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Abstract
Experiments are carried out in a smooth-wall turbulent boundary layer (𝑅𝑒𝜏 ≥ 3500) subjected to different pressure gradient
(PG) histories. Oil-film interferometry (OFI) is used to measure the skin friction evolution over the entire history while wide-field
particle image velocimetry (PIV) captures the mean flowfield. This data is used to demonstrate the influence of PG history on
skin-friction as well as other integral quantities such as displacement (𝛿∗) and momentum thickness (𝜃). Based on observations
from the data, a new set of ordinary differential equations (ODEs) are proposed to model the streamwise evolution of a turbulent
boundary layer (TBL) subjected to different pressure gradient histories. The model is calibrated using limited number of
experimental cases and its utility is demonstrated on other cases. Moreover, the model is applied to data from large-eddy
simulations (LES) of flows in adverse pressure gradient (APG) conditions (Bobke et al., 2017). The model is subsequently used
to identify the impact of pressure gradient history length on the boundary layer. This can also be interpreted as determining the
spatial frequency response of the boundary layer to pressure gradient disturbances. Results suggest that short spatial variations
in pressure gradients primarily affect a small portion of the TBL evolution, whereas longer-lasting ones have a more extensive
impact.

1 Introduction
The structure and the dynamics of turbulent boundary layers (TBLs) under varying pressure gradients (PGs) are influenced by
local boundary conditions (BCs) and evolving pressure distributions (Klewicki et al., 2024). The review by Devenport & Lowe
(2022), on the impact of local BCs and upstream histories on TBLs development, demonstrated that each location within the
TBL is influenced by cumulative upstream effects, as real-world boundary layers rarely encounter uniform PGs. A constant 𝛽,
the Clauser pressure gradient parameter (Clauser, 1954) (where 𝛽 = [𝛿∗/𝜏𝑤] [𝑑𝑝/𝑑𝑥] with 𝑑𝑝/𝑑𝑥 is the streamwise pressure
gradient, 𝛿∗ the displacement thickness and 𝜏𝑤 the wall-shear stress) indicates a near-equilibrium state that is challenging to
achieve in turbulent flows due to the presence of inner and outer layers. If considering only the the outer region, then, the
approximate similarity is reachable for high 𝑅𝑒. In a non-equilibrium state, TBLs are significantly affected by history of 𝛽
(i.e. variation of 𝛽 with streamwise distance), with the inner and outer layers exhibiting different responses to PG variations.
Rapid changes in 𝛽 create history effects in shear stress levels (Harun et al., 2013; Spalart & Watmuff, 1993), even when the
mean velocity profiles appear self-similar in the streamwise direction. Additionally, Tsuji & Morikawa (1976) demonstrated
that fluctuating BCs can result in deviations from the classical log law, further complicating the behavior of TBLs under
non-equilibrium conditions.

Through LES, Bobke et al. (2017) expanded on the influence of pressure histories by comparing turbulence statistics for
different cases with matched local 𝛽 and 𝑅𝑒𝜏 . They observed that at a given streamwise location, non-uniform profiles of
𝛽 = 𝛽(𝑥) result in a weaker wake region and a lower amplitude of the outer peak in the streamwise velocity fluctuations
compared to quasi-equilibrium flows with constant 𝛽. This observation suggests that a single parameter, such as the local value
of 𝛽, is insufficient to fully define the turbulence state in non-equilibrium TBLs (Monty et al., 2011; Schlatter & Örlü, 2012).
Additional parameters are needed to capture the influence of flow history accurately (Perry et al., 2002). It should be noted that
for a given streamwise location, the viscous sublayer remains relatively unaffected with upstream changes in 𝛽, while the outer
region is strongly influenced, leading to changes in turbulence statistics throughout the boundary-layer profile. Therefore, the
state of the layer at a given location 𝑥 depends not solely on local 𝛽 at 𝑥, but on the entire profile of 𝛽(𝑥) up to an arbitrary

∗mv1r23@soton.ac.uk

1



location 𝑥. Bobke et al. (2017) also found that moderate changes in 𝛽 require an adjustment length of approximately 7𝛿99 for
the TBL to reach a stable state independent of its initial conditions.

Along the same lines, Vishwanathan et al. (2023) contributed to this understanding through an experimental study of non-
equilibrium flows over smooth and rough surfaces. By systematically varying the pressure gradient histories along the underside
of a NACA 0012 airfoil, they showed that upstream flow histories strongly influence local flow states. Their findings revealed
that the mean velocity and turbulence quantities do not collapse according to self-similarity laws in non-equilibrium states as
it would be for an ideal sink flow (Townsend, 1976). Instead, a lag in the response of integral quantities, such as momentum
and displacement thicknesses, evidences the influence of flow history. This lagged response should be incorporated into any
approaches to the closure problem for predicting TBL evolutions under non-equilibrium conditions.

1.1 Predictions in non-equilibrium layers
Predictive models are essential for describing the behavior of TBLs subjected to different PG histories, as they offer a framework
to understand and anticipate complex flow dynamics that arise due to the interaction of large and small-scale structures. In this
regard, Perry et al. (2002) addressed the closure problem for two-dimensional TBLs over flat surfaces under non-equilibrium
conditions with imposed PGs, focusing on the streamwise evolution of the boundary layer. Their approach relied on classical
similarity laws, including the logarithmic law of the wall and Coles’ wake function (Coles, 1956), combined with the momentum
integral equation and mean continuity equation (Perry et al., 1994). Using these formulations, the authors empirically derived a
universal parameter space defined by four key variables (Jones et al., 2001): 𝛽, 𝑆 = 1/

√︁
𝐶 𝑓 , Π, and 𝜉 = 𝑆𝛿(𝑑Π/𝑑𝑥), governed

by 𝑓1 (𝛽, 𝑆,Π, 𝜉) = 0, which captures the layer state in non-equilibrium conditions, with 𝐶 𝑓 being the skin friction coefficient, 𝛿
the boundary-layer thickness and Π the wake strength parameter in Cole’s wake function (Coles, 1956). This parameter space
is derived from sparse experimental data and serves as the basis for predicting the streamwise evolution of the layer via a set of
coupled non-autonomous first-order ODEs, provided initial conditions and boundary constraints, such as the free-stream velocity
or wall static pressure. This approach for describing the streamwise evolution can be expressed in terms of the differential
equations (Perry et al., 2002) 𝑑𝑆/𝑑𝑅𝑒x = 𝜙1 (Π, 𝑆, 𝑅𝑒x, 𝑅𝑒L) and 𝑑Π/𝑑𝑥 = 𝜙2 (Π, 𝑆, 𝑅𝑒x, 𝑅𝑒L), where 𝑅𝑒x and 𝑅𝑒L denote
local and integral Reynolds numbers, respectively. This methodology aligns well with the attached eddy hypothesis (Townsend,
1976; Perry et al., 1991, 1994), which posits that the flow at a point is influenced by the remote transport of eddies within the
boundary layer, thereby incorporating non-local effects.

Using parameters such as 𝛽, Π, and 𝜉, their model effectively distinguishes between equilibrium and non-equilibrium states,
providing robust predictions across different flow configurations. In quasi-equilibrium flows (Perry et al., 1994), the parameter
𝑆 approaches infinity while 𝜉 = 0 since 𝑑Π/𝑑𝑥 = 0. Under these conditions, the reduced space 𝑓2 (Π, 𝛽, 𝑆) = 0 captures the
boundary layer state, effectively lowering the dimensionality from four to three parameters compared to non-equilibrium flows.
This dimensional reduction simplifies the problem, highlighting how quasi-equilibrium states reduce complexity. For the case
of a non-equilibrium state, the framework developed in Perry et al. (2002) further provides a mathematical linkage between
𝑆, 𝛽, and 𝜉 for a specific Π value, under the assumption of a matching shear stress profile in this parameter space. Their
model includes a mapping of isosurfaces of 𝜉 in the Π-𝛽-𝑆 space, relying heavily on the wall-wake formulation for velocity
profiles. However, an objective of the current study is to eliminate dependency on this formulation to enhance the flexibility
and applicability of the model.

Monty et al. (2011) explored ways to simplify the parameter space governing TBLs subjected to APGs. Their study focused
on disentangling the effects of key parameters, namely 𝛽, the friction Reynolds number 𝑅𝑒𝜏 , and the acceleration factor 𝐾 ,
each of which influences the structure and behavior of the boundary layer under APG conditions. A key finding from Monty
et al. (2011) is the modification of the wake region in the mean velocity profile as a result of APGs. Specifically, in APG flows,
the wake begins much closer to the wall, and for both mild and strong APGs, there is no well-defined logarithmic region in
the velocity profile, as seen in Spalart & Watmuff (1993) and Nagano et al. (1998). This absence of a log-law region under
strong APG conditions challenges the classical understanding based on the log-law formulation, which serves as the foundation
of Perry et al. (2002) model. Furthermore, they found that the von Kármán constant 𝜅, a fundamental constant in the log law,
is not universal; instead, it decreases as pressure gradients increase (Nagib & Chauhan, 2008). The authors also highlighted
several other effects of APGs on TBLs. Firstly, APG flows experience an increase in the wake parameter Π, signifying an
intensification of the outer layer wake. Secondly, the large-scale structures within the TBL become energized under APG
conditions, leading to higher turbulence intensity (as seen in Lee (2017)). Lastly, they observed strong amplitude modulation,
where the large-scale motions substantially influence the small-scale structures within the boundary layer (Marusic et al., 2010).
This modulation further was investigated by Mathis et al. (2011) who developed a model to predict turbulence in the inner
layer based on measurements of large-scale signatures from the outer region. The authors investigated the influence of PGs
on the large-scale structures in the outer region of TBLs and their modulation of the near-wall region. Their findings support
the hypothesis that large-scale structures have a significant impact on the entire boundary layer, extending down to the wall in
line with Townsend’s attached eddy hypothesis (1976). The authors highlight the energetic role of superstructures in the outer
region, observed as an outer peak in the pre-multiplied energy spectra within the logarithmic layer. The magnitude of this peak
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depends on the Reynolds number, signifying the influence of large scales on near-wall dynamics (Lee, 2017; Volino, 2020).
This interaction is not a simple superposition of large-scale structures onto small-scale near-wall fluctuations; rather, it involves
a modulation of the small-scale turbulence by the large-scale structures present in the logarithmic region. However, they noted
that while the model captures overall trends, in strong APG flows its accuracy is reduced. By tuning some model parameters,
predictions were improved, but a re-calibration is essential for specific flow states.

1.2 Possibility of reduced-order spaces
Along the same line, in recent work, Agrawal et al. (2024) advanced this framework by simplifying the multidimensional
formulation presented by Perry et al. (2002) into a single first-order ODE, effectively reducing the dimensional complexity
of the problem. Agrawal et al. (2024) were inspired by Thwaites’ method (1949) for evaluating the evolution of laminar
boundary layers under PGs, where the von Kármán momentum integral equation depends mainly on a local flow parameter
𝑚 = 𝑚(𝜃, 𝑑𝑝/𝑑𝑥,𝑈∞)= − 𝜃2

𝜇𝑈∞
𝑑𝑝

𝑑𝑥
, referred to as the Holstein-Bholen pressure gradient parameter (𝜇 is the dynamic viscosity of

the flow). The authors adapted this method for two-dimensional TBLs, obtaining accurate estimates of the momentum thickness
𝜃 from the free-stream velocity profile. However, the modified Thwaites’ method does not provide information on the evolution
of other boundary layer properties, such as the skin friction coefficient, displacement thickness, and Clauser’s pressure gradient
parameter, which defines the strength of the pressure gradient relative to the wall shear stress (Clauser, 1954). Their closure
problem is solved through a least-squares optimization to determine three model coefficients, achieving a best fit with databases
that include wall-resolved LES of TBLs subjected to zero (Eitel-Amor et al., 2014) and adverse with initial varying pressure
gradients (Bobke et al., 2017). This allowed them to predict flow separation points based on pressure gradient histories within
the boundary layer.

Together, the frameworks developed by Perry et al. (2002) and Agrawal et al. (2024) represent substantial advances in
modeling TBL evolution under PGs. The present study builds on these contributions by proposing a data-driven model that can
enable accurate predictions while bypassing the need for wall-wake formulations. A series of measurements were carried out in
high Reynolds numbers that allowed us to make some specific observations on the intergral quantities of the flow. Then, a refined
version of the above-mentioned models is proposed to enhance the understanding of turbulent boundary layer dynamics and
improve predictive capabilities for engineering systems. The proposed model will allow us to determine streamwise histories of
different quantities given external/boundary conditions and therefore will provide rapid predictive capabilities that is required
for both setup of more advanced experiments and numerical simulations. This tool can also be used to potentially predict the
skin-friction evolution and thereby the overall drag incurred by pressure gradient boundary layers.

The paper is organized in four subsequent sections. Section 2 provides descriptions of the experimental measurements. In
Section 3, we introduce the data-driven modelling paradigm to predict the streamwise evolution of integral quantities of the
TBL. The model is calibrated against the measurements outlined in Section 2. Validations of the model and extrapolated results
on the history effects are presented in Sections 4 and 5.

2 Experiments
The experiments were performed in the Boundary Layer Wind Tunnel (BLWT) at the University of Southampton. This
’Göttingen’-type closed-loop facility features a 12-meter-long test section with an internal cross-section of 1.2 m× 1 m, divided
into five segments, each 2.4 m in length. A cooling unit ensures the test section is maintained at a constant temperature of
20◦C, providing a stable experimental environment. The freestream turbulence intensity is kept below 0.1%. Optical access
for PIV is enabled by glass windows enclosing part of the test section. To promote a laminar-to-turbulent transition, a zigzag
strip is installed at the test section inlet. To generate pressure gradients on the TBL, a NACA0012 airfoil with a chord length
of 1.25 m was installed in the wind tunnel. The leading edge (LE) of the airfoil was positioned 6.53 m downstream the test
section inlet, with a clearance of 500 mm from the wall. This clearance was measured from a quarter of the chord length behind
the LE. The angle of attack was remotely adjusted using four linear actuators, mounted in pairs on either side of the airfoil.
A Pitot tube is positioned one chord length upstream of the aerofoil’s LE when set to 0◦. The pressure difference is recorded
using a Furness FCO560 micromanometer, which establishes 𝑈∞,0 for the experiment. Temperature and pressure at the tunnel
inlet are monitored using an RTD TST414 thermometer and a Setra 278 barometric pressure transducer, respectively. For the
measurement section, the fourth section of the tunnel is replaced with 10 mm thick safety glass. This modification serves to
provide optical access for wall shear stress measurements. The freestream velocity was set to 20 ms−1, and the wing was
adjusted to five different AOAs: -8◦, -4◦, 0◦, 4◦, and 8◦.
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2.1 Wall pressure measurements
Twenty pressure taps with an inner diameter of 0.6 mm were spaced 0.24 m apart along the floor of the wind tunnel. Panel method
calculations indicated that the upstream and downstream influence of the airfoil extended over one chord length. Consequently,
the taps were placed to cover the entire region. The mean pressure distribution was recorded using a 64-channel ZOC33/64 Px
pressure scanner, with pressure differences referenced to atmospheric pressure. Pressure data was sampled with a frequency of
64 Hz for a scan duration of 90 s. The pneumatic inputs were scanned with a high-speed multiplexer of 50kHz. The pressure
scanner calibration was made in factory, with a relative uncertainty of ±0.2% of full scale (i.e., ±5𝑃𝑎). The mean pressure
gradient distribution for the five angles of attack is presented in figure 1(a). Two distinct history types can be observed. The
first type consists of cases with a favorable pressure gradient (FPG) followed by an APG (−8◦, −4◦, 0◦). The second type
includes cases with an APG followed by an FPG (4◦, 8◦). This cases represent non-equilibrium pressure distributions, as 𝛽 is
not constant. The pressure gradient histories corroborate the panel method prediction that the influence of the airfoil extends
one chord upstream and downstream of the aerofoil.

2.2 Particle Image Velocimetry
High-resolution planar PIV measurements were conducted to capture the flow fields for the specified cases. The imaging setup
included four 25 MP cameras (LaVision Imager sCMOS) equipped with 50 mm lenses. A Litron Bernoulli PIV series laser
(LPU550) and JEM Pro-Fog were used as the light source and seeding particles, respectively. The laser beam was directed
through a hole in the wind tunnel floor and guided to the region of interest using mirrors. To shape the laser sheet along the
streamwise direction, two spherical lenses ( 𝑓 = −75 mm and 𝑓 = 150 mm) and a cylindrical lens ( 𝑓 = −20 mm) were positioned
inside the tunnel far downstream of the trailing edge of the wing. This configuration not only corrected laser beam divergence
but also ensured a consistent beam thickness of approximately 1.5 mm throughout the investigation region. The system was
triggered internally using a LaVision programmable timing unit (PTU-X). For each airfoil AOA, the procedure was made 4
times by shifting the position of the cameras streamwise to cover the full region of interest.

For each case, 2000 images were sampled at a rate of 0.5 Hz. The low acquisition frequency was chosen to ensure minimally
time-correlated samples and to utilize the highest beam quality achievable by the laser. The PIV setup was configured for a
maximum particle displacement of 15 pixels in the free stream and 5–6 pixels in the near-wall region. The particle diameters
ranged from 1 to 3 pixels, with lenses f-stop adjusted in the range 𝑓 /# = 1.8 to 𝑓 /# = 4.0. This adjustment maximized the
cross-correlation coefficient while minimizing peak locking. The depth of field was approximately 2.5 mm. Data acquisition
was through DaVis 10 software, whereas the pre- and post-processing was made with an in-house code to perform filtering
of the images (min subtraction and min/max normalization), cross-correlation of the double frame images, median test, and
stitching of the four PIV fields. Image cross-correlation employed interrogation windows of 64 × 64 pixels for the first pass and
16 × 16 pixels for the final pass, with 50% overlap. The resulting field of view covered an area of approximately 4.5𝑚 × 0.3𝑚.
The spatial resolution achieved was 1 mm per final interrogation window. A summary of the experimental results is shown in
table 1.

The final measured mean streamwise velocity fields are shown in figure 1(b-f) for the 5 different AOAs. The evolution of
the boundary layer is evidently strongly influenced by the history of the imposed pressure gradient. For the FPG-APG cases,
the boundary layer is seen to get thinner and then thicker and vice-versa for APG-FPG cases (see the streamlines in figure
1). It appears as though the boundary layer is shaped or modulated by the external pressure gradient. This fact is used later
in section 3. The strongest alteration of the streamlines occurs at the extreme angles of attack, specifically at AOA = −8◦
and AOA = +8◦, and this has implications for how pressure gradient histories shape the development of the boundary layer.
Downstream the trailing edge, positioned at 𝑥/𝛿∗0 = 710, upstream variations in pressure gradient histories continue to influence
changes in streamline density beyond 𝑥/𝛿∗0 = 800 (see figure 1(b-f)), despite comparable local pressure gradients in this region
(figure 1(a)). This observation is supported by the displacement thickness evolution beneath the airfoil, as presented in figure 2,
where the TBL downstream the airfoil TE responds distinctly to different upstream pressure gradient profiles, thereby altering
the integral parameter 𝛿∗. As these modifications accumulate, the flow effectively “remembers” its prior conditions, resulting
in delayed responses that persist well beyond the immediate vicinity of the wing. This lag is further illustrated in figure 3,
where the measured displacement thickness values are compared against a zero-pressure-gradient (ZPG) reference. Under mild
pressure gradients at AOA = 0◦, the flow deviates from the ZPG case mainly beneath the wing, then rapidly returns to near-ZPG
conditions downstream of the trailing edge. In contrast, stronger pressure gradients at AOA = ±8◦ induce more substantial and
enduring differences, as the TBL adjusts not merely to the local conditions but to the entire history of imposed pressure gradients.
Therefore, the TBL exhibits structural changes that lead to significant departures from a ZPG state in integral parameters, such
as 𝛿∗, persisting far downstream of the original disturbances.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Dimensionless pressure gradients and streamwise velocity fields: (a), pressure gradients at different AOAs (gradients
of gray from light to dark, AOA = 8◦, 4◦, 0◦, −4◦, −8◦); (b-f), velocity fields; (b), AOA=−8◦; (c), AOA=−4◦; (d), AOA=0◦; (e),
AOA=4◦; (f), AOA=8◦; solid lines, streamlines; 𝛿∗0 is the displacement thickness measured at 𝑥0 = 4.8𝑚; light-red box in (a),
region below the airfoil at AOA=0◦.
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Figure 2: Dimensionless displacement thickness distributions: gradients of gray from light to dark, AOA = 8◦, 4◦, 0◦, −4◦, −8◦;
𝛿∗0 is the displacement thickness measured at 𝑥0 = 4.8𝑚; light-red box, region below the airfoil at AOA=0◦.

(a)

(b)

(c)

Figure 3: Schematics for the comparison between the displacement thicknesses generated under the wing (solid line) and the
ones computed with the equation (Vinuesa et al., 2017) for a ZPG case (dash-dotted line): (a), AOA = −8◦; (b), AOA = 0◦; (c),

AOA = 8◦; (1), 𝛿∗/𝛿∗0 = 1; (2),
Δ𝛿∗

𝑍𝑃𝐺
(𝑥/𝛿∗0)
𝛿∗0

; (3),
∫ 𝑥/𝛿∗0

𝑥0/𝛿∗0
(𝐴(𝑥/𝛿∗0) ·

𝛿∗ (𝑥/𝛿∗0)
𝛿∗0

𝑑 (𝑥/𝛿∗0)).
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Figure 4: Wall shear stress measurements: gradients of gray from light to dark, AOA = 8◦, 4◦, 0◦, −4◦, −8◦; light-red box,
region below the airfoil at AOA=0◦;𝑈∞,0, free-stream velocity as 𝑥0; 𝑢𝜏 , friction velocity.

(a)

(b)

0.5 1 1.5 2 2.5

Re 10
4

-4
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Figure 5: Measured Clauser parameter of the TBLs developing underneath the wing: (a), 𝛽 vs 𝑥/𝛿∗0; (b), 𝛽 vs 𝑅𝑒𝜃 = 𝜃𝑈∞/𝜈;
light-red box, region below the airfoil at AOA=0◦; gradients of gray from light to dark, AOA = 8◦, 4◦, 0◦, −4◦, −8◦.
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2.3 Oil film interferometry
In addition to velocity fields, Oil Film interferometry (OFI) is applied to directly measure skin friction (Lozier et al., 2024).
Unlike methods that rely on the universality of the logarithmic law, OFI evaluates wall shear stress without such assumptions.
The wall shear stress, 𝜏𝑤 , is determined from the thinning rate of an oil film applied to the surface. The temporal variation
of the oil thickness is inferred from changes in the spacing of interference fringes, produced by illuminating the oil layer with
monochromatic light and capturing the fringe pattern with an angled camera. This, in turn, can be converted to shear-stress
information (Chauhan et al. 2010; Segalini et al. 2015).

Silicon-based oil (Polycraft Dow Corning 200/50 Silicone Fluid) was used to generate the interference fringes, which
were imaged using two LaVision Imager ProLX 16 MP cameras equipped with Sigma 105 mm F2.8 lenses. A Phillips 35W
SOX-E bulb provided the monochromatic light source. The spatial frequency of the fringe patterns was extracted by applying
a continuous wavelet transform to the intensity profile 𝐼 (𝑥) of the captured images, recorded at 1 Hz (Aguiar Ferreira et al.,
2024). A Morse wavelet (Lilly, 2017) with a symmetry parameter of 3, a time-bandwidth product of 60, and a frequency scale
resolution of 48 voices-per-octave was used for the analysis. Each measurement spanned a region of approximately 30 cm and
was repeated 16 times to cover a streamwise length of nearly 4.5m, for every AOA of the wing. The results are shown in figure
4 in terms of dimensionless friction velocity 𝑢𝜏 . The relative uncertainty of the OFI measurements was estimated to be ±3%
(Pailhas et al., 2009).

At 𝐴𝑂𝐴 = −8◦, the initial FPG accelerates the TBL, causing an increase in friction velocity 𝑢𝜏 up to a maximum at
𝑥/𝛿∗0 = 625. Subsequently, due to the generated APG, the flow decelerates and the friction velocity decreases, approaching
uniform values for 𝑥/𝛿∗0 > 750. As the 𝐴𝑂𝐴 increases, this initial rise in 𝑢𝜏 diminishes. At both 𝐴𝑂𝐴 = 4◦ and 𝐴𝑂𝐴 = 8◦, the
trend is reversed: the initial APG lowers 𝑢𝜏 , which then subsequently increases as the flow accelerates, reaching uniform values
from 𝑥/𝛿∗0 > 725, ultimately exceeding those observed for 𝐴𝑂𝐴 = −8◦. The modulation of 𝑢𝜏 due to negative 𝐴𝑂𝐴 values is
greater than that for positive 𝐴𝑂𝐴 = 4◦ and 𝐴𝑂𝐴 = 8◦.
By combining spatially resolved 𝑢𝜏 measurements with 𝛿∗ from PIV, it is possible to reconstruct the complete Clauser parameter
(𝛽) history of the TBL beneath the wing for all five 𝐴𝑂𝐴 values (see figure 5(a)). This 𝛽 history spans a region of about 4.5 m and
is obtained entirely from measurements, without invoking log-fitting methods to extrapolate 𝑢𝜏 from velocity profiles. Due to
the complexity of the OFI over long streamwise distances, obtaining extensive 𝛽 histories over large streamwise fetches requires
significant effort. Typically, authors derive 𝑢𝜏 from log-fitting velocity profiles (Vishwanathan et al., 2023). Comparing the
𝛽 profiles with the 𝑑𝑝/𝑑𝑥 distributions (see figure 1a) reveals that the intersection of trends for different 𝐴𝑂𝐴 values occurs
immediately at the LE for 𝛽, while the dimensionless 𝑑𝑝/𝑑𝑥 curves intersect slightly downstream. Similar to 𝑑𝑝/𝑑𝑥, downstream
of the TE, 𝛽 gradually returns to zero for 𝑥/𝛿∗0 > 820. Additional observations (see figure 5a) indicate that it is not sufficient to
define the TBL state based solely on local 𝛽: at 𝑥/𝛿∗0 = 600, different 𝐴𝑂𝐴 values yield the same local 𝛽, yet 𝛿∗ and 𝑢𝜏 differ,
showing that 𝛽 alone does not fully characterize the TBL state. Even incorporating the local gradient 𝑑𝛽/𝑑𝑥 is not enough, since
beyond 𝑥/𝛿∗0 > 825, the TBLs share similar 𝛽 values and gradients but differ in integral parameters (see 𝛿∗ in figure 2) and 𝑢𝜏
(see figure 4). Thus, a third parameter is needed to account for the upstream 𝛽 history. In the next section, we will elaborate on
defining a three-parameter space that can uniquely characterize the state of a non-equilibrium TBL.
For quasi–near-equilibrium TBLs, Vinuesa et al. (2017) introduced 𝑅𝑒𝜃 , together with 𝛽, as a parameter to describe the state
of the developing layer. This will also be the case when the flow typically has one type of pressure gradient (FPG or APG)
where the boundary layer state changes monotonically (i.e. increasing or decreasing 𝜃 for a given 𝑈∞). In flows with complex
histories such as the one presented here, the relationship between 𝛽 and 𝑅𝑒𝜃 is nontrivial. Simply knowing 𝛽 and 𝑅𝑒𝜃 at a given
streamwise location does not yield a unique solution for the layer’s state. This complexity is illustrated in figure 5(b), where the
trajectories of 𝛽 versus 𝑅𝑒𝜃 for different angles of attack intersect or overlap in certain regions of the flow. These observations
suggest that each state of the layer follows a specific trajectory, influenced not only by the local flow conditions but also by its
upstream history. In other words, accurately predicting future states of the TBL requires incorporating the spatial evolution of
𝛽, rather than relying solely on local parameter values. This is explored further in the next section.

3 Data-driven model for streamwise evolution of integral quantities
The goal is to develop a model to predict streamwise evolution of integral quantities. A data-driven approach should account
for the complex history effects. The starting point for such a model is the “von Kármán” momentum integral equation, initially
derived by Gruschwitz (Schlichting, 1951) and later by von Kármán (Van Le, 1952) that obtained by integrating the Navier-
Stokes equations across the boundary-layer thickness. This equation is an under-determined system with one equation and three
unknowns: momentum thickness, displacement thickness, and skin friction coefficient, while 𝑈∞ (𝑥) and 𝑑𝑝/𝑑𝑥 are given as
boundary conditions:

𝑑𝜃

𝑑𝑥
=
𝐶 𝑓

2
+
(
𝛿∗

𝜃
+ 2

)
𝜃

𝜌𝑈2
∞

𝑑𝑝

𝑑𝑥
(1)
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AOAs

𝑥/𝛿∗0 -8◦ -4◦ 0◦ 4◦ 8◦
500 19.7 19.5 19.6 19.5 19.5

𝑈∞ [𝑚𝑠−1] 650 26.1 24.6 22.9 21.1 19.4
800 20.8 20.5 20.4 20.8 21.6
500 1.39 1.27 1.23 1.17 1.14

𝐶 𝑓

2
× 103 650 1.59 1.59 1.42 1.28 1.04

800 0.86 1.04 1.09 1.15 1.28
500 -0.39 -0.25 -0.03 0.20 0.46

𝛽 650 -1.96 -0.44 0.30 0.68 0.97
800 0.36 0.17 0.01 -0.05 -0.05
500 78.7 79.4 79.9 80.8 81.4

𝛿 [𝑚𝑚] 650 69.9 69.1 77.5 87.8 98.0
800 135.4 123.4 112.4 101.2 93.3
500 10.9 11.1 11.2 11.4 11.8

𝛿∗ [𝑚𝑚] 650 6.8 7.1 8.5 10.8 14.0
800 22.8 19.6 16.0 12.8 10.5
500 8.3 8.4 8.4 8.6 8.9

𝜃 [𝑚𝑚] 650 5.3 5.6 6.7 8.4 10.6
800 16.4 14.4 12.0 9.9 8.2
500 10790 10810 10860 11060 11450

𝑅𝑒𝜃 650 9120 9090 10120 11690 13570
800 22500 19470 16150 13580 11680
500 2700 2570 2560 2510 2500

𝑅𝑒𝜏 650 3390 3160 3120 3080 2860
800 3850 3800 3530 3330 3360

Table 1: Summary of the measurements taken at 𝑥/𝛿∗0 = 500, 650, 800 for the five different AOAs; each AOA is labeled with
circles with different shades of gray; 𝛿∗0 is the displacement thickness measured at 𝑥0 = 4.8𝑚; 𝑅𝑒𝜏 = 𝑢𝜏𝛿/𝜈 and 𝑅𝑒𝜃 = 𝑈∞𝜃/𝜈.
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To close this system, assumptions on 𝐶 𝑓 and 𝛿∗ are typically required. Here, we propose data-driven closures for these two
quantities. This approach is similar to the recent model proposed by Agrawal et al. (2024), who described the streamwise
evolution of the momentum thickness in non-equilibrium TBLs under arbitrary pressure gradients, with 𝑑𝜃/𝑑𝑥 = 𝑓 (𝑚, 𝑅𝑒𝜃 ):

2
𝑑𝜃

𝑑𝑥
= 𝐶1 + 𝐶2

𝑚

𝑅𝑒𝜃
+ 𝐶3

1
𝑅𝑒𝜃

, (2)

where 𝐶1, 𝐶2, and 𝐶3 are constants fitted to LES results for zero and adverse pressure gradient cases (Eitel-Amor et al.,
2014; Bobke et al., 2017). Although this model accurately predicts the evolution of momentum thickness within a reasonable
uncertainty, it does not fully determine the state of the boundary layer; information about the evolution of skin friction,
displacement thickness, and 𝛽(𝑥) is implicit in the constants 𝐶1, 𝐶2, and 𝐶3. The closure model we propose is based on
observations of the data presented in section 2. We hypothesise that the state of a non-equilibrium layer can be represented by
the superposition of an equivalent state of a TBL under ZPG conditions, combined with the cumulative “lag effects” produced
by the upstream distribution of the pressure gradient, 𝑑𝑝/𝑑𝑥. This linear superposition is illustrated in figures 3(a–c), showing
the contributions of the ZPG component (labeled as (2) in the caption of figure 3) and the lag effects (labeled as (3) in the
caption of figure 3) to the total displacement thickness as it evolves under different pressure gradient distributions.

Consider a TBL developing over a flat plate positioned below an airfoil, which generates varying pressure gradient distri-
butions as a function of the AOA of the airfoil. As stated before, figures 3(a-c) illustrate the displacement thickness resulting
from the airfoil NACA0012 mounted 500 mm above the wall at AOA values of -8◦, 0◦ and 8◦, respectively. As outlined in
section 2, the displacement thicknesses deviate significantly from the trends expected under ZPG conditions. Following figure
3, at a given dimensionless streamwise location 𝑥′ = 𝑥/𝛿∗0 (where 𝛿∗0 is the displacement thickness at 𝑥 = 𝑥0), the dimensionless
displacement thickness (𝛿∗/𝛿∗0) is given by the sum of three components:

𝛿∗ (𝑥′)
𝛿∗0

= 1 +
Δ𝛿∗

𝑍𝑃𝐺

𝛿∗0
+
∫ 𝑥′

𝑥′0

𝐴(𝑥′) · 𝛿
∗ (𝑥′)
𝛿∗0

𝑑 (𝑥′) (3)

where

Δ𝛿∗
𝑍𝑃𝐺

𝛿∗0
=
𝛿∗
𝑍𝑃𝐺

(𝑅𝑒𝜃 (𝑥′))
𝛿∗0

−
𝛿∗
𝑍𝑃𝐺

(𝑅𝑒𝜃 (𝑥′0))
𝛿∗0

, (4)

𝐴(𝑥′) is a weighting function that evaluates the contribution to 𝛿∗ (𝑥′)/𝛿∗0 of each upstream value from 𝑥′0. It is, therefore, a
function that accounts for the effects of pressure gradient histories as the TBL evolves in the streamwise direction. The functions
𝛿∗
𝑍𝑃𝐺

(𝑅𝑒𝜃 ) are evaluated according to Vinuesa et al. (2017). Differentiating equation 3 with respect to 𝑥′, we obtain:

𝑑

𝑑𝑥′

(
𝛿∗ (𝑥′))
𝛿∗0

)
=

𝑑

𝑑𝑥′

(
𝛿∗
𝑍𝑃𝐺

(𝑥′)
𝛿∗0

)
+ 𝐴(𝑥′) 𝛿

∗ (𝑥′)
𝛿∗0

. (5)

Equation 5 is a first-order linear non-homogeneous ordinary differential equation in terms of 𝛿∗/𝛿∗0. The ODE is linear since
𝛿∗/𝛿∗0 and its derivative appear only to the first power and are not multiplied by each other. This type of ODE is associated with
lag models, which are commonly used for dynamic systems that exhibit delayed responses to changes in input. The equation
resembles the form 𝑑𝑌

𝑑𝑋
= 𝑎 + 𝑏𝑌 , where 𝑋 and 𝑌 are generic independent and dependent variables, respectively, and 𝑎 and 𝑏 are

arbitrary coefficients. This equation arises in thermal systems, where temperature evolves gradually due to thermal mass inertia
(Incropera et al., 1996), as well as in economic models that describe the relationship between investments and interest rates
(Goodwin, 1990). In boundary-layer theory, White (1991) describes a similar lag equation used to account for rapid changes in
non-equilibrium flows over flat plates, where integral parameters lag behind equilibrium predictions (i.e., the ZPG state in our
case) (Ferziger et al., 1982). The same model is applied to the skin-friction coefficient, providing:

𝑑𝐶 𝑓 (𝑥′)
𝑑𝑥′

=
𝑑𝐶 𝑓 ,𝑍𝑃𝐺 (𝑥′)

𝑑𝑥′
+ 𝐵(𝑥′)𝐶 𝑓 (𝑥′) (6)

The von karman momentum integral equation, 1, together with equations 5 and 6 form a new set of ODEs used to model
the streamwise evolution of 𝜃/𝜃0, 𝛿∗/𝛿∗0 and 𝐶 𝑓 , providing closure for the problem outlined in the dimensionless form of the
momentum integral equation in the streamwise direction 𝑥′:

10



𝑑 (𝜃/𝛿∗0)
𝑑𝑥′

=
𝐶 𝑓 (𝑥′𝑗+1)

2
+
(
𝐻 (𝑥′𝑗+1) + 2

) (𝜃 (𝑥′
𝑗+1)/𝛿

∗
0)

𝜌𝑈2
∞

𝑑𝑝

𝑑𝑥′
(7)

where
𝛿∗ (𝑥′

𝑗+1)
𝛿∗0

=
𝛿∗ (𝑥′

𝑗
)

𝛿∗0
+
𝑑 (𝛿∗/𝛿∗0)
𝑑𝑥′

(𝑥′𝑗 )Δ𝑥′

𝐶 𝑓 (𝑥′𝑗+1) = 𝐶 𝑓 (𝑥′𝑗 ) +
𝑑𝐶 𝑓

𝑑𝑥′
(𝑥′𝑗 )Δ𝑥′ (8)

Precisely, the ODEs in equations 5 and 6 are used to solve the system in 8. The system of equations in 7 and 8 is solved
numerically using an implicit solver with a backward-difference numerical scheme for the derivatives. The integration proceeds
in a stepwise manner, starting from the specified initial conditions at 𝑥′0. In the above equations, the parameters at ( 𝑗 + 1)
are treated as unknowns at the marching step 𝑗 . The system is solved iteratively at each step to determine these unknowns,
𝜃, 𝛿∗ and 𝐶 𝑓 at the step (j+1) in the 1D model. The solution advances downstream with a streamwise step size of Δ𝑥′ = 𝐿′/1000,
where 𝐿′ = 𝐿/𝛿∗0 = 400 is the domain length (𝐿 = 4.5𝑚). To have a unique solution for the system of three equations in 7 and 8,
a set of parameters must be chosen to uniquely define the state of the flow. Following the approach of Perry et al. (2002), we use
the dimensionless pressure gradient parameter 𝛽 to characterize the boundary layer state by incorporating its local value, 𝛽(𝑥′

𝑏
),

its derivative 𝑑𝛽/𝑑𝑥′ at 𝑥′
𝑏
, and an integral value, 𝛽(𝑥′

𝑏
), which encapsulates the history of 𝛽 = 𝛽(𝑥′) up to a streamwise location

𝑥′
𝑏
. This last term (𝛽(𝑥′

𝑏
)) is computed as a moving average (of 𝛽) within a fixed window along the streamwise directions. The

mathematical details used to evaluate 𝛽(𝑥′
𝑏
) are provided in Appendix A.

Unlike Perry et al. (2002), we propose a new framework that involves a basis change from (𝛽, 𝑆,Π, 𝜉) to (𝛽, 𝑑𝛽/𝑑𝑥′, 𝛽).
Boundary layers that share the same local value of 𝛽(𝑥′𝑝) and/or the same local gradient but differ in their histories are likely
to have distinct structures and states (Lee, 2017; Bobke et al., 2017). We therefore hypothesize that a developing, non-
equilibrium TBL can be fully described by the local value, gradient, and integral form of the Clauser dimensionless pressure
gradient parameter. A single combination of (𝛽, 𝑑𝛽/𝑑𝑥′, 𝛽) uniquely determines the solution in terms of 𝛿∗, 𝜃, and 𝐶 𝑓 . This
proportional-differential-integral (PDI) approach characterizes the behavior of the system, specifically the streamwise evolution
of the integral parameters of the TBL as defined in the Momentum Integral Equation, allowing progression in space with the
ODE proposed in this work. Note that this model is not intended to predict the velocity statistics, which would require a separate
model for the velocity profiles. Therefore, we limit the model to integral quantities.

In addition to the PDI system, we also evaluate a reduced-order 2-parameter model, which is a Proportional-Integral (PI)
approach with a proportional term, 𝛽, and an integral term, 𝛽 only, used to compensate for slow output responses. This term
represents a weighted local average of 𝛽, with the weighting function detailed in Appendix A. The 3-parameter model, PDI
described beforehand, adds a differential term, 𝑑𝛽

𝑑𝑥
, allowing faster reactions to rapid changes. The PDI formulation is fine

balance between stability and responsiveness, improving accuracy in systems with both steady and mild 𝑑𝑝

𝑑𝑥
variations. For

stable 𝑑𝑝

𝑑𝑥
, a PI controller is preferable. Both the 3-parameter and 2-parameter spaces, along with the two definitions of the

integral form of 𝛽, namely 𝛽 and 𝛽, are introduced in greater detail in Appendix A. These details are presented in the appendix
to prevent the specifics of the model from overshadowing the discussion on the approach.

4 Calibration and validation of the model
In this section, we first calibrate the model coefficients using the experimental data presented in Section 2 for AOAs −8◦, 0◦,
and 8◦. Then, the model is applied to predict the non-equilibrium evolution of the TBL for AOAs −4◦ and 4◦, as well as for
quasi-equilibrium TBLs from Bobke et al. (2017), which is necessary for validation.

4.1 Developing Turbulent Boundary Layer underneath a NACA0012: calibration
The calibration of the model involves determining the coefficients 𝐴(𝑥′) and 𝐵(𝑥′) in equations 5 and 6 as functions of the flow

parameters that define the 3-D space, i.e.
(
𝛽(𝑥′), 𝑑𝛽(𝑥

′)
𝑑𝑥′

, 𝛽(𝑥′)
)

defined in Appendix A.1, such that
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(a) (b)

(c) (d)

Figure 6: Experimental data used for the calibration of the coefficients A and B of the two ODEs which describe the streamwise
evolution of 𝛿∗/𝛿∗0 and 𝐶 𝑓 in a TBL developing underneath a NACA0012 wing profile: (a), dimensionless friction velocity;
(b), difference between the streamwise derivatives of the skin friction for PG and ZPG TBLs; (c), shape factor 𝐻 = 𝛿∗/𝜃; (d),
difference between the streamwise derivatives of the displacement thickness for PG and ZPG TBLs; gradients of gray from light
to dark, AOA = 8◦, 0◦, −8◦; light-red box, region below the airfoil at AOA=0◦.
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𝐴 =

©­«
𝑑 (𝛿∗ (𝑥′)/𝛿∗0)

𝑑𝑥′
−
𝑑 (𝛿∗ZPG (𝑥

′)/𝛿∗0)
𝑑𝑥′

ª®¬
𝛿∗ (𝑥′)
𝛿∗0

= 𝑓6

(
𝛽(𝑥′), 𝑑𝛽(𝑥

′)
𝑑𝑥′

, 𝛽(𝑥′)
)

𝐵 =

(
𝑑𝐶 𝑓 (𝑥′)
𝑑𝑥′

−
𝑑𝐶 𝑓 ,ZPG (𝑥′)

𝑑𝑥′

)
𝐶 𝑓 (𝑥′)

= 𝑓7

(
𝛽(𝑥′), 𝑑𝛽(𝑥

′)
𝑑𝑥′

, 𝛽(𝑥′)
) (9)

or in the 2-D space, i.e.
(
𝛽(𝑥′), 𝛽(𝑥′)

)
defined in Appendix A.2:

𝐴 = 𝑓8

(
𝛽(𝑥′), 𝛽(𝑥′)

)
and 𝐵 = 𝑓9

(
𝛽(𝑥′), 𝛽(𝑥′)

)
(10)

Interpolant functions 𝑓6 and 𝑓7 in the 3-D space (or 𝑓8 and 𝑓9 in the reduced-order space) are derived from the sparse
experimental datasets in figure 6 using equations 9 and 10. The numerators of the two equations in 9 are plotted in figures 6(b)
and 6(d), where the streamwise derivatives of 𝛿∗ and 𝐶 𝑓 are compared with their counterparts evaluated under ZPG conditions,
𝛿∗
𝑍𝑃𝐺

and 𝐶 𝑓 ,𝑍𝑃𝐺 . The denominators of the two equations in 9 (𝛿∗ and 𝐶 𝑓 ) are obtained respectively from the data shown in
figure 6(c) (shape factor 𝐻) and figure 6(a) (dimensionless 𝑢2

𝜏). A function is determined to compute the coefficients 𝐴 and 𝐵
in the equations in 9 (or 10) for each combination of three parameters: 𝛽 in figure 5(a), 𝑑𝛽

𝑑𝑥′ and either 𝛽 or 𝛽, which are derived
and plotted in Appendix A.1 and A.2. A Delaunay triangulation is applied to the scattered data points to enable piecewise linear
interpolation and extrapolation within the defined domains.

The experimental data used for tuning the model describe the evolution of the non-equilibrium TBL developing over a flat
plate, with pressure gradient histories generated by a NACA0012 airfoil at AOA of −8◦, 0◦, and 8◦ (see figure 6). The streamwise
evolution of the derivatives of 𝐶 𝑓 and 𝛿∗/𝛿∗0 reflects the distinct pressure gradient distributions induced by the airfoil. These
trends are evident in the data, particularly in the departure from zero-pressure-gradient (ZPG) conditions (see figure 6(b,d)).
The integral parameter 𝛿∗

𝑍𝑃𝐺
and the skin friction coefficient 𝐶 𝑓 ,𝑍𝑃𝐺 for the ZPG case are evaluated according to Nagib &

Chauhan (2008) and Vinuesa et al. (2017). The evolution of both the dimensionless displacement thickness 𝛿∗/𝜃, i.e. shape
factor H (see figure 6(c)) and of the skin friction (see figure 6(a)) reveals significant changes depending on the AOA. For the
−8◦ case, initial acceleration leads to a relative increase in friction velocity compared to the local free-stream velocity, resulting
in a flatter mean velocity profile and a reduced shape factor. The subsequent deceleration causes a decrease in skin friction and
an increase in displacement thickness relative to momentum losses (see figure 6(a,c)). The opposite behavior is observed for 8◦,
where deceleration precedes acceleration.

The model defined both in the 2-D (i.e., 𝛽(𝑥′), 𝛽(𝑥′)) and 3-D (i.e., 𝛽(𝑥′), 𝑑𝛽(𝑥
′)

𝑑𝑥′
, 𝛽(𝑥′)) spaces relies on initial conditions

(e.g., 𝛿∗ (𝑥′0)/𝛿
∗
0, 𝜃∗ (𝑥′0)/𝛿

∗
0, 𝐶 𝑓 (𝑥′0), 𝛽(𝑥

′
0)) and boundary conditions (e.g., 𝑑𝑝(𝑥′)/𝑑𝑥′ or𝑈∞ (𝑥′)). The streamwise free-stream

velocity distribution for the three calibration AOAs is shown in figure 7a, along with the momentum thickness predicted by the
modified Thwaites method (Agrawal et al., 2024) compared against our experimental PIV data in figure 7b. While the predictions
of the momentum thickness agree well with the overall data, discrepancies are noted near local extrema and downstream of the
trailing edge, particularly at −8◦, where the model underpredicts the TBL recovery, yielding a 15% error.

In figure 7(b-d) and figure 8 the prediction of the model proposed in this work is compared with the experimental data
described in section 2. The solver accurately predicts the evolution of the integral parameters (𝜃 and 𝛿∗), the skin friction
coefficient (𝐶 𝑓 ), and the values of 𝛽 which define the state of the layer and the PG history (𝛽, 𝑑𝛽

𝑑𝑥′ , 𝛽, 𝛽). Notably, the local
maxima and minima of 𝜃 near the wing are better captured compared to the model by Agrawal et al. (2024). The main difference
in predicting 𝜃 with Agrawal’s method (2024) is its reduced accuracy at peak values for strong APG and FPG cases at AOA = ±8◦.
This stems from its calibration with data from Bobke et al. (2017), where 𝛽 changes abruptly before stabilizing, unlike our
model, which accounts for more gradual variations in 𝑑𝑝

𝑑𝑥
. However, for 𝑥′ > 700, a slight increase in the predicted momentum

thickness error is observed (see figure 7(b)). This is attributed to the approximate nature of the von Kármán momentum integral
equation, which neglects Reynolds stress derivatives (Wei et al., 2024).

4.2 Developing Turbulent Boundary Layer underneath a NACA0012: validation
A first attempt to validate the proposed model is conducted by comparing its predictions with the streamwise evolution of the
boundary layer underneath the NACA0012 airfoil at angles of attack of −4◦ and 4◦. It is important to note that the calibration
of the model coefficients was performed using data only at AOAs of −8◦, 0◦, and 8◦.

The input data consists of the free-stream velocity distributions generated by the wing, as shown in figure 9a. The results,
presented in figure 9(b-d) and figure 10 alongside experimental data, demonstrate a good degree of accuracy. In using the
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(a)

(b)

(c)

(d)

Figure 7: Boundary conditions to the solver and predicted parameters: (a), dimensionless free stream velocity generated
underneath the NACA0012 profile; (b), dimensionless momentum thickness; (c), dimensionless displacement thickness; (d),
skin friction coefficient; circles, measurements; solid line, prediction by the model in Agrawal et al. (2024); dotted lines, solver
defined in the 2-D space; dashed bold lines, solver defined in the 3-D space; gradients of gray from light to dark, AOA = 8◦, 0◦,
−8◦; light-red box, region below the airfoil at AOA=0◦.
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(a)

(b)

(c)

(d)

Figure 8: Comparison between calibrated solver and experiments: (a) Clauser parameter 𝛽; (b), streamwise derivative of 𝛽; (c),
integral version of 𝛽 according to equation 14; (d), integral version of 𝛽 according to equation 16; circles, experiments; dotted
lines, solver defined in the 2-D space; dashed bold lines, solver defined in the 3-D space; gradients of gray from light to dark,
AOA = 8◦, 0◦, −8◦; light-red box, region below the airfoil at AOA=0◦.
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3-D parameter space, in particular, the model exhibits higher precision, especially in predicting the streamwise evolution of the
displacement thickness (figure 9(c)) and the skin friction coefficient (figure 9(d)).

An error of approximately 5% is observed in the local minima of the momentum thickness for the case of AOA = −4◦.
Despite this, the values of the Clauser parameter and the integral parameters describing history effects are well captured,
reinforcing the validity of the model for these conditions.

4.3 Validation with other datasets
Bobke et al. (2017) performed LES over a flat plate to assess the effects of different evolutions of 𝛽 (history effects) on
velocity profiles, skin friction, integral parameters, and turbulence statistics. Their 𝛽 profiles exhibit an initial rapid change (for
𝑥/𝛿∗0 < 50) followed by a nearly constant value over specific streamwise extents. This dataset is utilized to validate the extension
of the proposed models. The datasets under consideration are labeled in Bobke et al. (2017) b1 and b2, corresponding to 𝛽 = 1
and 𝛽 = 2, respectively, with nearly constant values in the range 𝑅𝑒𝜃 between 900 and 4000.

Figure 11 presents a comparison between the LES data and the predictions from the solver defined in the 3-D space where
the prediction calculations were started at 𝑥/𝛿∗0 ≈ 50 as the starting point for the space-marching algorithm. Figures 11a and 11c
show the boundary conditions imposed on the model (note that the entire history from the LES data is shown, however only the
region from 𝑥/𝛿∗0 ≥ 50 is used for the predictions). The results show that the model demonstrates excellent agreement with the
LES results validating the model’s applicability under these conditions. However, if the calculations were started at 𝑥/𝛿∗0 ≈ 5,
then the model does not accurately predict the values of 𝛽 and its integral form, 𝛽 (see figures 11(b,d) for 5 ≤ 𝑥/𝛿∗0 ≤ 20). In
fact, the results suggest that the overall shape of the distributions is captured but rapid changes in 𝛽 are not really captured by
the current model. This is related to the lack of sufficient training data for 𝑑𝛽/𝑑𝑥. Therefore, further work is required to capture
the effects of rapidly changing pressure gradients. Having said that, the model parameters (𝐴 and 𝐵) could be re-calibrated to
capture these high pressure gradients and their effects.

It is now clear that the proposed model provides reasonable predictions for almost all integral quantities as long as there are
no rapid changes in pressure gradient histories. With this model at hand, it might now be possible to explore different pressure
gradient history and its effects on integral quantities. The goal here would be to develop some understanding on the effect of
the spatial frequency of pressure gradient histories to the boundary layer flow. This is explored in the next section.

5 Response of a turbulent boundary layer to imposed PG histories
In Section 2, the experimental data presented allow us to observe the behavior of the TBL under varying PG distributions, which
serve as boundary conditions imposed on the developing boundary layer. From these observations, it can be inferred that the
evolution of the TBL is particularly influenced by the history of the pressure gradient. Specifically, the state of the TBL at a given
streamwise location 𝑥′

𝑏
depends on the entire PG distribution for 𝑥′ ≤ 𝑥′

𝑏
. This suggests the use of lag differential equations,

where the equation coefficients depend not only on local values of PG and its gradient but also on an integral parameter. This
term is defined as a weighted average of PG, providing a means to quantify the history of the pressure gradient. This approach
forms the basis of the model described in Section 3. In Section 4, the ODE-based model is first calibrated and then validated for
both non-equilibrium and near-equilibrium cases. Once the model is defined, calibrated, and validated, we extend its application
to a Fourier analysis to derive meaningful insights into the physical behavior of certain parameters governing the TBL evolution.

5.1 Spatial-frequency response of the system
The TBL under different pressure gradients can be conceptualized as a single-input-multiple-output system. The input in
this context is the pressure gradient distribution, 𝑑𝑝 (𝑥 )

𝑑𝑥
, which can be chosen as a sinusoidal function with varying spatial

frequencies, see figure 12(a). In this figure, the gradient from light to dark gray represents increasing spatial frequencies of the
input sinusoidal function defining 𝑑𝑝

𝑑𝑥
. These histories are not as rapid as those shown in the previous section and therefore the

proposed model should be able to capture their effects. By applying such sinusoidal PG distributions, the response of the system
can be evaluated to perform a frequency analysis. The frequency used in this analysis is a spatial frequency defined as multiples
of 𝜔0 = 2𝜋/𝐿′, where 𝐿′ represents the length of the region of interest over which the turbulent boundary layer develops. For
this study, 𝐿′ is set to 400𝛿∗0. The PG input is equivalent to having a free-stream velocity profile modulated by waves that span
the region of interest (see figure 12c). As 𝑥/𝛿∗0 increases, the amplitude of the oscillations in the pressure gradient parameter 𝛽
also increases (see figure 12(b)), indicating that pressure gradients progressively exert a stronger influence compared to shear
forces. Remarkably, the oscillations in 𝛽 remain bounded by consistent envelopes, regardless of the frequency. The parameter
𝛽 is introduced to represent the cumulative effects of the pressure gradients, weighted according to equation (16). As the
frequency of 𝑑𝑝

𝑑𝑥
increases, 𝛽 (see figure 12(d)) reaches the same maximum amplitude (𝛽 ≈ −0.075); however, the wavelength

16



(a)

(b)

(c)

(d)

Figure 9: Boundary conditions to the solver and predicted parameters: (a), dimensionless free stream velocity generated
underneath the NACA0012 profile; (b), dimensionless momentum thickness; (c), dimensionless displacement thickness; (d),
skin friction coefficient; circles, measurements; solid line, prediction by the model in Agrawal et al. (2024); dotted lines, solver
defined in the 2-D space; dashed bold lines, solver defined in the 3-D space; gradients of gray from light to dark, AOA = 4◦,
−4◦; light-red box, region below the airfoil at AOA=0◦.
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(a)

(b)

(c)

(d)

Figure 10: Comparison between calibrated solver and experiments: (a) Clauser parameter 𝛽; (b), streamwise derivative of 𝛽;
(c), integral version of 𝛽 according to equation 14; (d), integral version of 𝛽 according to equation 16; circles, experiments;
dotted lines, solver defined in the 2-D space; dashed bold lines, solver defined in the 3-D space; gradients of gray from light to
dark, AOA = 4◦, −4◦; light-red box, region below the airfoil at AOA=0◦.
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Figure 11: Application of the model to a quasi-equilibrium TBL (𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) simulated with LES from Bobke et al. (2017).
The model is calibrated with the flow developing underneath a NACA0012 profile. The solver starts at 𝑥/𝛿∗0 = 5 and 50 : (a),
dimensionless pressure gradient; (b), Clauser parameter; (c), dimensionless free stream velocity; (d), integral version of 𝛽; solid
lines, proposed model; dotted lines, Bobke et al. (2017); black, 𝑏1 simulations (𝛽 = 1); gray, 𝑏2 simulations (𝛽 = 2).
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of the oscillations decreases with higher frequencies. Hence, the damping effect on the 𝛽 oscillations increases with higher
input frequencies. This implies that spatial high-frequency oscillations in 𝑑𝑝

𝑑𝑥
propagate over shorter spatial regions, effectively

localizing the history effects to a smaller area (see figure 12(d)).
Figure 13 shows the corresponding predictions of skin friction, displacement and momentum thicknesses at different PG

frequencies, related to the predicted Clauser parameter (see figure 12(b)). The predicted momentum thickness (see figure 13(a))
matches the values modeled by Agrawal et al. (2024) for all input spatial frequencies. The displacement thickness (see figure
13(b)) follows trends similar to those of 𝜃 due to their connection through the shape factor (as in figure 6(c)). The skin friction
coefficient (see figure 13(c)) exhibits milder variations as the spatial frequency of 𝑑𝑝

𝑑𝑥
increases, which can be attributed to the

reduction in free-stream velocity fluctuations (see figure 12(c)).
From these observations, it can be inferred that both 𝛽 and 𝛽 exhibit behavior analogous to sinusoidally driven underdamped

oscillators, underscoring the dynamic response of the TBL to pressure gradient variations, being described by the second order
differential equation governing mass-spring systems with damping friction and subjected to external forces (Dekker, 1977):

𝑑2

𝑑𝑥2 (𝑦) + 2𝜁 (𝜔)𝜔0 (𝜔)
𝑑

𝑑𝑥
(𝑦) + 𝜔2

0 (𝜔)𝑦 =
𝐹 (𝑥, 𝜔)
𝑚(𝜔)

with: 𝑦 = [𝛽, 𝛽]

𝐹 (𝑥, 𝜔) =
[
𝑑𝑝(𝑥, 𝜔)
𝑑𝑥

] [
𝛿∗0

𝜌𝑈2
∞,0

] (11)

with 𝜁 , 𝜔0 and 𝑚 being respectively the damping ratio, natural frequency and mass of an equivalent under-damped spring-mass
oscillatory system, and 𝜔 is the frequency of the forcing input 𝐹 (𝑥). From a physical perspective, the newly introduced
parameter 𝛽, an integral form of 𝛽 that quantifies the effects of pressure gradient history, behaves as a modulated damped
harmonic oscillator when a TBL is subjected to sinusoidal boundary conditions. The cumulative effects of pressure gradient
history are estimated by the calibrated model and follow a distinct harmonic response. The novelty lies in the observation of
this behavior of 𝛽 and 𝛽. The transfer function of the system at a specific frequency 𝜔 is obtained with a Laplace transform of
the second order ODE in (11): 

𝑠2𝑌 (𝑠) + 2𝜁𝜔0𝑠𝑌 (𝑠) + 𝜔2
0𝑌 (𝑠) = 𝐹 (𝑠)/𝑚

𝐻 (𝜔, 𝑠) = 𝑌 (𝑠)
𝐹 (𝑠) =

1/𝑚(𝜔)
𝑠2 + 2𝜁 (𝜔)𝜔0 (𝜔)𝑠 + 𝜔2

0 (𝜔)

𝑠 = 𝜎 + 𝑗𝜔

(12)

The solution to the second order ODE in (11) is fitted to the output values in figure 12(b,d) to retrieve the values for the
damping ratio, natural frequency and mass of the system. Therefore, the frequency response follows the equations at a fixed
input frequency 𝜔 = 4 × 𝜔0: 

for 𝑦 = 𝛽

𝐻 (𝑠 = 𝑗𝜔, 𝜔 = 4 × 𝜔0) =
1/11.5

−𝜔2 − 𝑗 · 2 · 0.023 · 0.060𝜔 + 0.0602

for 𝑦 = 𝛽

𝐻 (𝑠 = 𝑗𝜔, 𝜔 = 4 × 𝜔0) =
1/10.8

−𝜔2 + 𝑗 · 2 · 0.617 · 0.047𝜔 + 0.0472

(13)

The same procedure can be applied at different frequencies to obtain complex numbers that encapsulate information about both
the damping and amplification of responses, represented in terms of 𝛽 and 𝛽 as shown in figure 12. The algebraic expressions
in 13 illustrate the complexities of the differential equations in 7 and 8 by analyzing the frequency-dependent behavior of the
Clauser parameter and the effects of pressure gradient history in a developing non-equilibrium turbulent boundary layer. These
results are derived from the model presented here. More specifically, equation 5.3 quantifies 𝐻, the transfer function of the TBL
under sinusoidal streamwise pressure gradients. For a given 𝑑𝑝

𝑑𝑥
, 𝐻 determines the corresponding output distribution 𝑦, which

can be either 𝛽 or its integral form, capturing pressure gradient history effects. A general PG distribution over the streamwise
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direction can be decomposed into 𝑁 sinusoidal components, each influencing the TBL through its respective 𝐻. This allows
experimentalists to estimate 𝛽 in wind tunnel experiments, improving the design of experiments.

Another input parameter in the chosen PG distribution ( 𝑑𝑝
𝑑𝑥

) that might have an impact on the predictions is the amplitude
(𝐴) of the PG modulation. To study this effects, increasing values of 𝐴 are set as inputs to the model in figure 14(a) at a
spatial frequency of 𝜔 = 2𝜔0. Figures 14(b) and 14(c) show that 𝛽 and 𝛽 still behave as damped harmonic oscillators, with
the only effect being on the amplitude of the fluctuations. Therefore, the change in amplitude does not impact the nature of the
mass-spring behavior of the TBL response in the Clauser parameter 𝛽 nor in the parameter quantifying the history effects of the
TBL; it merely amplifies or attenuates the magnitude of the fluctuations. Neverthless, further simulations and experiments are
necessary to explore and validate this linear behavior of the system, with 𝛽 and 𝛽 serving as outputs. The goal of this analysis is
to establish a foundation for a novel approach to characterizing the behavior of non-equilibrium TBLs under arbitrary pressure
gradients and/or spatially varying boundary conditions.

6 Conclusions
In this work, we propose a closure system that assists the von Kármán momentum integral equation with two ODEs describing
the streamwise evolution of skin friction and displacement thickness. This system accounts for the ”lag” or ”delay” response of
TBL integral parameters to pressure gradient changes, incorporating cumulative effects of pressure gradient histories through
calibration with systematic experimental data. These experiments involve observing TBL behavior under varying pressure
gradient fields generated by a NACA0012 airfoil with adjustable AOAs. The primary aim is to offer an alternative framework
for evaluating non-equilibrium TBLs without assuming mean velocity profiles, relying instead on the hypothesis that the layer’s
state is uniquely determined by the local, derivative, and integral values of the Clauser parameter, 𝛽. The solver’s viability is
demonstrated through comparisons with developing TBLs under pressure gradients produced by a wing at various AOAs and
large-eddy simulation (LES) data from Bobke et al. (2017). The main limitation of the calibrated model proposed in this work is
that it is restricted to 𝛽 = [−4, 2.6], 𝑑𝛽

𝑑 (𝑥/𝛿∗0 )
= [−20, 10], 𝛽 = [−0.25, 0.20] and 𝛽 = [−1, 1]. For flows whose values are beyond

these regions, then the model should be recalibrated and validated before further use. The model was used to develop some
understanding of the boundary layer response to imposed pressure gradient histories within this specified range of parameters.
Sinusoidal variations in pressure gradient histories were imposed to explore the variations in the flow. Results suggest that the
boundary layer behaves as an under-damped oscillator where low-amplitude high-frequency changes in imposed history only
have a local effect while low frequency variations are seen to affect larger portions of the flow. Future studies should explore
these scenarios in experiments and simulations while using this model for early stage predictions and improving the model
further using the obtained data.

It should be noted that the calibrated model presented here lacks full generalization for all developing TBLs under different
PGs, particularly those with strong derivatives of 𝛽 = 𝛽(𝑥). Specifically, we attempted to predict the integral parameters of
a TBL developing in a convergent-divergent wind tunnel (data from Volino et al. (2020)) but the results were unsatisfactory.
It remains unclear whether the issue is due to the model’s limited extendibility or the differing parameter ranges involved.
Nonetheless, the primary objective of this work is to provide a flexible framework that can be adopted by other researchers to
train the model using diverse datasets. To facilitate this, we will share both the code and the training data we used, which can
be modified and extended by others. As in Perry et al. (2002), our goal is to offer a set of ODEs with trainable coefficients that
can be adapted to various datasets, thereby enhancing the model’s applicability across different contexts.

Funding: This work was financially supported by the Engineering and Physical Sciences Research Council (EPSRC) through the grants
EP/V05614X/1 and EP/W026090/1.

Data statement: The data and the code will be made openly available via the University of Southampton repository upon publication.

Declaration of Interests: The authors report no conflict of interest.

A Pressure gradient history parameters
The coefficients (A and B in equation 9) of the data-driven models are defined as functions of three parameters that describe
the state of the TBL at a given streamwise position 𝑥′ = 𝑥/𝛿∗0: the Clauser pressure gradient parameter 𝛽, its local derivative
𝑑𝛽/𝑑𝑥′, and an integral form of 𝛽 that quantifies the history of the pressure gradients, denoted as 𝛽 or 𝛽. The choice between
𝛽 and 𝛽 depends on the selection of the dimensional parameter space used to define the model. The following subsections
describe these parameter spaces and their respective parameters in detail.
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Figure 12: Frequency response of the streamwise evolution of the Clauser parameter and pressure gradient history: (a),
dimensionless pressure gradient; (b), Clauser pressure gradient parameter; (c), Dimensionless free stream velocity; (d), Integral
version of 𝛽; gradients of gray from lighter to darker, 𝜔0, 2 × 𝜔0, 4 × 𝜔0, 8 × 𝜔0 (𝜔0 = 2𝜋/𝐿′, 𝐿′ = 400𝛿∗0).
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Figure 13: Frequency response of the streamwise evolution of: (a), dimensionless momentum thickness; (b), dimensionless
displacement thickness; (c), skin friction coefficient; gradients of gray from lighter to darker, 𝜔0, 2×𝜔0, 4×𝜔0, 8×𝜔0 (𝜔0 =

2𝜋/𝐿′, 𝐿′ = 400𝛿∗0); solid lines, proposed model; dotted lines, prediction from Agrawal et al. (2024).
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Figure 14: Amplitude effects on the streamwise evolution of the Clauser parameter and pressure gradient history: (a), dimen-
sionless pressure gradient; (b), Clauser pressure gradient parameter; (c), Integral version of 𝛽; grayscale gradient from lighter
to darker corresponds to increasing values of 𝐴 = 5, 10, 20, 40 · 𝛿0

𝜌𝑈2
∞

, where 𝐴 represents the amplitude of the 𝑑𝑝

𝑑𝑥
sinusoids with

spatial frequency 2𝜔0.
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A.1 Three-Dimensional parameter space
Vinuesa et al. (2017) established criteria to assess whether a TBL in an APG can be considered well-behaved, i.e., independent
of the inflow conditions. The term ’well-behaved’ in ZPG flows represents the canonical state. To account for the history effects
of (𝑑𝑝/𝑑𝑥′) in evaluating skin friction in APG cases relative to ZPG cases, they introduced an integral parameter 𝛽, which
represents a mean value over a range of 𝑅𝑒𝜃 . In computing this average, equal weight is assigned to all values from the onset
of the TBL evolution up to a specified 𝑅𝑒𝜃 (𝑥′𝑏). In our approach, we employ a similar averaging method but within a specified
streamwise window, highlighting the significance of local 𝛽 values in the averaging. Additionally, instead of integrating over
𝑅𝑒𝜃 , we perform the integration over 𝑥′ = 𝑥/𝛿∗0:

𝛽 =
1

𝑥′
𝑏
−
(
𝑥′
𝑏
− 𝑤

𝛿∗0

) ∫ 𝑥′
𝑏

𝑥′
𝑏
− 𝑤

𝛿∗0

𝛽(𝑥′)𝑑𝑥′ (14)

The integral is computed over a streamwise window of [𝑥′
𝑏
− 𝑤/𝛿∗0, 𝑥

′
𝑏
]. The size of the window 𝑤 is chosen to minimize the

error between the prediction ((...)𝑝) and the measure ((...)𝑚) of the displacement thickness:

𝑓5 =

√√√√∑︁
𝑗

∑︁
𝑖

[
𝛿∗
𝑗
(𝑥′

𝑖
)𝑚

𝛿∗0
−
𝛿∗
𝑗
(𝑥′

𝑖
)𝑝

𝛿∗0

]2

with 𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝐽 (15)

where 𝐼 denotes the number of streamwise points and 𝐽 the number of AOA tested. The optimization algorithm employed for
this problem is a genetic algorithm (GA), which identifies the global unconstrained minimum of 𝑓5 within the bounds [1, 450]
for 𝑤/𝛿∗0. The GA begins by generating a random initial population and evaluating the corresponding values of 𝑓5. A selection
process retains the best-performing solutions, discarding the rest of the population. Subsequently, the algorithm applies mutation
and crossover operators to create a new population. These steps are iteratively repeated until convergence is achieved. The
choice of a GA over other optimization routines is justified by two key factors (Verstraete et al., 2013). First, the GA performs
a global search, reducing the risk of becoming trapped in local minima. Second, it does not require an initial guess, allowing
it to converge to an optimal solution without prior assumptions. The three-dimensional (3-D) space defined by the values of
𝛽, 𝑑𝛽/𝑑𝑥′ and 𝛽 along the streamwise locations 𝑥 is shown in figure 15a for the five different AOAs under investigation. The
development of the TBL under a specific PG imposed by an AOA traces a trajectory in the 3D parameter space. In the section
4, it is discussed how to extract meaningful information from this dimensional space to predict the streamwise evolution of the
boundary layer.

A.2 Reduced-order parameter space
The previous paragraph shows that there is a clear relationship between 𝛽, 𝑑𝛽/𝑑𝑥′ and 𝛽 and therefore it may be possible to
further reduce these three parameters. We propose a reduced-order space (𝛽, 𝛽), where 𝛽 = 𝑓4 (𝛽, 𝑑𝛽/𝑑𝑥′, 𝑥′) is an integral
parameter that serves as an alternative to 𝛽. Here, the pressure gradient history effects is captured as a weighted average of all
values of 𝛽 from the start of the evolution (𝑥′0) of the TBL up to a specific point 𝑥′

𝑏
. Unlike the three-dimensional case, where a

windowing of the integral is used, in this case, 𝛽 involves a weighting function𝑊 :

𝛽 =
1

𝑥′𝑏 − 𝑥
′
0

∫ 𝑥′
𝑏

𝑥′0

𝛽(𝑥′)𝑊
(
𝑥′,

𝑑𝛽

𝑑𝑥′

)
𝑑𝑥′ (16)

The weighting is a two-dimensional sigmoid function, which assigns different weights to the values of 𝛽 within the range
[𝑥′0, 𝑥

′
𝑏
], depending on their streamwise distance from 𝑥′

𝑏
and the local gradient of 𝛽:

𝑊 (𝑠, 𝑡) =
(

1
1 + 𝑒−𝑘 (𝑠−0.5)

) (
1

1 + 𝑒−𝑘 (𝑡−0.5)

)
,

where: 𝑠 =
𝑥′ − 𝑥′0
𝑥′
𝑏
− 𝑥′0

and 𝑡 =
𝑑𝛽(𝑥′)
𝑑𝑥′

/ max
𝑥′∈[𝑥′0 ,𝑥

′
𝑏
]

(
𝑑𝛽(𝑥′)
𝑑𝑥′

) (17)

In general, the 1-D sigmoid function is used in weighting for its smooth, continuous transition between 0 and 1, with an
adjustable steepness controlled by the parameter 𝑘 , allowing for gradual or more abrupt changes. The −0.5 shift centers the
curve around 𝑠 or 𝑡 = 0.5, ensuring a smooth transition from values close to 0 at 𝑠 or 𝑡 = 0 to values close to unity at 𝑠 or 𝑡 = 1.
The 2-D shifted sigmoid function satisfies the ideal conditions 𝑊 (𝑠 = 0, 𝑡 = 0) = 0 and 𝑊 (𝑠 = 1, 𝑡 = 1) = 1, particularly for
𝑘 ≫ 1. The value of 𝑘 in equation (17) is determined similarly to 𝑤 (equation (14)) using a GA which finds the optimum in the
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Figure 15: Three-Dimensional and reduced-order domains for TBLs developing under a NACA0012 airfoil: (a) (𝛽, 𝑑𝛽

𝑑 (𝑥/𝛿∗0 )
, 𝛽)

is the 3-D space where the flow under investigation is defined; (b) (𝛽, 𝛽) is the 2-D space where the flow under investigation is
defined; gradients of gray from light to dark, AOA = 8◦, 4◦, 0◦, −4◦, −8◦.

range [0.1, 5]. The two-dimensional space defined by the values of 𝛽 and 𝛽 along the streamwise locations 𝑥′ is shown in figure
15b for the five different AOAs under investigation.
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