
Sleep Medicine Reviews 75 (2024) 101926

Available online 21 March 2024
1087-0792/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Sex differences in sleep, circadian rhythms, and metabolism: Implications 
for precision medicine 

Renske Lok a,*, Jingyi Qian b,c, Sarah L. Chellappa d,** 

a Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA 
b Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Females’s Hospital, Boston, MA, USA 
c Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA 
d School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom   

A R T I C L E  I N F O   

Handling Editor: M Vitello  

Keywords: 
Sex differences 
Sleep 
Circadian 
Metabolism 
Precision medicine 

A B S T R A C T   

The number of individuals experiencing sleep loss has exponentially risen over the past decades. Extrapolation of 
laboratory findings to the real world suggests that females are more affected by extended wakefulness and 
circadian misalignment than males are. Therefore, long-term effects such as sleep and metabolic disorders are 
likely to be more prevalent in females than in males. Despite emerging evidence for sex differences in key aspects 
of sleep-wake and circadian regulation, much remains unknown, as females are often underrepresented in sleep 
and circadian research. This narrative review aims at highlighting 1) how sex differences systematically impinge 
on the sleep-wake and circadian regulation in humans, 2) how sex differences in sleep and circadian factors 
modulate metabolic control, and 3) the relevance of these differences for precision medicine. Ultimately, the 
findings justify factoring in sex differences when optimizing individually targeted sleep and circadian in
terventions in humans.   

Glossary of terms 

Actigraphy 
The use of a wrist-worn device designed to gauge patterns of rest and 

activity. 
Acrophase 
Highest point of activity within a 24-hour period. 
Core body temperature 
The temperature of the body’s internal organs. 
Cortisol awakening response 
The change in cortisol concentration in the first hour after waking up 

from sleep. 
Circadian Rhythms 
Natural rhythms with a cycle length of approximately 24 h, reoc

curring even without fluctuations in light. 
Circadian disruption 
Disturbance of biological timing, which can occur at different orga

nizational levels and/or between different organizational levels, ranging 
from molecular rhythms in individual cells to misalignment of behav
ioral cycles with environmental changes. 

Circadian misalignment 
Misalignment between the endogenous circadian system and 24-h 

environmental and behavioral cycles. 
Cohen’s D (d) 
A statistical measure used to quantify the effect size of the difference 

between two groups in a research study. 
Endogenous 
Originating from within an organism. 
Energy balance 
The state achieved when the energy intake equals energy 

expenditure. 
Epidemiology 
The study (scientific, systematic, and data-driven) of the distribution 

(frequency, pattern) and determinants (causes, risk factors) of health- 
related states and events (not just diseases) in specified populations 
(neighborhood, school, city, state, country, global). 

Forced desynchrony 
An experimental design used in human circadian rhythm research to 

disentangle endogenous circadian rhythms from effects of homeostatic 
sleep pressure. 
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A hormone primarily produced in the stomach, often referred to as 
the “hunger hormone,” as it plays a significant role in regulating appe
tite, hunger, and energy balance. 

Glucose tolerance 
The body’s ability to regulate blood sugar (glucose) levels effectively 

after consuming a specific amount of glucose within a certain period. 
Hedonic eating 
The consumption of food for pleasure rather than for physiological 

hunger. 
Insomnia 
Difficulty falling asleep, staying asleep, or early morning awakenings 

more than three times per week for over three months. 
Interdaily stability: 
A measure of day-to-day stability or consistency of a rhythmic 

pattern over multiple days 
Intradaily variation: 
A measure of how consolidated the rest-activity rhythm is within a 

24-hour period. 
Jetlag 
A temporary disorder that occurs when a person’s internal biological 

clock is out of sync with the time zone they are in after traveling across 
multiple time zones. 

Leptin 
A hormone produced by fat cells (adipocytes) referred to as the 

“satiety hormone” because of its role in controlling hunger and appetite. 
Melatonin 
The nocturnal hormone secreted by the pineal gland during circadian 

evening and in the absence of external light information. 
Menstrual cycle 
A monthly hormonal cycle that prepares a woman’s body for 

pregnancy. 
Metabolic disease 
A cluster of conditions that occur together, including hypertension, 

hyperglycemia, and cholesterol, increase the risk of heart disease, 
stroke, and type 2 diabetes. 

Metabolism 
The internal processes that convert nutrients from food and drinks 

into energy used for bodily functions. 
Mesor 
The average level of activity around which the daily rhythmic 

pattern fluctuates. 
Obstructive sleep apnoea 
A sleep-related breathing disorder involves a decrease or complete 

halt in airflow despite an ongoing effort to breathe. 
Parasomnias 

Unusual and undesirable physical events or experiences that can 
disrupt sleep. 

Phase angle 
The time difference between an internal circadian marker (such as 

the dim light melatonin onset) and a repetitive external event (such as 
the onset or offset of sleep). 

Polysomnography 
A diagnostic test that is conducted to evaluate and study sleep pat

terns and disorders, during which a patient is connected to various 
sensors and monitoring devices that measure brain activity, eye move
ments, muscle activity, heart rate, breathing patterns, and oxygen levels. 

Pseudo-F 
Used to assess the overall fit of the model to the observed rhythmic 

patterns in activity levels. 
Restless legs syndrome 
A neurological disorder characterized by uncomfortable sensations 

and the urge to move. 
Sex differences 
Sexually dimorphic traits. 
Shift work 
A work schedule that falls outside the typical 9 a.m. to 5 p.m. 

working hours. 
Sleep 
A condition of body and mind that typically recurs for several hours 

every night, in which the eyes are closed, the postural muscles relaxed, 
the activity of the brain altered, and consciousness of the surroundings 
practically suspended. 

Sleep deprivation 
The condition of not having enough sleep. 
Sleep latency 
The time it takes a person to fall asleep after intending to go to sleep. 
Sleep quality 
An individual’s satisfaction with all aspects of the sleep experience. 

This can be assessed through either self-report or polysomnography. 
Social jetlag 
The misalignment between an individual’s circadian rhythm and 

their socially imposed schedule occurs when people must shift their 
daily routines, such as waking up and going to bed, on workdays 
compared to non-workdays, leading to a kind of “jetlag” experienced not 
from traveling across time zones but from the inconsistency in sleep 
patterns. 

Tau 
The length of the intrinsic circadian period of an organism. 

1. Introduction 

Sleep is a crucial biological function for maintaining physical and 
mental health. According to the National Institutes of Health, 1 in 3 
adults in the United States experience sleep deprivation, and 50 to 70 
million Americans have chronic sleep disorders [1]. Historically, 
biomedical research has been biased against female and non-human 
female mammals. Justifications include the assumption that findings 
derived from male subjects are universally applicable or fearing that 
hormonal variations in females might add complexity to study designs 
and interpretation of results [2]. However, emerging studies have shed 
light on distinctive sleep patterns in males and females, including sleep 
quality, duration, latency, and architecture [3,4]. These variations may 
be rooted in differences in circadian rhythms, such as core body tem
perature and melatonin levels, which differ between the sexes [5,6]. 

The implications of these sex disparities in sleep and circadian 
biology are profound and extend to overall health. For instance, short- 
term sleep deprivation heightens the brain’s response to pleasurable 
food stimuli, particularly in females, who exhibit 1.5 times higher limbic 
region activity in response to sweet foods than males [7]. Additionally, 
when individuals experience circadian misalignment, sex differences in 
metabolism become more pronounced, such that males engaged in shift 

Abbreviations 

CAR Cortisol Awakening Response 
CBT Core Body Temperature 
fMRI functional Magnetic Resonance Imaging 
FSH Follicle-Stimulating Hormone 
ICD-10 International Classification of Diseases, Tenth Revision 
IS Interdaily Stability 
IV Intradaily Variability 
LH Luteinizing Hormone 
NREM Non-Rapid Eye Movement 
OSA Obstructive Sleep Apnoea 
PSG Polysomnography 
REM Rapid Eye Movement 
RLS Restless Legs Syndrome 
SHBG Sex Hormone Binding Globulin 
TDM2 Type 2 Diabetes Mellitus  
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work have a higher risk of Type 2 Diabetes Mellitus (T2DM) than fe
males [8,9]. As society moves towards a more personalized approach to 
healthcare, embracing technological advancements and evidence-based 
practices makes understanding these sex-based differences pivotal. 

In this narrative review, we discuss the profound influence of bio
logical sex on sleep, sleep disorders, circadian regulation, and their 
relevance to metabolic control in humans. Due to the limited research on 
this research topic, though it is expanding and holds high translational 
relevance, there are currently minimal evidence-based approaches 
applicable to precision medicine. This is the reason for conducting an 
unstructured narrative review instead of a systematic review, given the 
scarcity of randomized controlled trials on this central research topic. 
Our narrative review thus explores these differences and highlights their 
potential implications for crafting personalized interventions based on 
sex, leading the path toward precision medicine. 

2. What are sex and gender differences? 

Sex pertains to the biological and physical attributes that commonly 
differentiate males from females. It is determined by a combination of 
factors, including reproductive anatomy (such as genitals and repro
ductive organs), chromosomes (XX for females and XY for males in most 
cases), and hormones (such as estrogen and testosterone). Traditionally, 
sex has been categorized as male or female, but some individuals are 
born intersex, displaying variations in their sex characteristics that do 
not align with typical male or female definitions. In contrast, gender 
refers to the social, cultural, and psychological aspects of being male or 
female [10]. It encompasses the roles, behaviors, activities, and expec
tations a specific society deems appropriate for males and females. 
Unlike sex, which is primarily rooted in biological factors, gender is a 
social construct that varies across cultures and societies [10]. This 
narrative review focuses on sex-based differences between (pre-meno
pausal) females and males. 

3. The menstrual phase 

Females undergo hormonal changes over an average monthly cycle 
lasting approximately 26–30 days, while hormonal concentrations in 
males remain relatively constant [11]. The female menstrual cycle 
comprises four phases marked by shifts in reproductive hormones, 
including estrogen and progesterone, which influence mood, cognition, 

and other physiological processes that can introduce variability in the 
responses to experimental intervention [12]. Hormonal contraceptives, 
on the other hand, ranging from oral contraceptives to intrauterine de
vices, can impact hormonal profiles and thereby also influence study 
outcomes. Considering these factors is imperative as they can confound 
research findings, leading to misinterpretations or oversights in 
sex-specific effects. While recognizing the significance of considering 
menstrual phase and contraceptive use in sex-difference research, this 
narrative review does not delve into their intricacies. Instead, our focus 
is on acknowledging their importance and assessing whether the cited 
studies reported and controlled for these factors. 

4. Sex differences in sleep 

4.1. Self-reported sleep quality 

In field and epidemiological studies, evaluating sleep quality is 
commonly achieved through self-report [13], utilizing questionnaires 
(such as the Pittsburgh Sleep Quality Index), or sleep-wake diaries. The 
perceived sleep quality is influenced by sex, such that females generally 
rate their sleep quality as lower than males [14], independent of dif
ferences in socio-demographical and/or lifestyle factors [15] (Fig. 1). 
Females are approximately twice as likely to develop anxiety disorders, 
which are associated with lower sleep quality [16]. While self-reported 
sleep quality does not correlate well with objective measures of sleep 
(with N2 sleep being the highest predictor of perceived sleep quality but 
merely explaining 7% of the variance [13]), the relationship between 
these measures tends to be better in males than in females [14]. Females 
report more monthly fluctuations in self-reported sleep quality, such 
that more sleep disturbances, including insomnia, frequent awakenings, 
non-restorative sleep, unpleasant dreams or nightmares, are reported 
during the premenstrual week and the first days of menstruation 
compared to other menstrual phases [17]. 

4.2. Objective sleep quality - Polysomnography 

Sex-based differences in sleep as measured by polysomnography 
(PSG) have important implications for personalized sleep medicine and 
treatment approaches. PSG is currently considered the gold standard for 
measuring sleep in laboratories or clinics [18]. 

Fig. 1. Conceptual framework of sex differences in sleep and circadian rhythms. This schematic diagram encapsulates the current understanding of sex-based 
differences in self-reported sleep quality [13–16], rest-activity sleep-related parameters derived from wrist-worn wearables [86], laboratory-assessed sleep archi
tecture and EEG activity [18–29,31–36], as well as the risk of sleep disorders (blue boxes) [4,37–48,51,53–56,145]. Likewise, it summarizes the current evidence on 
sex differences in self-reported circadian proxies as chronotype, social jetlag, laboratory-assessed melatonin secretion [6,69,70] [67] and circadian phase and period 
estimates [83–85], as well as circadian sleep-wake disorders (orange boxes). Bold-lined boxes (blue: sleep, orange: circadian) indicate robust evidence, whereas 
dashed-lines boxes (blue dashed lines: sleep, orange dashed lines: circadian) indicate preliminary evidence. Abbreviations: PSG: polysomnography; EEG: electro
encephalography. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4.2.1. NREM sleep 
In a laboratory-based study with 13 males and 15 females, variations 

in the duration of non-REM (NREM) sleep were observed, indicating 
slightly longer (~8 min) durations of NREM sleep in females [19], and 
50% more delta frequencies during NREM sleep. While for 6 of the fe
males, the exact menstrual phase was unknown, no recordings were 
made during menses, and the other nine females used oral contracep
tives. These inconsistencies may have affected the reported findings. 
Due to differences in the experimental protocols, not all nights were 
terminated spontaneously. Therefore, total sleep time could not be 
compared between the sexes. A retrospective analysis of 6064 poly
somnographically recorded sleep cycles revealed a minor sex-related 
difference [20]. In this study, the second NREM cycle was slightly 
longer for females at various menstrual cycle phases than for males 
(~10 min) [20]. Considering that the percentage of time spent asleep is 
higher in females (refer to 4.2.3 Sleep efficiency), it is probable that this 
time is dedicated to NREM sleep [21]. While the total amount of NREM 
sleep decreases with age, significant declines are reported in (40–80 
years) older males than in females [22,23]. This may, in part, be influ
enced by changes in testosterone production, which progressively de
creases at an average rate of 1–2% per year in males, starting at the age 
of 40 [24]. Compared to males with high testosterone levels, males with 
lower concentrations have a ~3% lower sleep efficiency, increased 
occurrence of nocturnal awakenings (±13 min), higher 
apnoea-hypopnea index (2.78 more apnoea and hypopnea events), and 
more sleep time (±14.5 min) with O2 saturation levels below 90% [25]. 
Currently, there is a lack of human studies documenting the influence of 
estrogen on PSG-recorded sleep, which \warrants consideration in 
future research. 

4.2.2. REM sleep 
The timing of REM sleep is earlier in females than males, particularly 

during the luteal phase of the ovulatory menstrual cycle (±16.3 min) 
[26]. Additionally, during the follicular phase, females tend to experi
ence a rise in the percentage of time spent in REM sleep, increasing from 
approximately 25.2% (± 4.0%) compared to the luteal phase (20.5 ±
4.7%). This corresponds with elevated body temperature levels observed 
during the luteal phase [27]. 

4.2.3. Sleep efficiency 
The percentage of time spent asleep is higher in females (76.8 ±

0.5%) than in males (74.0 ± 0.6%), when given a similar time in bed 
(477.0 ± 0.6 min in females and 475.4 ± 0.7 min in males) [21] (Fig. 1). 
These effects were evaluated without considering the menstrual phase or 
oral contraception usage. A comparable pattern is observed in female 
children (84.9 ± 6.0%) compared to male children (83.2 ± 5.7%) [28]. 
However, as individuals age (>58 years), differences in total sleep time 
and sleep efficiency based on sex diminish [29]. While there are statis
tically significant differences in sleep efficiency based on sex, their 
clinical relevance is yet to be determined. Females tend to have a 
marginally lower sleep efficiency during the premenstrual phase (96 ±
0.6%) compared to other menstrual phases (97 ± 0.4%) [30]. 

4.2.4. Sleep characteristics 
Compared to males, females in the follicular phase of their menstrual 

cycle reportedly have higher slow wave sleep amplitude (5 μV), larger 
slow wave slopes (20 μV/s), and frequencies (0.05 Hz difference), 
possibly due to a greater neural slow wave sleep synchronization [31] 
(Fig. 1). Overall, females tend to have higher power densities during 
NREM (225 μV2) over a wide frequency range (0.25–11.0 Hz) [19], but 
these effects were assessed in a mixed population, with approximately 
half of the females using oral contraception and the others experiencing 
natural cycling. Although no recordings were conducted during menses, 
the authors did not provide information on the menstrual phase of the 
participants. Females also tend to have higher spindle density (7.25 
more spindle responses/minute in N3 stage sleep) [32] and higher peak 

frequencies of both slow (11–13 HZ) and fast (13–15 HZ) spindles [33]. 
The menstrual phase at which measurements took place or the usage of 
oral contraception by participants were not reported in either study. The 
frequency of sleep spindle activity appears to correlate with variations in 
core body temperature, with the highest spindle frequency occurring 
during the luteal phase [34]. 

Sex-based differences in PSG might not be due to differences in brain 
waves per se. Differences between the sexes in skull structure, sub
scapular skin fold thickness [35], or skin conductance [36] influence 
PSG measurements and outcomes. Consequently, the reported dispar
ities could be attributed to these factors rather than inherent sex-based 
differences in brain waves. 

4.3. Epidemiology of sex differences in sleep disorders 

4.3.1. Insomnia 
Insomnia is associated with low self-reported sleep quality and more 

daytime dysfunction (American Psychiatric Association Diagnostic and 
Statistical Manual of Mental Disorders (DSM-5®). Washington, DC: 
American Psychiatric Pub; (2013). Insomnia is a major health challenge 
in the general population, and sex differences have been well-studied 
[37]. A large body of evidence shows that females are more often 
diagnosed with insomnia than males are (odds ratio [OR] = 1.58) [38, 
39]. This could, in part, be due to many contributing factors to insomnia 
that are more prevalent in females than males (Fig. 1). For example, 
insomnia is strongly associated with major depressive disorder (OR =
2.83) and anxiety disorders (OR = 3.23) [40–42], which are also more 
prevalent in females [43]. Since females are more likely to report 
symptoms of insomnia, they are also twice as likely to report these to 
their physician [44], increasing the number of insomnia diagnoses [45, 
46]. 

4.3.2. Obstructive sleep apnoea (OSA) 
The diagnosis of OSA is almost three times more common in males 

than in females [47]. This difference may be attributed to the distinct 
manifestation of OSA symptoms in females, who tend to report more 
issues with insomnia and fatigue, while males often complain about 
excessive daytime sleepiness [47]. Factors contributing to the higher 
occurrence of OSA in males involve physiological variances in upper 
airway composition [47] and differences in neuromuscular reflexes to 
upper airway collapse [48]. In females, upper airway resistance is 
affected by the menstrual phase, with lower resistance observed in the 
luteal phase (5.69 ± 3.88 cm H2O/L per second) compared to the 
follicular phase (7.68 ± 4.68 cm H2O/L per second) [49]. OSA may, 
therefore, be overlooked in a diagnostic study conducted in the luteal 
phase. 

The presence of OSA in females is associated with a heightened risk 
of heart failure, which is not observed in males (OR: 1.25 [1.02–1.52] 
for females, and 0.98 [0.84–1.14] for males) [50]. In a follow-up con
ducted 13 years later within the same study, it was observed that females 
had a greater occurrence of mortality compared to males (HR: 1.26 
[1.05–1.50] for females and 1.12 [0.98–1.29] for males) [50]. Notably, 
fat mass distribution can pose a risk factor for OSA in both sexes, with 
visceral adiposity as a risk factor for OSA in males, while in females, fat 
around the upper airway contributes to OSA [49]. Despite persistent 
assumption, testosterone levels most likely play a minor role in exac
erbating or inducing changes in OSA [51]. The occurrence of OSA in 
females increases two-fold following menopause, regardless of age and 
body mass index. Of note, the highest prevalence is observed at 65 years, 
10 years later than in males [52]. 

4.3.3. Restless legs syndrome (RLS) 
RLS is primarily attributed to fluctuations in dopamine levels, and 

females have a 25–50% higher likelihood of developing RLS than males 
due to these fluctuations [53]. Estrogen, a hormone that suppresses 
dopamine release [54], is also believed to play a role in the risk of RLS 
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[55]. 

4.3.4. Parasomnias 
Sleep-related eating disorder, a prevalent parasomnia characterized 

by repetitive eating episodes during sleep, occurs 1.5 to 4 times more 
frequently in females [56]. There is limited evidence suggesting 
increased premenstrual sleep terrors and sleepwalking [57]. 

4. 4. Summary  

• Self-reported sleep quality is influenced by sex differences, such that 
females tend to rate their sleep quality as lower than males. 

• PSG measures highlight marginal but statistically significant varia
tions between males and females in NREM and REM sleep. 

• Females exhibit a higher prevalence of insomnia, RSL, and para
somnias, whereas males demonstrate a higher prevalence of OSA. 

5. Sex differences in circadian rhythms 

Circadian rhythms are physical, mental, and behavioral changes that 
follow a 24-h cycle and are sustained in the absence of external time 
cues. These natural processes respond primarily to the light-dark cycle 
and affect most living organisms, including humans, animals, plants, 
and microbes. Female reproductive physiology in humans is under 
robust circadian control [58,59]. A recent meta-analysis of 16 cohorts (n 
= 123,403) showed that females engaged in shift work (which can 
disrupt circadian rhythms) have increased odds of menstrual cycle 
disruption and infertility by ~22% and ~30%, respectively, compared 
with females not engaged in shift work [60]. Hormones related to these 
functional outcomes have been reported to exhibit 24-h rhythms under 
normal sleep-wake, meal, and lighting conditions [61]. Under strin
gently controlled circadian laboratory protocols, endogenous circadian 
regulation of plasma estradiol, progesterone, Follicle-stimulating hor
mone (FSH), Luteinizing Hormone (LH), and sex hormone binding 
globulin (SHBG) exhibited robust circadian ~24-h rhythms during the 
follicular phase. In contrast, only FSH and SHBG were rhythmic during 
the luteal phase [58]. 

Male reproductive physiology also follows circadian, weekly, 
monthly, and annual rhythms, with the circadian rhythm being the most 
extensively studied aspect [62]. Testosterone secretion in males shows 
diurnal fluctuations, with the highest levels (750–800 ng/dL, 26–28 
nmol/L) around awakening, followed by a decline throughout the day, 
with the nadir occurring in the late afternoon (with concentrations of 
500 ng/mL, 17 nmol/L). Such fluctuations are due to changes in 
testicular testosterone secretion rather than changes in metabolic 
clearance [62]. A recent study showed that males engaged in shift work 
had statistically significantly lower total and free testosterone (effect 
size (Cohen’s d) = 0.75). However, this study had a small sample size (n 
= 8 shift workers and n = 4 day workers) [63] that warrants therefore 
replication in larger cohorts. Other studies show that shift work in males 
associates with decreased fertility, low sperm count (OR = 2.11) [64], 
and other parameters of low semen quality [65]. Currently, there is a 
lack of established evidence regarding potential sex differences in 
circadian sleep-wake disorders, such as shift work disorder and advan
ced/delayed sleep phase disorder. 

In humans, biomarkers indicating central circadian rhythms include 
the timing of melatonin production onset, cortisol peak production, core 
body temperature minimum in both females and males, and testosterone 
secretion, specifically in males [66]. Systematic sex differences in bio
markers of peripheral rhythms, including cardiovascular, metabolic 
(glucose and insulin), endocrine, and immune system rhythms, are yet to 
be described. 

5.1. Melatonin 

The timing, nocturnal peak, and suppression of the melatonin signal 

have been measured in humans. In a study where age, habitual bedtime, 
and wake time were standardized across sexes, melatonin secretion 
follows circadian rhythms, with females showing an earlier timing 
(22:49 ± 1.45 h) compared to males (23:28 ± 1.27 h) [6](Fig. 1). Phase 
angle (i.e., the relationship between the timing of the circadian clock 
and the timing of an external time cue) did occur at a later circadian 
phase for females (1.34 ± 0.96 h) than males (0.75 ± 0.83 h), despite 
being at the same external clock time [6]. However, in this study, 
menstrual cycle was not controlled. 

Under real-world conditions, on average, males tend to be later 
chronotypes (i.e., prefer to go to bed and wake up later) [67]. Conse
quently, this predisposition leads to a higher incidence of social jetlag, 
characterized by a greater misalignment between their natural circadian 
rhythm and the schedule imposed by societal demands [67]. Females 
exhibit a nocturnal peak in the melatonin rhythm that is 38%–41% 
higher than males [6,68]. However, neither study controlled for the 
menstrual cycle, thus, outcomes may have been influenced by the 
menstrual phase. Nevertheless, the suppression of melatonin produc
tion, triggered by exposure to bright light after melatonin production has 
begun, does not appear to be influenced differently by sex [69,70]. 

5.2. Cortisol awakening response (CAR) 

Cortisol can serve as a circadian marker; however, demonstrating an 
endogenous circadian rhythm requires highly controlled laboratory 
studies. Only a limited number of studies have employed such ap
proaches, and not all of them have reported sex differences, as endog
enous circadian melatonin and CBT rhythms often take precedence as 
primary circadian endpoints in these studies. The few studies that did 
measure CAR levels report mixed results, with some suggesting a more 
robust and sustained (~25 min) increase in cortisol levels after waking 
in females [71–74], while other studies do not observe these differences 
[75,76]. Crucially, studies noting sex differences in the CAR indicate 
minimal effect sizes, with sex accounting for only 1–3% of the observed 
variability [71,72,77]. While previous studies suggested an increased 
CAR during ovulation or an attenuated CAR during menses, more recent 
ones indicated no effect of the menstrual phase on the CAR [78–80]. 

5.3. Core body temperature (CBT) 

Typical CBT fluctuates between 36.5 and 37.4 ◦C, reaching its 
highest ;evel before sleep onset and its lowest level a few hours before 
waking up. The hypothalamus regulates this thermoregulatory setpoint 
and is governed by circadian rhythms [81], but CBT is also under the 
influence of menstrual cycle, such that CBT is 0.3 ◦C–0.7 ◦C higher in the 
post-ovulatory luteal phase compared with the pre-ovulatory follicular 
phase [82]. In terms of the timing of CBT, consistent with the onset of 
melatonin production, the nadir of CBT is also earlier in females (04:46 
± 1.93 h) than in males (06:11 ± 1.32 h) [5,6], with an overall damp
ened amplitude of the rhythm in females (0.43 ± 0.13 ◦C) compared to 
males (0.55 ± 0.16 ◦C), when not controlling for menstrual phase [6]. 

5.4. Circadian period length (tau) 

Research findings reveal slightly shorter intrinsic circadian periods 
in females (24.09 ± 0.2 h) compared to males (24.19 ± 0.2 h) [6], a 
difference equivalent to ~10% of the total range of interindividual 
variations in human tau, which averages ~24.2 h [83]. This variance 
corresponds with the earlier timing observed in melatonin, cortisol, and 
CBT rhythms (Fig. 1). Despite seemingly minor, this disparity translates 
into an approximately five times larger circadian phase angle difference 
between the central clock and the sleep/wake cycle [84]. It is thought 
that the higher occurrence of sleep disorders, such as insomnia, might be 
related to this difference in period length [85]. 
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5.5. Circadian metrics derived from actigraphy 

Standard methods used to analyze actigraphy data include extended 
cosinor and non-parametric analyses. Extended cosinor analysis show 
that females typically exhibit a slightly later acrophase (14:47 h) than 
males (14:36 h) [86]. The pseudo-F statistic, indicating the similarity of 
the rest-activity signal to a sine wave, shows a better sine fit for females 
(271.62 ± 6.51) than males (205.97 ± 4.50). Notably, no significant 
differences are reported in the amplitude of the rest-activity rhythm 
(14.01 ± 0.11 Monitor-Independent Movement Summary (MIMS)/min 
in females and 13.67 ± 0.15 MIMS/min in males) or the mesor (8.17 ±
0.05 MIMS/min in females and 8.01 ± 0.08 MIMS/min in males) [86]. 
Non-parametric analysis of the rest-activity signal also reveals 
sex-specific distinctions. Females tend to maintain a more consistent 
rest-activity schedule, as indicated by marginally higher interdaily sta
bility (0.37 ± 0.002) compared to males (0.36 ± 0.002) [86]. Addi
tionally, females experience lower levels of sleep-wake fragmentation, 
with an intradaily variation of 0.42 ± 0.001 in females, compared to 
0.45 ± 0.002 in males [86]. While these reported differences are sta
tistically significant, it has to be noted that they are marginal, possibly 
stemming from a lack of correction for the menstrual phase, and that the 
utility of such differences remains to be determined. 

5.6. Summary 

• Circadian rhythms play an important role in regulating most repro
ductive hormones in females, and disruption of circadian rhythms (as 
potentially experienced in shift work) may increase the the odds of 
menstrual cycle disruptions and infertility.  

• Circadian rhythms influence testosterone secretion, and shift work 
has been associated with lower testosterone levels, decreased 
fertility, and low semen quality.  

• Circadian biomarkers, such as melatonin, cortisol, and core body 
temperature, show an earlier timing in females and a shorter circa
dian period length. These differences may contribute to sex-specific 
sleep disorders, such as insomnia. 

6. Sex differences in sleep and circadian factors affect metabolic 
control 

6.1. Sleep disturbances and metabolic control 

The global increase in obesity is primarily linked to excessive calorie 
consumption triggered by constant food cues and the widespread 
availability of energy-dense foods [87]. Food desirability regulated in 
the human frontal and insular cortex is influenced by sleep deprivation 
[88]. Over 30% of adults aged 30–64, both males and females, report 
sleeping less than 6 hours per night, which may be a key contributor to 
the inrease in obesity [89]. 

6.1.1. Hedonic eating 
Hedonic eating is often driven by cravings for food high in sugar, salt, 

and/or fat, which can activate reward centers in the brain, leading to 
feelings of pleasure and satisfaction. Acute sleep loss enhances hedonic 
stimulus processing in the brain underlying the drive to consume food, a 
potential mechanism to restore energy in the brain [90,91]. Growing 
evidence indicates dramatic sex differences in hedonic eating and un
derlying brain activity [92,93]. For instance, brain networks associated 
with cognitive/affective processes (within e.g., orbitofrontal cortex, 
amygdala, insula) had a two-fold higher activation during exposure to 
pictures of food stimuli in females than in males [93] (Fig. 2). 

Moreover, females demonstrate 1.5 times higher activation in the 
limbic region in response to sweet food stimuli compared to males [94]. 
Collectively, these findings suggest that females display heightened 
brain activation in response to food stimuli, and estrogen maybe 
implicated in such motivational and reward processes [95]. However, 

neither study assessed menstrual phase, thus a definitive relationship 
between estrogen and hedonic eating cannot be determined. Conversely, 
when measuring food intake as opposed to parameters of brain activa
tion, males tend to overeat to a greater degree than females in response 
to sleep loss, with a greater increase in caloric intake (d = 0.62) and 
higher consumption of a more significant percentage of daily calories 
during late-night hours (d = 0.78) [96]. In males only, more sleep 
fragmentation, longer sleep onset latency, and lower sleep efficiency 
associate with more hunger (β = 0.115 ± 0.037; β = 0.169 ± 0.07; β =
− 0.150 ± 0.055, respectively) [97]. Females using oral contraceptives 
were excluded from this study, but the menstrual phase was not 
assessed. 

6.1.2. Glucose tolerance 
Lack of sleep can disrupt various physiological processes essential for 

glucose tolerance, such as insulin sensitivity, hormonal balance, stress 
responses, and inflammation. Research has demonstrated that after five 
days of sleep restriction, glucose clearance rate slowed by almost 40% 
(1.45 ± 0.31 percentage glucose clearance per minute), in contrast to 
well-rested conditions (2.40 ± 0.41 percentage glucose clearance per 
minute). This suggests a significant decrease in glucose tolerance under 
sleep-deprived conditions [98] (Fig. 2). Other experimental studies have 
shown that sleep restriction (typically 4–5.5 h of sleep per night for 5 to 
14 nights) decreases insulin sensitivity by 18–24% without concurrent 
increases in insulin levels, leading to diminished glucose tolerance [7]. 
Although the evidence linking sleep deprivation to changes in glucose 
tolerance and insulin sensitivity is compelling, most of these studies 
have only involved male participants. 

6.1.3. Appetite-Stimulating hormones 
Leptin, which is a long-term mediator for satiety, and ghrelin, a fast- 

acting hormone that increases hunger, are hormones that control energy 
balance and caloric intake. Studies suggest that recurrent partial sleep 
deprivation and chronic short sleep lead to a statistically significant 
decrease in leptin levels (from 2.5 ± 0.6 to 2.0 ± 0.5 ng/ml) and an 
increase in ghrelin levels (from 2.5 ± 0.2 to 3.0 ± 0.2 ng/ml) [7,99] 
(Fig. 2). Nevertheless, conflicting results persist; certain studies 
demonstrate no sleep-deprivation-related effects on leptin concentra
tions, and a comprehensive meta-analysis found no consistent impact of 
sleep restriction on ghrelin [99,100]. However, significant variability 
was observed across studies. Sex differences could be a potential source 
of this variation, but the lack of research in this area, owing to insuffi
cient representation of both sexes, hampers definitive conclusions. 

6.1.4. Metabolic disorders 
Numerous studies have explored the relationship between sleep 

duration, obesity, and T2DM. In a systematic review, shorter sleep 
duration (less than 6 h) has been linked to higher odds of obesity (OR =
1.55, 95% CI: 1.43–1.68) [101]. Paradoxically, longer sleep duration 
(more than 8 h, based on self-report) in older individuals (57–97 years) 
has also been associated with obesity, showing a 193% increased rela
tive risk [102]. However, some studies conducted in a similar age 
population (51–72 years) and using self-reported methods for assessing 
sleep duration do not validate these outcomes [103] (Fig. 2). In ado
lescents, longer self-reported sleep duration has been linked to a higher 
risk of T2DM (OR 1.52, 95% CI: 1.05, 2.20) [7]. While reports on 
sex-related differences in sleep duration are limited, there is significant 
variation in self-reported sleep quality, with females frequently rating 
their sleep quality lower [refer to section 2.2 Self-reported sleep qual
ity]. Inadequate sleep quality is associated with a heightened risk of 
metabolic syndrome. An in-laboratory study (n = 200, 57% males) show 
that a 2.6-point increase in the Pittsburgh Sleep Quality Index, indi
cating lower self-reported sleep quality, was associated with a 1.44-fold 
increase in the likelihood of having metabolic syndrome [104]. 
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Fig. 2. Research landscape of sex differences in sleep and circadian rhythms implicated in metabolic control. The upper section of this schematic diagram 
encapsulates the current understanding of sleep loss effects on self-reported hedonic eating [90–96], laboratory-assessed glucose tolerance (e.g., glucose levels, 
insulin sensitivity) [7,98], and appetite-stimulating hormonal change (e.g., leptin and ghrelin levels) [99,100], as well as the risk of metabolic diseases (upper left 
panel, blue boxes) [101–104]. The lower section of the figure depicts sex differences in circadian phase and circadian misalignment effects on self-reported hedonic 
eating [108,109], laboratory-assessed glucose tolerance [110,111], and appetite-stimulating hormonal change [111–115], and the risk of metabolic diseases (upper 
right panel, orange boxes) [8,9,116,117]. Lastly, it illustrates the shifting landscape of potential sex differences in sleep and circadian rhythms effects on metabolic 
control, highlighting knowledge gaps in the field. Abbreviations: T2DM, type 2 diabetes mellitus. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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6.2. Circadian rhythms and metabolic control 

The circadian clock regulates the timing and synchronization of 
various metabolic processes, including glucose tolerance, lipid balance, 
olfactory sensitivity and acuity, and energy usage [105,106]. Conse
quently, circadian phase significantly influences most of these metabolic 
parameters. This influence is evident in studies demonstrating circadian 
misalignment’s independent effects on metabolic measures, as well as 
the impact of behavioral cycles and circadian phase [107]. 

6.2.1. Hedonic eating 
The circadian clock regulates the hedonic aspect of eating [108]. 

Dysregulation of central structures in the metabolic and hedonic eating 
pathways is primarily linked to physiological and pathophysiological 
eating behaviors, including compulsive eating, obesity, and diabetes 
[108]. Of those working night shifts, exhacerbated emotional eating 
occurred in 66.4% of the females, but their menstrual phase or choice of 
contraception was not assessed [109] (Fig. 2). Albeit speculative, such 
sex differences in sleep and circadian factors underlying hedonic eating 
might also contribute to sex-specific risks for cardiometabolic disorders 
through different eating behaviors in males and females. 

6.2.2. Glucose tolerance 
In healthy humans, glucose tolerance has a robust time-of-day vari

ation, with a peak in the morning and a trough in the evening and night. 
The extent of the daily fluctuation in glucose tolerance is remarkable: 
individuals with standard glucose tolerance in the morning exhibit 
metabolic levels akin to those with prediabetes in the evening [110]. 
Crucially, disturbances in circadian rhythms adversely affect metabolic 
control and contribute to the development of metabolic disorders. 
Circadian misalignment induced by shift work, jetlag, night lifestyles, 
etc., resulting from inappropriate exposure to light, irregular sleep 
patterns, or mistimed meals can significantly deteriorate glycaemic 
control in humans [107]. Even a short exposure to circadian misalign
ment can elevate postprandial glucose levels by 11–21% [111] (Fig. 2). 
Currently, there is a lack of human studies examining sex-based differ
ences in the effects of circadian misalignment on glucose tolerance. 

6.2.3. Appetite-stimulating hormones 
Some research has suggested a circadian influence on leptin levels, 

with a 21% difference between its peak during the biological night and 
trough during the biological morning [112]. However, a recent forced 
desynchrony study revealed that leptin levels are not subject to circa
dian modulation but were instead influenced by meal timing [111]. 
Likewise, there is some evidence that the levels of the hormone ghrelin 
are not dependent on time of day but are influenced by sleep patterns, 
regular mealtimes, and postprandial glucose levels [113]. Conversely, 
some studies report circadian fluctuations in ghrelin fasting levels. 
Typically, these levels reach their lowest level in the morning (109.20 ±
22.45 pg/ml) and with a peak in the evening (123.30 ± 23.98 pg/ml) 
[114]. In a recentl within-subject laboratory protocol, acute exposure to 
circadian misalignment had a differential effect on the energy balance 
between females and males, such that females had decreased 24-h 
average levels of leptin (7%) and increased wake levels of ghrelin 
(6%) [115]. Conversely, males had increased leptin levels (11%) but no 
change in ghrelin, suggesting they may be less likely to overeat under 
circadian misalignment (Fig. 2). Although females were enrolled in the 
protocol at various menstrual phases (two in the follicular phase and 
four in the luteal phase), they were admitted during the same menstrual 
phase for both visits. 

6.2.4. Metabolic disorders 
Irregular meal patterns and nocturnal eating, common in individuals 

with disrupted circadian rhythms or those engaged in shift work, can 
disrupt the synchronization between the central circadian clock and 
peripheral clocks. This state of internal desynchronization is 

hypothesized to increase the risk of developing obesity and T2DM. 
Epidemiological studies on sex differences in the metabolic conse
quences in adults engaged in shift work report conflicting findings. 
While there might be a higher risk of T2DM in males engaged in shift 
work (OR = 1.37, 95% CI 1.20 to 1.56) compared to females (OR = 1.09, 
95% CI 1.04 to 1.14) [8], other studies report that females engaged in 
shift work may have higher T2DM risk (OR = 1.42, 95% CI 1.39–1.45) 
than males in shift work (OR = 1.06, 95% CI = 1.04–1.01) [9] (Fig. 2). 
Regardless, both females and males working night shifts have a higher 
likelihood of developing T2DM compared to those not working shifts 
(OR = 0.96, 95% CI 0.94 to 0.99 for females, and OR = 0.99, 95% CI 
0.98 to 1.01 for males) [9]. Epidemiological data from a large Swedish 
working sample revealed similar odds of obesity for males (OR, 95% CI: 
1.44, 1.27–1.64) and females (OR, 95% CI: 1.39, 1.25–1.55) engaged in 
shift work after accounting for age and socioeconomic status [116], but 
not menstrual phase. Others, however, have indicated that females 
working 1–2 night shifts per week were 1.46 times more likely to be 
overweight or obese than those working day shifts. At the same time, no 
such association is observed in males [117]. 

6.3. Summary  

• Following sleep deprivation, females exhibit greater activation in 
motivational and reward processes in response to food, but males 
tend to overeat to a greater degree.  

• The limited research on sex-specific differences in glucose tolerance, 
leptin and ghrelin concentrations, and the prevalence of metabolic 
disorders under conditions of sleep deprivation, emphasizes the ne
cessity for thorough and comprehensive investigations.  

• Among individuals engaged in shift work, females often exhibit 
overeating, decreased levels of leptin, and increased levels of ghrelin, 
whereas males experience increased leptin levels without changes in 
ghrelin. Research data on metabolic disorders indicates an elevated 
risk of T2DM in both males and females due to shift work compared 
to those not working shifts, with additional correlations to obesity 
observed specifically in females. There is a lack of human studies 
examining sex-based differences in the effects of circadian 
misalignment on glucose tolerance 

Exploring sex differences in sleep and circadian factors affecting 
metabolic control reveals a multi-faceted landscape. Understanding this 
complexity is not only essential but also transformative, serving as a 
cornerstone for the future of personalized sleep and circadian medicine. 

7. Moving towards precision medicine: Potential sex differences 
in promising interventions 

As technology advances and more evidence emerges regarding its 
efficacy, our society is shifting away from a standardized approach to 
healthcare. Instead, we are embracing a more precise and personalized 
system that enhances the likelihood of positive outcomes while mini
mizing the potential for adverse effects. This movement towards preci
sion medicine recognizes the potential influence of sex differences, 
particularly in pharmacokinetics, necessitating distinct approaches for 
females and males [118]. In the upcoming sections, we discuss treat
ment options that can help alleviate symptoms related to sleep or 
circadian rhythm disturbances while also considering their ramifica
tions on metabolic health. Most of these interventions represent a newly 
emerging field where research is beginning to explore sex-based differ
ences. The findings are frequently derived from retrospective, under
powered, and primarily proof-of-concept studies. 

7.1. Sex differences in sleep disorder interventions 

7.1.1. Insomnia 
Cognitive Behavioural Treatment for insomnia (CBT-I) is considered 
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the first-line treatment for insomnia and consists of a multicomponent 
psychological intervention often delivered by a psychologist [119]. 
Until now, no sex differences exist in CBT-I success rate or adherence, 
despite a higher enrollment of females compared to males [44]. This 
trend may stem from differences in insomnia diagnoses based on sex 
[38], sex-based acceptability to CBT-I [120], including the higher like
lihood of females seeking healthcare services and therapy, and their 
increased comfort in seeking treatment. This highlights the need for 
future research to enhance insomnia diagnosis in males and promote the 
adoption of CBT-I in males. 

Differences in pharmacokinetics between males and females are 
notable in various treatments. For instance, zolpidem, a non- 
benzodiazepine hypnotic that improves sleep quality in those with 
insomnia or OSA, exhibits significant sex-based variations. In a four-way 
crossover study, healthy female and male participants were adminis
tered an equal zolpidem dosage. However, females exhibited a higher 
maximum concentration (77 ± 24 ng/mL in females, compared to 53 ±
14 ng/mL in males) and a considerably slower clearance (179 ± 66 mL/ 
min for females and 307 ± 250 mL/min for males). These findings 
suggest that females prescribed zolpidem may require a significantly 
lower dosage than their male counterparts [121]. If prescribed a similar 
dosage, females may face an increased risk of impaired next-morning 
driving and activities requiring full alertness due to lingering sleepi
ness. Further investigation is needed to determine if the menstrual phase 
influences pharmacokinetics in this context. 

7.1.2. OSA 
OSA is twice as common in people who are overweight or obese 

[122]. Yet, in a recent observational cohort study comprising 79 males 
and 79 females of similar ages at baseline, all undergoing weight loss 
management through bariatric procedures (69 gastric bypass and 10 
sleeve gastrectomy each), it was observed that weight loss proved to be a 
more successful treatment for females with OSA. Although there were no 
statistically significant differences between males and females in the 
mean percentage of excess BMI loss, a higher rate of females (90%) 
discontinued CPAP treatment than males (77.5%) [123]. To some 
extent, this difference might result from sex-based variations in fat mass 
distribution [49]. 

7.2. Sex differences in circadian interventions 

7.2.1. Light 
Light is the main entrainer of the circadian system and can be used to 

enhance the entrainment process when working rotating night shifts or 
traveling over time zones [124]. It is also a standard treatment method 
to change the phase angle of entrainment in late chronotypes or other 
ICD-10 classified disorders, including delayed or advanced sleep phase 
syndrome, free-running disorder, shift work disorder, and jetlag. Some 
studies suggest that males are more sensitive to lower light intensities, 
such that males perceive the same light as significantly brighter (mean 
± SEM: 85.6 ± 4.5 on a Visual Analogue Scale) compared to females 
(mean ± SEM: 67.8 ± 4.8) [125]. A recent review suggests that our 
understanding of the underlying mechanisms of individual differences in 
light sensitivity is still in its infancy, indicating much more to discover in 
this field [126]. However, a recent randomized controlled trial suggests 
that females exhibit higher melatonin suppression than males when 
exposed to the same light intensity (at 400 lux: 93.7 ± 9.6% suppression 
in females and 83.2 ± 18.7% suppression in males; at 2000 lux: 99.5 ±
1.0% suppression in females vs. 96.9 ± 4.3% suppression in males). 
Sex-based differences disappear under lower-intensity lighting (10–200 
lux) and remain independent of the menstrual phase or sex-hormone 
concentration, implying that females are more sensitive to 
high-intensity lighting across the menstrual cycle [127]. 

7.2.2. Melatonin 
The circadian system can be synchronized through the strategic use 

of external melatonin adminstration, a method frequently utilized to 
align phase angle of entrainment. For instance, when aiming to correct a 
late circadian phase in those experiencing Delayed Sleep-Wake Syn
drome, melatonin is typically administered around 5 h before DLMO 
[128]. Some studies indicate that, following a nocturnal intravenously 
(i.v.) 20 μg melatonin infusion (from 21:00 to 01:00 h), melatonin levels 
were 1.4–3 times higher in females compared to males [129], suggesting 
enhanced bioavailability of exogenous melatonin in females. However, 
when administered at midday with a dose of 23 μg, there were no 
observed sex-based differences [130]. Neither study considered the 
menstrual phase. The impact of these differences in bioavailability on 
circadian clock entrainment remains to be investigated. 

7.3. Sex differences in chrono-metabolic interventions 

7.3.1. Chrono-nutrition 
Dietary advice for metabolic health is primarily aimed at the quan

tity and quality of nutrition. As evidence is emerging that the circadian 
system can interact with nutrients to influence bodily function, there is a 
growing awareness of the importance of nutrient timing. Experimental 
studies in humans have demonstrated that the timing of nutrient 
ingestion during the day can have diverse effects on energy utilization, 
hunger and appetite, and glucose control [110,131]. This may 
contribute to the association of misalignment between mealtime and the 
circadian system (i.e., late eating, night eating) with higher obesity risk 
[132]. Recent dietary intervention trials incorporating nutrient timing 
broadly encompass three approaches: 1) time-restricted eating (TRE), 
defined as eating within a consistent time window and fasting for the 
rest of the day; 2) early meal schedule by advancing meals to earlier in 
the daytime without changing fasting duration and energy intake; 3) 
early calorie loading by shifting distribution of calorie intake to morning 
(large breakfast, small dinner) without changing the timing of each 
meal. Among them, TRE is the most studied, and a recent meta-analysis 
reported that TRE moderately reduces body weight by − 1.60 kg (95% CI 
− 2.27 to − 0.93) [133]. In particular, early TRE rather than later TRE 
also benefits glycemic control and blood pressure [134]. 
Proof-of-principle clinical trials have demonstrated that early meal 
schedules and calorie loading lower appetite and hunger, with early 
meal schedules also increasing daytime energy expenditure [135,136]. 
These studies indicated that modifying nutrient timing could be an 
alternative and feasible dietary intervention for metabolic health. It is 
worth noting that sex-dimorphic responses to dietary intervention and 
nutrient metabolism are well-recognized [137]. Thus, there may also be 
sex differences in chrono-nutrition. However, there is very limited data 
to address this question. 

7.3.2. Exercise timing 
Current exercise and physical activity guidelines focus on intensity, 

duration, frequency, and modality. The potential influences of exercise 
timing have started to surface recently. Some human studies demon
strated that afternoon/evening exercise is more efficacious than morn
ing exercise in improving glucose metabolism [138–140]. Accumulating 
observational studies reported associations between the timing of 
objectively measured physical activity and cardiovascular health, 
including sex-dependent association with cardiovascular risk [141]. 
Given the prominent sex differences in exercise physiology [142], it is 
possible that the impact of exercise timing differs by sex. As females may 
have an earlier circadian phase than males (refer to section 5), future 
research on the timing of exercise and nutrition may need to factor in 
such potential sex differences to achieve maximal benefit. 

7.4. Summary  

• Insomnia Interventions: CBT-I success rates and adherence show no 
sex differences, but higher female enrollment may be influenced by 
factors like insomnia diagnoses and treatment acceptability. 

R. Lok et al.                                                                                                                                                                                                                                      



Sleep Medicine Reviews 75 (2024) 101926

10

• OSA Interventions: Weight loss is more successful in treating OSA in 
females, and sex-based variations in drug metabolism, such as Zol
pidem, pose distinct risks for females, impacting treatment 
outcomes.  

• Circadian Interventions: Light sensitivity varies between sexes, with 
subjective ratings of light intensity suggesting that males are more 
sensitive, although physiological responses indicate that females 
might be. Melatonin bioavailability exhibits sex-based differences, 
with higher concentrations in females. Sex-based differences in 
chrono-nutrition and exercise timing remain to be investigated. 

8. Conclusions & future directions 

The role of sex-based differences in sleep and circadian effects on 
metabolic control and its implication for precision medicine is an 
emerging area of research with far-reaching consequences. Collectively, 
the data reported in this review highlight that we need to adopt multi- 
faceted approaches to address such a knowledge gap. 

The first is a broader general consideration of sex differences in 
research per se, ranging from participant recruitment and selection of 
study designs to statistical robustness. For instance, many studies do not 
have an equal distribution of females and males, do not distinguish the 
(social construct) gender from the (biological construct) sex, and do not 
factor in the interplay of intersectional identities (i.e., interaction with 
age, race, and socioeconomic class). Moreover, virtually all studies to 
date are retrospective, not adequately powered, and/or not designed to 
test sex as an a priori independent variable of interest. This is a concern 
that has only recently been recognized and addressed by grant funding 
agencies, such as the National Institute of Health in the United States 
[143]. There is a need for more rigorous study designs, including human 
experimental studies, to investigate the underlying mechanisms and 
causal relationships between sleep, circadian biology, and metabolic 
outcomes in both males and females. To some degree, such studies can 
separate gender and sex-specific contributions. By experimentally con
trolling external factors, the systemic differences in environment and 
behaviors between males and females resulting from social construct (e. 
g., socioeconomic status, household responsibility, types of shift work) 
can be limited. 

Furthermore, it is also worth mentioning that considering the men
strual phase and changes in sex hormone concentrations in study designs 
should become standard practice. The few studies that a priori investi
gate sex-based differences often do not correct for the usage of (oral) 
contraception or the menstrual phase at which effects were assessed. 
This is imperative because 1) changes in sex hormones can influence 
self-reported sleep quality, and sleep architecture [17,26,60]; 2) hor
monal changes associated with the menstrual phase are known to affect 
appetite control and energy metabolism [144]; 3) vulnerability to cir
cadian/sleep disruption may vary by menstrual phase [59]. By incor
porating the above approaches, we will gain a better insight into 
sex-based differences in sleep, circadian system, and metabolism. Such 
knowledge is essential for developing targeted interventions and preci
sion medicine approaches. On the other hand, understanding the dif
ferential response to treatment strategies, such as weight loss in patients 
with obstructive sleep apnea, emphasizes the need to consider sex-based 
differences in clinical management. 

In conclusion, investigating sex-based differences in sleep and 
circadian factors implicated in metabolism and precision medicine 
represents a crucial and dynamic field. Future research must be 
thoughtfully designed, rigorously conducted, and transparently re
ported to deepen our understanding of the complex interplay between 
sleep, the circadian system, and sex-based variations. Recognizing and 
comprehending sex differences in sleep and circadian rhythms is 
essential for tailoring approaches to sleep medicine and optimizing 
treatment strategies for sleep disorders. By addressing limitations in 
study design, incorporating sex-based considerations into clinical prac
tice, utilizing clear and consistent terminology, and embracing precision 

medicine principles, we can advance our knowledge of sex-specific re
sponses to sleep interventions and ultimately enhance the health 
outcomes. 

Practice points  

1. Sleep, circadian, and metabolic sciences must consider the crucial 
role of sex as a pivotal determinant.  

2. Biological sex may have modest effects on sleep as assessed by PSG, 
but it significantly influences self-reported sleep quality and the 
prevalence of sleep disorders.  

3. Females exhibit an earlier circadian clock phase than males, 
emphasizing sex as a crucial biological variable in chronobiology 
research.  

4. Differences in hedonic eating and hunger patterns resulting from 
sleep deprivation may elevate the risk of obesity and T2DM, espe
cially among males.  

5. Personalized medicine and treatment approaches must consider sex 
differences to optimize outcomes and enhance patient care. 

Research agenda  

1. Conducting well-designed, adequately powered studies that ensure 
equal statistical power for both female and male participants is 
essential to effectively explore the impact of sex on circadian, sleep, 
and metabolic factors. 

2. Considering menstrual phases and information on oral contracep
tives in research involving female participants is crucial to prevent 
potential confounding variables, enhancing the quality and validity 
of study results. 

3. Further investigation into the disparate effects of shift work and in
ternal desynchronization on peripheral oscillators in males and fe
males is necessary to deepen our understanding of sex-related 
influences on chronobiology.  

4. Achieving personalized medicine requires well-powered studies 
mapping sex-specific responses to intervention strategies and treat
ment methods.  

5. Achieving a consensus on the terminology employed in sex and 
gender research is vital for clear and precise communication. It is 
imperative to differentiate between sex as a biological determinant 
and gender as a social construct. Funding bodies should initiate 
workshops and endeavors to establish such a consensus.  

6. Specific funding initiatives targeted towards female health are 
required to expedite the translation of evidence into clinical practice. 
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