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ABSTRACT

We consider the problem of finding an optimal design under a Poisson regression model with a
log link, any number of independent variables and an additive linear predictor. Local D-
optimality of a class of designs is established through use of a canonical form of the problem and
a general equivalence theorem. The theorem is applied in conjunction with clustering techniques
to obtain a fast method of finding designs that are robust to wide ranges of model parameter

values. The methods are illustrated through examples.
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SUMMARY

We consider the problem of finding an optimal design under a Poisson regression
model with a log link, any number of independent variables and an additive linear
predictor. Local D-optimality of a class of designs is established through use of a
canonical form of the problem and a general equivalence theorem. The theorem is
applied in conjunction with clustering techniques to obtain a fast method of finding
designs that are robust to wide ranges of model parameter values. The methods are
illustrated through examples.

Some key words: Clustering; Locally optimal design; Log-linear models; Robust
design.

1. INTRODUCTION AND NOTATION

We consider experiments in which the ¢th response variable, Y;, is described by
a Poisson distribution with rate \; dependent on p independent variables through
the log-linear model:

P
ln()\i):Wi:f(iﬂi)Tﬁzﬁo‘i‘Zﬁj%ia i=1...,n, (1)

=1
where z; = (14, ..., 2,)", f(z;) = (1L, 27T, Bo, ..., [, are unknown constants, and

B; # 0 for j > 0 (see, for example, McCullagh & Nelder, 1989, Ch. 6). Our
aim is to find a design for an experiment which enables efficient estimation of § =
(Bo,---,3,)" in the sense of minimizing the volume of the 100(1 — )% confidence
ellipsoid for f3; that is, a D-optimal design. A complication is that, in common
with all non-linear models, the optimal design depends on the unknown values of
the model parameters. Locally optimal designs can be found by assuming particular



values for the parameters which can be updated in a sequence of experiments (see, for
example, Atkinson et al., 2007, Ch. 17). Alternative ways of overcoming parameter
dependence are through Bayesian design (Chaloner & Larntz, 1989; Firth & Hinde,
1997), maximin criteria (Sitter, 1992; Biedermann et al., 2006) and compromise or
parameter-robust design (Woods et al., 2006; Dror & Steinberg, 2006).

There is little guidance available on how to design a multi-variable experiment for
Poisson regression. For single variable toxicology experiments, Minkin (1993) found
locally optimal designs for estimation of the slope parameter in terms of an “effective
dose”, and compared the performance of the optimal designs with designs having
various different numbers of equally-spaced support points. For models with one or
two variables, Wang et al. (2006a) investigated the dependence of locally D-optimal
designs on functions of the parameter values and Wang et al. (2006b) developed
sequential designs. For a single variable, Ford et al. (1992) used a transformation
of the design space to a canonical form, together with geometric arguments, to find
locally optimal designs for a class of nonlinear models including Poisson regression.

Our aim is to determine closed-form locally D-optimal designs for several vari-
ables and first-order Poisson regression. These include designs of Wang et al. (2006a)

and Ford et al. (1992) as special cases. We demonstrate the usefulness of these de-
signs in the construction of efficient parameter-robust designs.

2. LocALLY D-OPTIMAL DESIGNS

An approximate design £ € = in design space X with finite support is represented
as

. 1 T2 ... Tg
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where x; € X, X' is a compact subset of R?, 0 < §; < 1 and > 7  6; = 1. Under
a first-order Poisson regression model with linear predictor (1) and log link, the
information matrix for £ is

M B) = Z5iw($i)f(95i)f($i)T
= );TWX,
;vhere w(z;) = exp(ny), X = (f(z1),..., f(z,)" and W = diag {d;w(x;)}, i =

We want to find a D-optimal design, £*, i.e. such that



[M(E", 5)] = max [M(E, 7).

In order to suppress the dependence of this design problem on (3, following Ford
et al. (1992), we apply a linear transformation to f(x;) to obtain

f(ZZ):Bf(.T1>, izla"wsa

where 2; = (215, ..., 2p1)T € Z,

By 0 1 0
B = By =
( 0 By > 7 " ( Bo B ) ’

Byy = diag{fs,...,0,} and 5; # 0 (j = 1,...,p). It follows from (1) that n; =
(Bflf(zi)T)T 6= Z§:1 zj;. Let ¢ € ¥ be a design measure over the induced design
space Z, then

i 21 R2 ... Zg
w‘{&52”.@}'

As the D-optimality design criterion is invariant to a linear transformation of the
design space (see, for example, Pukelsheim, 1993, Ch. 6), it is sufficient to find a
locally optimal design over W, as in the following Lemma.

LEMMA. A D-optimal design for the canonical first-order Poisson regression
model with n; = (Bflf(zi)T)Tﬁ = Z?Zl zji, where a; < z; < b;, for aj, b; con-
stants, and b; —a; > 2 (j=1,...,p), is given by

”’*:{ Yp+1) Yprl) - 1/<5++11>}’

where 27 = (by,...,by)" and z} has jth element b; — 20, k = 2,...,p+ 1, with
Ajx=11fj=Fk—1, and 0 otherwise.

The proof is outlined in the Appendix.

Ezample 1. Wang et al. (2006a) reported D-optimal designs for (1) with p =
1 and p = 2 and support points defined in terms of ¢ = X\;/\., where \, =
exp(fo) and A\; = exp(n;). In their context of toxicity studies, where z;; > 0
and B; < 0(z = 1,...,s;7 = 1,2), the canonical variables satisfy z1; < [,
29; < 0. The D-optimal support points are {z;: (o, Bo—2} for p = 1, and {(z1, 22):
(80, 0), (Bo—2,0), (B, —2)} for p = 2. At these support points, ¢; = 1, g2 = exp(—2)
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for p =1, and ¢ = 1 and ¢ = g3 = exp(—2) for p = 2, matching the results from
Wang et al. (2006a).

An optimal design in X space for finitely bounded variables follows directly from
the Lemma by application of the inverse transformation to obtain f(x;) = B~ f(z;),
i=1,....p+1.

THEOREM. A D-optimal design for Poisson regression with n; = f(x:)*3, l; <
i < wuj and |Bi(u; — ;)| > 2 (5 =1,...,p) has p+ 1 equally weighted support
points:

‘rE)IIK = <_50/51+b1/617b2/ﬁ27"'7bp/5p)Ta
w5 = (=Bo/Br+ (by —2)/B1,by/Ba, .. b/ )",
r; = (=Bo/Bi+b1/B1,bs/Bs, ..., (bia _2)/ﬁi—1abi/6i7'"abp/ﬁp)Ta

where 1 =3,...,p+ 1 and b; is defined in the Lemma.

Remark 1. In practice, the requirement |3;(u; — ;)| > 2 in the Theorem is not
overly restrictive. For example, the use of the standardised design space [—1,1]?
requires |3;| > 1, j=1,...,p.

Example 2. For p = 2, suppose that 3 = (1, —2,3)T, and xy; € [0, 10], zo; € [0, 12]
(¢ =1,...,s). Then the design with equally weighted support points {(z1;, z2;) :
(0,12), (1,12),(0,34/3)} is D-optimal.

Remark 2. When b; — a; < 2 for some j =1,...,p, it can be shown that the D-
optimal saturated design for the canonical model has equally weighted support points
21 = (bl, bg, ce ,bp)T, Zi = (bl7 PN ,max(bi_l — 2, ai_l), bi, ce ,bp) (’L = 2, N 7p) Ford
et al. (1992) proved that this design is D-optimal for p = 1 over V. In general,
the D-optimal design over V¥ is not saturated when b; — a; < 2 for some j. For
example, if 3 = (—0.91,0.04,—0.69)T and x;; € [-1,1] (i = 1,...,s; j = 1,2), then
21 € [—0.95,—0.87], 2z € [—0.69,0.69] and the D-optimal design has four support
points.

3. ROBUST DESIGN

Often experimenters have little information about parameter values prior to ob-
serving the data. Woods et al. (2006) found compromise designs for GLMs which are
robust to wide ranges of parameter values. Dror & Steinberg (2006) approximated
these methods by using a K-means clustering algorithm (see, for example, Hastie
et al., 2001, Ch. 14). The design points from a large number of locally optimal
designs were found by computer search for ranges of parameter values; the cluster
centroids were then used as equally weighted support points of a cluster design. The
use of the Theorem in Section 2 allows the efficient computation of a cluster design,
£¢, by removing the need to perform computer searches, as follows.
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ALGORITHM

1. Define a parameter space B for 3, and a design space X that satisfies the
Theorem for all B € B.

2. Generate Ny vectors Bs; (j = 1,...,Ny) from B using quasi-random numbers

(Gentle, 2003, Ch. 3).
3. For each (3s;, apply the Theorem to construct a locally optimal design & .
4. Apply a clustering algorithm to the total Ny(p + 1) design points (see below).

5. Use each cluster centroid as an equally weighted support point of £°.

Ezample 3. Suppose that p = 2, xy;,29; € [-1,1] (i = 1,...,p+ 1) and B =
[—a,+a] x [1,1 4+ a] x [-1 — o, —1], with @ > 0. Fig. 1 shows the ensemble of
design points from the locally D-optimal designs obtained from the Theorem using
N, = 1000 values of 3 for each of a = 1,2,5,10,15,20. All the designs include the
point (1,1). For the remaining points, the spread of values for x1; and x9; increases
with increasing «, reflecting increasing uncertainty in the value of 3.

Fig. 1 suggests that the natural clusters in the design points are not well de-
scribed by spherical clusters of equal volume and hence a more flexible clustering
algorithm than K-means may be advantageous. We compared K-means with the
model-based clustering algorithm of Fraley & Raftery (2002), which is based on a
mixture of normal distributions with possibly differing covariance matrices. We also
investigated the number of support points, i.e. clusters, that should be selected. To
allow the estimation of the variance components in the model-based clustering, the
locally optimal design points were “jittered” slightly through the addition of a small
amount of uniform random noise.

Ezxample 3 cont. For each of K-means and model-based clustering techniques,
a cluster design was formed with s = 3,...,22 support points for each of a =
1,2,5,10,15,20. The efficiency of each cluster design was calculated for each value
of 3 as {|M(§C,ﬁsj)\/\M(ﬁ*,ﬁsjﬂ}l/p (j=1,...,N;). Fig. 2 shows how the median
and minimum efficiencies vary with s and a. The use of model-based clustering
frequently results in higher median and minimum efficiencies than K-means. This
is often achieved with fewer support points, as for a = 5,10, where the designs with
highest efficiencies are found from model-based clustering and have three support
points (1.0,-1.0), (0.3,-1.0), (1.0,-0.3) and (1.0,-1.0), (0.54,-1.0), (1.0,-0.54) respec-
tively. As « increases, the parameter space B increases in volume and hence ef-
ficiencies are lower relative to locally optimal designs. The more efficient designs
for a = 15,20 have a greater number of support points than for smaller a, with
K-means designs requiring more support points than the designs from model-based
clustering.

This method is particularly useful for designs with large numbers of variables,
as needed for screening experiments. To avoid the need to perform a post-hoc
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Fig. 1: Design points (o), often overlapping, from 1000 locally optimal designs for

two variables for each parameter space of Example 3.

evaluation of designs with many different numbers of support points, as in Example
3, standard metrics from the unsupervised learning literature for the selection of
the number of clusters can be employed, such as the Bayesian Information Criterion

(BIC; Fraley & Raftery, 2002).

Example 4. For p = 10 variables and a first-order Poisson regression model and

X1

log link, suppose a robust design is required across the following parameter space:

[—a,+a] for k=0,

Bk € [1,1+a] fork=1,3579,

[—1—«,—1] for k=2,4,6,8,10.
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Fig. 2: Median and minimum efficiencies against number of support points (s =
3,...,22) for the cluster designs for Example 3: K-means (dashed); model-based
(dotted).

Cluster designs were found and evaluated using model-based clustering for (2)
with a = 1,2,3 and Ny = 1000. For each robust design, the number of support
points (clusters), chosen using BIC, was found to be equal to 21. Table 1 gives
the median and minimum efficiencies across B and shows that, for each value of «,
the cluster design performs well across the parameter space. As in Example 3, the
median and minimum efficiencies decrease as « increases but good performance is
maintained even for a = 3. The use of the BIC statistics allows an informed choice
of the number of support points without needing to evaluate more than one design.



Table 1: Median and minimum efficiencies for the model-based cluster designs in
Ezample J, with parameter spaces defined through (2)

a=1 a=2 a=3
median eff. 0.936 0.877 0.748
minimum eff. 0.895 0.803 0.633

4. (CONCLUSIONS

The results presented in this paper allow the analytic construction of D-optimal
designs for first-order Poisson regression with a log-link, and demonstrate their use
in the fast construction of designs robust to parameter values. First-order models
are commonly used in practical data analysis, and are particularly appropriate for
the analysis of data from experiments in the early stages of scientific investigations.
Hence the design methods from this paper are particularly important for screening
experiments, which may involve a large number of variables. The use of the Theorem
enables much larger problems to be tackled than computer search currently allows.
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APPENDIX

Proof of the Lemma

The result is proved using a general equivalence theorem (Atkinson et al., 2007,
p. 122) and, specifically, by proving that the standardised variance of the predicted
response at point zg, d(zp,¥*) = w(20) f(20)TM 1 (W*) f(20) < p+ 1 for all 25 € Z,
where M (v*) is the information matrix for the design ¢* defined in the Lemma.
Some algebra establishes that the symmetric matrix M ~1(¢*) has (i, j)th entry

p+1 mii
dexp(3o7, bi)

where m" = (2 =370 b)2+e2> 0 b mY =2 -3 b —ebj_q, m¥ =1+¢€

(2<j<pti)andmi=1(2<i<j<p+]l). Further,

. p+1 p p
d(Zo, (0 ) = 4 €xXp Z Zi0 — Z b; 9(20) )
i=1 i=1

where



p+1 p ptl p+1

9(z0) = m' + 2 Z m“Z(i_no +2 Z Z mijz(i—l)oz(j—l)o + Z m“Z(Qiq)o .
i=2

i=2 j=i+1 i=2

It is easy to show that d(zf,¢*) =p+1,i=1,...,p+ 1. The Karush-Kuhn-Tucker
theorem provides the following necessary conditions for the constrained maximisa-
tion of d(zp,1*) to be achieved:

ad(Z(J? w*)

s = Al
azjo H’] 0 ’ ( )

subject to

/,Lj(bj — ZjO) = 0, M > 07 250 < bj s (AQ)

for j = 1,...,p, where the p; are Lagrange multipliers. If p; > 0 for every j,
then (Al) and (A2) imply that z;y = b; and d(zp,%*) = p+ 1. If p; = 0 for

at least one j, without loss of generality, set yuy = ... = pu, = 0 (1 < r < p).
Then to satisfy (A2), 24410 = brg1, ..., 20 = bp. From (Al), after some algebra,
zja = bj —c, i = 1,...,r, where ¢ = 2/r or ¢ = 4/(r + €*). For each solution,

dd/0z}y > 0 (i = r+1,...,p) and hence, from (Al), p; > 0, satisfying (A2). As
d(z0,0*) = c(p+1)/2if ¢ = 2/r, and d(zp,v*) = (p+ 1) exp(—rc) if ¢ = 4/(r + €?),
the maximum value of d(zy,?*) over Z is p + 1 when r = 1. Therefore, from the
general equivalence theorem, ©* is D-optimal. U
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