆T = ∑
n

∆n and u, v are the conformal invariants (cross-ratios)

u =
y2

12y2
34

y2
13y2

24
, v =

y2
14y2

23

y2
13y2

24
. (2.39)

This representation for the D-function allows us, for instance, to express the 4-point
function (2.36) as

⟨O∆ (⃗y1)O∆ (⃗y2)O∆ (⃗y3)O∆ (⃗y4)⟩ = −λc4
∆

π
d
2

2

Γ
(

2∆ − d
2

)
Γ(∆)4

(uv)
∆
3

∏
i<j

(y2
ij)

∆
3

H(∆, ∆, 1, 2∆; u, v) .

(2.40)
recovering its CFT form.
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Chapter 3

AdS amplitudes as CFT correlators

In this thesis we are interested in extending the picture of Chapter 2 to also include the
corrections to the holographic correlators coming from the bulk loops. This is
precisely the content of Chapter 4, with a fully worked out example in Chapter 6. But
before doing this, as a first study in this direction, in this chapter we will look at the
conformal structure of a general loop Witten diagram. At loop order, the AdS/CFT
correspondence could have been invalidated simply due to the breaking of conformal
symmetry in the dual theory. As we will prove here, conformal invariance is
preserved to all orders in the bulk loop expansion thanks to the AdS covariance of the
bulk propagators.

This chapter has been previously published as a paper in [16].

3.1 Introduction

In a theory of quantum gravity there are no bulk local invariants (because
diffeomorpshims act on spacetime points). In spacetimes with asymptotia, we need to
impose boundary conditions at infinity, and one may define local operators at the
(conformal) boundary via the boundary conditions. For example, one may require
that a bulk scalar field takes a prescribed value at the boundary. The gravitational
path-integral computed with such boundary conditions would then compute
observables that depends on boundary points. Such observables may be organized
according to their transformation properties under the asymptotic symmetry group,
the group of transformations that preserves the boundary conditions.

In the case of asymptotically (locally) AdS gravity, the boundary carries a conformal
structure, so this construction naturally produces n-point functions, which we will call
AdS amplitudes, that transform as CFT correlators. The AdS/CFT conjectures
[80, 70, 103] asserts that AdS gravity is equivalent to a local CFT in one dimension less
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and in particular AdS amplitudes are equal to CFT correlators1. The relation between
AdS amplitudes computed via Witten diagrams and CFT correlators has been tested
with tree-level examples already in the foundational papers [70, 103] and numerous
explicit evaluations of AdS amplitudes appeared in the early AdS/CFT literature; see
[61, 59, 78, 14, 54] for a sample of early papers and [49] for a review. In more recent
times explicit loop-level diagrams have also been computed, see, for example,
[87, 56, 1, 6, 13, 67, 105, 21, 22, 64, 90, 33, 81, 5, 43, 34, 71, 15], and they are all in
agreement with CFT expectations. To a large extent, the community takes for granted
that AdS amplitudes are CFT correlators. It is the purpose of this chapter to provide
an explicit proof that this is the case to all orders in bulk perturbation theory. We will
discuss in detail the case the external operators are scalars, but all steps have a
straightforward generalisation to spinning operators. It would be interesting to spell
out all technical details but we leave this for future work.

In the next section, we summarize the constraints imposed by conformal invariance
on CFT correlations functions. Then in Section 3.3 we show that AdS amplitudes
satisfy these contraints. In particular, this derivation shows that the constants and
functions of cross-ratios that appear in CFT correlators are determined in terms of
bulk data. In Section 3.4 we show how the constraints of conformal invariance emerge
from bulk diffeomorpshisms and illustrate how our results for scalar correlators
extend to spinning ones by considering the case of conserved currents. We finish with
a discussion of our results in Section 3.5.

3.2 CFT correlators

We review in this section the constraints of conformal invariance on CFT correlation
functions of primary operators. This is a topic with long history, see [89, 83, 42] for
some of the original literature and [66, 50, 97, 84] for reviews.

Conformal transformations are diffeomorphisms that results in a Weyl transformation:
under x⃗ → x⃗ ′,

ds2 → ds′ 2 = Ω2(x⃗)ds2 . (3.1)

1This perspective on the duality has been emphasised early on in [65].
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We work with Euclidean signature and coordinates xα, α = 1, . . . , d. We will also use a
vector notation, x⃗ = {xα}. In flat space, where ds2 = dx⃗ 2, these are given by

Poincare: x′α = aα
βxβ + aα , , Ω(x⃗) = 1 , (3.2)

Dilation: x′α = λxα , Ω(x⃗) = λ , (3.3)

Inversion: x′α =
xα

x⃗ 2 , Ω(x⃗) =
1

x⃗ 2 , (3.4)

Special conformal: x′α =
xα + bα x⃗ 2

1 + 2⃗b · x⃗ + b⃗ 2 x⃗ 2
, Ω(x⃗) =

1

1 + 2⃗b · x⃗ + b⃗ 2 x⃗ 2
. (3.5)

The factors Ω(x⃗) are related to the Jacobian |∂x⃗ ′/∂x⃗| via Ω(x⃗) = |∂x⃗′/∂x⃗|1/d and
∂x′α/∂xβ = Ω(x⃗)Rα

β(x⃗), where Rα
β ∈ O(d) is the orthogonal matrix

Rα
β(x⃗) =

{
aα

β, δα
β, Iα

β(x⃗), Iα
γ

(
x⃗

x⃗ 2 + b⃗
)

Iγ
β (x⃗)

}
, (3.6)

for Poincare, dilations, inversions and special conformal transformation,
correspondingly, and det R = ±1 with −1 for inversions, +1 for the rest, where

Iα
β(x⃗) = δα

β − 2
xαxβ

x⃗ 2 . (3.7)

One may check conformal transformations satisfy

(x⃗ ′
1 − x⃗ ′

2)
2 = Ω(x⃗1)Ω(x⃗2)(x⃗1 − x⃗2)

2 . (3.8)

and
Iαβ(x⃗ ′

1 − x⃗ ′
2) = R γ

α (x⃗1)R δ
β (x⃗2)Iγδ(x⃗1 − x⃗2) . (3.9)

For concreteness, and to keep the technicalities to the minimum we will primarily
focus on scalar operators, and we will briefly discuss spinning operator at the end of
this section.

Scalar primary operators O of dimension ∆ transform as

O′(x⃗ ′) = Ω(x⃗)−∆O(x⃗), (3.10)

and n-point functions should therefore satisfy

⟨O1(x⃗ ′
1) · · · On(x⃗ ′

n)⟩ = Ω(x⃗1)
−∆1 · · · Ω(x⃗n)

−∆n⟨O1(x⃗1) · · · On(x⃗n)⟩ . (3.11)

Following the presentation in [30], the solution of (3.11) is given by

⟨O1(x⃗1) . . .On(x⃗n)⟩ =
Cn(uijkl)

∏
1≤i<j≤n

(x2
ij)

∆(n)
ij

, (3.12)
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where x2
ij ≡ |⃗xij|2 ≡ (x⃗i − x⃗j)

2 and the parameters ∆(n)
ij are related to the scaling

dimensions by the relations,

∆i =
n

∑
j=1

∆(n)
ij , i = 1, 2, . . . , n , (3.13)

where we have assumed without loss of generality that ∆(n)
ji = ∆(n)

ij , ∆(n)
ii = 0.

The functions Cn(uijkl) are arbitrary functions of the conformal cross ratios,

uijkl =
x2

ijx
2
kl

x2
ikx2

jl
, i ̸= j ̸= k ̸= l, . (3.14)

These functions encode theory-specific information. Cross-ratios exist from 4-point
function on, so C2 and C3 are constants. Not all cross ratios are independent. For
instance:

uijkl = ujilk = uklij = ulkji =
1

uikjl
=

1
ujlik

=
1

ukil j
=

1
ul jki

, (3.15)

and there are more relations involving product of cross ratios. A simple counting
suggests there are n(n − 3)/2 independent cross-ratios (this is an over-counting when
n > d + 2, see for example [84] – this is not going to play a role here). One may choose
the following combinations as independent cross-ratios,

ui = u123i =
x2

12x2
3i

x2
13x2

2i
, vi = u321i =

x2
1ix

2
23

x2
13x2

2i
, wij = u23ij =

x2
23x2

ij

x2
2ix

2
3j

, (3.16)

where i, j = 4, . . . , n and i < j.

Equation (3.13) is a set of n linear equations that may be used to determine ∆(n)
ij given

∆i. When n = 2, we find
∆1 = ∆(2)

12 = ∆2, (3.17)

encoding the fact that only operators with same dimension have non-vanishing
2-point functions. When n = 3, the unique solution is

∆(3)
ij = ∆i + ∆j −

∆T

2
, (3.18)

where ∆T denotes the sum over all dimensions, ∆T = ∑ ∆i.

For n > 3 there are more unknowns than equations: ∆(n)
ij is a symmetric hollow matrix

(i.e. symmetric with zero in the diagonals) so it has n(n − 1)/2 independent matrix
elements and we have n equations to satisfy. It follows that the solution of (3.13) is
determined up to n(n − 3)/2 constants, which is precisely the number of cross-ratios.
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The general solution is given by

∆(n)
ij = ∆̂(n)

ij + δ
(n)
ij (3.19)

where
∆̂(n)

ij =
1

n − 2

(
∆i + ∆j −

∆T

n − 1

)
, i < j . (3.20)

is a particular solution and δ
(n)
ij is a symmetric hollow matrix satisfying the

homogeneous linear equations:

n

∑
j=1

δ
(n)
ij = 0, i = 1, 2, . . . , n. (3.21)

These equations may be solved by linearly expressing any n of the n(n − 1)/2
parameters δ

(n)
ij in terms of the remaining n(n − 1)/2 − n = n(n − 3)/2 ones. For

example, when n = 4 we may solve δ
(4)
12 , δ

(4)
23 , δ

(4)
24 , δ

(4)
34 in terms of δ

(4)
13 and δ

(4)
14 :

δ
(4)
12 = δ

(4)
34 = −δ

(4)
13 − δ

(4)
14 , δ

(4)
23 = δ

(4)
14 , δ

(4)
24 = δ

(4)
13 . (3.22)

Then

⟨O1(⃗y1) . . .O4(⃗y4)⟩ =
C4(u4, v4)

∏
1≤i<j≤4

(x2
ij)

∆(4)
ij

=
Ĉ4(u4, v4)

∏
1≤i<j≤4

(x2
ij)

∆̂(4)
ij

, (3.23)

where Ĉ4(u4, v4) = C4(u4, v4)u
δ
(4)
13 +δ

(4)
14

4 v−δ
(4)
14

4 . Thus the freedom in the solution of (3.13)
just amounts to redefining the arbitrary function of cross-ratios. The same is true for
any n. To have an unambiguous definition of the function of cross-ratios one needs to
choose a solution of (3.13).

The formulas for spinning operators are similar but more involved. Here we will
quote the results for the case of vector primaries as we will needed it later. Vector
primaries Jα of dimension ∆ transform

J ′
α(x⃗ ′) = Ω−∆(x⃗)R β

α (x⃗)Jβ(x⃗) , (3.24)

and this implies that n-point function should satisfy,

⟨J 1
α1
(x⃗ ′

1) · · · J n
αn
(x⃗ ′

n)⟩ = (3.25)

Ω(x⃗1)
−∆1 · · · Ω(x⃗n)

−∆n R β1
α1 (x⃗1) · · · R βn

αn (x⃗n)⟨J 1
β1
(x⃗1) · · · J n

βn
(x⃗n)⟩ ,

where R β
α (x⃗) is given in (3.6).
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3.3 AdS amplitudes

The objects of interest are AdS amplitudes, which may be computed via Witten
diagrams. The basic structure is well known [103]: a Witten diagram for an n-point
function is constructed by n bulk-to-boundary propagators which are linked to a
number of bulk-to-bulk propagators connected via bulk vertices, which are integrated
over all of AdS.

As just reviewed, conformal invariance fixes the form of 2-point and 3-point functions,
up to a number of constants, and the form of higher-point functions up to a functions
of cross-ratios. The constants and the function of cross-ratios depend on the specific
CFT but the form of the correlators is independent of it. In AdS/CFT correspondence
the AdS isometries play the role of conformal transformations, so one should be able
to establish the same results using AdS isometries only. We will show that this is
indeed the case, and along the way we will also show the relation of the arbitrary
constants and functions of cross-ratios with bulk quantities. We will establish this
result to all orders in bulk perturbation theory and for scalar correlators. We will
discuss the generalisation to general spinning operators afterwards.

3.3.1 AdS isometries as constrained conformal transformations

We work in Euclidean signature and use coordinates where AdS metric is given by

ds2 = gµνdxµdxν =
ℓ2

z2 (dz2 + dx⃗ 2) = ℓ2 δµνdxµdxν

z2 , (3.26)

where ℓ is the AdS radius (set to 1). The conformal boundary is at z = 0 and this is the
place where we need to impose boundary conditions. We will denote bulk point by
xµ = (z, xα) = (z, x⃗), where µ = 0, 1, . . . , d is a bulk index, α = 1, 2, . . . , d is a boundary
index and x0 = z is the radial coordinate.

It is well known that the AdS metric is invariant under the following transformations
(AdS isometries),

z′ = z , x′α = aα
βxβ + aα → Poincaré (3.27)

z′ = λz , x′α = λxα → Dilation (3.28)

z′ =
z

(z2 + x⃗ 2)
, x′α =

xα

(z2 + x⃗ 2)
→ Inversion (3.29)

z′ =
z

1 + 2⃗b · x⃗ + b⃗ 2(z2 + x⃗ 2)
, x′α =

xα + bα(z2 + x⃗ 2)

1 + 2⃗b · x⃗ + b⃗ 2(z2 + x⃗ 2)
→ SCT (3.30)

where we have also indicated the conformal transformation they limit to at the
conformal boundary as z → 0.
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It is less known that these transformations can be thought of as constrained flat-space
(d + 1)-dimensional conformal transformations. We will denote these transformations
as in (3.2)-(3.5) but with the parameters carrying a tilde (and the indices being
(d + 1)-dimensional indices): aα

β → ãµ
ν, aα → ãµ, λ → λ̃, bα → b̃µ. Under such

transformations
δµνdx′µdx′ν = Ω̃(x)2δµνdxµdxν, (3.31)

where Ω̃(x) is (d + 1) version of Ω(x⃗) in (3.2)-(3.5). For these conformal
transformations to be AdS isometries the transformation of z must cancel the factor of
Ω̃:

z′ = Ω̃(x)z . (3.32)

This is indeed satisfied if we impose:

ãz
ν = δz

ν, ãν
z = δν

z , ãz = 0, b̃z = 0 . (3.33)

Thus, altogether and after dropping the tildes we obtain

x′µ = aµ
νxν + aµ , with az

ν = δz
ν, aµ

z = δ
µ
z , az = 0 , (3.34)

x′µ = λxµ , (3.35)

x′µ =
xµ

x 2 , (3.36)

x′µ =
xµ + bµx 2

1 + 2b · x + b 2x 2 , with bz = 0 , (3.37)

where x2 = δµνxµxν = z2 + x⃗ 2, b · x = δµνbµxν = b⃗ · x⃗. One may readily check that
(3.34)-(3.37) agree with (3.27)-(3.30).

The advantage of viewing AdS isometries as constrained conformal transformations is
that we can immediately inherit all CFT properties that are independent of specific
rotations aµ

ν or translations aµ, bµ. For instance, the Jacobian of AdS isometries can be
immediately obtained

∂x′µ

∂xν
= Ω̃(x)R̃µ

ν(x) , (3.38)

where Ω̃ (the one from z′ = Ω̃z) and R̃µ
ν ∈ O(d + 1) are those of a CFT for constrained

rotations and translations

C. Poincare: Ω̃(x) = 1 , R̃µ
ν(x) = aµ

ν , az
ν = δz

ν , aµ
z = δ

µ
z , (3.39)

Dilation: Ω̃(x) = λ , R̃µ
ν(x) = δ

µ
ν , (3.40)

Inversion: Ω̃(x) =
1
x2 , R̃µ

ν(x) = Iµ
ν (x) = δ

µ
ν − 2

xµxν

x2 , (3.41)

C. SCT: Ω̃(x) =
1

1 + 2⃗b · x⃗ + b⃗ 2x2
, R̃µ

ν(x) = Iµ
ρ

( x
x2 + b⃗

)
Iρ
ν (x) . (3.42)
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This implies for example that the inversion property of AdS is inherited from that of
flat space

(x′1 − x′2)
2 = Ω̃(x1)Ω̃(x2)(x1 − x2)

2 , (3.43)

and
Iµν(x′1 − x′2) = R̃ ρ

µ (x1)R̃ σ
ν (x2)Iρσ(x1 − x2) . (3.44)

We can further obtain useful formulas by taking the limit of bulk points to the
boundary. In this limit, Ω̃ and the boundary components of R̃µ

ν reduce to those of an
unconstrained CFT in d dimensions

lim
z→0

Ω̃(x) = Ω(x⃗) , lim
z→0

R̃α
β(x) = Rα

β(x⃗) , (3.45)

and thus one also recovers the Jacobian

lim
z→0

∂x′α

∂xβ
= lim

z→0
Ω̃(x)R̃α

β(x) = Ω(x⃗)Rα
β(x⃗) . (3.46)

When one of the points in (3.43) and (3.44) are taken to the boundary, one obtains the
useful relations

(x′ − y⃗ ′)2 = Ω̃(x)Ω(⃗y)(x − y⃗)2 , (3.47)

and
Iµα(x′ − y⃗ ′) = R̃ ν

µ (x)R β
α (⃗y)Iνβ(x − y⃗) . (3.48)

3.3.2 AdS propagators

The bulk-to-boundary propagator for a bulk field dual to an operator of dimension ∆
is the regular solution of the bulk equation

(−□+ m2)K∆(x1, x⃗2) = 0 (3.49)

where m2 = ∆(∆ − d) and it is given by

K∆(x1, x⃗2) = c∆

(
z1

(x1 − x⃗2)2

)∆

, c∆ =
Γ(∆)

π
d
2 Γ
(

∆ − d
2

) . (3.50)

where (x1 − x⃗2)2 = z2
1 + (x⃗1 − x⃗2)2. This is normalized such that as we approach the

AdS boundary the propagator tends to a delta function

lim
z1→0

K∆(x1, x⃗2) → zd−∆
1 δ(x⃗1 − x⃗2) . (3.51)

The bulk-to-boundary propagator K∆(x1, x⃗2) transforms as a CFT primary field of
dimension ∆ at x⃗2 under the AdS isometries (3.27)-(3.30) acting simultaneously on x1
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and x⃗2

K∆(x′1, x⃗ ′
2) = Ω(x⃗2)

−∆K∆(x1, x⃗2) , (3.52)

where the factors of Ω are those given in (3.2)-(3.5). This is most easily shown using
the perspective of the AdS isometries as constrained conformal transformations.
Indeed, using (3.32) and (3.47) we obtain

K∆(x′1, x⃗ ′
2) = c∆

(
z′1

(x′1 − x⃗ ′
2)

2

)∆

= c∆

(
Ω̃(x1)z1

Ω̃(x1)Ω(x⃗2)(x1 − x⃗2)2

)∆

= Ω(x⃗2)
−∆K∆(x1, x⃗2)

(3.53)
We will also explain in Section 3.4 that this transformation rule follows from bulk
diffeomorphism invariance.

The bulk-to-bulk propagator for the same field is the regular solution of the equation

(−□+ m2)G∆(x1, x2) =
1
√

g
δ(x1 − x2) , (3.54)

with normalizable behavior at infinity, G∆ ∼ z∆
1 as x1 approaches the conformal

boundary (and ∼ z∆
2 when x2 approaches the conformal boundary). AdS invariance

implies that the propagator is a function of an AdS invariant distance, which we may
take to be the chordal distance

ξ =
2z1z2

z2
1 + z2

2 + (x⃗1 − x⃗2)2
. (3.55)

The invariance of the chordal distance under transformations (3.27)-(3.30) (or
equivalently (3.34)-(3.37)) that act simultaneously on both x1 and x2 follows by
inspection upon use of (3.32) and (3.43). By explicit computation

G∆(x1, x2) =
2−∆c∆

2∆ − d
ξ∆

2F1

(
∆
2

,
∆ + 1

2
, ∆ − d

2
+ 1; ξ2

)
. (3.56)

It follows that
G∆(x′1, x′2) = G∆(x1, x2) . (3.57)

One may similarly obtain the transformation properties for propagators of spinning
fields. We report here the result for the bulk-to-boundary propagator of an (Abelian)
gauge field, as this is a case we discuss later. The bulk-to-boundary propagator has
been obtained in the early AdS/CFT literature [62]. Up to gauge transformations it is
given by

Kµα(x1, x⃗2) = C
zd−2

1
[(x1 − x⃗2)2]d−1 Iµα(x1 − x⃗2) , (3.58)

where C is a constant and Iµα the inversion tensor, with µ and α bulk and boundary
indices, respectively. Using (3.32), (3.47) and (3.48) one may work out how this
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bulk-to-boundary propagator transforms under bulk isometries

Kµα(x′1, x⃗ ′
2) = C

z′d−2
1[

(x′1 − x⃗ ′
2)

2
]d−1 Iµα(x′1 − x⃗ ′

2)

= C
Ω̃d−2(x1)zd−2

1[
Ω̃(x1)Ω(x⃗2)(x1 − x⃗2)2

]d−1 R̃ ν
µ (x1)R β

α (x⃗2)Iνβ(x1 − x⃗2) ,

= Ω−(d−1)(x⃗2)Ω̃−1(x1)R̃ ν
µ (x1)C

zd−2
1

[(x1 − x⃗2)2]d−1 Iνβ(x1 − x⃗2)R β
α (x⃗2) ,

= Ω−(d−1)(x⃗2)
∂xν

1

∂x′µ1
Kνβ(x1, x⃗2)R β

α (x⃗2) . (3.59)

It follows that the vector bulk-to-boundary propagators transforms as a vector in the
bulk index µ and a CFT conserved current in the boundary index α (compare with
(3.24) with ∆ = d − 1). We will rederive this transformation property from bulk
diffeomorphism invariance in Section 3.4.

3.3.3 AdS amplitudes are CFT correlators

We now discuss the computation of AdS amplitudes, i.e. bulk n-point functions with
all legs in AdS boundary. This can be computed via Witten-Feynman diagrams,
involving n bulk-to-boundary propagators connecting the n boundary points to an
“amputated” bulk n-point function Gn(x1, . . . , xn) and integrating over x1, . . . , xn. The
amputated bulk n-point function is constructed from bulk-to-bulk propagator
connected via vertices that come from the bulk action, and integrating over the
position of each vertex. As long as the bulk action is invariant under AdS isometries,
the invariance of the bulk-to-bulk propagator guarantees that Gn(x1, . . . , xn) is also
invariant under (3.27)-(3.30) that act simultaneously on all x1, . . . , xn

Gn(x′1, . . . , x′n) = Gn(x1, . . . , xn) . (3.60)

This could have been invalidated by short-distance singularities, but as we discuss in
Subsection 3.3.4 we can regulate the short-distance singularities while respecting the
AdS isometries. More generally, (3.60) is guaranteed by diffeomorphism invariance (in
a theory with no diffeomorphism anomalies), and we will discuss in Section 3.4 the
extension to tensorial correlators. When the bulk points xi tend to the boundary, IR
divergences appear. These correspond via the AdS/CFT correspondence to UV
divergences in the dual CFT and lead to conformal anomalies and anomalous
dimensions. This will be discussed in Subsection 3.3.4, but for ease in presentation we
suppress the IR issues in this subsection. We will now show that the dependence of
the correlators on the external positions y⃗i is the same with that of a CFT, without
computing any integral.
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3.3.3.1 2-point function

Let us start with the 2-point function, whch is illustrated in Fig. 3.1,

I2(⃗y1, y⃗2) =
∫

x1

∫
x2

K∆1(x1, y⃗1)G2(x1, x2)K∆2(x2, y⃗2) , (3.61)

where we use the shorthand notation,
∫

x =
∫

dd+1x
√

det g. We can extract all the

G2y⃗1 x1 x2 y⃗2
K∆1 K∆2

FIGURE 3.1: General 2-point function. The blue (outer) circle represents the boundary
of AdS, and the shaded region represents general (loop) interactions that connect the

bulk points x1, x2.

dependence of the external points y⃗1 and y⃗2 from the integral by performing change
variables in integration variables x1 and x2 that account to AdS isometries. First, note
that by using the inversion property of the bulk-to-boundary propagators we find,

I2(⃗y ′
1, y⃗ ′

2) = (⃗y 2
1 )

∆1 (⃗y 2
2 )

∆2 I2(⃗y1, y⃗2) . (3.62)

We now shift the integration variables x⃗1, x⃗2 by y⃗1 to obtain

I2 =
∫

x1

∫
x2

K∆1(x1, 0⃗)G2(x1, x2)K∆2(x2, y⃗21) , (3.63)

where y⃗21 = (⃗y2 − y⃗1). We can now change variables by rescaling x1, x2 by |⃗y12| and
use (3.52) to find

I2 =
1

|⃗y12|∆1+∆2

∫
x1

∫
x2

K∆1(x1, 0⃗)G2(x1, x2)K∆2(x2, ŷ21) . (3.64)

Thus
I2(⃗y1, y⃗2) =

C2

|⃗y12|∆1+∆2
, (3.65)

with C2 equal to

C2 =
∫

x1

∫
x2

K∆1(x1, 0⃗)G2(x1, x2)K∆2(x2, ŷ21) . (3.66)

Finally, rotational invariance implies that the integral does not depend on the
direction specified by ŷ21 and thus it is a constant. Equation (3.65) should be consistent
with the transformation in (3.62) and this implies ∆1 = ∆2 = ∆, thus reproducing the
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expected CFT answer

I2(⃗y1, y⃗2) =
C2

|⃗y12|2∆ . (3.67)

3.3.3.2 3-point function

The general 3-point function, see Fig. 3.2, is given by

I3(⃗y1, y⃗2, y⃗3) =
∫

x1

∫
x2

∫
x3

K∆1(x1, y⃗1)K∆2(x2, y⃗2)K∆3(x3, y⃗3)G3(x1, x2, x3), (3.68)

where G3(x1, x2, x3) is the amputated bulk 3-point function. We first shift the

G3

K∆1y⃗1
x1 x2

y⃗2K∆2

x3

y⃗3

K∆3

FIGURE 3.2: General 3-point function. The blue (outer) circle represents the boundary
of AdS, and the shaded region represents general (loop) interactions that connect the

bulk points x1, x2, x3.

integration variables x⃗2, x⃗2, x⃗3 by y⃗1 to obtain

I3 =
∫

x1

∫
x2

∫
x3

K∆1(x1, 0⃗)K∆2(x2, y⃗21)K∆3(x3, y⃗31)G3(x1, x2, x3) . (3.69)

Then we make a change of variable that amounts to an inversion on all integration
variables and use the transformation of the bulk-to-boundary propagator (3.52) to
obtain

I3 = |⃗y ′
12|2∆2 |⃗y ′

13|2∆3

∫
x1

∫
x2

∫
x3

c∆1 z∆1
1 K∆2(x2, y⃗ ′

21)K∆3(x3, y⃗ ′
31)G3(x1, x2, x3), (3.70)

where here and in the remainder of this section prime indicates a (boundary) inversion

y⃗ ′ =
y⃗
y⃗2 . (3.71)

After this step, only two bulk-to-boundary propagators depend on the external
positions, so we can proceed analogously to the case of 2-point function to obtain

I3 =
|⃗y ′

12|2∆2 |⃗y ′
13|2∆3

|⃗y ′
31 − y⃗ ′

21|∆2+∆3−∆1

∫
x1

∫
x2

∫
x3

c∆1 z∆1
1 K∆2(x2, 0⃗)K∆3(x3, ŷ′31,21)G3(x1, x2, x3) (3.72)
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where ŷ′31,21 is the unit vector of y⃗ ′
31 − y⃗ ′

21, i.e.

ŷ′31,21 =
y⃗ ′

31 − y⃗ ′
21

|⃗y ′
31 − y⃗ ′

21|
. (3.73)

Let
C3 =

∫
x1

∫
x2

∫
x3

c∆1 z∆1
1 K∆2(x2, 0⃗)K∆3(x3, ŷ′31,21)G3(x1, x2, x3) (3.74)

Rotation invariance implies that C3 is independent of ŷ′31,21 that thus it is a constant.
Using (3.71) to re-express the answer in terms of the original insertion points we
finally get

I3(⃗y1, y⃗2, y⃗3) =
C3

|⃗y12|∆1+∆2−∆3 |⃗y13|∆1+∆3−∆2 |⃗y23|∆2+∆3−∆1
, (3.75)

which is precisely the expected form for a CFT 3-point function.

3.3.3.3 4-point functions

The general 4-point function, see Fig. 3.3, is given by

I4(⃗y1, y⃗2, y⃗3, y⃗4) =∫
x1

∫
x2

∫
x3

∫
x4

K∆1(x1, y⃗1)K∆2(x2, y⃗2)K∆3(x3, y⃗3)K∆4(x4, y⃗4)G4(x1, x2, x3, x4), (3.76)

where G4(x1, x2, x3, x4) is the amputated bulk-to-bulk 4-point function. Following the

G4

y⃗1

x1

K∆1

x2

y2
K∆2

x3

y⃗3

K∆3

x4

y⃗4

K∆4

FIGURE 3.3: General 4-point function. The blue (outer) circle represents the boundary
of AdS, and the shaded region represents general (loop) interactions that connect the

bulk points x1, x2, x3, x4.

same steps2 as in the case of 3-point functions we arrive at

I4 =
|⃗y12|∆3+∆4−∆1−∆2 |⃗y13|∆2+∆4−∆1−∆3

|⃗y14|2∆4 |⃗y23|∆2+∆3+∆4−∆1
(3.77)

×
∫

x1

∫
x2

∫
x3

∫
x4

c∆1 z∆1
1 K∆2(x2, 0⃗)K∆3(x3, ŷ′31,21)K∆4

(
x4,

|⃗y13||⃗y24|
|⃗y14||⃗y23|

ŷ′41,21

)
G4(x1, x2, x3, x4)

2In more detail: we translate the internal coordinates by y⃗1, invert them together with the external
coordinates, translate them again by y⃗ ′

21, rescale them by |⃗y ′
31 − y⃗ ′

21|, and finally, write the inverted external
points in terms of the original positions.
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where ŷ′31,21 is the unit vector of y⃗ ′
31 − y⃗ ′

21, ŷ′41,21 the unit vector of y⃗ ′
41 − y⃗ ′

21, and
y⃗ ′

ij = y⃗ij/y⃗ 2
ij, is the inversion of y⃗ij (and y⃗ij = (⃗yi − y⃗j)). Using the conformal

cross-ratios from (3.16) (and relabeling u4 → u and v4 → v) we find that the 4-point
function takes the expected form for a CFT 4-point function,

I4(⃗y1, y⃗2, y⃗3, y⃗4) =
C4(u, v)

∏
1≤i<j≤4

(y2
ij)

∆(4)
ij

, (3.78)

where the dimensions ∆(4)
ij satisfy the conformal constraints (3.13), and

C4(u, v) = u∆(4)
34 v∆(4)

14 −∆4 (3.79)

×
∫

x1

∫
x2

∫
x3

∫
x4

c∆1 z∆1
1 K∆2(x2, 0⃗)K∆3(x3, ŷ′31,21)K∆4

(
x4,

ŷ′41,21√
v

)
G4(x1, x2, x3, x4)

where in asserting that C4 depends only on u, v we used the fact that rotational
invariance implies that the integral may depend on ŷ′31,21 and ŷ′41,21 only via their inner
product and as we now explain this inner product is a function of u and v. Indeed,
since ŷ′31,21 and ŷ′41,21 are unit vectors their inner product depends only on the angle
between them and conformal transformation preserves angles. ŷ′31,21 · ŷ′41,21 being
conformal invariant that depends on four positions is necessarily is a function u and v.
We can compute this function explicit as follows. Reverting to the original variables
we find,

ŷ′31,21 · ŷ′41,21 =
y2

12y13y14

y23y24

(
y⃗13

y2
13

− y⃗12

y2
12

)
·
(

y⃗14

y2
14

− y⃗12

y2
12

)
. (3.80)

Expanding the product and using the formula

y⃗1i · y⃗1j =
1
2

(
y2

1i + y2
1j − y2

ij

)
, (3.81)

leads to the result
ŷ′31,21 · ŷ′41,21 =

1 + v − u
2
√

v
, (3.82)

which is a function of u and v, as claimed.

Note that the integral in (3.79) depends on u only through the inner product in (3.82).
This appears to be special to holographic CFT and it will be interesting to investigate
its implications.
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3.3.3.4 n-point function

We now discuss the general case. Starting from

In (⃗y1, · · · , y⃗n) =
∫

x1

· · ·
∫

xn

n

∏
i=1

K∆i(xi, y⃗i) Gn(x1, · · · , xn) , (3.83)

which is represented by Fig. 3.4, and repeating the same steps one finds:

Gny⃗1 x1 y⃗nxn
K∆1 K∆n

FIGURE 3.4: General n-point function. The blue (outer) circle represents the boundary
of AdS, and the shaded region represents general (loop) interactions that connect the

bulk points x1, . . . , xn.

In =
y∆T−2∆1−2∆2

12 y∆T−2∆1−2∆3
13

y∆T−2∆1
23 ∏n

i=4 y2∆i
1i

(3.84)

×
∫

x1

· · ·
∫

xn

c∆1 z∆1
1 K∆2(x2, 0⃗)K∆3(x3, ŷ′31,21)

n

∏
i=4

K∆i

(
xi,

y13y2i

y1iy23
ŷ′i1,21

)
Gn(x1, · · · , xn) ,

which may be processed to

In (⃗y1, . . . , y⃗n) =
Cn(ui, vi, wij)

∏
1≤i<j≤n

(y2
ij)

∆(n)
ij

, (3.85)

where the dimensions ∆(n)
ij satisfy the conformal constraints (3.13), and

Cn =
n

∏
i=4

u
∆i−∆(n)

1i −∆(n)
2i − ∑

i<k≤n
∆(n)

ik

i v∆(n)
1i −∆i

i ∏
4≤j<l≤n

w
∆(n)

jl
jl (3.86)

×
∫

x1

· · ·
∫

xn

c∆1 z∆1
1 K∆2(x2, 0⃗)K∆3(x3, ŷ′31,21)

n

∏
i=4

K∆i

(
xi,

ŷ′i1,21√
vi

)
Gn(x1, . . . , xn) .

The remaining integral is a function of cross-ratios. Indeed, by rotational invariance it
is a function of the inner product between the unit vectors ŷ′i1,21. A similar
computation as above leads to:

ŷ′i1,21 · ŷ′j1,21 =
1
2

(√
u1ij2 +

√
u1ji2 −

√
u12ij

√
u12ji

)
. (3.87)
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which is a function of cross-ratios, as claimed. For i = j, the product is just 1, as
expected. For j = 3 and i > 3, it can be expressed in terms of ui and vi:

ŷ′i1,21 · ŷ′31,21 =
1 + vi − ui

2
√

vi
, i > 3 , (3.88)

while for i, j > 3 also in terms of wij:

ŷ′i1,21 · ŷ′j1,21 =
vi + vj − ujwij

2√vivj
, i, j > 3 . (3.89)

As in the case of 4-point functions, the integral in (3.86) appears to have special
dependence on some of the cross-ratios (ui and wij) and it will be interesting to
investigate the implications.

3.3.4 Regularization and renormalization

We have just shown that AdS amplitudes can be brought to a form that manifestly
satisfied the CFT Ward identities by a sequence of steps that involved changing
integration variables amounting to AdS isometries. Such manipulations are
well-posed if the integrals are finite. However, the integrals may diverge both in the
UV and the IR. The UV divergences come from bulk loops, while the IR divergences
are due to the infinite volume of AdS. The bulk IR divergences correspond to CFT UV
divergences via the AdS/CFT correspondence.

One can regulate the UV divergences in a way that preserves the AdS invariance. This
is expected as bulk UV divergences are mapped by the AdS/CFT correspondence to
IR divergences in the CFT. Such divergences should cancel on their own and they
should not lead to breaking of the conformal symmetry. The regulator amounts to
separating (bulk) coincident points along a geodesic by affine distance τ [15], which
thus acts an UV regulator. This results to modifying the argument of the bulk-to-bulk
propagator by changing ξ → ξ/ cosh τ in (3.56), recovering the prescription in [22, 21].
We will discuss in detail this regulator in Chapter 4, where we will also show that it
can be derived from a regulated action. Since the regulated theory is invariant under
AdS isometries, all steps outlined above are valid in the regulated theory. The
discussion in this chapter is about bulk scalar propagators, but we expect the results to
extend to general tensorial fields (the metric, gauge fields, antisymmetric tensor fields,
etc.).

The issues with the IR divergences is more subtle. These correspond to UV
divergences in the dual CFT and such divergences give rise to anomalous dimensions
and conformal anomalies, and thus the breaking of conformal symmetry is inevitable.
One can regulate the IR divergence by imposing an explicit IR cut-off, z ≥ ε, as in the
original works on holographic renormalization [72, 44, 98]. In this case the explicit
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cut-off results into additional terms when one follows the manipulations described
above. This has already been discussed in [15] and we will discuss in detail how to
compute such integrals in Chapter 5. The results is that the AdS amplitudes still take
the form of the CFT correlators but now the dimensions may renormalize (there are
anomalous dimensions) and conformal anomalies appear.

An alternative approach is to use dimensional regularization, where the spacetime
dimension d and dimensions ∆i of operators are shifted as in [25]. For generic values
of ∆i the correlators may be defined by analytic continuation. For such cases the
analysis above holds unchanged. However, there are also cases where genuine
singularities appear and boundary counterterms and renormalization is needed
[26, 27, 28, 29]. In the case where both UV and IR issues are present one would need to
renormalize the parameters in the bulk action (masses and coupling constants), the
fields that specify the boundary conditions (sources of the dual operators) and add
appropriate boundary counterterms, as discussed in [15] and in the next chapter.

3.4 From bulk diffeomorphism to conformal invariance

In this section we present an alternative derivation of (3.52) that makes clear how
conformal symmetry emerges from bulk diffeomorphism. This derivation also easily
extends to general fields and we discuss the case of gauge fields.

Recall that the boundary field φ(0)(x⃗) that parametrizes the boundary condition of a
bulk scalar field ϕ(x) is given by

φ(0)(x⃗) = lim
z→0

z∆−dϕ(x) . (3.90)

As we discussed in Subsection 3.3.1 the radial coordinate under the isometry
transformations in (3.27)-(3.30) transforms as,

z′ = Ω̃(x)z (3.91)

where Ω̃(x) has the property
lim
z→0

Ω̃(x) = Ω(x⃗), (3.92)

with Ω(x⃗) the Jacobian factor of the conformal transformations listed in (3.2)-(3.5).
Then, adapting an argument from [24, 98], we find that the source transforms as
follows

φ′
(0)(x⃗ ′) = lim

z′→0
z′∆−dϕ′(x′) = lim

z→0
Ω̃∆−d(x)z∆−dϕ(x) = Ω∆−d(x⃗)φ(0)(x⃗) , (3.93)

where in the second equality we used the fact that ϕ is a scalar under bulk diffeos and
equation (3.91), and in the last equality we used (3.92). This is the expected
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transformation rule for a source that couples to a scalar operator of dimension ∆.
Now, at linearized order in the sources the bulk field is given by

ϕ(x) =
∫

ddy K∆(x, y⃗)φ(0) (⃗y) (3.94)

Thus,

ϕ′(x′) =
∫

ddy′ K∆(x′, y⃗ ′)φ′
0(⃗y

′) ,

=
∫

ddy Ωd (⃗y)K∆(x′, y⃗ ′)Ω∆−d (⃗y)φ(0) (⃗y) ,

=
∫

ddy Ω∆ (⃗y)K∆(x′, y⃗ ′)φ(0) (⃗y) , (3.95)

Since this a scalar field, ϕ′(x′) = ϕ(x), and comparing (3.94) with (3.95) we conclude
that the bulk-to-boundary propagator transforms as a scalar primary field:

K∆(x′, y⃗ ′) = Ω−∆ (⃗y)K∆(x, y⃗) , (3.96)

Another way to see this is to note that (3.94) has the same form as the coupling of the
source to the operator:

∫
ddy O(⃗y)ϕ(0) (⃗y).

3.4.1 Generalization to spinning operator

This discussion readily generalises to spinning fields. The higher the spin the more
complex the formulas and to keep the technicalities to the minimum we will present
the details for a gauge field. All the steps, however, are the same in all cases. As in the
case of a scalar, the first step is to establish that the sources indeed transforms as a
source of a spinning primary operator. For a gauge field the source is given by

a(0)α(x⃗) = lim
z→0

Aα(x) . (3.97)

We now follow the same steps as in (3.93)

a′(0)α(x⃗ ′) = lim
z′→0

A′
α(x′) = lim

z→0

∂xµ

∂x′α
Aµ(x) = lim

z→0
Ω̃−1(x)R̃ µ

α (x)Aµ(x)

= Ω−1(x⃗)R β
α (x⃗)a(0)β(x⃗) , (3.98)

where we used (3.38), (3.46) and the fact that the radial component of the field, Az, is
subleading in z and thus vanishes as z → 0. This is indeed the correct transformation
for a source that couples to a conserved current of dimension ∆ = d − 1.

The bulk gauge field to linear order in the sources is given by

Aµ(x) =
∫

ddy K α
µ (x, y⃗)a(0)α (⃗y) . (3.99)
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Following the same steps as in (3.95) we find

A′
µ(x′) =

∫
ddy′ K α

µ (x′, y⃗ ′)a′(0)α (⃗y
′) (3.100)

=
∫

ddy Ωd (⃗y)K α
µ (x′, y⃗ ′)Ω−1(⃗y)R β

α (⃗y)a(0)β (⃗y)

=
∫

ddy Ωd−1(⃗y)K α
µ (x′, y⃗ ′)R β

α (⃗y)a(0)β (⃗y) . (3.101)

By diffeomorphism invariance

A′
µ(x′) =

∂xν

∂x′µ
Aν(x) ⇒ Kµα(x′, y⃗ ′) = Ω−(d−1) (⃗y)

∂xν

∂x′µ
Kνβ(x, y⃗)R β

α (⃗y) , (3.102)

and we reproduce (3.59).

A general AdS amplitude of n conserved currents is given by

Iα1 ...αn (⃗y1, . . . , y⃗n) =∫
x1

· · ·
∫

xn

Kµ1α1(x1, y⃗1) · · · Kµnαn(xn, y⃗n)Gµ1···µn(x1, . . . , xn) , (3.103)

where Gµ1···µn(x1, . . . , xn) is the amputated bulk n-point function of the gauge field Aµ

(to any loop order). Provided it transforms under diffeomorphisms as indicated by its
indices

Gµ1···µn(x′1, . . . , x′n) =
∂x′µ1

1
∂xν1

1
· · · ∂x′µn

n

∂xνn
n

Gν1···νn(x1, . . . , xn) , (3.104)

a straightforward computation shows that the amplitudes transform as

Iα1 ...αn (⃗y
′
1, . . . , y⃗ ′

n) =

Ω−(d−1) (⃗y1) · · · Ω−(d−1) (⃗yn)R β1
α1 (⃗y1) · · · R βn

αn (⃗yn)Iβ1...βn (⃗y1, . . . , y⃗n) , (3.105)

which is indeed the transformation property of a CFT n-point function of conserved
currents, see (3.25).

3.5 Conclusions

We have shown that AdS amplitudes satisfy the conformal Ward identities and we
obtained explicit formulas that compute the constants and functions of cross-ratios
that appear in the CFT correlators in terms of bulk quantities. These are given in
(3.66), (3.74), (3.79), (3.86) for scalar n-point functions. The same analysis can be
carried out for spinning operators and we worked out explicitly the case of conserved
currents. The constraints of conformal invariance originate from diffeomorphsim
invariance in the bulk.
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Altogether these results imply that the AdS gravity is a CFT, but they do not yet imply
that it is a local CFT. Local CFTs have local UV divergences, and thus the
corresponding bulk IR divergences should also be local. This has been established at
tree-level in [72, 44, 85, 26] and for scalar fields in AdS up to two loops in [15] and in
the next chapter. In addition, the conformal anomalies should be that of a local CFT,
and they are [72, 44]. One should contrast these results with the case of de Sitter,
where the bulk isometries also match that of (Euclidean) CFT. The Ward identities due
to de Sitter isometries also take the form of conformal Ward identities, but the IR
divergences of de Sitter in-in correlators and corresponding anomalies only partially
match that of a local CFT [31]. Local CFTs are further constrained by OPEs. These may
be used to express 4- and higher-point functions in terms of CFT data: conformal
dimensions (encoded in 2-point functions) and OPE coefficients (encoded in 3-point
functions, and these should satisfy bootstrap equations. We note that the functions of
cross-ratios that appear in our analysis have special dependence on some of the
cross-ratios (see comments below (3.82) and (3.89)) and it would be interesting to
understand the implication of this in the context of the bootstrap program.

The connection between CFT correlators and AdS amplitudes depends on the
amputated bulk correlators transforming properly under bulk diffeomorphism. Such
tranformation properties could be invalidated by UV and/or IR divergences. We used
an AdS invariant regulator to ensure that UV issues do not cause any problems, but
full details have only been worked out for scalar fields. It would be interesting to
work out the regularised bulk-to-bulk propagators for general spinning field. At loop
order and for gauge field the analysis would likely require to properly take into
account the contribution of ghost fields. IR divergences do break (part of) the AdS
isometries, but this breaking is linked to conformal anomalies and anomalous
dimensions and it is a feature, not a problem. We also note any AdS covariant n-point
function, irrespectively of how it is obtained would automatically yield a solution of
the CFT Ward identities – here we assumed they are computed by bulk perturbation
theory, but a priori there could be other non-perturbative constructions.
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Chapter 4

Holographic renormalization at loop
order

In Chapter 2 we reviewed holographic renormalization at leading, tree-level order in
the AdS/CFT correspondence. In this case, one has the usual IR boundary
divergences present in holography and the relevant object to construct in the bulk is
the renormalized on-shell action SRen

AdS. At subleading, loop-level order in the
correspondence one also has UV divergences in the bulk coming from quantum
corrections, which given the UV/IR relation [101] are mapped to IR divergences in the
boundary theory. In this case, to have a sensible dictionary at loop-level the relevant
object to construct is the renormalized on-shell 1PI effective action in the bulk ΓRen

AdS,
where now the boundary operators are dual not to the classical fields in the bulk but
to the true minima δΓRen

AdS/δΦI = 0 of the full quantum theory on AdS. At tree-level
ΓAdS reduces to SAdS and one recovers the standard AdS/CFT prescription. It is the
purpose of this chapter then to present the construction of the holographic dictionary
valid to all orders in the bulk loop expansion. We will follow the same structure as the
discussion at tree-level: in Section 4.1 we present our regularization schemes to
regulate the corresponding divergences of the bulk theory, while in Section 4.2 we
present the counterterms needed to renormalize them. Once regulators and
counterterms have been introduced, in Section 4.3 we discuss the construction of the
renormalized bulk 1PI effective action, leading to the renormalized dictionary with
the boundary theory in Section 4.4.

Chapter to be published as a paper in [23].
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4.1 Regularization

The physics of IR and UV divergences is different and one needs to be able to
distinguish between them, needing separate regulators. Dimensional regularization is
often a convenient scheme, however it regulates both divergences at the same time
and one would need to devise a way to separate the two before it can be meaningfully
used at loop order in AdS. Of course, if only one type of divergence is present at a
given diagram then dimensional regularization can be used unambiguously. Here we
aim for a setup that is always valid. We shall use the same IR regulator ε introduced in
the analysis at tree-level in 2.1.1, while the UV regulator is an AdS invariant
point-splitting method, which we call geodesic point-splitting. This UV regularization
prescription was first introduced in [21, 22], and we showed in [15] that it can be
understood precisely as an AdS invariant point-splitting.

4.1.1 UV regulator

Ultraviolet divergences arise from short-distance singularities due to quantum
corrections in AdS and thus they become relevant in the AdS/CFT correspondence at
subleading order in the 1/N2 expansion. As the short-distance behavior should be
independent of long-distance properties, one expects these divergences to be similar
to the corresponding ones in flat space.

The UV-IR connection implies that the bulk UV divergences are mapped to IR
divergences in the dual CFT1. Now, IR divergences in CFTs do not spoil the conformal
invariance of the theory, and conformal invariance in AdS/CFT follows from AdS
covariance in the bulk. This suggests one should be able to regularize the UV
divergences in the bulk in a way that preserves the AdS symmetry. Here we will show
this is indeed possible by explicitly constructing one such regularization scheme:
geodesic point-splitting. The bulk-to-bulk propagator G∆(x1, x2) is a function of the
invariant (chordal) distance u(x1, x2) between the 2 points, and UV divergences come
from the coincident point x1 = x2, where u = 0. The idea of geodesic point-splitting
consists in replacing one of the 2 points in u by a geodesic parameterized by its
(Euclidean) proper time τ that passes through it at τ = 0: x2 → x2(τ), x2(0) = x2. As
long as τ ̸= 0, then u(x2, x2(τ)) ̸= 0 and short-distance singularities are effectively
regularized, with τ acting as the regulator. As we will see, from all possible geodesics
that pass through the point x2, there is a subset that precisely leaves u(x1, x2(τ))

invariant under simultaneous isometry transformations of both points x1 and x2,

1Originally, the UV-IR connection [101] related UV divergences of the boundary theory with near-
boundary IR divergences in the bulk. However, given the relation between the AdS radial coordinate and
the RG scale of the dual QFT and the monotonicity properties of RG flows, a UV-IR connection must also
hold in the opposite direction with UV in the bulk and IR in the boundary.
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preserving the AdS covariance in the bulk and hence the conformal invariance at the
boundary.

To discuss the UV regulator in more detail we need AdS geodesics. These can be
derived from the Lagrangian

L =
ds
dτ

=
1
z

√(
dz
dτ

)2

+

(
dx⃗
dτ

)2

, (4.1)

with z, x⃗ the Poincaré coordinates, and τ the proper time as the affine parameter along
the geodesics. The resulting equation for x⃗ can be recast in the form

dx⃗
dτ

=
A⃗z√

1 − A2z2

∣∣∣∣dz
dτ

∣∣∣∣ , (4.2)

where A⃗ is an integration constant. Integrating it directly between τ = 0 and some
τ > 0

x⃗ − x⃗0 = ± A⃗
A2

(√
1 − A2z2

0 −
√

1 − A2z2

)
, (4.3)

where (z0, x⃗0) is the position at τ = 0, and the upper and lower signs correspond to
the cases z > z0 and z < z0, respectively. The expression for z as a function of τ is
more easily derived from the line element, leading to the equation

1
z
√

1 − A2z2

∣∣∣∣dz
dτ

∣∣∣∣ = 1 , (4.4)

which integrates to
z =

z0

cosh τ ∓ sinh τ
√

1 − A2z2
0

. (4.5)

Replacing this result back in the expression for x⃗ we obtain,

x⃗ = x⃗0 +
z2

0 sinh τA⃗

cosh τ ∓ sinh τ
√

1 − A2z2
0

. (4.6)

Equations (4.5) and (4.6) constitute an infinite family of geodesics x = (z, x⃗) in AdS
parameterized by τ, one for each value and direction of A⃗, that pass through the point
x0 = (z0, x⃗0) at a proper time τ = 0. Geodesic point-splitting consists in replacing one
of the points in u(x1, x2) = (x1 − x2)2/(2z1z2), say x2, by such geodesics resulting in
the expression

u (x1, x2(τ)) = − 1 + cosh τ [1 + u(x1, x2)] (4.7)

− sinh τ

2z1z2

(
2z2

2 A⃗ · (x⃗1 − x⃗2)±
√

1 − A2z2
2

[
z2

1 − z2
2 + (x⃗1 − x⃗2)

2]) .
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The first two terms are invariant under AdS isometries, however in general the last
term breaks AdS invariance for arbitrary geodesics connecting the points x2 and x2(τ),
encoded in this term by A⃗. A sufficient case where the invariance of the chordal
distance u is preserved is for the subset of geodesics for which this last term vanishes.
This is achieved for the special value

A⃗ = ∓
sign [n̂ · (x⃗1 − x⃗2)]

[
z2

1 − z2
2 + (x⃗1 − x⃗2)2]√[

z2
1 − z2

2 + (x⃗1 − x⃗2)2
]2

+ 4z2
2 [n̂ · (x⃗1 − x⃗2)]

2

n̂
z2

, (4.8)

where n̂ is a unit vector pointing in the direction of x⃗2(τ)− x⃗2. Note that this value of
A⃗ still represents infinitely many possible geodesics, namely one for each direction n̂
which can be arbitrarily chosen. For d > 1, a simple choice is where the regularized
position x2(τ) is placed perpendicular to the line of x⃗1 and x⃗2: n̂ · (x⃗1 − x⃗2) = 0,
resulting in the geodesic

A⃗ =
n̂
z2

, x2(τ) =
( z2

cosh τ
, x⃗2 + z2 tanh τ n̂

)
. (4.9)

The class of geodesics described by (4.8) allows us then to define a regularized version
of the chordal distance

uτ(x1, x2) ≡ u (x1, x2(τ)) = −1 + cosh τ [1 + u(x1, x2)] , (4.10)

which manifestly preserves its invariance under AdS isometries. At coincident points:
uτ(x2, x2) = −1 + cosh τ > 0, and the regularized distance is strictly greater than 0, as
expected. One might be worried that uτ may vanish for non-trivial values of x1, x2, τ

producing a singularity elsewhere. However, solving for uτ = 0 one finds the
condition 1 + u = 1/ cosh τ. Since u ≥ 0 and cosh τ > 1 for τ > 0, the LHS is equal or
greater than 1 while the RHS is always less than 1, implying the condition is never
met. The only possibility to have uτ = 0 is when τ = 0, corresponding simply to the
original singularity at u = 0.

Geodesic point-splitting further allows us to define a regularized bulk-to-bulk
propagator. The propagator being a function of u(x1, x2) can be regularized by
replacing this quantity by its regularized version uτ(x1, x2), a procedure that is valid
at the level of perturbation theory and Witten diagrams. In terms of ξ = 1/(1 + u), the
regularized propagator becomes a function of ξτ ≡ 1/(1 + uτ) = ξ/ cosh τ. We define
then the regularized version of G∆(ξ) by

Gτ,∆(ξ) ≡ G∆(ξτ) , ξτ =
ξ

cosh τ
. (4.11)

Divergences come from the coincident point ξ = 1. For τ > 0, ξτ is strictly less than 1
and short-distance singularities coming from the bulk propagator are regularized in
an AdS invariant way. For small τ the regulated ξτ becomes ξτ = ξ/(1 + ϵ) with
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ϵ = τ2/2, and we recover the scheme used in [21, 22]. This discussion suffices for
perturbative bulk computations: one can check (and we will do so explicitly later on)
that using regularized propagators is sufficient to regulate loop diagrams.

The derivation we presented here makes manifest that this is a bulk UV regulator. We
will now present a different derivation that also makes manifest its connection to a
boundary IR regulator for holographic CFTs. Note that formulas (4.5) and (4.6) for
geodesics can be also be seen to define a coordinate system in AdS, with the bulk
point (z, x⃗) expressed in the variables (τ, A⃗) around the reference point (z0, x⃗0). In
other words, we label the spacetime points by the geodesic that connects them to
(z0, x⃗0) (labeled by A⃗) and the affine parameter it takes to go to this point along this
geodesic. We will refer to these coordinates as geodesic coordinates. Introducing ξ

and ψ via cosh τ = 1/ξ and Az0 = sin ψ with ξ ∈ [0, 1] and ψ ∈ [0, π], we can relate
the original Poincaré coordinates (z, x⃗) to the new coordinates (ξ, ψ, n̂) via

z =
z0ξ

1 ∓ | cos ψ|
√

1 − ξ2
, (4.12)

x⃗ = x⃗0 +
z0 sin ψ

√
1 − ξ2

1 ∓ | cos ψ|
√

1 − ξ2
n̂ , (4.13)

with the upper and lower signs for z > z0 and z < z0, respectively. One can invert
these relations to express (ξ, ψ) in terms of (z, |⃗x|)

ξ =
2zz0

z2 + z2
0 + (x⃗ − x⃗0)2

, (4.14)

| tan ψ| = ± 2z0 |⃗x − x⃗0|
z2 − z2

0 + (x⃗ − x⃗0)2
. (4.15)

It follows from (4.14) that ξ is the chordal distance between the reference point x0 and
the point x.

In geodesic coordinates and by writing n̂ in spherical coordinates, the AdS line
element takes the simple form

ds2 =
dξ2

ξ2(1 − ξ2)
+

(1 − ξ2)

ξ2

(
dψ2 + sin2 ψ dΩ2

d−1
)

, (4.16)

=
dξ2

ξ2(1 − ξ2)
+

(1 − ξ2)

ξ2 dΩ2
d , (4.17)

independent of the reference point x0 = (z0, x⃗0), as expected for a maximally
symmetric space. This metric can be seen to parametrize AdS space as a foliation of
d-spheres, where ξ acts as the bulk radial direction with the conformal boundary at
ξ = 0 and the center of AdS at ξ = 1. From (4.14), one can see that these two regions
correspond to taking the point x0 as our center, with the conformal boundary reached
once one is infinitely far from it. Thus, the independence of the metric on x0 is



40 Chapter 4. Holographic renormalization at loop order

equivalent to the statement that on AdS taking any point as its center is a valid choice.
Note that the metric can be brought into a more familiar form by reparametrizing the
radial coordinate by ξ = 4ρ/(4 + ρ2), resulting in the line element

ds2 =
1
ρ2

[
dρ2 +

(
1 − ρ2

4

)2

dΩ2
d

]
. (4.18)

This is a standard representation of AdS in a Fefferman-Graham coordinate system
when the boundary conformal structure is represented by the standard metric on a
unit d-sphere.

The Laplacian in geodesic coordinates takes the form

□ =
1
√

g
∂µ(

√
ggµν∂ν) = □ξ +

ξ2

1 − ξ2□Sd , (4.19)

with □Sd the angular part constructed from the metric of a unit d-sphere, and

□ξ = ξ2(1 − ξ2)∂2
ξ + (1 − d − 2ξ2)ξ∂ξ . (4.20)

We are interested in the bulk-to-bulk propagator. It corresponds to the Green’s
function of the wave operator −□+ m2 in AdS, which in geodesic coordinates can be
formulated as(

−□ξ −
ξ2

1 − ξ2□Sd + m2
)

G∆(ξ, Ω⃗; ξ ′, Ω⃗ ′) =
1
√

g
δ(ξ − ξ ′)δ(Ω⃗ − Ω⃗ ′) , (4.21)

where Ω⃗ are the angular coordinates on the unit d-sphere. In principle, one can solve
this equation by expanding G∆ in eigenfunctions of □Sd (spherical harmonics) and
dealing with the resulting radial equation for ξ, however one can simplify the
calculation by exploiting the fact that the propagator is an AdS bi-scalar in (ξ, Ω⃗) and
(ξ ′, Ω⃗ ′), and as explained above ξ itself is the bi-scalar ξ(x, x0) (chordal distance)
when expressed in Poincaré coordinates. Since there is only one independent bi-scalar
function of two points, this implies one can always write the propagator as
G∆(ξ(x, x0)), independent of Ω⃗(x, x0) (which is not a bi-scalar, otherwise it would be
expressible in terms of ξ). Thus, the analysis of the Green’s equation is simplified by
changing variables to x, x0, allowing us to completely drop the angular part of the
Laplacian and focusing only in its spherically symmetric piece

(−□ξ + m2)G∆(ξ(x, x0)) =
1
√

g
δ(x − x0) . (4.22)

A complete derivation of the propagator from this equation is given in appendix A.1.
This discussion parallels that of the derivation of the Green’s function in flat space and
spherical coordinates, since the radial coordinate r also happens to be the Euclidean
bi-scalar r(x⃗, x⃗0) = |⃗x − x⃗0| of flat space, and thus one can express the propagator
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solely in terms of this variable, with the equation for G(r(x⃗, x⃗0)) corresponding only to
the radial part of the full Laplacian.

The regularized bulk-to-bulk propagator is a function of ξτ = ξ/ cosh τ. Having
spelled the equation for the bare propagator in terms of ξ we can now present a
differential equation whose solution is the regularized propagator. Indeed, one can
proceed by replacing ξ by ξτ in (4.22)

(−□ξ + m2) → c(ξ, τ)(−□ξτ
+ m2) , (4.23)

with □ξτ
corresponding to (4.20) with ξ → ξτ, and c(ξ, τ) a factor (to be determined

shortly) which should be regular in 0 < ξ < 1. Demanding Hermicity of the
regularized operator completely fixes the ξ-dependence of this factor up to a constant

c(ξ, τ) = c(τ)

√
gξτ

gξ
,

√
gξ =

(1 − ξ2)
d−1

2

ξd+1 , (4.24)

where √gξ is the radial part of the determinant
√

g in geodesic coordinates. Further
imposing c(0) = 1 for the remaining constant ensures the deformed Green’s equation
reduces to the original one for vanishing regulator τ, with its solutions continuously
connected to G∆(ξ). The regularized equation one is interested then is

c(τ)

√
gξτ

gξ
(−□ξτ

+ m2)Gτ,∆(ξ(x, x0)) =
1
√

g
δ(x − x0) , c(0) = 1 . (4.25)

The solution to this equation has been worked out in complete detail in A.2. By
construction, it is precisely proportional to G∆(ξτ) with its normalization constant
dependent on the value of c(τ), with the case Gτ,∆(ξ) = G∆(ξτ) corresponding to the
special value given in (A.38).

The defining equation (4.25) for the regularized bulk-to-bulk propagator can now be
understood as coming from the following kinetic term in Poincaré coordinates

∫
dd+1x

√
g Φ c(τ)

√
gξτ

gξ
(−□ξτ

+ m2)Φ . (4.26)

Note that if one writes this term in geodesic coordinates and after a rescaling
ξ → ξ cosh τ (and ignoring unimportant factors of τ) one obtains

∫
dΩd

∫ 1/ cosh τ

0
dξ

√
gξ Φ(−□ξ + m2)Φ , (4.27)

recovering the standard kinetic term for the scalar field, with all dependence on the
regulator moved to the upper limit of the radial integral. Thus, similar to the IR
regulator ε, the UV regulator τ can also be thought of as a cut-off but now cutting off
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the deep-interior of AdS. In holography, the deep interior of AdS corresponds to the
IR of the CFT, so τ acts as an IR regulator for the dual theory at the boundary.

4.2 Counterterms

The bulk theory is a function of the bare sources φI
B(0)(x⃗) that parametrize the

boundary conditions for the fields ΦI(x), and a number of bare couplings pi
B that

describe their masses and interactions. As discussed in the previous section, this
theory will in general be divergent and we will regulate the infrared divergences by
adding a hard cut-off to the bulk radial direction while for ultraviolet divergences we
will adopt a geodesic point-splitting scheme, introducing the IR and UV regulators ε

and τ respectively. At classical level, a boundary counterterm B[ΦI ; pi
B; ε] located at

the regulated surface z = ε suffices to absorb all divergences of the bulk theory,
however at loop order where one also has divergences in the deep interior of AdS this
is no longer the case. As usual for QFTs, we will absorb these by also introducing
Z-factors for the bare bulk parameters

φI
B(0)(x⃗) = ZI

J(ε, τ)φJ
(0)(x⃗) , pi

B = Zi(ε, τ)pi , (4.28)

which, in principle, may depend on both regulators. Note that there is no summation
over the i index, but there is summation over the J index allowing for operator mixing.
In fact, already at tree-level one needs to consider such source mixing to renormalize a
certain class of 3- and higher-point functions [26]. Source counterterms are also
expected for bulk fields receiving mass renormalization: since bulk masses are directly
related to conformal dimensions at the boundary, sources of operators must
renormalize to account for the corrected dimensions, implying (as we will see) the
proper ε-dependence for the factors ZI

J .

4.3 Renormalized 1PI effective action

Having introduced regulators and counterterms, the next step is to obtain the
renormalized on-shell 1PI effective action in the bulk, and consequently the exact
holographic 1-point functions. The theory on AdS is often given in terms of a bare
action SAdS[ΦI ; pi

B] depending on the off-shell fields ΦI and their bare couplings pi
B,

which in turn defines the (Euclidean) gravitational path integral

ZAdS[φ
I
B(0); pi

B] =
∫

ΦI∼φI
B(0)

DΦI e−SAdS[ΦI ;pi
B] , (4.29)
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as a functional on the boundary conditions φI
B(0) for the bulk fields. When bulk

sources JI for the fields ΦI are present, one defines the generating functional of
connected graphs WAdS[JI ] = − ln ZAdS[JI ], and the effective action is constructed
from this object through a Legendre transform

ΓAdS[ΦI ] = WAdS[JI ]−
∫

dd+1x
√

g JI(x)ΦI(x) , (4.30)

trading the variable JI for ΦI . Since WAdS[JI ] is independent of ΦI and ΓAdS[ΦI ]

independent of JI , one has the variations

δWAdS[JI ]

δJI
= ΦI ,

δΓAdS[ΦI ]

δΦI = −JI . (4.31)

In the weak coupling regime of the bulk theory where WAdS may be computed
perturbatively, the first equation above results in the implicit relation ΦI = ΦI [JI ]

which inverted to have instead JI = JI [ΦI ] and replaced in (4.30), allows for the
perturbative construction of ΓAdS as a function only on ΦI in terms of loop corrections
around the classical action SAdS. By having set h̄ = 1, these corrections are then
controlled by the bulk interacting couplings which in the weak regime are taken to be
small. This leads to their identification with the rank N of the gauge group of the
boundary theory, with the bulk loop corrections corresponding to 1/N2 corrections in
the dual CFT.

In AdS/CFT, the correspondence involves the partition function in the presence of
non-trivial boundary condition but no sources turned on, as in (4.29). We can still
proceed to compute the effective action by adding sources to ZAdS and follow the
steps above, but at the end we should set the sources to zero. One ends up with an
object ΓAdS[ΦI ] in terms of now on-shell fields ΦI that satisfy the equations of motion

δΓAdS

δΦI = 0 , (4.32)

where this equation comes from setting JI = 0 in (4.31). This is reminiscent of the
tree-level holographic prescription, with ΓAdS replaced by SAdS and the fields
satisfying instead the classical equations of motion. Of course, at tree-level
ΓAdS = SAdS, and one recovers the standard AdS/CFT prescription. We now find
however that the same prescription is valid to all orders in the bulk loop expansion
provided we replace the classical action by the effective action2.

Equivalently, one can construct the effective action directly from (4.29) without the
addition of bulk sources using the method of background fields. This method consists
in expanding the bulk fields ΦI around on-shell solutions ϕI and their quantum
fluctuations hI : ΦI = ϕI + hI . In principle, any such expansion is valid (the usual

2There is a corresponding discussion in flat space: the effective action contains the flat-space S-matrix
in its on-shell expansion [63, 75].



44 Chapter 4. Holographic renormalization at loop order

choice being taking the ϕI as the minima of the classical theory: δSAdS/δϕI = 0) with
each choice involving a different resummation but leading at the end to the same
results, however this resummation is simplest when the bulk fields are expanded not
around the classical minima but the true minima of the full theory: δΓAdS/δϕI = 0.
This choice also has the advantage of allowing the direct identification of the
background fields ϕI with the on-shell fields (4.32) obtained from the Legendre
transform method. In this decomposition, the ϕI only appear as external lines with the
internal loops run by the fluctuations hI . Therefore, in this expansion the boundary
conditions φI

B(0) for the bulk fields ΦI are carried by the background fields ϕI . All this
can then be summarized as the change of variables

ΦI = ϕI [φI
B(0)] + hI ,

δΓAdS

δϕI = 0 . (4.33)

Performing this change of variables to ZAdS in (4.29), one integrates out hI

perturbatively in the small bulk couplings and the effective action is identified from
the resulting normalized path integral restricted to 1PI terms in ϕI 3

e−ΓAdS[φ
I
B(0);p

i
B] =

ZAdS[φ
I
B(0); pi

B]

ZAdS[0; pi
B]

∣∣∣∣
1PI

. (4.34)

The bare 1PI effective action, derived either from the Legendre transform or the
background field method, is a formal quantity, as it suffers from both infrared and
ultraviolet divergences. Regularizing (for example, as discussed in Section 4.1) results
in the regularized effective action ΓReg

AdS[φ
I
B(0); pi

B; ε, τ] whose divergences are canceled
by introducing boundary counterterms and Z-factors for the bare bulk parameters
φI

B(0) and pi
B, as discussed in 4.2, leading to the subtracted effective action,

ΓSub
AdS[φ

I
(0); pi + Πi; F; ε, τ] = ΓReg

AdS[Z
I
J φJ

(0); Zi pi; ε, τ] + B[ΦI ; Zi pi; ε, τ] , (4.35)

where the boundary counterterms B should be expressed covariantly in terms of the
on-shell fields ΦI and the induced metric at the regulated surface z = ε. Here Πi on
the LHS denotes the finite contributions that the bulk couplings pi receive from the
loop corrections, after the subtraction of all divergent terms has been made. This
subtraction comes with a set of arbitrary constants F that parametrize its
scheme-dependence, capturing the fact that subtractions in different schemes may
differ by finite pieces. To fix the scheme-dependent constants F we need to supply
renormalization conditions. These could be provided either by comparing the same
observable with a string theory computation or via the AdS/CFT by comparing with

3The background field method often involves terms linear in the quantum fluctuations hI , which after
integrated lead to non-vanishing contributions to the 1-point functions (tadpoles), and for higher-point
functions in non-1PI terms. Since in the derivation of the effective action one is instructed to restrict
the path integral only to 1PI contributions, these terms linear in hI can be simply discarded or made
to vanish exactly by defining a modified action with the tadpoles subtracted: SAdS[ΦI ] → SAdS[ΦI ] −
hIδSAdS[ϕ

I ]/δϕI .
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the dual CFT. In the absence of reliable renormalization conditions, one may consider
combinations of observables that are scheme independent. After this process has been
carried out, the renormalized on-shell 1PI effective action is finally obtained by taking
the limit of vanishing regulators

ΓRen
AdS[φ

I
R(0); pi

R] = lim
ε→0

lim
τ→0

ΓSub
AdS[φ

I
(0); pi + Πi; F; ε, τ] , (4.36)

in terms of renormalized sources φI
R(0) and renormalized bulk couplings pi

R. Note the
order in which the limits are taken, first taking τ → 0 with ε fixed, and at the end
taking ε → 0, implying that one should be able to resolve the UV divergences in the
presence of the regulator ε, leaving the IR divergences for last. In general, dealing first
with the UV divergences through the bulk Z-factors allows for the construction of an
(effective) action in terms of (renormalized) sources and bulk couplings, analogous to
the action in the classical case. With the τ → 0 limit taken, this leads to the correct
identification of the asymptotic expansion of the bulk fields, with the remaining IR
divergences being the usual boundary divergences present in holography dealt by the
boundary counterterm B, after which the last limit ε → 0 may be evaluated.

4.4 Exact 1-point functions

The standard prescription WCFT = SRen
AdS is modified at loop order to

WCFT[φ
I
R(0); ∆I

R, CI JK
R ] = ΓRen

AdS[φ
I
R(0); pi

R] , (4.37)

with the CFT data that defines the boundary theory (renormalized dimensions ∆I
R and

renormalized OPE coefficients CI JK
R ) expressed in terms of the renormalized bulk data

pi
R. Correlation functions of boundary operators O∆I

R
dual to the bulk fields ΦI , are

computed by functionally differentiating ΓRen
AdS with respect to the renormalized

sources φI
R(0). The variation of ΓRen

AdS consists of two terms, a bulk term that vanishes
given the equations of motion for the fields ΦI , and a boundary term expressible in
terms of the variations δφI

R(0). Correlators come from the latter, giving rise to the exact
holographic 1-point functions in the presence of sources

⟨O∆I
R
(x⃗)⟩φI

R(0)
=

−1
√g(0)

δΓRen
AdS[φ

I
R(0); pi

R]

δφI
R(0)(x⃗)

, (4.38)

with g(0)ij the boundary metric.

To illustrate the method of holographic renormalization at loop order, in Chapter 6 we
work out in full detail the renormalization of an interacting scalar field with Dirichlet
boundary condition on a fixed AdS background. In this case, once the bulk theory has
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been properly renormalized, the scalar field has an asymptotic expansion of the form

Φ(x) = zd−∆R φR(0)(x⃗) + · · ·+ z∆R φ(2νR)(x⃗) + · · · , (4.39)

where φ(2νR) is the VEV term containing the non-trivial information to loop order
about the boundary correlators. The tree-level mass and coupling m2, λ of the field
have been renormalized to the values m2

R, λR, with the conformal dimension ∆R

written in terms of the renormalized mass: ∆R(∆R − d) = m2
R. The transformation

properties of φR(0) and φ(2νR) under conformal transformations are precisely those of
a source and VEV for an operator of dimension ∆R. In this example, the variation of
the renormalized effective action is found to be

δΓRen
AdS[φR(0); m2

R, λR] = −
∫

ddx 2νRφ(2νR)(x⃗)δφR(0)(x⃗) , (4.40)

leading to the exact 1-point function

⟨O∆R(x⃗)⟩φR(0) = 2νRφ(2νR)(x⃗) , (4.41)

up to local terms in φR(0) when νR = ∆R − d/2 ∈ N. The explicit construction of the
exact 1-point functions requires working out a number of loop integrals on AdS. These
will be analyzed next in Chapter 5, before moving to the concrete example of a scalar
Φ4 theory in Chapter 6.
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Chapter 5

Integrals

Since the early days the computation of amplitudes in AdS, known as Witten
diagrams, have been limited mostly to tree-level graphs, originally by brute force
calculations in position space [60, 62, 48, 46, 45, 47] and with more recent techniques
including momentum space, Mellin space, spectral/split representations, embedding
and ambient formalisms, and the conformal bootstrap, with each approach exhibiting
different but important features of the amplitudes. For a non-exhaustive list of the
more recent treatments of tree-level Witten diagrams, we refer the reader to
[3, 4, 2, 91, 92, 26, 30, 29, 87, 57, 95, 96, 86, 82, 94, 37, 40, 41, 99, 19, 20, 7, 68, 36, 74, 77, 10].
In the last decade or so, there have been more attempts to understand Witten
diagrams at loop order using these different methods (see e.g.
[3, 39, 38, 22, 21, 15, 16, 33, 34, 35, 104, 105, 32, 1, 6, 13, 12, 9, 8, 11, 67]), however the
progress in this direction has been gradual and one of the main reasons is simply
technical: the expressions for the AdS propagators are complicated, having to deal
with hard integrals. In this chapter we go back to those earlier approaches and make
progress in the computation of loop integrals in AdS directly in position space. We
begin by discussing their convergence in Section 5.1 determining when to expect IR
and UV divergences, while in Section 5.2 before moving to their computation we
briefly discuss a class of convergent integrals relevant for the resummation of the
mass-shift diagrams. Then, in Section 5.3 we study the IR divergent integrals
responsible for the anomalous dimensions in the boundary theory, to then in Section
5.4 move to the computation of the UV divergent bulk loop integrals directly in
position space. We end this section by illustrating our methodology, working out a
number of concrete examples in Section 5.5.

Chapter to be published as a paper in [23].
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5.1 Convergence

Many bulk loop diagrams are constructed from vertices of the schematic form∫
dd+1x2

√
g2 GN

∆ (x1, x2)K∆1(x2, y⃗1) · · · K∆n(x2, y⃗n) , (5.1)

consisting of N internal legs attached to some other point x1 in the interior of AdS,

y⃗1

y⃗2

y⃗n−1

y⃗n

x1 x2

FIGURE 5.1: General vertex integral of N internal legs in the bulk, and n external legs
extending to the boundary of AdS.

and n external legs extending to the boundary points y⃗i (see Fig. 5.1). For such general
vertex, we would like to know when to expect infinities. Infrared (IR) divergences can
arise as the integral approaches the conformal boundary z2 = 0, while ultraviolet (UV)
divergences are expected at the coincident point x1 = x2. Both type of divergences can
be studied with simple power-counting in the appropriate variable. In the case of IR,
this is of course the radial coordinate z2, where each one of the elements in (5.1) has an
expansion near z2 = 0 of the form

√
g2 = z−d−1

2 , G∆(x1, x2) ∼ z∆
2 , K∆i(x2, y⃗i) ∼ zd−∆i

2 (local) + z∆i
2 (non-local) . (5.2)

For n = 0, that is no external legs, the integrand goes as

z2 → 0 :
√

g2 GN
∆ (x1, x2) ∼ zN∆−d−1

2 , (5.3)

and thus the vertex of N bulk-to-bulk propagators between the points x1 and x2 is IR
convergent as long as N∆ − d > 0. At loop level where one has N = 2, 3, . . . , this
condition is always satisfied by bulk propagators with Dirichlet boundary conditions
(2∆ − d > 0), hence in this case the vertex is IR finite for any (positive) values of N, ∆
and d. However, in the case of propagators with Neumann boundary conditions
(2∆ − d < 0), this condition is not always met and thus additional infinities might be
expected. For instance, when N = 2 the vertex is always IR divergent, while for N = 3
it will only converge in the IR if ∆ > d − 2∆.
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For n ̸= 0, the integrand of (5.1) goes instead as

z2 → 0 :
√

g2 GN
∆ (x1, x2)K∆1(x2, y⃗1) · · · K∆n(x2, y⃗n) (5.4)

∼ zN∆−∆T+d(n−1)−1
2 (local) + ∑

i
zN∆+∆T−2∆i−1

2 (non-local) ,

where ∆T ≡ ∑ ∆i. Local terms are in general IR divergent, but dealt with boundary
counterterms through holographic renormalization. We will be more interested in the
non-local terms which survive this process and contribute to the holographic
correlators. Given the exponent of z2, we expect these to be IR convergent as long as
N∆ + ∆T − 2∆i > 0, for all external legs dimensions ∆i. A relevant case is when the
dimensions of all internal and external legs composing the vertex are equal: ∆i = ∆.
When this is the case, one can factor out the ∆ in the convergence condition reducing
to N + n − 2 > 0, n ̸= 0. The 2 divergent cases of interest are N = 0, n = 2, and
N = n = 1, corresponding to the

∫
K∆K∆ and

∫
G∆K∆ integrals. These will be

analyzed in detail in 5.3.

Moving now to the UV, the appropriate variable to perform power-counting is in the
chordal distance ξ(x1, x2). It is convenient then to recast the general vertex (5.1) in
geodesic coordinates (defined in (4.12)), where precisely ξ acts as one of the
coordinates identified with the bulk radial direction, the other d boundary coordinates
being the sphere Sd. In these coordinates the vertex reads∫

dΩd

∫
dξ

√
gξ GN

∆ (ξ)K∆1

(
x2(x1, ξ, Ω⃗), y⃗1

)
· · · K∆n

(
x2(x1, ξ, Ω⃗), y⃗n

)
. (5.5)

Near the coincident point ξ = 1, the relevant terms composing the vertex have an
expansion of the form

√
gξ ∼ (1 − ξ2)

d−1
2 , G∆(ξ) ∼ (1 − ξ2)−

d−1
2 , x2(x1, ξ, Ω⃗) ∼ x1 , (5.6)

and thus the integrand goes as

ξ → 1 :
√

gξ GN
∆ (ξ)K∆1

(
x2(x1, ξ, Ω⃗), y⃗1

)
· · · K∆n

(
x2(x1, ξ, Ω⃗), y⃗n

)
∼ (1 − ξ2)−

1
2 (d−1)(N−1) . (5.7)

Convergence in the UV requires then − 1
2 (d − 1)(N − 1) + 1 > 0, or equivalently

d <
N + 1
N − 1

. (5.8)

For a given d, the UV convergence of the general vertex (5.1) depends only on the
power N of the bulk-to-bulk propagator. For instance, when N = 1 the vertex is UV
finite for all d, when N = 2 it converges for d < 3, when N = 3 it converges for d < 2,
and so on. Since the UV is independent of the curvature of spacetime at large scales,
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one expects the same convergence criteria to apply for the equivalent diagram in flat
space: at large momentum k, each of the N propagators running the loop contributes
with a factor of 1/k2, integrated over the N − 1 unconstrained momenta dd+1k. The
superficial degree of divergence D, defined as the number of momenta in the
numerator minus in the denominator, is then

∫
(dd+1k)N−1

(k2)N =⇒ D = (d + 1)(N − 1)− 2N . (5.9)

Convergence requires D < 0, or equivalently d < (N + 1)/(N − 1), agreeing with the
condition (5.8) found in AdS.

5.2 Finite Integrals

Before diving into the computation of IR and UV divergent integrals, an interesting
class of integrals we will discuss in this section are those composed by a chain of
bulk-to-bulk propagators (see Fig. 5.2), appearing in the so-called self-energy or
mass-shift diagrams for the bulk propagators

In(x1, x2) = (5.10)∫
dd+1w1

√
g1 · · ·

∫
dd+1wn

√
gn G∆(x1, w1)G∆(w1, w2) · · · G∆(wn−1, wn)G∆(wn, x2) ,

where a simple power counting suggests it is IR convergent for ∆ > d/2, and UV

x1 w1
x2wn

G∆ G∆

FIGURE 5.2: Integral composed by a chain of bulk-to-bulk propagators G∆.

convergent as long as the chain is not closed into a loop, i.e., x1 ̸= x2. One could try
solving for In directly using the known expression for the propagator, however there
is a more clever way that comes from noticing that this tower of integrals arises as a
perturbative manipulation of Green’s equation in the parameter ∆. The calculation
goes as follows: consider the Green’s equation for G∆ under the shift ∆ → ∆ + γ

(−□+ m2 + 2νγ + γ2)G∆+γ(x1, x2) =
1
√

g
δ(x1 − x2) , (5.11)
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where m2 = ∆(∆ − d) and ν = ∆ − d/2. The RHS is left unchanged as it is
independent of ∆. By treating γ as a small parameter, we can expand the Green’s
function

G∆+γ(x1, x2) = F{0}(x1, x2) + γF{1}(x1, x2) + γ2F{2}(x1, x2) +O(γ3) , (5.12)

and solve the Green’s equation perturbatively at each order in γ, leading to the set of
equations up to order γ2

O(γ0) : (−□+ m2)F{0}(x1, x2) =
1
√

g
δ(x1 − x2) , (5.13)

O(γ1) : (−□+ m2)F{1}(x1, x2) = −2νF{0}(x1, x2) , (5.14)

O(γ2) : (−□+ m2)F{2}(x1, x2) = −F{0}(x1, x2)− 2νF{1}(x1, x2) . (5.15)

The leading solution is of course the unperturbed propagator G∆, while subleading
terms correspond to the chain of propagators (5.10)

G∆+γ(x1, x2) = G∆(x1, x2)− 2νγI1(x1, x2) + γ2 [4ν2 I2(x1, x2)− I1(x1, x2)
]
+O(γ3) .

(5.16)
Since the exact form of G∆ is known, we can contrast this expansion with the actual
expansion of the propagator in ∆, obtaining the values for I1 and I2

I1(x1, x2) = − 1
2ν

d
d∆

G∆(x1, x2) , I2(x1, x2) =
1

8ν2
d2

d∆2 G∆(x1, x2)−
1

8ν3
d

d∆
G∆(x1, x2) .

(5.17)
In general, the expressions for I1, . . . , In are obtained by solving the Green’s equation
to order γn in the perturbative parameter. As a consistency check of these results, note
that the chain In must satisfy the equation

(−□+ m2)In(x1, x2) = In−1(x1, x2) , I0(x1, x2) ≡ G∆(x1, x2) . (5.18)

This can be checked with the formula

□
dk

d∆k G∆(x1, x2) =
dk

d∆k [∆(∆ − d)G∆(x1, x2)] , k ∈ N , (5.19)

obtained by acting with dk/d∆k on the Green’s equation, and commuting it with □.
When k = 1 and k = 2, one obtains the relations

(−□+ m2)
d

d∆
G∆ = −2νG∆ , (−□+ m2)

d2

d∆2 G∆ = −2G∆ − 4ν
d

d∆
G∆ , (5.20)

leading for the cases of I1 and I2

(−□+ m2)I1 = G∆ = I0 , (−□+ m2)I2 = − 1
2ν

d
d∆

G∆ = I1 , (5.21)
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as expected from (5.18).

5.3 IR Integrals

In this section we show the computation of the most basic, yet essential IR divergent
vertices present in every bulk theory at loop order: the

∫
K∆K∆ and

∫
G∆K∆ integrals,

relevant for the computation of the anomalous dimension of the boundary theory to
subleading order in the 1/N2 expansion. Keeping track of the IR regulator 0 < ε ≤ z
needed at tree-level for the holographic renormalization of the boundary divergences,
naturally regularizes the contributions at loop-level by adding a hard cut-off to the
integrals in the bulk radial direction. These integrals will then be computed under
such regulator, for arbitrary values of d and ∆, and for the special case
ν = ∆ − d/2 ∈ N. How to proceed in the case ν = 0 will be commented at the end.

5.3.1
∫

K∆K∆ Integral

The regularized integral we want to compute is

I (⃗y1, y⃗2; ε) =
∫

z≥ε
dd+1x

√
g K∆(x, y⃗1)K∆(x, y⃗2) , (5.22)

(for an alternative computation of this integral with a different regulator, see e.g.

y⃗1 x
K∆ K∆ y⃗2

FIGURE 5.3:
∫

K∆K∆ integral

[67]). Before computing its value, we can study the dependence on ε by the usual trick
of differentiating with respect to the regulator, taking the small regulator limit, and
then integrating the resulting expression back. In general, one obtains the
regulator-expansion of the integral in terms of integrals in the non-regularized
coordinates. However, in our case since the bulk-to-boundary propagator is local in
these coordinates at leading order in the radial expansion, the remaining integrals are
trivially evaluated, and this process delivers the exact ε-expansion of the integral
almost completely (up to an integration constant). To do this, it is convenient to
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remove the |⃗y12| dependence of the integrand through isometry transformations, by
shifting the vertex point x by x 7→ x + y⃗2, and then rescaling it by x 7→ |⃗y12|x

I =
1

|⃗y12|2∆

∫
z≥σ

dd+1x
√

g K∆(x, ŷ12)K∆(x, 0⃗) . (5.23)

After removing the conformal factor |⃗y12|2∆, the remaining integral is actually a
function on the ratio σ ≡ ε/|⃗y12|. Differentiating it then with respect to σ

d
dσ

(
|⃗y12|2∆ I

)
= −

∫
ddx

√
g K∆(x, ŷ12)K∆(x, 0⃗)

∣∣∣
z=σ

. (5.24)

Evaluating at z = σ, as ε → 0, σ → 0 and we can use the known expansion of K∆,
where the Dirac deltas trivially compute the boundary integrals

d
dσ

(
|⃗y12|2∆ I

)
= −σ−2ν−1δ(ŷ12) + · · · − 2c∆

σ
+O(σ−1<) . (5.25)

Integrating back in σ one obtains

|⃗y12|2∆ I =
σ−2ν

2ν
δ(ŷ12) + · · · − 2c∆ ln σ − c∆C +O(σ0<) , (5.26)

with C an integration constant. And finally, reverting back to ε one finds

I (⃗y1, y⃗2; ε) =
ε−2ν

2ν
δ(⃗y12) + · · ·+ c∆

|⃗y12|2∆ ln
(
|⃗y12|2
ε2eC

)
+O(ε0<) . (5.27)

After very little effort, one obtains the correct expansion of (5.22), where as we will see
next, C = ψ(∆)− ψ(ν). Notice the leading terms are divergent and local, consistent
with the analysis in (5.4). The non-local term, logarithmically divergent, is the clear
signature of anomalous dimension.

Let us now move to the direct computation of the integral. The distributional behavior
of the result above suggests we should solve it in momentum space. We shall use then
the momentum representation of the bulk-to-boundary propagator for ν > 0

K∆(x, y⃗) =
z

d
2

2ν−1Γ(ν)

∫ dd p
(2π)d pνKν(pz)e−i p⃗(x⃗−y⃗) , (5.28)

where p = | p⃗| and Kν(pz) is the modified Bessel function of the second kind
(Macdonald function). Replacing it in (5.22), performing the x⃗ integral in terms of a
Dirac delta, and using it to trivially evaluate one of the momentum integrals, one
obtains

I =
1

4ν−1Γ(ν)2

∫ dd p
(2π)d p2νe−i p⃗(⃗y1−y⃗2)

∫ ∞

ε

dz
z

K2
ν(pz) . (5.29)
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Using (D.13), the regularized z integral can be computed in terms of a Meijer
G-function ∫ ∞

ε

dz
z

K2
ν(pz) =

√
π

4
G4,0

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ p2ε2

)
, (5.30)

thus obtaining

I =
√

π

4νΓ(ν)2

∫ dd p
(2π)d p2νG4,0

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ p2ε2

)
e−i p⃗(⃗y1−y⃗2) . (5.31)

So far this exact in ε. When ν is not an integer, the asymptotic expansion of the Meijer
G-function for small argument has been derived in (D.22), leading to the type of
Fourier transforms studied in appendix C (namely formulas (C.10) and (C.18)). Using
these results then, one finally obtains

I =
ε−2ν

Γ(ν)2

⌊ν⌋

∑
k=0

Γ(2ν − k)Γ(ν − k)2

Γ(2ν + 1 − 2k)k!

(
ε2□

4

)k

δ(⃗y12) +
c∆

|⃗y12|2∆ ln
[

|⃗y12|2

ε2eψ(∆)−ψ(ν)

]
+O(ε0<) ,

(5.32)
where ⌊ν⌋ is the integer part of ν. This confirms (5.27) and determines the integration
constant C = ψ(∆)− ψ(ν), as claimed.

When ν is an integer, the asymptotic expansion of the Meijer is given instead by
(D.26), leading to the Fourier transforms (C.18) and (C.35), the latter for the mass scale
M2 ≡ 4eψ(ν)+ψ(ν+1)/ε2. In this case, one obtains the result

I =
ε−2ν

Γ(ν)2

ν−1

∑
k=0

Γ(2ν − k)Γ(ν − k)2

Γ(2ν + 1 − 2k)k!

(
ε2□

4

)k

δ(⃗y12) +
1

4νΓ(ν)22ν3□
νδ(⃗y12)

+RM

(
c∆

|⃗y12|2∆ ln
[

|⃗y12|2

ε2eψ(∆)−ψ(ν)

])
+O(ε0<) , (5.33)

where RM denotes the renormalized version of the function, defined in (C.33). It has
the property that RM[ f (⃗y12)] = f (⃗y12) for y⃗12 > 0, however unlike the bare function, it
is well-behaved as a distribution including the singular point y⃗12 = 0 and as such it
has a Fourier transform, given by (C.35). Note that different definitions for RM are
possible, differing only by local terms at y⃗12 = 0. In this sense, the finite term in (5.33)
proportional to □νδ(⃗y12) is scheme-dependent and absorbable in the definition of RM.

For the case of ν = ∆ − d
2 = 0, the value of the integral

∫
K d

2
K d

2
may be worked out

using the appropriate representation for the propagator K d
2
, corresponding to (5.28)

evaluated at ν = 0 and with the factor 2ν−1Γ(ν) replaced by 1. This leads to the same
expression for (5.31) up to some numeric factor, with the asymptotic expansion of the
Meijer G-function given by (D.29) and thus for the computation of the integral in
terms of the Fourier transforms (C.18) and (C.38), with the result given by the
renormalized version of the function ln2(|⃗y12|2)/|⃗y12|d.
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5.3.2
∫

G∆K∆ Integral

The other important IR divergent integral is

I(x1, y⃗2; ε) =
∫

z2≥ε
dd+1x2

√
g2 G∆(x1, x2)K∆(x2, y⃗2) . (5.34)

Similarly to the
∫

KK integral, we can study the dependence of the integral on the

x1 x2
y⃗2

G∆ K∆

FIGURE 5.4:
∫

G∆K∆ integral

regulator ε with the differentiation trick, and exploiting the fact that to leading order
in the ε-expansion the bulk-to-boundary propagator is local in the boundary
coordinates, thus obtaining the exact value of the integral to the relevant order in ε

almost completely, up to an integration constant. Before doing this, it is convenient to
remove all dependence of the external points x1 and y⃗2 from the integrand through
isometry transformations on the vertex x2. This is achieved by the following sequence:
translating by x2 7→ x2 + y⃗2, inverting x2 7→ x2/x2

2, translating again by x2 7→ x2 + x⃗ ′′
1 ,

rescaling x2 7→ z′′1 x2, and finally inverting back

I = z′′∆1

∫
z2≥σ

dd+1x2
√

g2 G∆

(
(1, 0⃗), x2

)
K∆(x2, 0⃗) , (5.35)

where x′′1 = x′1/x′21 and x′1 = x1 − y⃗2. The remaining integral is actually a function on
σ ≡ εz′′1 . Differentiating it then with respect to σ

d
dσ

(
I

z′′∆1

)
= −

∫
ddx2

√
g2 G∆

(
(1, 0⃗), x2

)
K∆(x2, 0⃗)

∣∣∣
z2=σ

. (5.36)

Evaluating at z = σ, as ε → 0, σ → 0 and we can use the known expansions of K∆ and
G∆, where the Dirac deltas trivially compute the boundary integrals

d
dσ

(
I

z′′∆1

)
= − c∆

2νσ
+O(σ−1<) . (5.37)

Integrating back in σ
I

z′′∆1
= − c∆

2ν
ln σ − c∆

2ν
C +O(σ0<) , (5.38)
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where C is an integration constant. Finally, reverting back to ε and to the original
coordinates one obtains the result

I(x1, y⃗2; ε) = − 1
2ν

K∆(x1, y⃗2) ln
[
εK(x1, y⃗2)eC

]
+O(ε0<) , (5.39)

where K(x1, y⃗2) = z1/[z2
1 + (x⃗1 − y⃗2)2]. This turns out to be the correct expansion of

(5.34), with a value of C = ψ(∆)− ψ(ν)− 1/(2ν).

Moving now to the explicit computation of the integral, as for
∫

KK, we will do it in
momentum space. In addition to (5.28), we also need the momentum representation of
the bulk-to-bulk propagator, given by

G∆(x, x′) = (zz′)
d
2

∫ dd p
(2π)d e−i p⃗(x⃗−x⃗ ′)

Iν(pz)Kν(pz′), z < z′

Iν(pz′)Kν(pz), z > z′
, (5.40)

with Iν(pz) the modified Bessel function of the first kind. After performing the x⃗
integral in terms of a Dirac delta and using it to evaluate one of the momentum
integrals

I =
z

d
2
1

2ν−1Γ(ν)

∫ dd p
(2π)d pνe−i p⃗(x⃗1−y⃗2)

∫ ∞

ε

dz2

z2
Kν(pz2)

Iν(pz1)Kν(pz2), z1 < z2

Iν(pz2)Kν(pz1), z1 > z2

.

(5.41)
Using (D.13) and (D.14), the regularized z2 integral can be computed in terms of
Meijer G-functions

∫ z1

ε

dz2

z2
Kν(pz2)Iν(pz2) =

1
4
√

π
G3,1

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ p2ε2

)

− 1
4
√

π
G3,1

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ p2z2
1

)
, (5.42)

∫ ∞

z1

dz2

z2
K2

ν(pz2) =

√
π

4
G4,0

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ p2z2
1

)
. (5.43)

The 2 Meijers dependent on z1 combine together to form ∂νKν(pz1) through the
identity (D.51), thus obtaining

I =
z

d
2
1

2ν−1Γ(ν)

∫ dd p
(2π)d pν

[
Kν(pz1)

4
√

π
G3,1

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ p2ε2

)
− 1

2ν
∂νKν(pz1)

]
e−i p⃗(x⃗1−y⃗2) .

(5.44)
This expression is exact in ε. To leading order, the asymptotic expansion of the Meijer
G-function for small argument is the same for both ν > 0 integer and non-integer, as it
can be seen from (D.34) and (D.37), leading to the momentum representation of K∆
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(5.28) and its derivative

I = − 1
2ν

(
− 1

2ν
+ ln ε + ∂ν

)
K∆(x1, y⃗2) +O(ε0<) . (5.45)

By acting with ∂ν on the position space representation of the propagator, one finally
obtains

I = − 1
2ν

K∆(x1, y⃗2) ln
[
εK(x1, y⃗2)eψ(∆)−ψ(ν)− 1

2ν

]
+O(ε0<) , (5.46)

confirming the claim in (5.39).

For ν = ∆ − d/2 = 0, the value of the integral
∫

G d
2
K d

2
may be worked out in a similar

manner, using the appropriate representation for the propagator K d
2
, the identity for

the Meijer G-functions (D.52), and the corresponding asymptotic expansion (D.40).

5.4 UV Integrals

We discussed the role of IR divergences of loops in AdS, leading to corrections to the
conformal dimensions in the dual CFT. By how much the dimensions are corrected
however is dictated by the UV divergences of the loop integrals, while for higher-point
functions they also dictate the amount of correction to the OPE coefficients. Formally,
the CFT data is corrected from the UV divergences in AdS by an infinite amount, and a
subtraction scheme (supplemented by renormalization conditions) must be adopted in
the bulk to extract the finite, physical values for these corrections. We shall adopt the
UV regularization scheme of geodesic point-splitting introduced in 4.1.1, and show in
this section the computation of bulk loop vertices under such regulator. We will do so
for the general loop vertex (5.1) of the schematic form

∫
GNKn, for arbitrary N and for

the cases of n = 0, 1, 2 external legs, where for simplicity no additional IR divergences
are present in the vertices. The strategy will be to solve for these 3 vertices directly in
position space, writing the bulk propagator G∆(ξ) in its series representation in ξ and
compute them in terms of the more fundamental vertices between ξ and K defined in
(E.1), whose master formulas has been derived in appendix E. When possible, these
series may then be resummed back to find their closed-form expressions.

5.4.1 Series for GN
∆

Many bulk loop integrals involve copies of the bulk-to-bulk propagator between the
same 2 points. We want to write down then a convenient expression for GN

∆ for some
positive integer number N. Consider the position space representation of G∆ in the
variable ξ

G∆(ξ) =
c∆

2∆+1ν
ξ∆

2F1

(
∆
2 , ∆+1

2

∆ − d
2 + 1

; ξ2

)
. (5.47)



58 Chapter 5. Integrals

By taking its N-th power, we can write it as the following series

GN
∆ (ξ) =

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,NξN∆+2k , (5.48)

where we introduced the coefficient gk,N defined by

2F1

(
∆
2 , ∆+1

2

∆ − d
2 + 1

; ξ2

)N

≡
∞

∑
k=0

gk,Nξ2k . (5.49)

One can directly check that

g0,N = 1 , gk,1 =

(∆
2

)
k

(∆+1
2

)
k(

∆ − d
2 + 1

)
k

k!
. (5.50)

The simplicity of GN
∆ boils down to the simplicity of gk,N . In general, one can work out

the value of this coefficient when a closed-form expression for the hypergeometric
defining it is known. When this is the case, not only GN

∆ can be expressed in terms of
known functions but also, in general, the loop integrals that involve this quantity, at
least for the class of integrals we are interested in. More on this at the end of the
section where we study concrete examples.

Divergences are expected at the coincident point ξ = 1. Checking for the convergence
of GN

∆ (ξ), from (5.49) one sees that for large k

gk+1,N

gk,N

ξ2k+2

ξ2k =

[
1 +

(
N(d − 1)

2
− 1
)

1
k
+O

(
1
k2

)]
ξ2 , (5.51)

and thus performing the ratio test

lim
k→∞

gk+1,N

gk,N

ξ2k+2

ξ2k = ξ2 , (5.52)

the series converges for 0 ≤ ξ2 < 1. As ξ → 1, the ratio test is inconclusive and one
must look at the subleading term in the expansion of gk+1,N/gk,N through Raabe’s test

lim
k→∞

k
(

gk+1,N

gk,N
− 1
)
=

N(d − 1)
2

− 1 , (5.53)

where convergence requires the limit to be < −1, implying in our case d < 1. Since we
are interested in d ≥ 1, the bulk propagator at coincident points is always divergent.
Despite this, bulk loop integrals involving GN

∆ (ξ) are expected to have a softer
divergence near the region ξ = 1, given by the convergence analysis in (5.8).

The UV regularization scheme amounts to replace the argument of G∆(ξ) by
ξ → ξτ ≡ ξ/ cosh τ with 0 < τ ≪ 1, rendering ξτ strictly less than 1, and consequently
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the series for the regularized propagator Gτ,∆(ξ) ≡ G∆(ξτ) always convergent, as it
can be seen from the analysis above. The regularized series representation for GN

∆ we
will use to compute the UV integrals is then

GN
τ,∆(ξ) =

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,N

(
ξ

cosh τ

)N∆+2k

, (5.54)

with the bare integrals simply recovered for vanishing regulator τ = 0.

5.4.2
∫

GN
∆ Integral

The first UV divergent integrals we still study are of the type
∫

GN
∆ , that is, the

bulk-to-bulk propagator to some positive integer power N. Writing it in terms of the
regularized propagator Gτ,∆, the regularized integral to study is

IN
∆ (x1; τ) =

∫
dd+1x2

√
g2 GN

τ,∆(x1, x2) , (5.55)

where IR convergence requires N∆ − d > 0. As we will prove now, the integral turns

x1 x2

GN
τ,∆

FIGURE 5.5:
∫

GN
∆ integral

out to be constant, independent of the point x1

IN
∆ (x1; τ) ≡ µd,N

∆ (τ) . (5.56)

This can be shown by removing the x1 dependence from the integral through AdS
isometry transformations on the vertex x2. Indeed, by translating x2 7→ x2 + x⃗1, and
then rescaling x2 7→ z1x2

IN
∆ (x1; τ) =

∫
dd+1x2

√
g2 GN

τ,∆(x1, x2) , (5.57)

=
∫

dd+1x2
√

g2 GN
τ,∆

(
(z1, 0⃗), x2

)
, (5.58)

=
∫

dd+1x2
√

g2 GN
τ,∆

(
(1, 0⃗), x2

)
, (5.59)

= IN
∆

(
(1, 0⃗); τ

)
, (5.60)

≡ µd,N
∆ (τ) . (5.61)
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To determine the value of the coefficient µd,N
∆ (τ), we will compute (5.55) using the

series representation of the regularized propagator (5.54). This leads to the
computation of IN

∆ (x1; τ) in terms of the fundamental vertices (E.1) defined in
appendix E

IN
∆ (x1; τ) =

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,N

(
1

cosh τ

)N∆+2k

VN∆+2k(x1) , (5.62)

where VN∆+2k(x1) corresponds to the fundamental vertex with no external legs to the
boundary, and whose general solution has been derived in (E.11). Using this result, it
leads to the coefficient

µd,N
∆ (τ) = π

d+1
2

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,N

Γ
(

N∆−d
2 + k

)
Γ
(N∆+1

2 + k
) ( 1

cosh τ

)N∆+2k

. (5.63)

It is represented in terms of an infinite series, however when a simple expression for
gk,N defined by (5.49) is known, the series can be computed in closed form, in general
in terms of a generalized hypergeometric function. Note that as τ → 0, performing a
similar study as in (5.53), convergence of µd,N

∆ (τ) requires d < (N + 1)/(N − 1),
consistent with the analysis in (5.8).

5.4.3
∫

GN
∆ K∆2 Integral

Another type of UV divergent integrals are of the form
∫

GN
∆ K∆2 , with the

bulk-to-bulk propagator to some positive integer power N attached to a
bulk-to-boundary propagator. The regularized object to analyze is

IN
∆,∆2

(x1, y⃗2; τ) =
∫

dd+1x2
√

g2 GN
τ,∆(x1, x2)K∆2(x2, y⃗2) , (5.64)

where IR convergence requires N∆ > ∆2. In this case, isometry transformations at the

x1 x2

GN
τ,∆

y⃗2
K∆2

FIGURE 5.6:
∫

GN
∆ K∆2 integral

point x2 show that the integral is proportional to a bulk-to-boundary propagator

IN
∆,∆2

(x1, y⃗2; τ) ≡ ηd,N
∆,∆2

(τ)K∆2(x1, y⃗2) . (5.65)
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Indeed, by translating x2 7→ x2 + y⃗2, inverting x2 7→ x2/x2
2, translating again

x2 7→ x2 + x⃗ ′′
1 , rescaling x2 7→ z′′1 x2, and finally inverting back, with x′′1 = x′1/x′21 and

x′1 = x1 − y⃗2

IN
∆,∆2

(x1, y⃗2; τ) =
∫

dd+1x2
√

g2 GN
τ,∆(x1, x2)K∆2(x2, y⃗2) , (5.66)

=
∫

dd+1x2
√

g2 GN
τ,∆(x′1, x2)K∆2(x2, 0⃗) , (5.67)

=
∫

dd+1x2
√

g2 GN
τ,∆(x′′1 , x2)c∆2 z∆2

2 , (5.68)

=
∫

dd+1x2
√

g2 GN
τ,∆

(
(z′′1 , 0⃗), x2

)
c∆2 z∆2

2 , (5.69)

= z′′∆2
1

∫
dd+1x2

√
g2 GN

τ,∆

(
(1, 0⃗), x2

)
c∆2 z∆2

2 , (5.70)

= K∆2(x1, y⃗2)
∫

dd+1x2
√

g2 GN
τ,∆

(
(1, 0⃗), x2

)
K∆2(x2, 0⃗) , (5.71)

= K∆2(x1, y⃗2)IN
∆,∆2

(
(1, 0⃗), 0⃗; τ

)
, (5.72)

≡ ηd,N
∆,∆2

(τ)K∆2(x1, y⃗2) . (5.73)

As we did for the coefficient µd,N
∆ (τ), we will determine ηd,N

∆,∆2
(τ) by computing (5.64)

using the series representation of the regularized propagator (5.54), leading to the
computation of IN

∆,∆2
(x1, y⃗2; τ) in terms of the fundamental vertices (E.1)

IN
∆,∆2

= c∆2

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,N

(
1

cosh τ

)N∆+2k

VN∆+2k,∆2(x1, y⃗2) , (5.74)

where VN∆+2k,∆2(x1, y⃗2) corresponds to the fundamental vertex with 1 external leg
extended to the boundary, computed in (E.13). Using this result, one obtains the
coefficient

ηd,N
∆,∆2

(τ) = π
d+1

2

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,N

Γ
(

N∆+∆2−d
2 + k

)
Γ
(

N∆−∆2
2 + k

)
Γ
(N∆

2 + k
)

Γ
(N∆+1

2 + k
) (

1
cosh τ

)N∆+2k

.

(5.75)
As before, the coefficient is represented as an infinite series and it can be computed in
closed form for simple gk,N . In the limit τ → 0, Raabe’s test shows that ηd,N

∆,∆2
(τ)

converges for d < (N + 1)/(N − 1), as expected.

5.4.4
∫

GN
∆ K∆3K∆4 Integral

The last type of UV divergent integrals we will study are of the form
∫

GN
∆ K∆3 K∆4 ,

with the bulk-to-bulk propagator to some power N now attached to 2
bulk-to-boundary propagators. The regularized object to analyze in this case is

IN
∆,∆3,∆4

(x1, y⃗3, y⃗4; τ) =
∫

dd+1x2
√

g2 GN
τ,∆(x1, x2)K∆3(x2, y⃗3)K∆4(x2, y⃗4) , (5.76)
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where IR convergence requires N∆ > |∆3 − ∆4|. In this case, isometry

x1 x2

GN
τ,∆

y⃗3

y⃗4

K∆3

K∆4

FIGURE 5.7:
∫

GN
∆ K∆3 K∆4 integral

transformations show that the integral is of the form

IN
∆,∆3,∆4

(x1, y⃗3, y⃗4; τ) ≡ K∆3(x1, y⃗3)K∆4(x1, y⃗4)χ
d,N
∆,∆3,∆4

(X; τ) , (5.77)

with the coefficient χd,N
∆,∆3,∆4

as a function of the combination
X ≡ K(x1, y⃗3)K(x1, y⃗4)|⃗y34|2. Indeed, by translating x2 7→ x2 + y⃗4, inverting
x2 7→ x2/x2

2, and translating again x2 7→ x2 + y⃗ ′
34

IN
∆,∆3,∆4

(x1, y⃗3, y⃗4; τ) =
∫

dd+1x2
√

g2 GN
τ,∆(x1, x2)K∆3(x2, y⃗3)K∆4(x2, y⃗4) , (5.78)

=
∫

dd+1x2
√

g2 GN
τ,∆(x′1, x2)K∆3(x2, y⃗34)K∆4(x2, 0⃗) , (5.79)

= |⃗y ′
34|2∆3

∫
dd+1x2

√
g2 GN

τ,∆(x′′1 , x2)K∆3(x2, y⃗ ′
34)c∆4 z∆4

2 , (5.80)

= |⃗y ′
34|2∆3

∫
dd+1x2

√
g2 GN

τ,∆(x′′′1 , x2)K∆3(x2, 0⃗)c∆4 z∆4
2 , (5.81)

≡ |⃗y ′
34|2∆3 f (x′′′1 ; τ) , (5.82)

where we called x′′′1 = x′′1 − y⃗ ′
34, x′′1 = x′1/x′21 , x′1 = x1 − y⃗4 and y⃗ ′

34 = y⃗34/|⃗y34|2. The
remaining integral is just a function of x′′′1 , which we named f (x′′′1 ; τ). Notice that
under rescaling of the bulk point x′′′1 or rotations of the boundary coordinates x⃗ ′′′

1

f (λx′′′1 ; τ) = λ∆4−∆3 f (x′′′1 ; τ) , f (z′′′1 , R x⃗ ′′′
1 ; τ) = f (z′′′1 , x⃗ ′′′

1 ; τ) . (5.83)

Then, f (x′′′1 ; τ) must be of the form

f (x′′′1 ; τ) = (z′′′1 )∆4−∆3 g
( |⃗x ′′′

1 |
z′′′1

; τ

)
, (5.84)

=

(
z′′′1

z′′′21 + |⃗x ′′′
1 |2

)∆3

z′′′∆4
1 h

(
z′′′21

z′′′21 + |⃗x ′′′
1 |2

; τ

)
. (5.85)
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Putting everything together, and writing back in terms of the original coordinates

IN
∆,∆3,∆4

(x1, y⃗3, y⃗4; τ) = |⃗y ′
34|2∆3

(
z′′′1

z′′′21 + |⃗x ′′′
1 |2

)∆3

z′′′∆4
1 h

(
z′′′21

z′′′21 + |⃗x ′′′
1 |2

; τ

)
, (5.86)

= K∆3(x1, y⃗3)K∆4(x1, y⃗4)h
(
K(x1, y⃗3)K(x1, y⃗4)|⃗y34|2; τ

)
, (5.87)

≡ K∆3(x1, y⃗3)K∆4(x1, y⃗4)χ
d,N
∆,∆3,∆4

(X; τ) , (5.88)

as claimed. The explicit form of χ may be determined from a direct computation of the
integral, in terms of the representation of the regularized propagator (5.54) and the
fundamental vertices (E.1)

IN
∆,∆3,∆4

= c∆3 c∆4

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,N

(
1

cosh τ

)N∆+2k

VN∆+2k,∆3,∆4(x1, y⃗3, y⃗4) , (5.89)

using the result for the fundamental vertex VN∆+2k,∆3,∆4(x1, y⃗3, y⃗4) with 2 external legs
extended to the boundary (E.16), the expression for χd,N

∆,∆3,∆4
is identified with

χd,N
∆,∆3,∆4

=π
d+1

2

( c∆

2∆+1ν

)N ∞

∑
k=0

gk,N

Γ
(

N∆+∆3+∆4−d
2 + k

)
Γ
(

N∆+∆3−∆4
2 + k

)
Γ
(

N∆+∆4−∆3
2 + k

)
Γ
(N∆

2 + k
)

Γ
(N∆+1

2 + k
)

Γ
(

N∆+∆3+∆4
2 + k

)
×
(

1
cosh τ

)N∆+2k

2F1

(
∆3, ∆4

N∆+∆3+∆4
2 + k

; 1 − K(x1, y⃗3)K(x1, y⃗4)|⃗y34|2
)

.

(5.90)

In general, it is convenient to express it as a series in X = K(x1, y⃗3)K(x1, y⃗4)|⃗y34|2,
rather than 1 − X. In the case where N∆ ̸= ∆3 + ∆4 + 2Z, this can be achieved using
the linear transformation of the hypergeometric function (B.13), obtaining a series of
the form

χd,N
∆,∆3,∆4

(X; τ) =
∞

∑
i=0

[
ai(τ) + bi(τ)X

N∆−∆3−∆4
2

]
Xi , (5.91)

with the coefficients ai(τ) and bi(τ) given by

ai(τ) = π
d+1

2

( c∆

2∆+1ν

)N (∆3)i(∆4)iΓ
(

N∆−∆3−∆4
2

)
(

1 + ∆3+∆4−N∆
2

)
i
i!

×
∞

∑
k=0

gk,N

Γ
(

N∆+∆3+∆4−d
2 + k

) (
N∆−∆3−∆4

2 − i
)

k

Γ
(N∆

2 + k
)

Γ
(N∆+1

2 + k
) (

1
cosh τ

)N∆+2k

, (5.92)

bi(τ) = π
d+1

2

( c∆

2∆+1ν

)N Γ
(

∆3+∆4−N∆
2

)
Γ
(

N∆+∆3−∆4
2 + i

)
Γ
(

N∆−∆3+∆4
2 + i

)
Γ(∆3)Γ(∆4)

(
1 + N∆−∆3−∆4

2

)
i
i!

×
i

∑
k=0

gk,N

Γ
(

N∆+∆3+∆4−d
2 + k

)
(−i)k

Γ
(N∆

2 + k
)

Γ
(N∆+1

2 + k
) ( 1

cosh τ

)N∆+2k

. (5.93)
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Note that the coefficient bi(τ) consists in a terminating sum of finite terms, thus it is
always convergent in the limit τ → 0. All divergences in χd,N

∆,∆3,∆4
are contained then in

the coefficient ai(τ). Indeed, from a Raabe’s test of its k-series, convergence of this
coefficient requires

d <
N + 1 + 2i

N − 1
. (5.94)

That is, a0(τ) converges for d < (N + 1)/(N − 1), a1(τ) for d < (N + 3)/(N − 1), and
so on. As a consistency check on the values obtained for ai(τ) and bi(τ), note that for
N = 1 and τ = 0 using the expression for gk,1 in (5.50), they reduce to

ai =
Γ
(

∆+∆3+∆4−d
2

)
Γ
(

∆−∆3−∆4
2

)
(∆3)i(∆4)i

4 Γ
(

1 + ∆−∆3−∆4
2

)
Γ
(

1 + ∆+∆3+∆4−d
2 + i

) (
1 + ∆3+∆4−∆

2

)
i

, (5.95)

bi =
Γ
(

∆+∆3+∆4−d
2

)
Γ
(

∆3+∆4−∆
2

)
Γ
(

∆+∆3−∆4
2 + i

)
Γ
(

∆−∆3+∆4
2 + i

)
4 Γ(∆3)Γ(∆4)Γ

(
∆ − d

2 + 1 + i
)

i!
, (5.96)

recovering the known tree-level results [52].

The expressions for ai(τ) and bi(τ) are obtained with the assumption
N∆ ̸= ∆3 + ∆4 + 2Z, however under the analytic continuation N∆ → ∆3 + ∆4 − 2N,
the series in ai(τ) terminates and one can make the identification
ai(τ) = −b

i+ ∆3+∆4−N∆
2

(τ). This leads to a cancellation in pairs of all Xi≥0 terms in (5.91),
leaving only the sum of a finite number of convergent terms (for the case N = 1, see
e.g. [46])

χd,N
∆,∆3,∆4

(X; τ) =

∆3+∆4−N∆
2 −1

∑
i=0

bi(τ)X
N∆−∆3−∆4

2 +i . (5.97)

When N∆ = ∆3 + ∆4 + 2N0, the coefficients ai(τ) and bi(τ) become ill-defined and
this can be traced back to the hypergeometric linear transformation performed to
(5.90). In this case one must use instead (B.14), which introduces a logarithmic term

χd,N
∆,∆3,∆4

(X; τ) =
∞

∑
i=0

[
ci(τ) + di(τ)X

N∆−∆3−∆4
2 ln X

]
Xi , (5.98)

for some coefficients ci(τ) and di(τ). An important case that falls into this category is
the quartic vertex with the dimension of all 4 legs equal: N = 2, ∆3 = ∆4 = ∆. From
(5.90) and (B.14), one can indeed see χd,2

∆,∆,∆ takes the form of (5.98) with
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N∆ − ∆3 − ∆4 = 0, and with the coefficients ci(τ) and di(τ) given by

ci(τ) = π
d+1

2

( c∆

2∆+1ν

)2 (∆)2
i

i!2
i

∑
k=0

gk,2

Γ
(

2∆ − d
2 + k

)
(−i)k

Γ(∆ + k)Γ
(
∆ + 1

2 + k
) (5.99)

× [ψ(1 + i − k) + ψ(1 + i)− 2ψ(∆ + i)]
(

1
cosh τ

)2∆+2k

+ π
d+1

2

( c∆

2∆+1ν

)2
(−1)i (∆)

2
i

i!

∞

∑
k=i+1

gk,2

Γ
(

2∆ − d
2 + k

)
Γ(k − i)

Γ(∆ + k)Γ
(
∆ + 1

2 + k
) ( 1

cosh τ

)2∆+2k

,

di(τ) = −π
d+1

2

( c∆

2∆+1ν

)2 (∆)2
i

i!2
i

∑
k=0

gk,2

Γ
(

2∆ − d
2 + k

)
(−i)k

Γ(∆ + k)Γ
(
∆ + 1

2 + k
) ( 1

cosh τ

)2∆+2k

. (5.100)

Similar to the previous case, the series in di(τ) terminates and thus the coefficient
converges in the limit τ → 0, all the divergences then of χd,2

∆,∆,∆ being in ci(τ), in
particular from the second series in (5.99) that starts at k = i + 1. From a Raabe’s test
of this series, one concludes the coefficient ci(τ) converges for d < 3 + 2i, same
convergence as ai(τ) derived in (5.94) for the particular case N = 2.

From the computational side, ci(τ) is in general harder to compute in closed form
compared to the other coefficients as it also contains series involving digamma
functions ψ(x), resulting in more complicated expressions for ci(τ) than generalized
hypergeometric functions such as Appell functions, or more generally Kampé de
Fériet functions. For the case of (5.99), a more manageable expression can be obtained
using the digamma property

ψ(1 + i − k) = ψ(1 + i) +
k−1

∑
l=0

1
l − i

, (5.101)

being able to express the coefficient in terms of series involving only gamma functions

ci(τ) = π
d+1

2

( c∆

2∆+1ν

)2 (∆)2
i

i!2
2 [ψ(1 + i)− ψ(∆ + i)] (5.102)

×
i

∑
k=0

gk,2

Γ
(

2∆ − d
2 + k

)
(−i)k

Γ(∆ + k)Γ
(
∆ + 1

2 + k
) ( 1

cosh τ

)2∆+2k

+ π
d+1

2

( c∆

2∆+1ν

)2 (∆)2
i

i!2
i

∑
l=0

(−i)l

∞

∑
k=l+1

gk,2

Γ
(

2∆ − d
2 + k

)
(l − i + 1)k−l−1

Γ(∆ + k)Γ
(
∆ + 1

2 + k
) (

1
cosh τ

)2∆+2k

,

with all divergences contained in the term l = i of the double series.
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5.5 Example: relevant operator O∆

To illustrate the computation of the UV divergent integrals discussed in Section 5.4, as
an example consider the case where the internal lines representing the bulk-to-bulk
propagators in figs. 5.5, 5.6 and 5.7, correspond to a relevant operator O∆ of dimension
∆ < d. For simplicity, to avoid additional IR divergences N∆ will be taken to satisfy
the 3 inequalities N∆ > d, ∆2, |∆3 − ∆4| discussed in the previous section, that ensure
the IR convergence of the 3 coefficients µd,N

∆ , ηd,N
∆,∆2

and χd,N
∆,∆3,∆4

, respectively. For
integer conformal dimensions ∆ ∈ N and up to d = 6 in the boundary, there are a total
of 6 cases of relevant operators that comply with these constrains

d = 3 , ∆ = 2 , (5.103)

d = 4 , ∆ = 3 , (5.104)

d = 5 , ∆ = 3, 4 , (5.105)

d = 6 , ∆ = 4, 5 . (5.106)

Since either ∆ = d − 1 or ∆ = d − 2, from the definition of gk,N in (5.49) one sees that
for all these cases

2F1

(
∆
2 , ∆+1

2

∆ − d
2 + 1

; ξ2

)N

= 1F0

(
d − 1

2
; ξ2
)N

(5.107)

= 1F0

(
N(d − 1)

2
; ξ2
)

, (5.108)

=
∞

∑
k=0

1
k!

(
N(d − 1)

2

)
k

ξ2k , (5.109)

from where we can read the coefficient

gk,N =
1
k!

(
N(d − 1)

2

)
k

. (5.110)

Then for the 6 cases (5.103)-(5.106), the bulk loop integrals
∫

GN
∆ ,
∫

GN
∆ K∆2 and∫

GN
∆ K∆3 K∆4 encoded in the coefficients µd,N

∆ , ηd,N
∆,∆2

and χd,N
∆,∆3,∆4

in (5.63), (5.75) and
(5.91), the latter through the coefficients ai and bi in (5.92) and (5.93), can be computed
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in closed form in terms of hypergeometric functions

µd,N
∆ (τ) = π

d+1
2

( c∆

2∆+1ν

)N Γ
(

N∆−d
2

)
Γ
(N∆+1

2

) ( 1
cosh τ

)N∆

2F1

(
N(d−1)

2 , N∆−d
2

N∆+1
2

;
1

cosh2 τ

)
,

(5.111)

ηd,N
∆,∆2

(τ) = π
d+1

2

( c∆

2∆+1ν

)N Γ
(

N∆+∆2−d
2

)
Γ
(

N∆−∆2
2

)
Γ
(N∆

2

)
Γ
(N∆+1

2

) (
1

cosh τ

)N∆

× 3F2

(
N(d−1)

2 , N∆+∆2−d
2 , N∆−∆2

2
N∆
2 , N∆+1

2

;
1

cosh2 τ

)
, (5.112)

ai(τ) = π
d+1

2

( c∆

2∆+1ν

)N Γ
(

N∆+∆3+∆4−d
2

)
Γ
(

N∆−∆3−∆4
2

)
(∆3)i(∆4)i

Γ
(N∆

2

)
Γ
(N∆+1

2

) (
1 + ∆3+∆4−N∆

2

)
i

i!

(
1

cosh τ

)N∆

× 3F2

(
N(d−1)

2 , N∆+∆3+∆4−d
2 , N∆−∆3−∆4

2 − i
N∆
2 , N∆+1

2

;
1

cosh2 τ

)
, (5.113)

bi(τ) = π
d+1

2

( c∆

2∆+1ν

)N Γ
(

N∆+∆3−∆4
2 + i

)
Γ
(

N∆−∆3+∆4
2 + i

)
Γ
(

N∆+∆3+∆4−d
2

)
Γ
(

∆3+∆4−N∆
2

)
Γ(∆3)Γ(∆4)

(
1 + N∆−∆3−∆4

2

)
i
Γ
(N∆

2

)
Γ
(N∆+1

2

)
i!

×
(

1
cosh τ

)N∆

3F2

(
N(d−1)

2 , N∆+∆3+∆4−d
2 , −i

N∆
2 , N∆+1

2

;
1

cosh2 τ

)
. (5.114)

In the last 2, when N∆ = ∆3 + ∆4 − 2N, χd,N
∆,∆3,∆4

only involves the coefficient bi as in
(5.97), while for N∆ = ∆3 + ∆4 + 2N0 both coefficients ai and bi become ill-defined
and χd,N

∆,∆3,∆4
takes instead the form of (5.98), expressed in terms of some other

coefficients ci and di well-defined. For the particular case N = 2 and ∆3 = ∆4 = ∆,
these were derived in (5.99) (or (5.102)) and (5.100), which for the current examples
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can also be computed in closed form

ci(τ) = π
d+1

2

( c∆

2∆+1ν

)2 2 Γ
(

2∆ − d
2

)
(∆)2

i [ψ(1 + i)− ψ(∆ + i)]

Γ(∆)Γ
(
∆ + 1

2

)
i!2

(
1

cosh τ

)2∆

× 3F2

(
d − 1, 2∆ − d

2 , −i
∆, ∆ + 1

2

;
1

cosh2 τ

)

+π
d+1

2

( c∆

2∆+1ν

)2 (d − 1)Γ
(

2∆ − d
2 + 1

)
(∆)2

i

Γ(∆ + 1)Γ
(
∆ + 3

2

)
i!2

(
1

cosh τ

)2(∆+1)

× F3,2,1
3,1,0

(
d, 2∆ − d

2 + 1, 1 − i
∆ + 1, ∆ + 3

2 , 2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)
, (5.115)

di(τ) = − π
d+1

2

( c∆

2∆+1ν

)2 Γ
(

2∆ − d
2

)
(∆)2

i

Γ(∆)Γ
(
∆ + 1

2

)
i!2

(
1

cosh τ

)2∆

× 3F2

(
d − 1, 2∆ − d

2 , −i
∆, ∆ + 1

2

;
1

cosh2 τ

)
. (5.116)

where the function F3,2,1
3,1,0 is known as Kampé de Fériet function, whose general form is

defined in (B.22), and is represented by the double series

F3,2,1
3,1,0

(
d, 2∆ − d

2 + 1, 1 − i
∆ + 1, ∆ + 3

2 , 2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)

=
∞

∑
l=0

∞

∑
k=0

(d)l+k

(
2∆ − d

2 + 1
)

l+k
(1 − i)l+k(1)l(−i)l(1)k

(∆ + 1)l+k
(
∆ + 3

2

)
l+k (2)l+k(1 − i)l l! k!

(
1

cosh τ

)2(l+k)

. (5.117)

Noting that the l-series terminates at l = i, by computing the k-series one can express
F3,2,1

3,1,0 as the sum of a finite number of generalized hypergeometrics

F3,2,1
3,1,0

(
d, 2∆ − d

2 + 1, 1 − i
∆ + 1, ∆ + 3

2 , 2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)

=
i

∑
l=0

(d)l

(
2∆ − d

2 + 1
)

l
(−i)l

(∆ + 1)l
(
∆ + 3

2

)
l (2)l

(
1

cosh τ

)2l

× 4F3

(
d + l, 2∆ − d

2 + 1 + l, l − i + 1, 1
∆ + 1 + l, ∆ + 3

2 + l, 2 + l
;

1
cosh2 τ

)
. (5.118)

These results constitute the closed form values for the regularized bulk loop integrals
discussed in Section 5.4, for the particular examples (5.103)-(5.106). When these
integrals are divergent, one requires the explicit expansion in the UV regulator τ to
perform renormalization of the given theory on AdS. Take for instance the case of a
single scalar field Φ in the bulk with a λΦ4 interaction. Up to order λ2 in the
self-interacting coupling constant the coefficients appearing in the loop expansion are
µd,2

∆ , ηd,3
∆,∆ and χd,2

∆,∆,∆ (logarithmic case), the first 2 from the eight and sunset diagrams
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in the 2-point holographic correlator, and the latter from the double exchange diagram
in the 4-point holographic correlator. For the current examples, these are given in
closed form by (5.111), (5.112), and the latter through (5.115) and (5.116). To exemplify
the regulator expansion of the divergent integrals appearing in this theory, we will
work them out explicitly for the cases (5.103) and (5.104). For the rest of the cases, they
can be obtained in a similar manner.

5.5.1 Case d = 3, ∆ = 2

In this case, bulk renormalization of a λΦ4 theory requires the τ-expansion of the
coefficients µ3,2

2 (τ), η3,3
2,2(τ) and χ3,2

2,2,2(X; τ). From the general expressions obtained
above, these are evaluated to

µ3,2
2 (τ) =

1
12π2

(
1

cosh τ

)4

2F1

(
2,

1
2

;
5
2

;
1

cosh2 τ

)
, (5.119)

η3,3
2,2(τ) =

1
320π4

(
1

cosh τ

)6

2F1

(
5
2

, 2;
7
2

;
1

cosh2 τ

)
, (5.120)

ci(τ) = − 1
8π2 (1 + i)

(
1

cosh τ

)4

1F0

(
−i ;

1
cosh2 τ

)
(5.121)

+
1

16π2 (1 + i)2
(

1
cosh τ

)6

F1,2,1
1,1,0

(
1 − i

2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)
,

di(τ) = − 1
16π2 (1 + i)2

(
1

cosh τ

)4

1F0

(
−i ;

1
cosh2 τ

)
. (5.122)

The τ-expansion of the first 2 can be worked out directly

µ3,2
2 (τ) = − ln τ

8π2 +
2 ln 2 − 1

16π2 +O(τ) , (5.123)

η3,3
2,2(τ) =

1
128π4τ2 +

3 ln τ

128π4 +
5 − 9 ln 2

384π4 +O(τ) . (5.124)

For the last 2, since the hypergeometric 1F0 is convergent in the limit τ → 0, it can be
seen to have an expansion of the form

1F0

(
−i ;

1
cosh2 τ

)
= 1F0(−i; 1) +O(τ) = δi,0 +O(τ) , (5.125)

while for the Kampé de Fériet function it corresponds to the case (B.28), being able to
express it as the product of 2 hypergeometrics

F1,2,1
1,1,0

(
1 − i

2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)
= 1F0

(
−i ;

1
cosh2 τ

)
2F1

(
1, 1; 2;

1
cosh2 τ

)
,

= −2 ln τ δi,0 +O(τ) . (5.126)
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When the expression for the Kampé de Fériet function in terms of simpler functions is
not known, its regulator expansion can be obtained directly from its series
representation as a sum of hypergeometrics. For the current example this takes the
form

F1,2,1
1,1,0

(
1 − i

2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)

=
i

∑
l=0

(−i)l

Γ(2 + l)

(
1

cosh τ

)2l

2F1

(
l − i + 1, 1

2 + l
;

1
cosh2 τ

)
. (5.127)

From a convergence analysis, as τ → 0 the series is expected to diverge for i = 0 and
converge for i > 0. This is of course consistent with the convergence region d < 3 + 2i
of the coefficient ci(τ) derived previously, for the particular case d = 3. Consider then
separating in these 2 cases: first for i = 0

F1,2,1
1,1,0

(
1 − i

2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

) ∣∣∣∣
i=0

= 2F1

(
1, 1

2
;

1
cosh2 τ

)
, (5.128)

= −2 ln τ +O(τ) , (5.129)

and then for the case i > 0, safely expanding around τ = 0

F1,2,1
1,1,0

(
1 − i

2
;

1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

) ∣∣∣∣
i>0

=
i

∑
l=0

(−i)l

Γ(2 + l) 2F1

(
l − i + 1, 1

2 + l
; 1

)
+O(τ) , (5.130)

=
1
i 1F0(−i; 1) +O(τ) , (5.131)

= O(τ) , (5.132)

recovering the same expansion as before. Putting everything together, this results in
the τ-expansion of the coefficients ci and di

ci(τ) = − 1
8π2 (ln τ + 1)δi,0 +O(τ) , di(τ) = − 1

16π2 δi,0 +O(τ) , (5.133)

and from (5.98), in the expression for χ3,2
2,2,2

χ3,2
2,2,2(X; τ) = − ln τ

8π2 − ln X + 2
16π2 +O(τ), (5.134)

in the variable X ≡ K(x1, y⃗3)K(x1, y⃗4)|⃗y34|2.
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5.5.2 Case d = 4, ∆ = 3

In this case, bulk renormalization of a λΦ4 theory requires the τ-expansion of the
coefficients µ4,2

3 (τ), η4,3
3,3(τ) and χ4,2

3,3,3(X; τ). From the general expressions obtained
previously

µ4,2
3 (τ) =

1
120π2

(
1

cosh τ

)6

2F1

(
3, 1;

7
2

;
1

cosh2 τ

)
, (5.135)

η4,3
3,3(τ) =

1
6720π4

(
1

cosh τ

)9

2F1

(
4, 3; 5;

1
cosh2 τ

)
, (5.136)

ci(τ) = − Γ(3 + i)(3 + 2i)
80π2 i!

(
1

cosh τ

)6

2F1

(
4,−i;

7
2

;
1

cosh2 τ

)
(5.137)

+
Γ(3 + i)2

140π2 i!2

(
1

cosh τ

)8

F2,2,1
2,1,0

(
5, 1 − i

9
2 , 2

;
1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)
,

di(τ) = − Γ(3 + i)2

160π2 i!2

(
1

cosh τ

)6

2F1

(
4,−i;

7
2

;
1

cosh2 τ

)
. (5.138)

The first 2 have a τ-expansion of the form

µ4,2
3 (τ) =

1
128πτ

− 1
24π2 +O(τ) , (5.139)

η4,3
3,3(τ) =

1
3360π4τ4 − 31

20160π4τ2 − ln τ

280π4 +
109

172800π4 +O(τ) . (5.140)

For the last 2, since the hypergeometric 2F1 is convergent in the limit τ → 0

2F1

(
4,−i;

7
2

;
1

cosh2 τ

)
= 2F1

(
4,−i;

7
2

; 1
)
+O(τ) = −

15 Γ
(
− 1

2 + i
)

16 Γ
( 7

2 + i
) +O(τ) . (5.141)

No simpler expression is known for the Kampé de Fériet function, however as
mentioned in the previous example its regulator expansion can be obtained directly
from its representation as a sum of hypergeometrics

F2,2,1
2,1,0

(
5, 1 − i

9
2 , 2

;
1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

)

=
i

∑
l=0

(5)l(−i)l( 9
2

)
l (2)l

(
1

cosh τ

)2l

3F2

(
5 + l, l − i + 1, 1

9
2 + l, 2 + l

;
1

cosh2 τ

)
. (5.142)

A convergence analysis suggests the series diverges for i = 0 and converges for i > 0
as τ → 0. Separate then in these 2 cases: first for i = 0

F2,2,1
2,1,0

(
5, 1 − i

9
2 , 2

;
1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

) ∣∣∣∣
i=0

= 3F2

(
5, 1, 1

9
2 , 2

;
1

cosh2 τ

)
, (5.143)

=
35π

128τ
+

14
15

+O(τ) , (5.144)
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and then for i > 0, safely expanding around τ = 0

F2,2,1
2,1,0

(
5, 1 − i

9
2 , 2

;
1, −i
1 − i

;
1
−

;
1

cosh2 τ
,

1
cosh2 τ

) ∣∣∣∣
i>0

=
i

∑
l=0

(5)l(−i)l( 9
2

)
l (2)l

3F2

(
5 + l, l − i + 1, 1

9
2 + l, 2 + l

; 1

)
+O(τ) ,

= −
105 Γ

(
− 1

2 + i
)2

(1 + i)
[
4(1 + i)2 − 5

]
128 Γ

( 7
2 + i

)2 +O(τ) , (5.145)

where we computed the value of the hypergeometric 3F2 of unit argument using the
identity (B.19). Putting everything together, this results in the τ-expansion of the
coefficients ci and di

c0(τ) =
1

128πτ
− 29

600π2 +O(τ) , (5.146)

ci>0(τ) =
3 Γ(3 + i)Γ

(
− 1

2 + i
)
(3 + 2i)

256π2Γ
( 7

2 + i
)

i!

−
3 Γ(3 + i)2Γ

(
− 1

2 + i
)2

(1 + i)
[
4(1 + i)2 − 5

]
512π2Γ

( 7
2 + i

)2 i!2
+O(τ) , (5.147)

di(τ) =
3 Γ(3 + i)2Γ

(
− 1

2 + i
)

512π2Γ
( 7

2 + i
)

i!2
+O(τ) , (5.148)

with χ4,2
3,3,3(X; τ) in the form of (5.98)

χ4,2
3,3,3(X; τ) =

∞

∑
i=0

[ci(τ) + di(τ) ln X] Xi . (5.149)

In contrast to the previous example d = 3, ∆ = 2 where all non-vanishing
contributions in the limit τ → 0 are concentrated in the coefficients i = 0, in the
current case one has non-vanishing contributions at each i ≥ 0. In the example of
d = 5, ∆ = 4 a quick analysis suggests the non-vanishing contributions are again
concentrated in the first coefficients, in this case in i = 0 and i = 1, possibly indicating
that the cases where ∆ is an even number are special. It would be interesting to
investigate this further.
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Chapter 6

Example: Φ4 theory

As an example of holographic renormalization at loop order, in this chapter we work
out in detail the case of a scalar Φ4 theory on AdS, where as a first approximation the
backreaction with the background metric may be ignored. More interesting theories,
for instance those coming from the low-energy limit of string theory, also include other
type of fields and interactions, however this toy model suffices to show many of the
interesting physics that occurs in the AdS/CFT duality once subleading corrections
are taken into account, such as the renormalization of the boundary CFT data due to
the bulk loops. We begin this study by constructing the renormalized on-shell 1PI
effective action for the λΦ4 theory in Section 6.1, to then in Section 6.2 solve the
resulting exact equation of motion perturbatively in the coupling λ. In Section 6.3 we
analyze the first effects of loop corrections to order λ, to then in Section 6.4 embrace all
the loop corrections appearing in the bulk theory to order λ2. Holographic
renormalization at loop order is carried out for arbitrary values of the bulk mass and
dimension, and we end this chapter by studying a concrete case in Section 6.5.

Parts of this chapter have been previously published in [15], and parts to appear in
[23].

6.1 Renormalized 1PI effective action

Consider a scalar Φ4 theory with Dirichlet boundary conditions on AdS, described by
the gravitational path integral

ZAdS[φB(0)] =
∫

Φ∼φB(0)

DΦ e−SAdS[Φ] , (6.1)

SAdS[Φ] =
∫

dd+1x
√

g
(

1
2

∂µΦ∂µΦ +
m2

B
2

Φ2 +
λB

4!
Φ4
)

. (6.2)
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Our goal is to arrive at the renormalized 1PI effective action for this theory as defined
in (4.36). But before working out this object directly, with the intention to illustrate the
methodology involved we will first compute its bare value. Once these steps are
understood, we will go back and repeat this process introducing the different
regulators and counterterms, to finally obtain its renormalized version. As discussed
in Section 4.3, in the background field method the effective action is derived from the
decomposition Φ = ϕ[φB(0)] + h, integrating out h and restricting to 1PI terms in ϕ.
For the case of (6.1), this decomposition results in

ZAdS[φB(0)] =
∫

Dh e−SAdS[ϕ+h] = e−SAdS[ϕ]
∫

Dh e−SAdS[h]e−λB
∫

x(
1
4 ϕ2h2+ 1

6 ϕh3) , (6.3)

where SAdS[ϕ] is the original action evaluated at Φ → ϕ (and similarly for h), and
where for brevity we called

∫
x ≡

∫
dd+1x

√
g. In the last equality, terms linear in h

have been omitted as they lead to tadpoles and non-1PI contributions for ϕ. The
resulting path integral in h can be evaluated perturbatively in the bare coupling λB, in
terms of the bulk n-point functions

Gn(x1, . . . , xn) =

∫
Dh h(x1) · · · h(xn)e−SAdS[h]∫

Dh e−SAdS[h]
. (6.4)

By expanding the last exponential in (6.3), one finds for instance to order λ2
B

ZAdS[φB(0)]

ZAdS[0]
= e−SAdS[ϕ]

(
1 − λB

∫
x

[
1
4

ϕ2(x)G2(x, x) +
1
6

ϕ(x)G3(x, x, x)
]

+
λ2

B
2

∫
x

∫
y

[
1

16
ϕ2(x)ϕ2(y)G4(x, x, y, y) +

1
12

ϕ2(x)ϕ(y)G5(x, x, y, y, y)

+
1
36

ϕ(x)ϕ(y)G6(x, x, x, y, y, y)
]
+O(λ3

B)

)
. (6.5)

These bulk n-point functions Gn are simply those of a h4 theory, and thus computable
using standard perturbative QFT manipulations: define the path integral Zh of the
theory SAdS[h], add a source Jh coupled to the field h, write interaction terms in h as
derivatives of Jh and move them outside the path integral, and perform the remaining
Gaussian integral in terms of the inverse of the differential operator −□+ m2

B,
corresponding to the bare bulk-to-bulk propagator G∆B(x, y)

Zh[Jh] =
∫

Dh e−SAdS[h]+
∫

x hJh = Ne−
λB
4!

∫
x

(
1√
g

δ
δJh

)4

e
1
2

∫
x

∫
y Jh(x)G∆B (x,y)Jh(y) , (6.6)

where N is an unimportant constant. The quantities Gn are then computed from the
expression above by normalizing, functionally differentiating with respect to Jh, and
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setting the sources to 0

Gn(x1, . . . , xn) =
1

√
g1

δ

δJh(x1)
· · · 1

√
gn

δ

δJh(xn)

Zh[Jh]

Zh[0]

∣∣∣∣∣
Jh=0

, (6.7)

obtaining to the relevant order in λB

G2(x, x) = G∆B(x, x)− λB

2

∫
y

G2
∆B
(x, y)G∆B(y, y) +O(λ2

B) , (6.8)

G4(x, x, y, y) = G∆B(x, x)G∆B(y, y) + 2 G2
∆B
(x, y) +O(λB) , (6.9)

G6(x, x, x, y, y, y) = 9 G∆B(x, x)G∆B(x, y)G∆B(y, y) + 6 G3
∆B
(x, y) +O(λB) , (6.10)

with the odd-point functions G2n+1 = 0, as expected for a Z2-invariant theory.
Replacing these in the expression above, to order λ2

B the resulting expansion may be
resummed back into an exponential, which restricted to 1PI terms allows for the
identification of the bare effective action as defined in (4.34)

ΓAdS[φB(0)] = SAdS[ϕ] +
λB

4

∫
x

ϕ2(x)G∆B(x, x)− λ2
B

8

∫
x

∫
y

ϕ2(x)G2
∆B
(x, y)G∆B(y, y)

− λ2
B

12

∫
x

∫
y

ϕ(x)ϕ(y)G3
∆B
(x, y)− λ2

B
16

∫
x

∫
y

ϕ2(x)ϕ2(y)G2
∆B
(x, y) +O(λ3

B) , (6.11)

with ϕ = ϕ[φB(0)]. Tree-level correlators come from SAdS, while the rest of terms in
ΓAdS constitute the loop corrections computed perturbatively in λB. Now, this bare
object is clearly ill-defined, not only due to the usual IR divergences at tree-level
present in SAdS, but also at loop-level due to the IR divergences of the integrals and the
UV divergences coming from the short-distance singularities of the bulk propagator.
The effective action needs to be renormalized, and we will follow the recipe of
Chapter 4: divergences are regularized by restricting the radial coordinate to z ≥ ε and
replacing the propagator by its regularized version Gτ,∆, and these divergences are
renormalized by adding a boundary counterterm B at z = ε and Z-factors for the bulk
parameters. To order λ2, the required Z-factors to absorb all bulk divergences are

φB(0) = Zφ φ(0) , m2
B = Zmm2 = m2 + δm2 , λB = Zλλ = λ + δλ , (6.12)

of orders Zφ = 1+O(λ), δm2 = O(λ) and δλ = O(λ2). Surprisingly, no wavefunction
renormalization is required to absorb the divergences to this order. This is very
different from the case of Φ4 theory in flat space, where this counterterm is needed to
absorb one of the UV divergences in the sunset diagram proportional to p2 [93]. In our
case, the sunset diagram turns out to be proportional to the mass-shift diagram thanks
to the property (5.65) of the Witten diagrams (later on used to compute the sunset in
(6.51)), being able to renormalize all its UV divergences with δm2.

The computation of the renormalized effective action ΓRen
AdS follows from the same
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starting point (6.1) as the bare case, but now in the presence of these regulators and
counterterms, and the perturbative problem set in terms of the finite coupling λ rather
than its bare value λB. As before, decomposing Φ = ϕ + h, ignoring terms linear in h,
and evaluating the resulting path integral in h perturbatively in λ in terms of the bulk
n-point functions (6.4), one finds

ZSub
AdS[φ(0)]

ZSub
AdS[0]

= e−SAdS[ϕ]−B[ϕ]
(

1 − (λ + δλ)
∫

x

[
1
4

ϕ2(x)G2(x, x) +
1
6

ϕ(x)G3(x, x, x)
]

+
λ2

2

∫
x

∫
y

[
1
16

ϕ2(x)ϕ2(y)G4(x, x, y, y) +
1
12

ϕ2(x)ϕ(y)G5(x, x, y, y, y)

+
1
36

ϕ(x)ϕ(y)G6(x, x, x, y, y, y)
]
+O(λ3)

)
, (6.13)

where now bulk integrals correspond to the regularized volume element∫
x ≡

∫
z≥ε dd+1x

√
g, and where the bulk n-point functions Gn are computed from

Zh[Jh] = Ne−
δm2

2

∫
x

(
1√
g

δ
δJh

)2

e−
λ+δλ

4!

∫
x

(
1√
g

δ
δJh

)4

e
1
2

∫
x

∫
y Jh(x)Gτ,∆(x,y)Jh(y) , (6.14)

obtaining to the relevant order in λ

G2(x, x) = Gτ,∆(x, x)−
∫

y
G2

τ,∆(x, y)
[

δm2 +
λ

2
Gτ,∆(y, y)

]
+O(λ2) , (6.15)

G4(x, x, y, y) = Gτ,∆(x, x)Gτ,∆(y, y) + 2 G2
τ,∆(x, y) +O(λ) , (6.16)

G6(x, x, x, y, y, y) = 9 Gτ,∆(x, x)Gτ,∆(x, y)Gτ,∆(y, y) + 6 G3
τ,∆(x, y) +O(λ) , (6.17)

with odd-point functions vanishing. Calling the regularized number
Gτ,∆(x, x) ≡ Gτ,∆(1), replacing these values in the expression above, to order λ2 the
resulting expansion may be resummed back into an exponential, which restricted to
1PI terms allows for the identification of the subtracted effective action. Then the
renormalized effective action is simply obtained under the limit of vanishing
regulators

ΓRen
AdS = lim

ε→0
lim
τ→0

SAdS[ϕ] + B[ϕ] +
λ + δλ

4
Gτ,∆(1)

∫
x

ϕ2(x) (6.18)

− λ

4

[
δm2 +

λ

2
Gτ,∆(1)

] ∫
x

∫
y

ϕ2(x)G2
τ,∆(x, y)

− λ2

12

∫
x

∫
y

ϕ(x)ϕ(y)G3
τ,∆(x, y)− λ2

16

∫
x

∫
y

ϕ2(x)ϕ2(y)G2
τ,∆(x, y) ,

with ϕ = ϕ[Zφ φ(0)]. This result followed from repeating the same steps as the
derivation of the bare effective action, but with the introduction of regulators and
counterterms right from the beginning to have a well-defined starting point. Similarly,
we could have used the result for the bare effective action (6.11) as our starting point,
and introduce at this stage the same regulators and counterterms to try constructing
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directly its renormalized version. By doing so, upon use of the results in Section 5.2 to
write the λ-expansion of the bare propagator as

G∆B(x, y) = G∆(x, y)− δm2
∫

w
G∆(x, w)G∆(w, y) +O(λ2) , (6.19)

one can check this alternative derivation exactly reproduces the same expression for
the renormalized effective action.

In the decomposition Φ = ϕ + h, the ϕ only appear as external lines with internal
loops run by the fluctuations h and thus responsible of the UV divergences. In the
computation of ΓAdS these internal lines of h are represented by the bulk n-point
functions Gn, which are computed from the path integral Zh of the theory SAdS[h].
Once Zh has been expressed in terms of the bulk propagator G∆, the UV regularization
scheme has been implemented as discussed at the beginning of Subsection 4.1.1 with
the prescription G∆ → Gτ,∆, leading to regularized internal lines Gn constructed from
Gτ,∆ but unregularized external lines of ϕ constructed from K∆. As discussed in 5.1,
since external K∆ do not contribute with UV divergences in the bulk, this scheme
suffices to regularize the UV of all loop integrals on AdS. Similarly, we could have
chosen a more symmetric picture and implement the regularization scheme discussed
at the end of 4.1.1, replacing the bare kinetic term of SAdS[Φ] with the regularized term
(4.26) that has the regularized propagator Gτ,∆ as its inverse. In this scheme, one
obtains the same expression for ΓRen

AdS as (6.18) but with the kinetic term in SAdS[ϕ]

replaced by the regularized one, leading also to the regularization of external lines
now constructed by some Kτ,∆. Note however this scheme only differs by subleading,
scheme-dependent terms of τ, and the previous scheme can be directly recovered by
simply evaluating the regularized kinetic term for ϕ at τ = 0.

6.2 Exact solution

The variation of the renormalized effective action (6.18) consists only in a boundary
term

δΓRen
AdS = lim

ε→0
lim
τ→0

δB[ϕ]−
∫

ddx
√

g ∂zϕδϕ
∣∣
z=ε

, (6.20)

as the bulk term vanishes given the on-shell equation for the field ϕ

(−□+ m2)ϕ(x) =

−
[

δm2 +
λ + δλ

2
Gτ,∆(1)

]
ϕ(x) +

λ

2

[
δm2 +

λ

2
Gτ,∆(1)

]
ϕ(x)

∫
y

G2
τ,∆(x, y) (6.21)

+
λ2

6

∫
y

ϕ(y)G3
τ,∆(x, y)− λ + δλ

6
ϕ3(x) +

λ2

4
ϕ(x)

∫
y

ϕ2(y)G2
τ,∆(x, y) +O(λ3) .
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This is a non-linear integral equation for the field. It may be solved perturbatively in
the coupling λ by expanding the field and the counterterms in this parameter

ϕ = ϕ{0} + λϕ{1} + λ2ϕ{2} +O(λ3) , (6.22)

δm2 = λδm2
{1} + λ2δm2

{2} +O(λ3) , (6.23)

δλ = λ2δλ{2} +O(λ3) , (6.24)

where the subscript {n} denotes the nth-order component in the λ-expansion.
Replacing these expansions back in the equation of motion, since the equation must
hold at each order in λ this leads to a set of equations for each ϕ{n} in terms of the
previous n − 1 components

O(λ0) : (−□+ m2)ϕ{0}(x) = 0 , (6.25)

O(λ1) : (−□+ m2)ϕ{1}(x) =−
[

δm2
{1} +

1
2

Gτ,∆(1)
]

ϕ{0}(x)− 1
6

ϕ3
{0}(x) , (6.26)

O(λ2) : (−□+ m2)ϕ{2}(x) =−
[

δm2
{1} +

1
2

Gτ,∆(1)
]

ϕ{1}(x) (6.27)

−
[

δm2
{2} +

δλ{2}
2

Gτ,∆(1)
]

ϕ{0}(x) +
1
2

[
δm2

{1} +
1
2

Gτ,∆(1)
]

ϕ{0}(x)
∫

y
G2

τ,∆(x, y)

+
1
6

∫
y

ϕ{0}(y)G
3
τ,∆(x, y)− 1

2
ϕ2
{0}(x)ϕ{1}(x)−

δλ{2}
6

ϕ3
{0}(x)

+
1
4

ϕ{0}(x)
∫

y
ϕ2
{0}(y)G

2
τ,∆(x, y) .

The solution to (6.25) with Dirichlet boundary condition ϕ ∼ φB(0) = Zφ φ(0), that is
also regular in the bulk interior is given by

ϕ{0}(x) =
∫

ddy K∆(x, y⃗)Zφ φ(0) (⃗y) , (6.28)

with K∆(x, y⃗) the bulk-to-boundary propagator. Replacing this in (6.26), the
component ϕ{1} is found inverting the operator −□+ m2 using the bulk-to-bulk
propagator G∆(x, y). This process is then repeated to find ϕ{2} and all higher-order
components. In this way, the exact solution to (6.21) is constructed iteratively in λ

starting from the leading component ϕ{0}. The resulting expression for ϕ(x) is long as
it explicitly contains, to a given order in the bulk loop expansion, all connected
contributions to every holographic n-point function of the dual theory. Once the
expression for the field has been obtained, it is then convenient to write it in powers of
the source φ(0)

ϕ(x) = ϕ[1](x) + ϕ[3](x) + · · · , ϕ[n](x) = O(φn
(0)) , (6.29)

with the data of each (n + 1)-point function contained in the term ϕ[n] (not to be
confused with ϕ{n}). To order λ2 in bulk loops and to order φ3

(0) in the source (relevant
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up to the 4-point function) we find

ϕ[1](x) =
∫

y⃗
K∆(x, y⃗)Zφ φ(0) (⃗y) (6.30)

−
[

λδm2
{1} + λ2δm2

{2} +
λ + λ2δλ{2}

2
Gτ,∆(1)

] ∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]
+

λ

2

[
λδm2

{1} +
λ

2
Gτ,∆(1)

] ∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

] ∫
x′′

G2
τ,∆(x′, x′′)

+
λ2

6

∫
x′

G∆(x, x′)
∫

x′′
G3

τ,∆(x′, x′′)
[∫

y⃗
K∆(x′′, y⃗)Zφ φ(0) (⃗y)

]
+

[
λδm2

{1} +
λ

2
Gτ,∆(1)

]2 ∫
x′

G∆(x, x′)
∫

x′′
G∆(x′, x′′)

[∫
y⃗

K∆(x′′, y⃗)Zφ φ(0) (⃗y)
]

,

and

ϕ[3](x) = −
λ + λ2δλ{2}

6

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]3

(6.31)

+
λ2

4

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

] ∫
x′′

G2
τ,∆(x′, x′′)

[∫
y⃗

K∆(x′′, y⃗)Zφ φ(0) (⃗y)
]2

+
λ

2

[
λδm2

{1} +
λ

2
Gτ,∆(1)

] ∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]2

×
∫

x′′
G∆(x′, x′′)

[∫
y⃗

K∆(x′′, y⃗)Zφ φ(0) (⃗y)
]

+
λ

6

[
λδm2

{1} +
λ

2
Gτ,∆(1)

] ∫
x′

G∆(x, x′)
∫

x′′
G∆(x′, x′′)

[∫
y⃗

K∆(x′′, y⃗)Zφ φ(0) (⃗y)
]3

,

where we called
∫

y⃗ ≡
∫

ddy. Diagrammatically, the Witten diagrams contributing to
every correlator can be read directly from the expressions for ϕ[n](x) by representing
the propagators K and G as lines on AdS, and with the bulk point x extended all the
way to the boundary. By doing so, the terms contained in ϕ[1] and ϕ[3] are seen to
correspond precisely to all connected contributions, including those coming from the
counterterms δm2 and δλ, to the 2-point function (Fig. 6.1) and the 4-point function
(Fig. 6.2) of a scalar quartic theory to order λ2. Holographic renormalization through
the counterterms B in (6.20) and Zφ, δm2, δλ in ϕ(x) requires the identification of the
different divergent pieces, and those coming from the loop integrals will be
determined using the results of Chapter 5.

FIGURE 6.1: Witten diagrams contained in ϕ[1] contributing to the 2-point function.
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FIGURE 6.2: Witten diagrams contained in ϕ[3] contributing to the 4-point function.

6.3 Holographic renormalization at order λ

6.3.1 Bulk renormalization

Before dealing with all the loops to order λ2, for simplicity first we will deal with
those at order λ. To this order, the value of the field computed in (6.29) differs from the
tree-level case only from the terms linear in the source

ϕ[1](x) =
∫

y⃗
K∆(x, y⃗)Zφ φ(0) (⃗y)

−
[

λδm2
{1} +

λ

2
Gτ,∆(1)

] ∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]
, (6.32)

with ϕ[3] being already of order λ, the same as tree-level. All UV divergences come
from the regularized propagator at coincident points Gτ,∆(1), which are renormalized
through the component δm2

{1} of the mass counterterm. Indeed, decomposing the
propagator in its divergent and convergent parts

Gτ,∆(1) = Div [Gτ,∆(1)] + Con [Gτ,∆(1)] , (6.33)

fixes δm2
{1} to the value

δm2
{1} = −1

2
Div [Gτ,∆(1)] + Fm,1 , (6.34)

where Fm,1 is an arbitrary constant that captures the scheme dependence of such
subtraction, which in turn is fixed by renormalization conditions. With UV
divergences renormalized, one may safely take the limit of vanishing regulator τ,
allowing us to write ϕ[1] as

ϕ[1](x) =
∫

y⃗
K∆(x, y⃗)Zφ φ(0) (⃗y)− Π

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]
, (6.35)

where we defined the finite mass correction coefficient

Π ≡ lim
τ→0

λ

(
1
2

Con [Gτ,∆(1)] + Fm,1

)
. (6.36)

The remaining IR divergences in the field come from the
∫

GK integral in the second
term of ϕ[1]. This integral was studied in Subsection 5.3.2, with its value derived in
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(5.46). Using this, the resulting expressions can be resummed to order λ thanks to the
series expansion

(a)x

(b)x
zx = 1 + x ln

[
zeψ(a)−ψ(b)

]
+

x2

2

(
ln2
[
zeψ(a)−ψ(b)

]
+ ψ′(a)− ψ′(b)

)
+O(x3) ,

(6.37)
where (a)x is the Pochhammer symbol and ψ(a) the digamma function, leading to

ϕ[1](x) =
∫

y⃗
K∆R(x, y⃗)

(
ε e−

1
2ν

)∆R−∆
Zφ φ(0) (⃗y) , (6.38)

where we defined the renormalized mass and renormalized conformal dimension

m2
R ≡ m2 + Π , ∆R ≡ d

2
+

√
d2

4
+ m2

R = ∆ +
Π
2ν

+O(λ2) . (6.39)

Thus, IR divergences in ϕ(x) are renormalized through the source counterterm Zφ,
fixing its value to

Zφ = Fφ ε∆−∆R , (6.40)

with the scheme-dependence captured by the arbitrary factor Fφ = 1 +O(λ). The
freedom of changing the source by a constant factor is already present at tree-level,
allowing us to fix the normalization of the 2-point function. We will use this freedom
to define a renormalized source

φR(0)(x⃗) ≡ Fφ

(
e−

1
2ν

)∆R−∆
φ(0)(x⃗) , (6.41)

allowing us to write the renormalized expression for ϕ[1] as

ϕ[1](x) =
∫

y⃗
K∆R(x, y⃗)φR(0) (⃗y) . (6.42)

One can check the renormalized source φR(0), or equivalently φ(0) (as they only differ
by finite numeric factors), transforms as the source of an operator with dimension ∆R,
thanks to Zφ carrying the precise factors of ε: under a bulk rescaling xµ → λxµ,
ε → λε, using that the bare source φB(0) = Zφ φ(0) has conformal weight d − ∆

φ(0)(λx⃗) = Z−1
φ (λε)φB(0)(λx⃗) = λ∆R−∆Z−1

φ (ε)λ−(d−∆)φB(0)(x⃗)

= λ−(d−∆R)φ(0)(x⃗) , (6.43)

which is the correct transformation.

With the bulk field completely renormalized to order λ, one may write it then to this
order as

ϕ(x) =
∫

y⃗
K∆R(x, y⃗)φR(0) (⃗y)−

λ

6

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)φ(0) (⃗y)

]3

. (6.44)
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From this point on, we can continue the analysis in complete analogy with the
classical case: for generic values of νR = ∆R − d/2 the field has a near-boundary
expansion of the form

ϕ(x) = zd−∆R φR(0)(x⃗) + · · ·+ z∆R φ(2νR)(x⃗) + · · · , (6.45)

with the normalizable mode φ(2νR) as a functional of the source

φ(2νR)(x⃗) =
∫

y⃗

c∆R

|⃗x − y⃗|2∆R
φR(0) (⃗y)−

λ

12ν

∫
x′

K∆(x′, x⃗)
[∫

y⃗
K∆(x′, y⃗)φ(0) (⃗y)

]3

. (6.46)

Since this is the same asymptotics as tree-level but for a shifted value of the bulk mass,
the IR divergences coming from the boundary term (6.20) are renormalized with the
same structure of boundary counterterms as (2.18) but with ∆ → ∆R

B[ϕ] =
∫

z=ε
ddx

√
γ

[
(d − ∆R)

2
ϕ2(x) +

1
2

⌊νR⌋

∑
n=1

cn(νR)ϕ(x)□n
γϕ(x)

]
, (6.47)

and with ϕ the renormalized bulk field to loop order λ, leading to the finite variation

δΓRen
AdS[φR(0)] = −

∫
ddx 2νRφ(2νR)(x⃗)δφR(0)(x⃗) . (6.48)

6.3.2 Renormalized correlators

Differentiating with respect to the renormalized sources φR(0) and setting them to 0
results in the quantum corrected holographic 2- and 4-point functions to order λ

⟨O∆R (⃗y1)O∆R (⃗y2)⟩ =
2νRc∆R

|⃗y1 − y⃗2|2∆R
, (6.49)

⟨O∆R (⃗y1)O∆R (⃗y2)O∆R (⃗y3)O∆R (⃗y4)⟩ = −λc4
∆D∆,∆,∆,∆ . (6.50)

To this loop order, the effect of the bulk quantum corrections are seen to renormalize
the dimension of the boundary source and operator from ∆ to ∆R. Note however, this
renormalization is not reflected by the expression of the 4-point function. This is
expected, since this term being already of order λ does not see the effect of loops until
λ2. As we will see next, this is precisely what happens to the correlator when one
starts considering the contributions from the next loop order.
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6.4 Holographic renormalization at order λ2

6.4.1 Bulk renormalization

Having studied the effects of loops to lowest order in λ in Section 6.3, we will move to
the next order in the loop expansion with the full solution for the bulk field derived in
(6.29), expressed in terms of the quantities ϕ[1] and ϕ[3] in (6.30) and (6.31),
respectively. We will being the analysis by simplifying the expression for ϕ[1] noting
that the integrals at the bulk point x′′ of the terms represented by the eight and sunset
diagrams (3rd and 4th lines of (6.30)), being IR convergent for the Dirichlet case
∆ > d/2, can be computed in terms of the coefficients µ and η introduced in
Subsections 5.4.2 and 5.4.3∫

x′′
G2

τ,∆(x′, x′′) = µd,2
∆ (τ) ,

∫
x′′

G3
τ,∆(x′, x′′)K∆(x′′, y⃗) = ηd,3

∆,∆(τ)K∆(x′, y⃗) , (6.51)

properties that were proved for these bulk loop integrals exploiting only the AdS
covariance of the measure and the propagators. In terms of these coefficients and the
component δm2

{1} of the mass counterterm fixed from the UV renormalization at order
λ in (6.34), making a similar decomposition in divergent and convergent parts as in
(6.33) the remaining UV divergences in the 2-point function of order λ2 are
renormalized by the component δm2

{2}, fixing it to the value

δm2
{2} =− 1

2
Div

[
δλ{2}Gτ,∆(1)

]
+

1
2

Div
[(

1
2

Con [Gτ,∆(1)] + Fm,1

)
µd,2

∆ (τ)

]
+

1
6

Div
[
ηd,3

∆,∆(τ)
]
+ Fm,2 , (6.52)

with Fm,2 the arbitrary constant that captures the scheme dependence of the
subtraction to this order. With UV divergences in ϕ[1] renormalized, one may safely
take in this quantity the limit of vanishing regulator τ, allowing us to write it to order
λ2 as

ϕ[1](x) =
∫

y⃗
K∆(x, y⃗)Zφ φ(0) (⃗y)− Π

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]
+ Π2

∫
x′

G∆(x, x′)
∫

x′′
G∆(x′, x′′)

[∫
y⃗

K∆(x′′, y⃗)Zφ φ(0) (⃗y)
]

, (6.53)

where we defined the finite mass correction coefficient

Π = lim
τ→0

λ

(
1
2

Con [Gτ,∆(1)] + Fm,1

)
+ λ2

(
1
2

Con
[
δλ{2}Gτ,∆(1)

]
− 1

2
Con

[(
1
2

Con [Gτ,∆(1)] + Fm,1

)
µd,2

∆ (τ)

]
−1

6
Con

[
ηd,3

∆,∆(τ)
]
+ Fm,2

)
. (6.54)
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IR divergences in ϕ[1] come from the bulk integrals of the last 2 terms, which from the
study at order λ are expected to be renormalized by the source counterterm Zφ. These
integrals can be evaluated using the results of Sections 5.2 and 5.3.2, and the resulting
expressions can be resummed to order λ2 thanks to the series expansion (6.37), leading
to

ϕ[1](x) =
∫

y⃗
K∆R(x, y⃗)

(
ε e−

1
2ν

)∆R−∆
Zφ φ(0) (⃗y) , (6.55)

where we defined the renormalized mass and renormalized conformal dimension

m2
R ≡ m2 + Π , ∆R ≡ d

2
+

√
d2

4
+ m2

R = ∆ +
Π
2ν

− Π2

8ν3 +O(λ3) . (6.56)

Note that this resummed expression has the same form as the one obtained at order λ

in (6.38), where now m2
R, or equivalently ∆R, has been explicitly computed to order

λ2. Thus, IR divergences are renormalized with the same form (6.40) for the source
counterterm Zφ as before, leading to the same definition for the renormalized source
φR(0) as (6.41), and consequently to its correct transformation rule as a source now to
order λ2, as ensured from the analysis in (6.43). One then obtains the renormalized
expression

ϕ[1](x) =
∫

y⃗
K∆R(x, y⃗)φR(0) (⃗y) . (6.57)

Moving now to ϕ[3], the UV divergences coming from Gτ,∆(1) of the integrals
represented by the tadpole diagrams (last 2 terms of (6.31)) are renormalized with the
mass counterterm fixed from the analysis of the 2-point function. Then writing the
remaining UV finite factors in terms of Π, computing the

∫
GK and

∫
GG integrals

allows for a resummation to order λ2 of the tadpole diagrams and the contact
diagram, with the IR divergences renormalized by the source counterterm fixed
previously. In terms of ∆R and φR(0), this resummation reads

− λ

6

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]3

+
λ

2

[
λδm2

{1} +
λ

2
Gτ,∆(1)

] ∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)Zφ φ(0) (⃗y)

]2

×
∫

x′′
G∆(x′, x′′)

[∫
y⃗

K∆(x′′, y⃗)Zφ φ(0) (⃗y)
]

+
λ

6

[
λδm2

{1} +
λ

2
Gτ,∆(1)

] ∫
x′

G∆(x, x′)
∫

x′′
G∆(x′, x′′)

[∫
y⃗

K∆(x′′, y⃗)Zφ φ(0) (⃗y)
]3

= −λ

6

∫
x′

G∆R(x, x′)
[∫

y⃗
K∆R(x′, y⃗)φR(0) (⃗y)

]3

+O(λ3) . (6.58)

This is the renormalization of ∆ in the 4-point function as a λ2 effect, not seen by the
previous analysis at order λ. At this order, one also has the contribution to ϕ[3] coming
from the double exchange/bubble diagram (2nd line of (6.31)), which being IR
convergent can be computed in terms of the coefficient χ introduced in Subsection
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5.4.4∫
x′′

G2
τ,∆(x′, x′′)K∆(x′′, y⃗3)K∆(x′′, y⃗4) = χd,2

∆,∆,∆(x′, y⃗3, y⃗4; τ)K∆(x′, y⃗3)K∆(x′, y⃗4) , (6.59)

which is represented as the infinite series

χd,2
∆,∆,∆(x′, y⃗3, y⃗4; τ) =

∞

∑
i=0

[ci(τ) + di(τ) ln X] Xi , (6.60)

with X = K(x′, y⃗3)K(x′, y⃗4)|⃗y34|2, and K(x′, y⃗i) = z′/[z′2 + (x⃗ ′ − y⃗i)
2]. UV divergences

of χ come from the coefficient ci(τ), which in the limit τ → 0 converges for d < 3 + 2i:
c0(τ) converges for d < 3, c1(τ) converges for d < 5, and so on. For instance, for d < 5
with divergences coming only from c0(τ), these being of order λ2 and proportional to
the contact diagram are renormalized through the component δλ{2} of the coupling
counterterm, fixing it to the value

δλ{2} =
3
2

Div [c0(τ)] + Fλ,2 (d < 5) , (6.61)

where Fλ,2 is the scheme dependent constant. With UV divergences in ϕ[3]

renormalized, one can safely evaluate the limit τ → 0. The bulk field completely
renormalized to order λ2 may then be written as

ϕ(x) =
∫

y⃗
K∆R(x, y⃗)φR(0) (⃗y)−

λ

6

∫
x′

G∆R(x, x′)
[∫

y⃗
K∆R(x′, y⃗)φR(0) (⃗y)

]3

(6.62)

− λ2Fλ,2

6

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)φ(0) (⃗y)

]3

+
λ2

4

∫
x′

G∆(x, x′)
[∫

y⃗
K∆(x′, y⃗)φ(0) (⃗y)

] [∫
y⃗3

K∆(x′, y⃗3)φ(0) (⃗y3)

] [∫
y⃗4

K∆(x′, y⃗4)φ(0) (⃗y4)

]
×

∞

∑
i=0

(
Con [ci] + di ln

[
K(x′, y⃗3)K(x′, y⃗4)|⃗y34|2

]) [
K(x′, y⃗3)K(x′, y⃗4)|⃗y34|2

]i
.

The proper renormalization of the bulk field allows for the correct identification of its
near-boundary expansion, taking the form of (6.45) where now ∆R has been
computed to order λ2 in bulk perturbation theory. As such, the remaining boundary
divergences of the effective action which can be seen from the variation (6.20) are
renormalized with the same structure of boundary counterterms as (6.47),
corresponding to the standard counterterms of a scalar theory with Dirichlet
boundary conditions under the replacement ∆ → ∆R, and with ϕ the renormalized
bulk field to loop order λ2, leading to a finite variation in the form of (6.48).
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6.4.2 Renormalized correlators

Differentiation with respect to the renormalized sources φR(0) leads to the 2-point
function

⟨O∆R (⃗y1)O∆R (⃗y2)⟩ =
2νRc∆R

|⃗y1 − y⃗2|2∆R
. (6.63)

For the case of the 4-point function, it can be expressed as a sum of contact terms
represented by the D-functions defined in (2.37), upon writing

ln
[
K(x, y⃗3)K(x, y⃗4)|⃗y34|2

]
= ∂α

[
K(x, y⃗3)K(x, y⃗4)|⃗y34|2

]α
∣∣∣
α=0

, (6.64)

leading to the expression

⟨O∆R (⃗y1)O∆R (⃗y2)O∆R (⃗y3)O∆R (⃗y4)⟩ = −λc4
∆R

D∆R,∆R,∆R,∆R − λ2Fλ,2 c4
∆D∆,∆,∆,∆

+
λ2

2
c4

∆

∞

∑
i=0

[
Con [ci] D∆,∆,∆+i,∆+i |⃗y34|2i + di∂α

(
D∆,∆,∆+i+α,∆+i+α |⃗y34|2i+2α

)
α=0

]
× 3 ,

(6.65)

where the factor ×3 at the end denotes the 3 permutations (12,34), (13,24) and (14,23)
of the double exchange diagram (s-, t- and u-channels). To this loop order, the effect of
the bulk quantum corrections are seen to renormalize the conformal dimension of the
boundary source and operator from ∆ to ∆R, computed to order λ2 in the bulk
coupling. This renormalization is now also reflected by the 4-point function through
the resummation of the contact diagram, which being already of order λ only sees ∆R

renormalized to order λ. The scheme-dependence Fλ,2 and the double exchange being
of order λ2 do not see the renormalization of ∆, however the latter renormalizes
instead the OPE coefficients by introducing a new dependence on the external points
through a function of the cross-ratios. One way to see this is by conveniently writing
the D-functions appearing in (6.65) as

D∆,∆,∆+β,∆+β |⃗y34|2β =
π

d
2

2 Γ(∆)2
(uv)

∆
3

∏
i<j

(y2
ij)

∆
3

Ĥβ(u, v) , (6.66)

where we defined a normalized version of the function H

Ĥβ(u, v) ≡
Γ
(

2∆ − d
2 + β

)
Γ(∆ + β)2 H(∆, ∆, 1 − β, 2∆; u, v) . (6.67)

This is obtained by evaluating in (2.38) ∆1 = ∆2 = ∆, ∆3 = ∆4 = ∆ + β, and
rearranging. Performing the O(λ3) manipulation of replacing every ∆ in (6.65) by ∆R

and using the representation above for the D-functions, allows us to express the
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resummed 4-point function in the expected CFT form

⟨O∆R (⃗y1)O∆R (⃗y2)O∆R (⃗y3)O∆R (⃗y4)⟩ =
F(u, v)

∏
i<j

(y2
ij)

∆R
3

, (6.68)

with the function of cross-ratios F(u, v) determined to order λ2 in bulk loops

F(u, v) =
π

d
2

2
c4

∆R

Γ(∆R)2 (uv)
∆R

3

(
− (λ + λ2Fλ,2)Ĥ0

+
λ2

2

∞

∑
i=0

[
Con[ci]Ĥi + di∂α

(
Ĥi+α

)
α=0

]
× 3
)

, (6.69)

where Ĥ0(u, v) is the tree-level structure of cross-ratios.

The fact that the UV divergences of the 4-point function depend on the coefficients
ci(τ), and the divergence of these in turn depend in the number of spacetime
dimensions, highly constrain the renormalizability of the bulk theory and hence in the
construction of a possible dual theory. A priori, it seems that only the divergences of
c0(τ) can be absorbed in the coupling counterterm δλ, being able to renormalize the
theory only up to d + 1 = 5 bulk dimensions. However, the D-functions satisfy many
nice identities among which is found [45]

D∆,∆,∆+1,∆+1 |⃗y34|2 + D∆,∆+1,∆,∆+1 |⃗y24|2 + D∆,∆+1,∆+1,∆ |⃗y23|2 =
(4∆ − d)

2∆
D∆,∆,∆,∆ ,

(6.70)
allowing us to also write the contributions from c1(τ) proportional to the contact term
and therefore absorb its divergences through δλ, extending the renormalizability of
the theory up to d + 1 = 7 bulk dimensions, upon fixing

δλ{2} =
3
2

Div [c0(τ)] +
(4∆ − d)

4∆
Div [c1(τ)] + Fλ,2 (d < 7) . (6.71)

The contributions from the coefficients c2(τ) and higher are no longer expressible only
in terms of D∆,∆,∆,∆ and hence their divergences cannot be absorbed through δλ,
rendering the theory for bulk dimensions greater than 7 non-renormalizable. This is
consistent with the computation of the double exchange/bubble diagram from the
conformal bootstrap equations, where for d ≥ 7 it is found that additional
counterterms are required to renormalize its divergences [1].

The holographic renormalization of the theory to loop order has been carried out in a
very general way, thanks to the possibility of encoding all the contributions from bulk
loops in the abstract coefficients µ, η and χ, the latter through ci and di. We will end
this chapter by considering a concrete case of this procedure, discussing one of the
examples at the end of Chapter 5 where the values of these coefficients have been
explicitly computed.
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6.5 Example: d = 3, ∆ = 2

Consider the example of a scalar λΦ4 theory with a mass m2 = −2 in a fixed AdS4

background, describing in the CFT3 at the boundary a relevant single trace operator of
leading dimension ∆ = 2 in the 1/N2 expansion (for a previous treatment of this case
at loop order, see [21, 22]). At order λ2 in bulk perturbation theory, the bulk loop data
is encoded in the value of the propagator at coincident points Gτ,2(1) representing the
contribution from the tadpole diagram

Gτ,2(1) =
1

4π2τ2 − 1
12π2 +O(τ) , (6.72)

together with the value of the coefficients µ3,2
2 (τ), η3,3

2,2(τ) and χ3,2
2,2,2(X; τ) (ci(τ) and

di(τ)) representing the contributions from the eight, sunset and double exchange
diagrams, which have been computed in Subsection 5.5.1

µ3,2
2 (τ) = − ln τ

8π2 +
2 ln 2 − 1

16π2 +O(τ) , (6.73)

η3,3
2,2(τ) =

1
128π4τ2 +

3 ln τ

128π4 +
5 − 9 ln 2

384π4 +O(τ) , (6.74)

ci(τ) = − 1
8π2 (ln τ + 1)δi,0 +O(τ) , (6.75)

di(τ) = − 1
16π2 δi,0 +O(τ) . (6.76)

From these, one can read directly the renormalization of the UV divergences of the
bulk theory from the expressions for the mass and coupling counterterms derived in
(6.34), (6.52) and (6.61)

δm2 = λ

(
− 1

8π2τ2 + Fm,1

)
(6.77)

+ λ2
[

3 ln τ

128π4τ2 +
1

8π2τ2

(
1

96π2 − Fλ,2

)
− ln τ

16π2

(
1

48π2 + Fm,1

)
+ Fm,2

]
,

δλ = λ2
(
−3 ln τ

16π2 + Fλ,2

)
, (6.78)

leading, from (6.54) and (6.56), to the renormalized value of the bulk mass

m2
R = −2 + λ

(
− 1

24π2 + Fm,1

)
+ λ2

(
15 ln 2 − 8

2304π4 +
Fm,1(1 − 2 ln 2)

32π2 − Fλ,2

24π2 + Fm,2

)
,

(6.79)
and consequently, to the renormalized conformal dimension of the boundary operator

∆R = 2+λ

(
− 1

24π2 + Fm,1

)
+λ2

(
5 ln 2 − 4

768π4 +
Fm,1(11 − 6 ln 2)

96π2 − Fλ,2

24π2 − F2
m,1 + Fm,2

)
.

(6.80)
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In turn, renormalization of the IR divergences of the theory can be read from the
expressions for the source and boundary counterterms derived in (6.40) and (6.47),
which are written in terms of ∆R. With the counterterms taking these values to make
the bulk theory finite, the resulting renormalized boundary correlators are given by
the 2-point function (6.63) and the 4-point function (6.68), precisely corresponding to
CFT correlation functions for an operator of dimension ∆R, the latter in terms of the
function of cross-ratios (6.69)

F(u, v) = −π
3
2

2
c4

∆R

Γ(∆R)2 (uv)
∆R

3

[(
λ + λ2Fλ,2 +

3λ2

16π2

)
Ĥ0 +

λ2

32π2 ∂α

(
Ĥα

)
α=0 × 3

]
.

(6.81)
Determining the running of the bulk couplings, and their effect on the boundary
correlators, requires a more deeper analysis of the renormalization group equations
for the bulk theory under the regularization schemes chosen. Nevertheless, since the
UV should be independent of the curvature of spacetime at large scales, for energy
scales much larger than the scale set by the AdS radius one expects to reproduce the
standard beta functions from flat space. For instance, the divergent part of (6.78)
suggests

βλ =
3λ2

16π2 , (6.82)

which is the expected 1-loop beta function for the quartic coupling in d + 1 = 4
dimensions.
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Chapter 7

Discussion

In this thesis, progress has been made in the context of holography and the AdS/CFT
correspondence. More concretely, the previous dictionary that related the quantities
on both sides of the correspondence at leading order in the UV/IR duality has been
extended to systematically incorporate all the subleading corrections. This has been
achieved in a way that mimics the prescription in the classical approximation, with the
role of the renormalized action played by the renormalized effective action. This
allowed us to identify the dual of the boundary operators to be not the fields
minimizing the classical theory but the full quantum theory in the bulk. The
near-boundary expansion of these fields also decomposes in non-normalizable and
normalizable modes identified with sources and VEVs in the dual theory, and these
may be written in terms of the renormalized bulk parameters computed
perturbatively in AdS loops around their classical values. This leads to the
renormalization of the usual infrared divergences present in holographic theories
through the standard set of boundary counterterms, but expressed in terms of the
renormalized bulk fields and couplings. The resulting renormalized holographic
correlators manifestly obey the expected conformal Ward identities with the CFT data
renormalized order by order in the bulk loop perturbation, providing further evidence
for holography and in particular for the AdS/CFT correspondence.

Our methods have been applied to the example of a scalar Φ4 theory, finding perfect
agreement with the expectations from the general methodology developed in Chapter
4. Interestingly, no wavefunction counterterm is required to renormalize the UV
divergences appearing in the holographic 2-point functions up to two loops, as
opposed to the case in flat space. This might be understood from the resemblance of
Witten diagrams as scattering amplitudes, which are invariant under field
redefinitions thanks to the equivalence theorem. In the case of AdS/CFT, since the
external legs are extended all the way to the boundary of the spacetime where the
bulk fields have a prescribed value due to the holographic boundary conditions, one is
computing the scattering of states which are well-defined asymptotically, analogous to
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the computation of scattering amplitudes. Since this computation is indifferent to such
counterterms, this may hint to the un-necessity of wavefunction renormalization
perhaps to all orders in the bulk loop expansion. It would be interesting to understand
this better and investigate its implications. Instead of wavefunction renormalization,
what is found to be required is source renormalization to absorb the IR divergences
that appear on AdS loops as the external legs are pushed to the boundary. This is
completely expected for bulk fields receiving mass renormalization, since the value of
the mass is directly identified with the conformal dimension of the dual operator,
sources must also renormalize in a specific way to account for the corrected
dimensions. Consistency here of AdS/CFT at loop order intimately links source
renormalization with mass renormalization in a non-trivial way, and this is indeed
found to be the case for the example studied.

In this work we have initiated a more rigorous study of the subleading corrections in
AdS/CFT with a special focus on scalar fields, however for gauge fields there are
additional subtleties (gauge choices, ghosts, etc) that we have not addressed. For
instance, already in the example of a scalar Φ4 theory the backreaction with the
background metric would involve the propagation of gravitons in the bulk, and these
would contribute to the energy-momentum tensor of the dual theory and to the
dimensions and OPE coefficients of the dual scalar operators through graviton
exchanges and loops. A more complete description of the bulk theory must account
for these and it would be interesting to spell out the details. Another interesting
direction is to look at bulk fields with different boundary conditions. In the example
of the scalar field, we focused exclusively on the case of Dirichlet boundary conditions
with leading dimensions ∆ > d/2, however for ∆ = d/2 or for scalars with Neumann
boundary conditions ∆ < d/2, additional IR divergences appear at loop order in the
bulk, and a priori it is not clear how these are renormalized by the current set of
counterterms nor their implications for the boundary theory.



93

Appendices





95

Appendix A

Bulk-to-bulk Propagator

The objective of this appendix is to work out the properly normalized solution to the
deformed Green’s equation defining the regularized bulk-to-bulk propagator on AdS.
But before doing this, let us first remember how this is properly done for the
unregulated case.

A.1 Bare propagator

The equation for the bare propagator was given in (4.22)

(−□ξ + m2)G(ξ(x, x′)) =
1
√

g
δ(x − x′) , (A.1)

with the explicit form of □ξ in (4.20). Its functional form can be determined away from
the coincident point x = x′. In this region, the delta at the RHS of the equation
vanishes and one is left to solve the ordinary differential equation[

ξ2(1 − ξ2)∂2
ξ + (1 − d − 2ξ2)ξ∂ξ − m2

]
G(ξ) = 0 . (A.2)

Modulo a factor of ξ to some power, this is the hypergeometric differential equation in
the variable ξ2. To see this, rewrite the propagator as G(χ) = χ

∆
2 F(χ) in the variable

χ = ξ2. Then the function F(χ) satisfies[
χ(1 − χ)∂2

χ +

[
∆ − d

2
+ 1 −

(
∆ +

3
2

)
χ

]
∂χ − ∆(∆ + 1)

4

]
F(χ) = 0 . (A.3)

Compare this with the hypergeometric equation

z(1 − z)y′′ + [c − (a + b + 1)z] y′ − aby = 0 . (A.4)
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We make the identification

a =
∆
2

, b =
∆ + 1

2
, c = ∆ − d

2
+ 1 , z = χ , y = F . (A.5)

The equation has 2 independent solutions, however we still need to impose
appropriate boundary conditions. Demanding regularity of the propagator at the
interior of AdS, and a Dirichlet fall-off near the conformal boundary, picks in the
interval 0 < z < 1 the single solution y = 2F1(a, b; c; z). In terms of the original
variable ξ, this then implies for the propagator

G(ξ) = C ξ∆
2F1

(
∆
2

∆+1
2

∆ − d
2 + 1

; ξ2

)
, (A.6)

up to some normalization constant C. This remaining constant is determined by the
discontinuity introduced by the delta, which can be captured for instance integrating
the Green’s equation in a region that contains the coincident point x = x′. The integral
of the delta just becomes 1, and on the LHS of the equation one has to integrate
(−□ξ + m2)G∆(ξ). The computation of this integral however is subtle for the
following reason: away from the coincident point, the integrand for the solution
found is just 0, so the only region that contributes to the integral is the infinitesimal
one that encloses the point x = x′. In this region, the integral proportional to m2

vanishes given the continuity of G(x, x′), and one is left to integrate its Laplacian.
Now, since this is a total derivative one is tempted to use Stokes’ theorem, however
the volume region being integrated contains the non-regular point x = x′, and one
first has to assert whether there is an extra contribution coming from this point. It
turns out, ignoring the singular point and assuming that the only contribution to the
integral comes from the boundary of the infinitesimal region, a naive use of Stokes’
theorem leads to the correct normalization constant. This is, however, unsatisfactory
as this unjustified assumption is only validated by prior knowledge of the constant.
As soon as we deform the equation, this assumption may no longer be valid and one
would be led to conclude an incorrect normalization.

The correct way to proceed is acknowledging the fact that one is dealing with a
distributional equation, and thus translating the problem to the language of
distribution theory. One only needs the very basic ingredients, so let us introduce
them briefly. By definition, a distribution d is a continuous linear functional on the set
of test functions f ∈ C∞

c , that is, functions that are bounded, have compact support,
and are infinitely differentiable in the whole domain. For our purposes, we will be
interested in the linear mapping ⟨d, f ⟩ : C∞

c → R, and we will be thinking in the
distribution DGx′ , subject to the distributional Green’s equation

DGx′ =
1
√

g
δx′ , D ≡ −□+ m2 , (A.7)
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where δx′ is the Dirac delta distribution with support at x′. Derivatives of distributions
are defined by their action on the test functions f . Given the Hermicity of the
differential operator D, the action of DGx′ on f is defined by

⟨DGx′ , f ⟩ ≡ ⟨Gx′ , D f ⟩ , (A.8)

where the boundary terms are discarded given the nice properties of f . For solutions
of the Green’s equation, the distribution on the LHS is equal to a delta, and one obtains
the test function evaluated at x′. Thus, explicitly the expression above becomes

f (x′) =
∫

dd+1x
√

g G(x, x′)D f (x) . (A.9)

Consistency with this formula for any well-behaved test function f is what properly
fixes the undetermined constant in G(x, x′). Let us then proceed to this calculation.
We would like to use Stokes’ theorem, but as we argued, the integrand contains the
singular point x = x′, or ξ = 1 in geodesic coordinates. Separate then the integral in 2
regions, one “ball” of chordal radius 1 − δ ≤ ξ ≤ 1 containing the singular point, and
the rest of the AdS volume 0 ≤ ξ < 1 − δ

f (x′) =
∫

1−δ≤ξ
dd+1x

√
g G(x, x′)D f (x) +

∫
ξ<1−δ

dd+1x
√

g G(x, x′)D f (x) . (A.10)

Focus on the first integral. Since by definition the test function f is bounded and
infinitely differentiable∣∣∣∣∫1−δ≤ξ

dd+1x
√

g G(x, x′)D f (x)
∣∣∣∣ ≤ sup

1−δ≤ξ

|D f (x)|
∣∣∣∣∫1−δ≤ξ

dd+1x
√

g G(x, x′)
∣∣∣∣ , (A.11)

where sup1−δ≤ξ |D f (x)| < ∞ denotes the maximum value the function |D f (x)| takes
in 1 − δ ≤ ξ. Writing the integral in geodesic coordinates and performing the angular
integrals∣∣∣∣∫1−δ≤ξ

dd+1x
√

g G(x, x′)D f (x)
∣∣∣∣ ≤ sup

1−δ≤ξ

|D f (x)|Ωd

∣∣∣∣∫ 1

1−δ
dξ

√
gξ G(ξ)

∣∣∣∣ . (A.12)

The divergent factor of the propagator can be extracted from the hypergeometric after
an Euler’s transformation (see (B.12))

G(ξ) = C
ξ∆

(1 − ξ2)
d−1

2
2F1

(
∆−d

2 + 1 ∆−d+1
2

∆ − d
2 + 1

; ξ2

)
. (A.13)

Then to leading order in δ

∣∣∣∣∫1−δ≤ξ
dd+1x

√
g G(x, x′)D f (x)

∣∣∣∣ ≤ sup
1−δ≤ξ

|D f (x)|Ωd|C|
∣∣∣∣∣2F1

(
∆−d

2 + 1 ∆−d+1
2

∆ − d
2 + 1

; 1

)∣∣∣∣∣ δ .

(A.14)
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We see then that the contribution from the singular point is proportional to δ, and it
vanishes as we take the limit δ → 0. This explains why the naive computation of the
constant C described previously leads to the correct value. In this limit then the first
integral in (A.10) vanishes and one is left with

f (x′) = lim
δ→0

∫
ξ<1−δ

dd+1x
√

g G(x, x′)D f (x) . (A.15)

Now with the singular point removed, one can safely use Stokes’ theorem. This is
done by noticing that, since DG(x, x′) = 0 in the region ξ < 1 − δ, the integrand
corresponds to a total derivative

G(x, x′)D f (x) = ∇µ

[
f (x)∇µG(x, x′)− G(x, x′)∇µ f (x)

]
, x ̸= x′ . (A.16)

The contribution from the boundary ξ = 0 at infinity of AdS is zero given the compact
support of f . Thus, Stokes’ theorem only picks up the contribution from the boundary
at ξ = 1 − δ

f (x′) = lim
δ→0

∫
ξ=1−δ

ddx
√

γ nµ

[
f (x)∇µG(x, x′)− G(x, x′)∇µ f (x)

]
. (A.17)

In geodesic coordinates this expression becomes

f (x′) = lim
δ→0

∫
dΩd ξ1−d(1 − ξ2)

d+1
2
[

f (x)∂ξ G(ξ)− G(ξ)∂ξ f (x)
] ∣∣∣

ξ=1−δ
. (A.18)

Without loss of generality, from the set of test functions we can choose bump functions
that are constant inside the ball ξ ′ ≤ ξ, for some ξ ′ < 1 − δ, which smoothly transition
to 0 away from this region. Under this choice, the second term above vanishes. For the
first term, a direct computation for the derivative of the propagator yields

∂ξ G(ξ) = C∆
ξ∆−1

(1 − ξ2)
d+1

2
2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

; ξ2

)
, (A.19)

leading to

f (x′) = lim
δ→0

∫
dΩd f (x)C∆ξ∆−d

2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

; ξ2

) ∣∣∣
ξ=1−δ

. (A.20)

All these terms are regular at ξ = 1, thus the limit δ → 0 can be evaluated directly

f (x′) = Ωd f (x′)C∆ 2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

; 1

)
. (A.21)
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This fixes the normalization constant C to the value

C =
1

Ωd∆ 2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

; 1

)−1

. (A.22)

A more familiar expression can be obtained using

Ωd =
2π

d+1
2

Γ
(

d+1
2

) , 2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

; 1

)
=

2∆Γ
(

∆ − d
2 + 1

)
Γ
(

d+1
2

)
√

π Γ(∆ + 1)
, (A.23)

resulting in

C =
Γ(∆)

π
d
2 2∆+1Γ

(
∆ − d

2 + 1
) . (A.24)

A.2 Regularized propagator

In the previous section we reviewed the derivation of the bare bulk-to-bulk
propagator. Now we want to repeat this calculation for the regularized propagator. It
is the solution of the deformed Green’s equation constructed in (4.25)

DτGτ(ξ(x, x′)) =
1
√

g
δ(x − x′) , Dτ ≡ c(τ)

√
gξτ

gξ
(−□ξτ

+ m2) . (A.25)

As discussed in the bare case, the functional form of the propagator is determined
away from the coincident point. Repeating this calculation for Gτ(ξ), the equation to
solve is exactly the same as before, but with every ξ replaced by ξτ. Then after
imposing the same boundary conditions, the solution found is:

Gτ(ξ) = Cτξ∆
τ 2F1

(
∆
2

∆+1
2

∆ − d
2 + 1

; ξ2
τ

)
, (A.26)

for some normalization constant Cτ. As we argued, the proper way to determine it is
in the language of distributions. The regularized Green’s equation in the sense of
distributions is

DτGτ,x′ =
1
√

g
δx′ , (A.27)

where, since by construction the operator Dτ is self-adjoint, its action on the set of test
functions is defined as

⟨DτGτ,x′ , f ⟩ ≡ ⟨Gτ,x′ , Dτ f ⟩ . (A.28)

For solutions of the Green’s equation, explicitly the formula above is

f (x′) =
∫

dd+1x
√

g Gτ(ξ)Dτ f (x) . (A.29)
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In the undeformed case, the bare propagator is non-regular at ξ = 1 and one has to
treat the contribution coming from this point carefully. In the current case however,
the propagator has been regularized at coincident points (as long as τ is non-zero) and
thus this point is no longer singular. This would seem to suggest there are no longer
issues at ξ = 1 in the expression being integrated and we can safely use Stokes’
theorem. This is of course not true, and it can be seen from the fact that the deformed
Green’s equation is still equal to a Dirac delta, divergent at x = x′. The previous
divergence of the bare propagator has been moved to the factor of 1/√gξ in the
expression for the regularized operator Dτ. In fact, it is precisely this factor what saves
the day and leads to a non-vanishing constant Cτ. Thus, in the current case one still
has to be careful with this point. As before then, separate the integral in a chordal ball
containing this point, and the rest of the AdS volume

f (x′) =
∫

1−δ≤ξ
dd+1x

√
g Gτ(ξ)Dτ f (x) +

∫
ξ<1−δ

dd+1x
√

g Gτ(ξ)Dτ f (x) . (A.30)

Focusing on the first integral, writing it in geodesic coordinates

∫
1−δ≤ξ

dd+1x
√

g Gτ(ξ)Dτ f (x) =
∫

dΩd

∫ 1

1−δ
dξ

√
gξ Gτ(ξ)Dτ f (x) . (A.31)

Since the propagator Gτ(ξ) has been regularized, it is bounded inside the ball
1 − δ ≤ ξ. Moreover, since f ∈ C∞

c and √gξ Dτ ∼ 1, then √gξ Dτ f (x) is also bounded
in this region. Then, to linear order in δ∣∣∣∣∫1−δ≤ξ

dd+1x
√

g Gτ(ξ)Dτ f (x)
∣∣∣∣ ≤ sup

1−δ≤ξ

∣∣√gξ Gτ(ξ)Dτ f (x)
∣∣Ωd δ . (A.32)

As in the bare case, the contribution from the coincident point is proportional to δ, and
it vanishes as we take δ → 0. In this limit then

f (x′) = lim
δ→0

∫
ξ<1−δ

dd+1x
√

g Gτ(ξ)Dτ f (x) . (A.33)

Since DτGτ(ξ) = 0 in the region ξ < 1 − δ, the integrand corresponds to a total
derivative

Gτ(ξ)Dξτ
f (x) =

c(τ)
√gξ

∂ξτ

(√
gξτ

ξ2
τ(1 − ξ2

τ)
[

f (x)∂ξτ
Gτ(ξ)− Gτ(ξ)∂ξτ

f (x)
])

, x ̸= x′ .

(A.34)
Then after using Stokes’ theorem and ignoring the contributions at ξ = 0 given the
compact support of f , the boundary term at ξ = 1 − δ in geodesic coordinates is

f (x′) = lim
δ→0

c(τ)
∫

dΩd
√

gξτ
ξξτ(1 − ξ2

τ)
[

f (x)∂ξτ
Gτ(ξ)− Gτ(ξ)∂ξτ

f (x)
] ∣∣∣

ξ=1−δ
.

(A.35)
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For the same class of test functions used in the previous section, the second term
vanishes. The first term is completely regular at ξ = 1 and the limit can be evaluated
directly. In terms of the derivative (A.19), the resulting expression is

f (x′) =
c(τ)Ωd f (x′)Cτ∆
(cosh τ)∆−d−1 2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

;
1

cosh2 τ

)
, (A.36)

fixing the constant Cτ to the value

Cτ =
(cosh τ)∆−d−1

c(τ)Ωd∆ 2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

;
1

cosh2 τ

)−1

. (A.37)

Note that for τ = 0, C0 = C, and one recovers the undeformed normalization constant.
By conveniently choosing c(τ), one can fix Cτ = C for all values of τ. Under this
choice, the regularized propagator is just the bare propagator in the new variable ξτ:
Gτ(ξ) = G(ξτ). This is achieved by picking

c(τ) = (cosh τ)∆−d−1
2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

; 1

)
/ 2F1

(
∆−d

2
∆−d+1

2

∆ − d
2 + 1

;
1

cosh2 τ

)
.

(A.38)
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Appendix B

Useful formulae

B.1 Modified Bessel functions

The modified Bessel functions Iν(z) and Kν(z) are the independent solutions to the
second-order ODE [

z2∂2
z + z∂z − (z2 + ν2)

]
f (z) = 0 . (B.1)

The modified Bessel function of the first kind Iν(z) has a series expansion of the form

Iν(z) =
1

Γ(ν + 1)

( z
2

)ν ∞

∑
k=0

1
(1 + ν)k k!

( z
2

)2k
, (B.2)

while the modified Bessel function of the second kind Kν(z) has a series expansion for
ν ̸= Z

Kν(z) =
Γ(ν)

2

( z
2

)−ν ∞

∑
k=0

1
(1 − ν)k k!

( z
2

)2k
+

Γ(−ν)

2

( z
2

)ν ∞

∑
k=0

1
(1 + ν)k k!

( z
2

)2k
. (B.3)

For ν = n ∈ N0, the series expansion of Kn(z) is given instead by

Kn(z) =
1
2

( z
2

)−n n−1

∑
k=0

(−1)k(n − k − 1)!
k!

( z
2

)2k
(B.4)

+
(−1)n

2

( z
2

)n ∞

∑
k=0

1
k!(k + n)!

( z
2

)2k [
−2 ln

( z
2

)
+ ψ(k + 1) + ψ(k + n + 1)

]
,

where for n = 0 the first term is discarded. From these, one can read the asymptotic
series of the functions for small argument z ≪ 1

Iν(z) =
1

Γ(ν + 1)

( z
2

)ν [
1 +O(z2)

]
, (B.5)

Kν(z) =
Γ(ν)

2

( z
2

)−ν [
1 +O(z2)

]
+

Γ(−ν)

2

( z
2

)ν [
1 +O(z2)

]
, (B.6)
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where in the latter, a ln(z) term appears at order zν for ν = n. In turn, the asymptotic
series of the functions for large argument z ≫ 1 correspond to

Iν(z) =
1√
2πz

ez
[

1 +O
(

1
z

)]
, Kν(z) =

√
π

2z
e−z
[

1 +O
(

1
z

)]
. (B.7)

B.2 Hypergeometric series

Hypergeometric functions are represented by the series

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=

∞

∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
, (B.8)

with (a)k = Γ(a + k)/Γ(a) the Pochhammer symbol. When one of the upper
coefficients is a non-positive integer ai = −n, n ∈ N0, the series terminates at k = n.
Instead, when one of the lower coefficients is a non-positive integer bi = −n, the
denominator becomes 0 and the series is ill-defined. Outside these cases, for p < q + 1
the series converges for all finite values of z, while for p > q + 1 it only converges at
z = 0. When p = q + 1 the series converges for |z| < 1, diverges for |z| > 1, and at the
unit value |z| = 1, for real parameters it converges for ∑ bi − ∑ aj > 0. From the latter
case, of special interest are the binomial series

1F0(a; z) = (1 − z)−a , (B.9)

and Gauss’ hypergeometric function 2F1(a, b; c; z). It can be shown to satisfy many
relations, of which relevant for this work are Pfaff’s and Euler’s transformations

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z
z − 1

)
, (B.10)

= (1 − z)−b
2F1

(
c − a, b; c;

z
z − 1

)
, (B.11)

= (1 − z)c−a−b
2F1(c − a, c − b; c; z) , (B.12)

and also its expansion in 1 − z

2F1(a, b; c; z) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b) 2F1(a, b; 1 + a + b − c; 1 − z) (B.13)

+
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(1 − z)c−a−b

2F1(c − a, c − b; 1 + c − a − b; 1 − z) .
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If c − a − b ∈ N0, this last one becomes

2F1(a, b; c; z) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

c−a−b−1

∑
i=0

(a)i(b)i

(1 + a + b − c)i i!
(1 − z)i (B.14)

+
Γ(c)

Γ(a)Γ(b)
(z − 1)c−a−b

∞

∑
i=0

(c − a)i(c − b)i

(c − a − b + i)! i!
[− ln(1 − z) + ψ(i + 1)

+ψ(i + 1 + c − a − b)− ψ(i + c − a)− ψ(i + c − b)] (1 − z)i ,

where for c − a − b = 0, the first series is omitted. At z = 1, for c − a − b > 0 which
precisely corresponds to the convergent region of 2F1(a, b; c; z), from these last 2
formulas the Gauss’ hypergeometric function can be seen to take the value

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

. (B.15)

In the main text also is required the formula at z = 1 for the generalized
hypergeometric function 3F2 when one of the 3 upper coefficients has value 1 and
when one of the other 2 is related to one of the lower coefficients by an integer:

3F2(e + n, b, 1; d, e; 1), n ∈ N0, with convergence requiring d − 1 − b − n > 0. Its value
can be derived from the known relation [55]

3F2

(
a, b, c

d, e
; 1

)
=

c(e − a)
de 3F2

(
a, b + 1, c + 1

d + 1, e + 1
; 1

)
+

d − c
d 3F2

(
a, b + 1, c

d + 1, e
; 1

)
,

(B.16)
which for b = 0 where the LHS is just 1, after a relabeling

d − 1 − b
d − 1 3F2

(
a, b, 1

d, e
; 1

)
= 1 − b(e − a)

e(d − 1) 3F2

(
a, b + 1, 1

d, e + 1
; 1

)
. (B.17)

This formula relates 3F2(a, b, 1; d, e; 1) to 3F2(a, b + 1, 1; d, e + 1; 1). The relation to

3F2(a, b + n, 1; d, e + n; 1) is obtained after iterating it n − 1 times

d − 1 − b
d − 1 3F2

(
a, b, 1

d, e
; 1

)
=

n−1

∑
k=0

(b)k(e − a)k

(e)k(b + 2 − d)k
(B.18)

+
(b)n(e − a)n

(e)n(b + 2 − d)n

d − 1 − b − n
d − 1 3F2

(
a, b + n, 1

d, e + n
; 1

)
.

When a = e + n with n = 0, 1, 2, . . . , the generalized hypergeometric on the RHS
becomes a Gauss’ hypergeometric 2F1 at z = 1 whose value is given above, resulting in
the nice identity

3F2

(
e + n, b, 1

d, e
; 1

)
=

d − 1
d − 1 − b 3F2

(
−n, b, 1

b + 2 − d, e
; 1

)
. (B.19)
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This expresses the quantity we were after in terms of a terminating series of n + 1
terms. For instance, for the cases n = 0 and n = 1

3F2

(
e + n, b, 1

d, e
; 1

)
=

d − 1
d − 1 − b

(n = 0) , (B.20)

=
d − 1

d − 1 − b

[
1 − b

(b + 2 − d)e

]
(n = 1) . (B.21)

Generalizations of the hypergeometric series to 2 variables are known as Kampé de
Fériet functions, represented by the double series

Fp,q,r
s,t,u

(⃗
ap

d⃗s
;

b⃗q

e⃗t
;

c⃗r

f⃗u
; x , y

)
=

∞

∑
l=0

∞

∑
k=0

(⃗ap)l+k (⃗bq)l (⃗cr)k

(d⃗s)l+k (⃗et)l( f⃗u)k

xlyk

l! k!
, (B.22)

with Appell hypergeometric functions being special cases. For compactness it is
understood a⃗p = a1, . . . , ap, (⃗ap)l+k = (a1)l+k · · · (ap)l+k, and similarly for the other
coefficients. From exchanging the order of the 2 series, the function is seen to satisfy

Fp,q,r
s,t,u

(⃗
ap

d⃗s
;

b⃗q

e⃗t
;

c⃗r

f⃗u
; x , y

)
= Fp,r,q

s,u,t

(⃗
ap

d⃗s
;

c⃗r

f⃗u
;

b⃗q

e⃗t
; y , x

)
. (B.23)

Moreover, by computing one of the series it can be expressed as a single sum
involving generalized hypergeometric functions

Fp,q,r
s,t,u

(⃗
ap

d⃗s
;

b⃗q

e⃗t
;

c⃗r

f⃗u
; x , y

)
=

∞

∑
l=0

(⃗ap)l (⃗bq)l

(d⃗s)l (⃗et)l

xl

l! p+rFs+u

(
a⃗p + l, c⃗r

d⃗s + l, f⃗u
; y

)
. (B.24)

From this expression, one can see the Kampé de Fériet function reduces to a
generalized hypergeometric when either x = 0 or one of the coefficients in b⃗q is 0

Fp,q,r
s,t,u

(⃗
ap

d⃗s
;

b⃗q

e⃗t
;

c⃗r

f⃗u
; 0 , y

)
= Fp,q,r

s,t,u

(⃗
ap

d⃗s
;

0, b⃗q−1

e⃗t
;

c⃗r

f⃗u
; x , y

)
= p+rFs+u

(
a⃗p, c⃗r

d⃗s, f⃗u
; y

)
.

(B.25)
By the symmetry of (B.23), same can be said for y = 0 and c⃗r = (0, c⃗r−1). Meanwhile,
when one of the coefficients in a⃗p is 0, the Kampé function simply evaluates to 1

Fp,q,r
s,t,u

(
0, a⃗p−1

d⃗s
;

b⃗q

e⃗t
;

c⃗r

f⃗u
; x , y

)
= 1 . (B.26)

There are many other cases where the Kampé de Fériet function reduces to
hypergeometric functions. A particularly useful case is

F1,1,2
1,0,1

(
a
d

;
b
−

;
c, d − b

f
; x , x

)
= (1 − x)−a

3F2

(
a, d − b, f − c

d, f
;

x
x − 1

)
, (B.27)
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which for the special case f = a, using (B.11) it further reduces to

F1,1,2
1,0,1

(
a
d

;
b
−

;
c, d − b

a
; x , x

)
= (1 − x)−c

2F1(a − c, b; d; x) . (B.28)

For a more comprehensive list of properties and special cases for the Kampé de Fériet
function, we refer the reader to [79].

B.3 Differentiation

Consider the function in d dimensions

(m2x2)a

xα
, (B.29)

where x ≡ |⃗x| > 0. Acting on it with □ results in

□
[
(m2x2)a

xα

]
=

(m2x2)a

xα+2

[
4a2 + 2(d − 2α − 2)a + α(α + 2 − d)

]
. (B.30)

Expanding both sides in a and matching orders leads to

□
(

1
xα

)
=

α(α + 2 − d)
xα+2 , (B.31)

□
[

ln(m2x2)

xα

]
=

1
xα+2

[
α(α + 2 − d) ln(m2x2) + 2(d − 2α − 2)

]
, (B.32)

□

[
lnk(m2x2)

xα

]
=

1
xα+2

[
α(α + 2 − d) lnk(m2x2) + 2k(d − 2α − 2) lnk−1(m2x2)

+4k(k − 1) lnk−2(m2x2)
]

(k > 1) . (B.33)

The first formula may be iterated to give

□n
(

1
xα

)
=

4nΓ
(

α
2 + n

)
Γ
(

α−d
2 + 1 + n

)
Γ
(

α
2

)
Γ
(

α−d
2 + 1

) 1
xα+2n . (B.34)

The second one may be iterated more easily by first rewriting it as

□
[

ln(m2x2)

xα

]
=

α(α + 2 − d)
xα+2 ln

[
m2x2eψ( α

2 )+ψ( α−d
2 +1)

eψ( α
2 +1)+ψ( α−d

2 +2)

]
, (B.35)

where we used the property of the digamma function ψ(z + 1)− ψ(z) = 1/z. Then

□n
[

ln(m2x2)

xα

]
=

4nΓ
(

α
2 + n

)
Γ
(

α−d
2 + 1 + n

)
Γ
(

α
2

)
Γ
(

α−d
2 + 1

)
xα+2n

ln

[
m2x2eψ( α

2 )+ψ( α−d
2 +1)

eψ( α
2 +n)+ψ( α−d

2 +1+n)

]
. (B.36)
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The case k = 2 on the third formula can also be iterated more easily if we first rewrite
it as

□

[
ln2(m2x2)

xα

]
=

α(α + 2 − d)
xα+2

(
ln2

[
m2x2eψ( α

2 )+ψ( α−d
2 +1)

eψ( α
2 +1)+ψ( α−d

2 +2)

]
+ ψ′

(α

2
+ 1
)
− ψ′

(α

2

)
+ ψ′

(
α − d

2
+ 2
)
− ψ′

(
α − d

2
+ 1
))

, (B.37)

where we completed squares for the logarithmic term, and used the property above
for the digamma together with the property for the polygamma function
ψ′(z + 1)− ψ′(z) = −1/z2. Then

□n

[
ln2(m2x2)

xα

]
=

4nΓ
(

α
2 + n

)
Γ
(

α−d
2 + 1 + n

)
Γ
(

α
2

)
Γ
(

α−d
2 + 1

)
xα+2n

(
ln2

[
m2x2eψ( α

2 )+ψ( α−d
2 +1)

eψ( α
2 +n)+ψ( α−d

2 +1+n)

]
(B.38)

+ψ′
(α

2
+ n

)
− ψ′

(α

2

)
+ ψ′

(
α − d

2
+ 1 + n

)
− ψ′

(
α − d

2
+ 1
))

.

The rest of the iterations of (B.33) for k > 2 can be obtained in a similar manner.

B.4 Integrals

In here we list a number of useful integral formulas used in our work:

• Solid angle integral in d dimensions

∫
dΩd−1 =

2π
d
2

Γ
(

d
2

) , (d ∈ N) . (B.39)

• Integral 5 in 3.915 of [69]

∫ π

0
dθ sin2ν(θ)eiβ cos θ =

√
π

(
2
β

)ν

Γ
(

ν +
1
2

)
Jν(β) ,

[
Re(ν) > −1

2

]
. (B.40)

• Integral 14 in 6.561 of [69]

∫ ∞

0
dx xµ Jν(ax) = 2µa−µ−1

Γ
(

1+ν+µ
2

)
Γ
(

1+ν−µ
2

) ,
[
−Re(ν)− 1 < Re(µ) <

1
2

, a > 0
]

.

(B.41)
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• Integral 3 in 6.576 of [69]

∫ ∞

0
dx x−λKµ(ax)Jν(bx) =

bνΓ
(

ν−λ+µ+1
2

)
Γ
(

ν−λ−µ+1
2

)
2λ+1aν−λ+1Γ(1 + ν)

× 2F1

(
ν−λ+µ+1

2 , ν−λ−µ+1
2

ν + 1
;−b2

a2

)
,

[Re(a ± ib) > 0, Re(ν − λ + 1) > |Re(µ)|] . (B.42)

• Integral 11 in 6.578 of [69]

∫ ∞

0
dx xν+1Kµ(ax)Iµ(bx)Jν(cx) =

(ab)−ν−1cνe−(ν+ 1
2 )πiQν+ 1

2
µ− 1

2
(u)

√
2π(u2 − 1)

ν
2+

1
4

, (B.43)[
2abu = a2 + b2 + c2, Re(a) > |Re(b)|+ |Im(c)|, Re(ν) > −1, Re(µ + ν) > −1

]
.

• Page 303 of [76]

∫ z

0
dx

ln(a + bx)
c + ex

=
1
e

ln
(

ae − bc
e

)
ln
(

c + ez
c

)
− 1

e
Li2

[
b(c + ez)
bc − ae

]
+

1
e

Li2

(
bc

bc − ae

)
. (B.44)
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Appendix C

Fourier transforms

We are interested in computing integrals of the following form

Fν,k =
∫ dd p

(2π)d p2ν lnk
(

p2

M2

)
e−i p⃗·⃗x , (C.1)

for k ∈ N0, and ν ≥ 0, including the special values ν = n ∈ N0. All these cases are
contained in the integral

F(a) =
∫ dd p

(2π)d p2ν

(
p2

M2

)a

e−i p⃗·⃗x , (C.2)

as a Taylor expansion in the parameter a

F(a) =
∞

∑
k=0

ak

k!
Fν,k . (C.3)

Our goal is to find a closed form expression for F(a), and then expand it in a to obtain
the results for Fν,k. We will start by considering a coordinate system for p⃗ where the
z-axis is aligned with −x⃗. In this frame the resulting integral to compute is

F(a) =
1

(2π)d(M2)a

∫ ∞

0
dp p2ν+d−1+2a

∫ π

0
dθ (sin θ)d−2eipx cos θ

∫
dΩd−2 . (C.4)

where we have introduced spherical coordinates. Using formulas (B.39), (B.40), and
(B.41), the integrals can be computed in closed form to give

F(a) =
4ν

π
d
2 xd+2ν

(
4

M2x2

)a Γ
(

d
2 + ν + a

)
Γ(−ν − a)

. (C.5)
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To expand this result in the parameter a, the following expression for the gamma
function becomes useful

Γ(x + a) = Γ(x) exp

[
∞

∑
k=1

ak

k!
ψ(k−1)(x)

]
, (C.6)

where ψ(n)(x) is the polygamma function of order n. This expression can be easily
derived from the exponentiation of the series for ln[Γ(x)], together with the definition
of the polygamma. With this, we can represent F(a) as

F(a) =
4νΓ

(
d
2 + ν

)
π

d
2 Γ(−ν)xd+2ν

exp

(
−a ln(M2x2) +

∞

∑
k=2

ak

k!

[
ψ(k−1)

(
d
2
+ ν

)
− (−1)kψ(k−1)(−ν)

])
,

(C.7)
where we defined

M2 ≡ M2

4eψ( d
2+ν)+ψ(−ν)

. (C.8)

Taking the series of the exponential, the Fourier transforms Fν,k are found by matching
orders in a with (C.3). Here we list the first four

Fν,0 =
4νΓ

(
d
2 + ν

)
π

d
2 Γ(−ν)xd+2ν

, (C.9)

Fν,1 = −
4νΓ

(
d
2 + ν

)
ln(M2x2)

π
d
2 Γ(−ν)xd+2ν

, (C.10)

Fν,2 =
4νΓ

(
d
2 + ν

)
π

d
2 Γ(−ν)xd+2ν

[
ln2(M2x2) + ψ′

(
d
2
+ ν

)
− ψ′(−ν)

]
, (C.11)

Fν,3 = −
4νΓ

(
d
2 + ν

)
π

d
2 Γ(−ν)xd+2ν

[
ln3(M2x2) + 3

[
ψ′
(

d
2
+ ν

)
− ψ′(−ν)

]
ln(M2x2)

−ψ′′
(

d
2
+ ν

)
− ψ′′(−ν)

]
. (C.12)

While the derivation of these formulas relies on using the integrals listed in B.4, which
only converge for parameters satisfying specific inequalities, one may extend the
validity of the formulas by using analytic continuation. With this understanding then,
the formulas (C.9)-(C.12) are valid for any ν such that ν ̸= −d/2 − n, with n ∈ N0,
which always holds in unitary QFTs.

We would also like to understand these formulas when ν = n is a non-negative
integer. At these values, the gamma function Γ(−ν) has a pole and naively
(C.9)-(C.12) appear to go to zero. However, we will show that the function 1/xd+2ν

also has a pole at these values, and both poles conspire to give a finite, non-vanishing
value for the Fourier transform. The pole of 1/xd+2ν when ν = n is directly related to
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the divergence of its Fourier transform, reflecting the fact that it is not well-defined as
a distribution.

We want to determine the expansion of 1/xd+2ν around ν = n + ϵ, with n ∈ N0 and
0 < ϵ ≪ 1, in the whole domain x ≥ 0. At leading order, this seems to be given by
1/xd+2ν = 1/xd+2n +O(ϵ), however it turns out this expansion only holds for x > 0.
The correct expansion with the point x = 0 included can be obtained with the help of
(B.34), which for n = ⌊ν⌋+ 1 and α = d − 2 + 2{ν} allows us to express the function
as:

1
xd+2ν

=
Γ
(

d
2 − 1 + {ν}

)
Γ ({ν})

4⌊ν⌋+1Γ
(

d
2 + ν

)
Γ (ν + 1)

□⌊ν⌋+1
(

1
xd−2+2{ν}

)
. (C.13)

Here ν = ⌊ν⌋+ {ν} has been decomposed in its integer and fractional parts. The
above expression is valid in the whole x ≥ 0 region, as long as {ν} ̸= 0. In particular
for ⌊ν⌋ = n and {ν} = ϵ, the expansion of the function becomes

1
xd+2n+2ϵ

= − 1
ϵ

π
d
2

4nΓ
(

d
2 + n

)
n!
□nδ(x⃗)

−
Γ
(

d
2 − 1

)
4n+1Γ

(
d
2 + n

)
n!
□n+1

(
1

xd−2 ln

[
x2 eψ( d

2+n)+ψ(n+1)

eψ( d
2−1)+ψ(1)

])
+O(ϵ) , (C.14)

where we used the known result:

□
(

1
xd−2

)
= − 4π

d
2

Γ
(

d
2 − 1

)δ(x⃗) . (C.15)

We see from the first term in (C.14) that the correct expansion of the function has a
pole proportional to a Dirac delta with support at x = 0. We also see from the identity
above that acting with boxes on the second term is subtle. Of course, for x > 0 the
delta vanishes and now we can easily act with the boxes recovering the naive
expansion:

1
xd+2n+2ϵ

=
1

xd+2n +O(ϵ), (x > 0) . (C.16)

The Fourier transform Fn,0 is then constructed from Fν,0, formula (C.9), by taking the
limit ν = n + ϵ properly:

Fn,0 = lim
ϵ→0

Fn+ϵ,0 = lim
ϵ→0

4n+ϵΓ
(

d
2 + n + ϵ

)
π

d
2 Γ(−n − ϵ)xd+2n+2ϵ

= (−□)nδ(x⃗) . (C.17)

This result is consistent with the integral definition of Fn,0, where each factor of p2 in
its integrand can be moved outside as (−□), with the remaining integral being the
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representation of the delta:

Fn,0 =
∫ dd p

(2π)d p2ne−i p⃗·⃗x = (−□)n
∫ dd p

(2π)d e−i p⃗·⃗x = (−□)nδ(x⃗) . (C.18)

Let us now move to understand Fn,1. As we mentioned, the presence of the pole in
1/xd+2ν at ν = n is the failure to understand this quantity as a distribution. This
motivates to define a renormalized version of the function, where the pole has been
subtracted [88] (the divergence being local may be renormalized using a local
counterterm, see for instance [26]):

R
(

1
xd+2n

)
≡ lim

ϵ→0

 1
xd+2n+2ϵ

+
1
ϵ

π
d
2

4nΓ
(

d
2 + n

)
n!
□nδ(x⃗)

 , (C.19)

= −
Γ
(

d
2 − 1

)
4n+1Γ

(
d
2 + n

)
n!
□n+1

(
1

xd−2 ln

[
x2 eψ( d

2+n)+ψ(n+1)

eψ( d
2−1)+ψ(1)

])
, (C.20)

where in the second line the limit has been evaluated. This renormalized function has
two key properties: it reduces to the bare function away from x = 0, and it is
well-behaved as a distribution, i.e., it has a Fourier transform. To find what Fourier
transform it corresponds to, one simply has to replace in its definition above the
function written in momentum space:

1
xd+2n+2ϵ

=
π

d
2 Γ(−n − ϵ)

4n+ϵΓ
(

d
2 + n + ϵ

)Fn+ϵ,0 , (C.21)

=− 1
ϵ

π
d
2

4nΓ
(

d
2 + n

)
n!
□nδ(x⃗)

+
π

d
2 (−1)n+1

4nΓ
(

d
2 + n

)
n!

∫ dd p
(2π)d p2n ln

[
p2

4eψ( d
2+n)+ψ(n+1)

]
e−i p⃗·⃗x +O(ϵ) . (C.22)

Plugging this expansion in (C.19) and introducing an arbitrary scale M, one obtains
the expression for Fn,1 in terms of a renormalized function:

Fn,1 =
∫ dd p

(2π)d p2n ln
(

p2

M2

)
e−i p⃗·⃗x = (−1)n+14nπ− d

2 Γ
(

d
2
+ n

)
n! RM

(
1

xd+2n

)
,

(C.23)
where we defined

RM

(
1

xd+2n

)
≡ −

Γ
(

d
2 − 1

)
4n+1Γ

(
d
2 + n

)
n!
□n+1

(
1

xd−2 ln
[

M2x2

4eψ( d
2−1)+ψ(1)

])
(C.24)

The same analysis can be done for the Fourier transforms Fn,2 and higher. In general,
what one finds is that they can be expressed in terms of a renormalized function of the
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schematic form:

Fn,k =
∫ dd p

(2π)d p2n lnk
(

p2

M2

)
e−i p⃗·⃗x = RM

[
k−1

∑
i=0

ci
lni (M2x2)

xd+2n

]
(k > 0) , (C.25)

for some coefficients ci, and where the renormalized term is understood similarly as in
(C.24) in the sense of differential regularization [58], with the property that
RM[ f (x)] = f (x), for x > 0. Now, we can continue in the same way as before to work
out the explicit form of the next case, Fn,2, however there is an easier (and equivalent)
way to proceed. It comes from the simple observation that (−□)Fν,k = Fν+1,k. For
d > 2, the Fourier transform F−1,k is well-defined, thus we can construct all the Fn,k

from it by acting with enough boxes:

Fn,k = (−□)n+1F−1,k . (C.26)

Then acting on (C.9)-(C.12) with (−□)n+1 and evaluating at ν = −1 we obtain:

Fn,0 =
Γ
(

d
2 − 1

)
4π

d
2

(−□)n+1
(

1
xd−2

)
, (C.27)

Fn,1 = −
Γ
(

d
2 − 1

)
4π

d
2

(−□)n+1
[

ln(M2x2)

xd−2

]
, (C.28)

Fn,2 =
Γ
(

d
2 − 1

)
4π

d
2

(−□)n+1
(

1
xd−2

[
ln2(M2x2) + ψ′

(
d
2
− 1
)
− ψ′(1)

])
, (C.29)

Fn,3 = −
Γ
(

d
2 − 1

)
4π

d
2

(−□)n+1
(

1
xd−2

[
ln3(M2x2) + 3

[
ψ′
(

d
2
− 1
)
− ψ′(1)

]
ln(M2x2)

−ψ′′
(

d
2
− 1
)
− ψ′′(1)

])
, (C.30)

where

M2 = M2(ν = −1) =
M2

4eψ( d
2−1)+ψ(1)

. (C.31)

Once again, for Fn,0 using the identity (C.15) in (C.27), we recover the previous result
(C.18). Similarly, for Fn,1 we identify in (C.28) the definition of the renormalized
function (C.24), recovering (C.23) as well. Now, the expressions for Fn,2 and Fn,3 are
also explicitly given. To what renormalized quantities do (C.29) and (C.30) correspond
to? This can be determined from the resulting functions after the action of the boxes in
the region x > 0. For Fn,2, upon using (B.31) and (B.33) for x ̸= 0, one obtains after the
action of 1 box

□
(

1
xd−2

[
ln2(M2x2) + ψ′

(
d
2
− 1
)
− ψ′(1)

])
= −4(d − 2)

xd ln

[
M2x2eψ( d

2−1)

eψ( d
2 )

]
.

(C.32)
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The rest of the boxes can be acted with the help of (B.36). This leads to the definition

RM

[
ln
(

M2x2)
xd+2n

]
≡ −1

2

Γ
(

d
2 − 1

)
4n+1Γ

(
d
2 + n

)
n!
□n+1

(
1

xd−2

[
ln2 (µ2x2)+ ψ′

(
d
2
− 1
)
− ψ′(1)

])
,

(C.33)
where for simplicity we called

µ2 ≡ eψ( d
2+n)+ψ(n+1)

eψ( d
2−1)+ψ(1)

M2 . (C.34)

In terms of (C.33), the Fourier transform Fn,2 can be expressed as

Fn,2 =
∫ dd p

(2π)d p2n ln2
(

p2

M2

)
e−i p⃗·⃗x = 2(−1)n4nπ− d

2 Γ
(

d
2
+ n

)
n!

×RM

(
1

xd+2n ln
[

M2x2

4eψ( d
2+n)+ψ(n+1)

])
. (C.35)

We can repeat the same analysis for Fn,3. Using (B.31)-(B.33) for x > 0,

□
(

1
xd−2

[
ln3(M2x2) + 3

[
ψ′
(

d
2
− 1
)
− ψ′(1)

]
ln(M2x2)− ψ′′

(
d
2
− 1
)
− ψ′′(1)

])
= −6(d − 2)

xd

(
ln2

[
M2x2eψ( d

2−1)

eψ( d
2 )

]
+ ψ′

(
d
2

)
− ψ′(1)

)
. (C.36)

Then with the help of (B.38), one can define

RM

(
1

xd+2n

[
ln2 (M2x2)+ ψ′

(
d
2
+ n

)
+ ψ′(n + 1)− 2ψ′(1)

])
(C.37)

≡ −1
3

Γ
(

d
2 − 1

)
4n+1Γ

(
d
2 + n

)
n!
□n+1

(
1

xd−2

[
ln3 (µ2x2)+ 3

[
ψ′
(

d
2
− 1
)
− ψ′(1)

]
ln
(
µ2x2)

−ψ′′
(

d
2
− 1
)
− ψ′′(1)

])
.

In terms of (C.37), Fn,3 takes the form:

Fn,3 =
∫ dd p

(2π)d p2n ln3
(

p2

M2

)
e−i p⃗·⃗x = 3(−1)n+14nπ− d

2 Γ
(

d
2
+ n

)
n! (C.38)

×RM

[
1

xd+2n

(
ln2
[

M2x2

4eψ( d
2+n)+ψ(n+1)

]
+ ψ′

(
d
2
+ n

)
+ ψ′(n + 1)− 2ψ′(1)

)]
.

The rest of the Fourier transforms Fn,k can be obtained in a similar manner.
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Appendix D

Meijer G-function

A general definition of the Meijer G-function is given in terms of a Mellin-Barnes type
integral

Gm,n
p,q

(⃗
ap

b⃗q

∣∣∣∣ x

)
≡ 1

2πi

∫
L

ds

m
∏
i=1

Γ(bi − s)
n
∏
i=1

Γ(1 − ai + s)

p
∏

i=n+1
Γ(ai − s)

q
∏

i=m+1
Γ(1 − bi + s)

xs , (D.1)

where a⃗p = (a1, . . . , an; an+1, . . . , ap) and b⃗q = (b1, . . . , bm; bm+1, . . . , bq) are p- and
q-dimensional lists of real or complex entries, respectively. The integration path L
separates the poles of Γ(bi − s) from the poles of Γ(1 − ai + s). There are three possible
paths, see [51, Figure 16.17.1]. When more than one of these paths lead to a convergent
integral, they all agree on its value (for more details, see for instance [17, 18]).

The Meijer G-function satisfy many properties. For instance, from its definition we see
when one of the ai in 1 ≤ i ≤ n is equal to one of the bi in m + 1 ≤ i ≤ q, or similarly
when one of the ai in n + 1 ≤ i ≤ p is equal to one of the bi in 1 ≤ i ≤ m, then the
respective Gamma functions cancel and the Meijer reduce to another Meijer:

Gm,n
p,q

(
c, a⃗p−1

b⃗q−1, c

∣∣∣∣ x

)
= Gm,n−1

p−1,q−1

(⃗
ap−1

b⃗q−1

∣∣∣∣ x

)
, Gm,n

p,q

(⃗
ap−1, c
c, b⃗q−1

∣∣∣∣ x

)
= Gm−1,n

p−1,q−1

(⃗
ap−1

b⃗q−1

∣∣∣∣ x

)
.

(D.2)
More involved manipulations of (D.1), together with known properties of the Gamma
function, lead to a large number of identities for the Meijer G-function. The ones that

https://dlmf.nist.gov/16.17.F1
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will be relevant to us are:

xσGm,n
p,q

(⃗
ap

b⃗q

∣∣∣∣ x

)
= Gm,n

p,q

(⃗
ap + σ

b⃗q + σ

∣∣∣∣ x

)
, (D.3)

Gm,n
p,q

(⃗
ap

b⃗q

∣∣∣∣ x

)
= (2π)

p+q
2 −m−n2

p−q
2 +1+Σbi−Σaj G2m,2n

2p,2q

( a⃗p
2 , a⃗p+1

2
b⃗q
2 , b⃗q+1

2

∣∣∣∣ 4p−qx2

)
, (D.4)

x
d

dx
Gm,n

p,q

(⃗
ap

b⃗q

∣∣∣∣ x

)
= −Gm,n

p,q

(
a⃗p

b1 + 1, b2, . . . , bq

∣∣∣∣ x

)
+ b1Gm,n

p,q

(⃗
ap

b⃗q

∣∣∣∣ x

)
(m ≥ 1) ,

(D.5)

= Gm,n
p,q

(
a⃗p

b1, . . . , bq−1, bq + 1

∣∣∣∣ x

)
+ bqGm,n

p,q

(⃗
ap

b⃗q

∣∣∣∣ x

)
(m < q) .

(D.6)

Many functions can be represented in terms of Meijer G-functions. In our particular
case, we will be interested in the representation of the incomplete gamma function,
and the product of two modified Bessel functions:

Γ(α, x) = G2,0
1,2

(
1

0, α

∣∣∣∣ x

)
, (D.7)

xσKν(x)Kµ(x) =
√

π

2
G4,0

2,4

(
σ
2 , σ+1

2
σ+ν+µ

2 , σ+ν−µ
2 , σ−ν+µ

2 , σ−ν−µ
2

∣∣∣∣ x2

)
, (D.8)

xσ Iν(x)Kµ(x) =
1

2
√

π
G2,2

2,4

(
σ
2 , σ+1

2
σ+ν+µ

2 , σ+ν−µ
2 , σ−ν+µ

2 , σ−ν−µ
2

∣∣∣∣ x2

)
. (D.9)

For σ = 0 and µ = ν, the last two reduce to:

K2
ν(x) =

√
π

2
G3,0

1,3

(
1
2

ν, 0, −ν

∣∣∣∣ x2

)
, (D.10)

Iν(x)Kν(x) =
1

2
√

π
G2,1

1,3

(
1
2

ν, 0, −ν

∣∣∣∣ x2

)
. (D.11)

In our study of loops in AdS/CFT, we encounter two Meijer G-functions in the
computation of the

∫
KK and

∫
GK integrals. These are of the form:

G4,0
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
, G3,1

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
. (D.12)
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where ν ≥ 0. From (D.5), (D.10) and (D.11), we see these are related to the product of 2
Bessel functions via:

K2
ν(x)
x

= −
√

π

4
d

dx
G4,0

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x2

)
, (D.13)

Iν(x)Kν(x)
x

= − 1
4
√

π

d
dx

G3,1
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x2

)
. (D.14)

We would like to know their series representation in x and, if possible, their
expression in terms of elementary functions. With this objective in mind, let us start
analyzing the first one.

0-ν ν

FIGURE D.1: Contour L for the computation of the Meijer G-function in (D.15) for an
arbitrary value of ν. The red dots are position of poles integer spaced from −ν, the

blue ones integer spaced from ν and the black ones integer spaced from 0.

By definition:

G4,0
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
=

1
2πi

∫
L

ds
Γ(−s)2Γ(ν − s)Γ(−ν − s)

Γ
( 1

2 − s
)

Γ(1 − s)
xs , (D.15)

where the path L starts at infinity on a line parallel to the positive real axis, encircles
once in the negative direction the poles of the Gamma functions in the numerator and
returns to infinity on another line parallel to the positive real axis, see Fig. D.1. In
virtue of the residue theorem:

G4,0
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
= −∑

k
Res [ f (s), sk] , (D.16)

where Res [ f (s), sk] is the residue of f (s) around the pole sk (inside the path L) of order
n,

Res [ f (s), sk] =
1

(n − 1)!
lim
s→sk

dn−1

dsn−1 [(s − sk)
n f (s)] , (D.17)

where in our case the function f (s) is given by

f (s) =
Γ(−s)2Γ(ν − s)Γ(−ν − s)

Γ
( 1

2 − s
)

Γ(1 − s)
xs . (D.18)

The pole structure of f (s) depends whether ν is: (1) ν > 0 real but not an integer, (2)
ν = n ∈ N, and (3) ν = 0. Even though the Gamma functions in the denominator of
f (s) do not contribute with poles, they can (and in fact, they will) change the order of
the poles contained inside the contour L.
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In case (1), the poles are

sk = 0 → double,

sk = 1 + k, k ∈ N0 → simple,

sk = ν + k, k ∈ N0 → simple,

sk = −ν + k, k ∈ N0 → simple, (D.19)

with the corresponding residues:

Res [ f (s), 0] =
Γ(ν)Γ(−ν)√

π
ln
[

x
4eψ(ν)+ψ(−ν)

]
, (D.20)

Res [ f (s),−ν + k] =
1√
π

Γ(2ν − k)Γ(ν − k)2(−1)k+1

Γ(2ν + 1 − 2k)k!

( x
4

)−ν+k
, (D.21)

The other 2 residues yield a contribution that vanishes as x → 0. This implies that the
small x series representation of the Meijer G-function is given by

G4,0
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
=

1√
π

⌊ν⌋

∑
k=0

Γ(2ν − k)Γ(ν − k)2(−1)k

Γ(2ν + 1 − 2k)k!

( x
4

)−ν+k
(D.22)

− Γ(ν)Γ(−ν)√
π

ln
[

x
4eψ(ν)+ψ(−ν)

]
+O(x0<) (ν > 0, ν ̸= N) ,

where ⌊ν⌋ denotes the greatest integer less than or equal to ν.

In case (2) (ν = n is a positive integer), the pole structure is instead

sk = −n + k, k ∈ {0, . . . , n − 1} → simple,

sk = 0 → triple,

sk = 1 + k, k ∈ {0, . . . , n − 2} → double,

sk = n + k, k ∈ N0 → triple, (D.23)

and the corresponding residues are given by

Res [ f (s),−n + k] =
1√
π

Γ(2n − k)Γ(n − k)2(−1)k+1

Γ(2n + 1 − 2k)k!

( x
4

)−n+k
, (D.24)

Res [ f (s), 0] =
(−1)n+1

2n3
√

π

(
1 + n2 ln2

[
x

4eψ(n)+ψ(n+1)

])
, (D.25)

with the other two residues yielding a contribution that vanishes as x → 0. Thus, in
this case the small x series representation of the Meijer G-function is given by

G4,0
2,4

(
1
2 , 1

n, 0, 0, −n

∣∣∣∣ x

)
=

1√
π

n−1

∑
k=0

Γ(2n − k)Γ(n − k)2(−1)k

Γ(2n + 1 − 2k)k!

( x
4

)−n+k
(D.26)

+
(−1)n

2n3
√

π

(
1 + n2 ln2

[
x

4eψ(n)+ψ(n+1)

])
+O(x0<) (n ∈ N) .
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Finally, for case (3) (i.e. ν = 0) the pole structure of f (s) is

sk = 0 → quadruple,

sk = 1 + k, k ∈ N0 → triple, (D.27)

and the corresponding residues are

Res [ f (s), 0] = −4ζ(3)
3
√

π
+

1
6
√

π
ln3
[

x
4e2ψ(1)

]
, (D.28)

with the other one yielding a contribution that vanishes as x → 0. Thus this case the
small x series representation of the Meijer is given by

G4,0
2,4

(
1
2 , 1

0, 0, 0, 0

∣∣∣∣ x

)
=

4ζ(3)
3
√

π
− 1

6
√

π
ln3
[

x
4e2ψ(1)

]
+O(x0<) . (D.29)

0- 1
2

ν

FIGURE D.2: Contour L for the computation of the Meijer G-function in (D.30) for an
arbitrary value of ν. The blue dots are position of poles integer spaced from ν, the
black ones integer spaced from 0 and the red ones, outside of L, integer spaced from

− 1
2 .

Moving now to the second Meijer G-function of interest, we will perform an identical
analysis. By its definition:

G3,1
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
=

1
2πi

∫
L

ds
Γ(−s)2Γ(ν − s)Γ

( 1
2 + s

)
Γ(1 − s)Γ(1 + ν + s)

xs , (D.30)

where the path L starts at infinity on a line parallel to the positive real axis, encircles
once in the negative direction the poles of all the gamma functions in the numerator
except those of Γ

( 1
2 + s

)
and returns to infinity on another line parallel to the positive

real axis, see Fig. D.2. The function to analyze in this case is

f (s) =
Γ(−s)2Γ(ν − s)Γ

( 1
2 + s

)
Γ(1 − s)Γ(1 + ν + s)

xs . (D.31)

Its pole structure will depend whether ν is: (1) ν > 0 real but not an integer, (2)
ν = n ∈ N, or (3) ν = 0, and as before, the order of the poles will be affected by the
Gamma functions in the denominator of f (s).
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In case (1), the poles are

sk = 0 → double,

sk = 1 + k, k ∈ N0 → simple,

sk = ν + k, k ∈ N0 → simple, (D.32)

and the corresponding residue are

Res [ f (s), 0] = −
√

π

ν2

(
1 − ν ln

[
x

4e2ψ(ν)

])
, (D.33)

with the other 2 residues being subleading in x in the x → 0 limit. The resulting series
representation for the Meijer G-function is

G3,1
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
=

√
π

ν2

(
1 − ν ln

[
x

4e2ψ(ν)

])
+O(x0<) (ν > 0, ν ̸= N) .

(D.34)
In case (2) (ν = n is a positive integer), the pole structure is instead

sk = 0 → double,

sk = 1 + k, k ∈ {0, . . . , n − 2} → simple,

sk = n + k, k ∈ N0 → double, (D.35)

and the corresponding residues are

Res [ f (s), 0] = −
√

π

n2

(
1 − n ln

[
x

4e2ψ(n)

])
, (D.36)

with the other 2 residues being subleading in x in the x → 0 limit. In this case, the
series representation for the Meijer is

G3,1
2,4

(
1
2 , 1

n, 0, 0, −n

∣∣∣∣ x

)
=

√
π

n2

(
1 − n ln

[
x

4e2ψ(n)

])
+O(x0<) (n ∈ N) . (D.37)

Finally, for case (3) (i.e. ν = 0) the pole structure of f (s) is

sk = 0 → triple,

sk = 1 + k, k ∈ N0 → double, (D.38)

and the corresponding residue are

Res [ f (s), 0] = −
√

π

2

(
4ψ′(1) + ln2

[
x

4e2ψ(1)

])
, (D.39)
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with the other one being subleading in x in the x → 0 limit. In this case then, the series
representation of the Meijer is:

G3,1
2,4

(
1
2 , 1

0, 0, 0, 0

∣∣∣∣ x

)
=

√
π

2

(
4ψ′(1) + ln2

[
x

4e2ψ(1)

])
+O(x0<) . (D.40)

Having answered the question about the series representation for the Meijer
G-functions, we would now like to address whether it is possible to write them in
terms of known, simpler functions. It turns out that the simple pole structure of the
Meijers in the case where ν is not an integer, allow us to perform the sums of residues
in terms of hypergeometric functions:

G4,0
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
=

Γ(ν)2

2ν
√

π

( x
4

)−ν

2F3

(
−ν, −ν + 1

2

−ν + 1, −ν + 1, −2ν + 1
; x

)
+ (ν → −ν)

− Γ(ν)Γ(−ν)√
π

[
ln
(

x
4eψ(ν)+ψ(−ν)

)
+

x
2(1 − ν2)

3F4

(
1, 1, 3

2

2, 2, 2 + ν, 2 − ν
; x

)]
, (D.41)

and

G3,1
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
=

√
π

ν

[
1
ν
− ln

(
x

4e2ψ(ν)

)
− x

2(1 − ν2)
3F4

(
1, 1, 3

2

2, 2, 2 + ν, 2 − ν
; x

)

− Γ(−ν)

Γ(ν + 1)

( x
4

)ν

2F3

(
ν, ν + 1

2

ν + 1, ν + 1, 2ν + 1
; x

)]
. (D.42)

For integer ν however, the pole structures become more complicated and this is no
longer possible. Nevertheless, given the nice identities satisfied by the Meijers (in
particular (D.5) and (D.6)), one can relate the Meijers of parameter ν with those with
ν + 1:

(ν + 1)G4,0
2,4

(
1
2 , 1

ν + 1, 0, 0, −ν − 1

∣∣∣∣ x

)
= G3,0

1,3

(
1
2

ν + 1, 0, −ν − 1

∣∣∣∣ x

)
− G3,0

1,3

(
1
2

ν, 0, −ν

∣∣∣∣ x

)

− νG4,0
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
, (D.43)

(ν + 1)G3,1
2,4

(
1
2 , 1

ν + 1, 0, 0, −ν − 1

∣∣∣∣ x

)
= G2,1

1,3

(
1
2

ν + 1, 0, −ν − 1

∣∣∣∣ x

)
+ G2,1

1,3

(
1
2

ν, 0, −ν

∣∣∣∣ x

)

+ νG3,1
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
. (D.44)
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Iterating these n − 1 times and using (D.10) and (D.11) one obtains

G4,0
2,4

(
1
2 , 1

ν + n, 0, 0, −ν − n

∣∣∣∣ x

)
=

ν(−1)n

ν + n
G4,0

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
(D.45)

+
2

(ν + n)
√

π

n−1

∑
i=0

(−1)i [K2
ν+n−i(

√
x)− K2

ν+n−1−i(
√

x)
]

,

G3,1
2,4

(
1
2 , 1

ν + n, 0, 0, −ν − n

∣∣∣∣ x

)
=

ν

ν + n
G3,1

2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x

)
(D.46)

+
2
√

π

ν + n

n−1

∑
i=0

[
Iν+n−i(

√
x)Kν+n−i(

√
x) + Iν+n−1−i(

√
x)Kν+n−1−i(

√
x)
]

.

Thus, one may restrict the study of the Meijer G-functions to the window 0 ≤ ν < 1, as
the other cases can be brought to this window through the use of these relations. For
instance, the lower bound ν = 0 relates the Meijers of positive integer parameter n to
the sum of product of Bessels of the form:

G4,0
2,4

(
1
2 , 1

n, 0, 0, −n

∣∣∣∣ x

)
=

2
n
√

π

n−1

∑
i=0

(−1)i [K2
n−i(

√
x)− K2

n−1−i(
√

x)
]

, (D.47)

G3,1
2,4

(
1
2 , 1

n, 0, 0, −n

∣∣∣∣ x

)
=

2
√

π

n

n−1

∑
i=0

[
In−i(

√
x)Kn−i(

√
x) + In−1−i(

√
x)Kn−1−i(

√
x)
]

.

(D.48)

As a last remark on Meijer G-functions, it turns out that the two Meijers of interest are
closely related to ∂νKν(x). This can be seen by writing down the equation satisfied by
this function: [

∂2
x +

1
x

∂x −
(

1 +
ν2

x2

)]
∂νKν(x) =

2ν

x2 Kν(x) , (D.49)

obtained from the Bessel equation for Kν(x) by differentiating it with respect to ν.
Solving this equation using variation of parameters, one finds

∂νKν(x) = aKν(x) + bIν(x)− 2νKν(x)
∫

dx
Iν(x)Kν(x)

x
+ 2νIν(x)

∫
dx

K2
ν(x)
x

. (D.50)

Matching the asymptotic of both sides fixes the integration constants a = b = 0, while
the integrals of Bessels are solved precisely in terms of these Meijers through (D.13)
and (D.14), resulting in the identity:

2
ν

∂νKν(x) =
1√
π

Kν(x)G3,1
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x2

)
−
√

π Iν(x)G4,0
2,4

(
1
2 , 1

ν, 0, 0, −ν

∣∣∣∣ x2

)
,

(D.51)
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valid for any ν > 0. For ν = 0, the RHS has a well-defined value, however the LHS
becomes 0/0. Then using L’Hopital’s rule:

2∂2
νKν(x)

∣∣
ν=0 =

1√
π

K0(x)G3,1
2,4

(
1
2 , 1

0, 0, 0, 0

∣∣∣∣ x2

)
−
√

π I0(x)G4,0
2,4

(
1
2 , 1

0, 0, 0, 0

∣∣∣∣ x2

)
.

(D.52)
The same result may be obtained by taking one more derivative of the inhomogeneous
Bessel equation (D.49) with respect to ν, and repeating the same steps as we did when
ν > 0 but now for ν = 0.
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Appendix E

Master formulas

In this paper, our strategy to solve many of the bulk loop integrals is to deal with them
directly in position space, by writing the bulk-to-bulk propagators in their series
representations, and expressing the resulting integrals in terms of the fundamental
vertices

V∆,∆1,...,∆n(x1, y⃗1, . . . , y⃗n) =
∫

dd+1x2
√

g2 ξ∆(x1, x2)K∆1(x2, y⃗1) · · · K∆n(x2, y⃗n) , (E.1)

where ξ(x1, x2) is the chordal distance and K(x2, y⃗i) = z2/[z2
2 + (x⃗2 − y⃗i)

2]. It turns

x1 x2
ξ∆

x1 x2
y⃗2

ξ∆ K∆2 x1 x2
ξ∆

K∆3

K∆4

y⃗3

y⃗4

FIGURE E.1: Fundamental vertices V∆, V∆,∆2 and V∆,∆3,∆4 with 0, 1 and 2 external legs
extended to the boundary, respectively. The bulk point x1 and the boundary points y⃗i

are fixed, while the bulk vertex point x2 is integrated in the whole AdS space.

out, for vertices involving any number of internal legs between the same 2 points in
the bulk, and at most 2 external legs extended to the boundary, can be solved in terms
of the master integral

Ia,b,c(w, y⃗1, y⃗2) =
∫

dd+1x
√

g
za

[z2 + w2 + (x⃗ − y⃗1)2]b[z2 + (x⃗ − y⃗2)2]c
. (E.2)
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We will proceed then to give a closed form for Ia,b,c, to then compute V∆,∆1,...,∆n for the
cases n = 0, 1, 2 (see Fig. E.1). With the use of Feynman parametrization

1
∏ Aαi

i
=

Γ (∑ αi)

∏ Γ(αi)

∫ 1

0

δ (∑ ui − 1)∏ uαi−1
i dui

(∑ ui Ai)
∑ αi

, (E.3)

after completing squares in x⃗ and translating, one obtains

Ia,b,c =
Γ(b + c)
Γ(b)Γ(c)

∫ 1

0
d2u δ(u1 + u2 − 1)ub−1

1 uc−1
2

×
∫

dd+1x
√

g
za

(z2 + |⃗x|2 + u1u2 |⃗y12|2 + u1w2)b+c . (E.4)

The integral in x⃗ can be performed in spherical coordinates after a rescaling
x⃗ 7→ x⃗

√
z2 + u1u2 |⃗y12|2 + u1w2

Ia,b,c =π
d
2

Γ
(

b + c − d
2

)
Γ(b)Γ(c)

∫ 1

0
d2u δ(u1 + u2 − 1)ub−1

1 uc−1
2

×
∫ ∞

0
dz

za−d−1

(z2 + u1u2 |⃗y12|2 + u1w2)b+c− d
2

. (E.5)

The integral in z can be done in a similar fashion after a rescaling
z 7→ z

√
u1u2 |⃗y12|2 + u1w2

Ia,b,c =
π

d
2

2

Γ
(

a−d
2

)
Γ
(
b + c − a

2

)
Γ(b)Γ(c)

∫ 1

0
d2u δ(u1 + u2 − 1)

u
a
2−c−1
1 uc−1

2

(u2 |⃗y12|2 + w2)b+c− a
2

. (E.6)

Evaluating the Dirac delta in u2 = 1 − u1, the resulting integral in u1 can be identified
in terms of the integral representation for the hypergeometric function 2F1∫ 1

0
dx xb−1(1 − x)c−b−1(1 − zx)−a =

Γ(b)Γ(c − b)
Γ(c) 2F1(a, b; c; z) , (E.7)

finally leading to the master formula

Ia,b,c(w, y⃗1, y⃗2) =
π

d
2

2

Γ
(

a−d
2

)
Γ
(
b + c − a

2

)
Γ
( a

2 − c
)

Γ(b)Γ
( a

2

)
(w2 + |⃗y12|2)b+c− a

2

× 2F1

(
b + c − a

2 , a
2 − c

a
2

; 1 − w2

w2 + |⃗y12|2

)
. (E.8)

Consider the fundamental vertex (E.1) with no external legs to the boundary. Writing
the chordal distance explicitly, it can be expressed in terms of the master formula (E.8)
as

V∆(x1) = (2z1)
∆ I∆,∆,0(z1, x⃗1, 0⃗) . (E.9)
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Using the binomial series 1F0(a; z) = (1 − z)−a, and Legendre duplication formula
Γ(z)Γ(z + 1/2) = 21−2z√π Γ(2z), I∆,∆,0 can be evaluated to the simple form

I∆,∆,0(z1, x⃗1, 0⃗) =
π

d+1
2

(2z1)∆

Γ
(

∆−d
2

)
Γ
(∆+1

2

) , (E.10)

resulting in the vertex

V∆(x1) = π
d+1

2

Γ
(

∆−d
2

)
Γ
(∆+1

2

) . (E.11)

Notice it is independent of the point x1, i.e., a constant. Moving now to the
fundamental vertex with 1 external leg to the boundary, written in terms of Ia,b,c

V∆,∆2(x1, y⃗2) = (2z1)
∆ I∆+∆2,∆,∆2(z1, x⃗1, y⃗2) . (E.12)

Again, using the binomial series and Legendre duplication formula, the vertex is
evaluated to

V∆,∆2(x1, y⃗2) = π
d+1

2

Γ
(

∆+∆2−d
2

)
Γ
(

∆−∆2
2

)
Γ
(∆

2

)
Γ
(∆+1

2

) K∆2(x1, y⃗2) . (E.13)

Lastly, for the fundamental vertex with 2 external legs to the boundary, it can be
expressed in terms of (E.8) by first translating by y⃗4 and then inverting every point

V∆,∆3,∆4(x1, y⃗3, y⃗4) = (2z′′1 )
∆ |⃗y ′

34|2∆3 I∆+∆3+∆4,∆,∆3(z
′′
1 , x⃗ ′′

1 , y⃗ ′
34) , (E.14)

where x′′1 = x′1/x′21 , x′1 = x1 − y⃗4, and y⃗ ′
34 = y⃗34/|⃗y34|2. Using Legendre duplication

formula and Euler’s transformation (B.12), I∆+∆3+∆4,∆,∆3 takes the form

I∆+∆3+∆4,∆,∆3(z
′′
1 , x⃗ ′′

1 , y⃗ ′
34) =

π
d+1

2

(2z′′1 )∆

Γ
(

∆+∆3+∆4−d
2

)
Γ
(

∆+∆3−∆4
2

)
Γ
(

∆+∆4−∆3
2

)
Γ
(∆

2

)
Γ
(∆+1

2

)
Γ
(

∆+∆3+∆4
2

)
× K∆3(x′′1 , y⃗ ′

34)z
′′∆4
1 2F1

(
∆3, ∆4

∆+∆3+∆4
2

; 1 − z′′21

z′′21 + (x⃗ ′′
1 − y⃗ ′

34)
2

)
. (E.15)

Replacing this result in the vertex and expressing it back in terms of the original
coordinates

V∆,∆3,∆4(x1, y⃗3, y⃗4) = π
d+1

2

Γ
(

∆+∆3+∆4−d
2

)
Γ
(

∆+∆3−∆4
2

)
Γ
(

∆+∆4−∆3
2

)
Γ
(∆

2

)
Γ
(∆+1

2

)
Γ
(

∆+∆3+∆4
2

)
× K∆3(x1, y⃗3)K∆4(x1, y⃗4) 2F1

(
∆3, ∆4

∆+∆3+∆4
2

; 1 − K(x1, y⃗3)K(x1, y⃗4)|⃗y34|2
)

. (E.16)
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These vertices suffice to perform the study of Chapter 6, however at higher-loop order,
for higher-point functions or for other type of interactions, generalizations of the
master integral (E.2) are required. Useful extensions include, for instance, replacing its
second factor in the denominator by [z2 + w′2 + (x⃗ − y⃗2)2]c, or adding a third factor in
the denominator of the form [z2 + (x⃗ − y⃗3)2]e. These possibilities have not been
explored, and it would be interesting to do so in future work.
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Appendix F

Φ4 in six flat dimensions

In Chapter 6 we found that four-point functions in ϕ4 theory in AdS can be
renormalized by renormalizing the parameters in the action up to d = 6. While this
result up to d = 4 is expected, the d = 6 case is surprising. The UV structure of the
theory should be the same as that of the same theory in flat space, and while ϕ4 theory
in flat space is renormalizable up to d = 4, it is not renormalizable when d > 4. The
purpose of this appendix is to show that 4-point one-loop scattering amplitudes in
d > 4 are indeed renormalizable with only renormalizing the parameters of the ϕ4

theory in any odd dimension and in d = 6. The result for odd dimensions follows
trivially from the fact that we may regulate the theory with dimensional
regularization and with this regulator there are no divergences at one-loop order, thus
there is no need to renormalize. In the following we will focus in the case of even d.

Let us consider the action of a ϕ4 theory in a flat d dimensions in euclidean signature.

S =
∫

ddx
[

1
2

∂µΦ∂µΦ +
1
2

m2Φ2 +
λ

4!
(µ2)2− d

2 Φ4
]

(F.1)

where λ is dimensionless and µ has dimensions of mass.

There are three diagrams that contribute to the 4-point function at 1-loop, see Fig. F.1.
Each diagram gives an identical Feynman integral,

p⃗1

p⃗2

p⃗3

p⃗4

+

p⃗1

p⃗2

p⃗3

p⃗4

+

p⃗1

p⃗4p⃗2

p⃗3

FIGURE F.1: One-loop 4-point functions of Φ4 theory.
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I =
1
2

λ2(µ2)4−d
∫ ddl

(2π)d
1

(l2 + m2)((⃗l − p⃗)2 + m2)
(F.2)

where p⃗ stands for either p⃗1 + p⃗2, p⃗1 + p⃗3 or p⃗1 + p⃗4, depending on the diagram.
p⃗1, p⃗2, p⃗3, p⃗4 are the external momenta (which we take them all as incoming) and l⃗ is
the momentum flowing in the loop. After standard manipulations (see, for example,
[93] for a pedagogical account of this computation) we arrive at

I =
λ2

2
(µ2)4−d

∫ 1

0
dx

Γ
(

2 − d
2

)
(4π)

d
2

1

[m2 + p2x(1 − x)]2−
d
2

 (F.3)

where x is a Feynman parameter. The tree-level diagram has the dimension of
(µ2)2− d

2 , then we will keep this term unchanged. So, we have

I = λ(µ2)2− d
2

λ

2
(µ2)2− d

2

∫ 1

0
dx

Γ
(

2 − d
2

)
(4π)

d
2

1

[m2 + p2x(1 − x)]2−
d
2

 (F.4)

In d even there is a pole in the Gamma function, which we regulate using dimensional
regularization. In d = 6 − 2ϵ and expanding in ϵ → 0 we find

I = λ(µ2)ϵ−1
(

λ

128π3µ2

(
−1

ϵ

∫ 1

0
dx(m2 + p2x(1 − x)) (F.5)

+ (γE − 1)
∫ 1

0
dx(m2 + p2x(1 − x))

+
∫ 1

0
dx(m2 + p2x(1 − x)) log

(
(m2 + p2x(1 − x))

4πµ2

)))
The integrals are given by

∫ 1

0
dx(m2 + p2x(1 − x)) = m2 +

p2

6
(F.6)

A(m2, p2, µ2) =
∫ 1

0
dx(m2 + p2x(1 − x)) log

(
(m2 + p2x(1 − x))

4πµ2

)
= 4πµ2 d

da

[∫ 1

0
dx
(

m2 + p2x(1 − x)
4πµ2

)a] ∣∣∣
a=1

(F.7)

Then,

I = λ(µ2)ϵ−1 λ

128π3µ2

(
−1

ϵ

(
m2 +

p2

6

)
+ (γE − 1)

(
m2 +

p2

6

)
+ A(m2, p2, µ2)

)
(F.8)

Thus, (as one may have expected based on power-counting) there is a p2 divergence.
which suggests that we would need a counterterm of the form Φ2∂µΦ∂µΦ to remove
this divergence, making the theory non-renormalizable already at this order.
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However, upon adding all three channels we obtain,

Γ̃(4)(p1, . . . , p4) = −µ2ϵ−2λ

[
1 − λ

128π3µ2

(
−1

ϵ

(
3m2 +

s + t + u
6

)
+(γE − 1)

(
3m2 +

s + t + u
6

)
+ A(m2, s, µ2) + A(m2, t, µ2) + A(m2, u, µ2)

)]
(F.9)

where
s = ( p⃗1 + p⃗2)

2, t = ( p⃗1 + p⃗3)
2, u = ( p⃗1 + p⃗4)

2 (F.10)

In scattering amplitudes external momenta are on-shell, p2
i = −m2, where pi =

√
p⃗2

i ,
thus

s = ( p⃗1 + p⃗2)
2 = p2

1 + p2
2 + 2p⃗1 · p⃗2 = −2m2 + 2p⃗1 · p⃗2 . (F.11)

A similar relation holds for t and s, and we find the (well-known) relation

s + t + u = −4m2 (F.12)

where we used momentum conservation, p⃗1 + p⃗2 + p⃗3 + p⃗4 = 0. Thus,

Γ̃(4)(p1, . . . , p4) =− µ2ϵ−2λ

[
1 − λ

128π3µ2

(
7
3ϵ

m2 + (γE − 1)
(

2m2 +
p1(p2 + p3 + p4)

3

)

+ A(m2, s, µ2) + A(m2, t, µ2) + A(m2, u, µ2)

)]
(F.13)

and the divergence is now independent of the momenta and may be renormalized by
renormalizing the parameters of the original Lagrangian.

A different way to understand this result is to note that the counterterm
Lct = Φ2∂µΦ∂µΦ may be removed by a field redefinition. Indeed, up to a total
derivative,

Lct = −1
3

Φ3□Φ (F.14)

and the redefinition
Φ = Φ′ − 1

3
Φ′3 (F.15)

removes Lct (while modifying the coefficient of the Φ4 term and adding higher order
terms in Φ). Thus, since scattering amplitudes are invariant under field redefinitions
the one-loop 4-point scattering amplitude may be renormalized without the need of
this counterterm.

Note that this conclusion is special to the one-loop 4-point scattering amplitudes. The
ϕ4 theory in d = 6 is non-renormalizable – there are other scattering amplitudes that
do require adding new counterterms to the action. If we consider d = 8 (and higher)
then even the one-loop 4-point scattering amplitude would require require adding
new counterterms to the action.
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[17] H. Bateman and A. Erdélyi. Higher Transcendental Functions, Vol. 1.
McGraw-Hill, New York, 1953.
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