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Abstract

Digitizing historical tabular records is essential for preserving and ana-
lyzing valuable data across various fields, but it presents challenges due
to complex layouts, mixed text types, and degraded document quality.
This paper introduces a comprehensive framework to address these issues
through three key contributions. First, it presents UoS Data Rescue, a
novel dataset of 1,113 historical logbooks with over 594,000 annotated
text cells, designed to handle the complexities of handwritten entries,
aging artifacts, and intricate layouts. Second, it proposes a novel context-
aware text extraction approach (TrOCR-ctx) to reduce cascading errors
during table digitization. Third, it proposes an enhanced end-to-end OCR
pipeline that integrates TrOCR-ctx with ByT5 for real-time post-OCR cor-
rection, providing improved multilingual support. This pipeline reduces
errors encountered in table digitization tasks by correcting OCR outputs
in real time during training. The model achieves superior performance
with a 0.049 word error rate and 0.035 character error rate, outperforming
existing methods by up to 41% in OCR tasks and 10.74% in table recon-
struction tasks. This framework offers a robust solution for large-scale
digitization of tabular documents, extending its applications beyond cli-
mate records to other domains requiring structured document preservation.
The dataset and implementation are available as open-source resources∗.

Keywords: Optical Character Recognition, Tabular Structure Recognition,
Semi-Supervised Learning, Historical Document Analysis, Data Annotation

∗
URI to Zenodo (dataset and model pre-trained checkpoints) and GitHub (source code) will be added if paper

accepted
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1 Introduction

Digitizing historical tabular records, including climate data, agricultural logs,
and financial ledgers, is essential for advancing research across various fields.
These records contain valuable long-term data that help researchers identify
historical patterns and trends. However, many records exist in analog for-
mats, typically stored as tables in logbooks, ledgers, and archival documents.
Extracting structured information from these sources poses unique challenges,
especially for conventional Optical Character Recognition (OCR) systems,
which are mainly designed for continuous text. These systems often struggle
with the complex layouts of tables, leading to inaccuracies in capturing spatial
relationships among cells, rows, and columns. This can result in fragmented or
misaligned data, significantly reducing the quality and usability of the digitized
information. Additionally, the scarcity of annotated historical logbook images
further complicates the development of robust models for such tasks.

Recent advancements in transfer learning have shown substantial promise
in addressing these challenges. Transfer learning allows models trained on large
datasets to adapt to new, specific tasks with smaller datasets, thereby leverag-
ing existing knowledge and features. Pre-trained models such as AlexNet [1] and
Inception [2] have been successfully fine-tuned for OCR tasks in scenarios like
script recognition and historical document digitization [3, 4]. Transformer-based
models such as TrOCR [5] have also demonstrated effective text recogni-
tion capabilities for handwritten entries, making them particularly suitable
for digitizing historical climate records. Similarly, deep learning models like
DETR [6] and CascadeTabNet [7] have been applied for table structure recog-
nition, enabling more accurate detection of cells, rows, and columns in complex
tables [8–10]. These methods suggest that combining OCR advancements with
structured data recognition can significantly improve the digitization of complex
tabular data, even in resource-constrained environments.

Despite the technological advancements in the OCR model, building an end-
to-end system for digitizing historical tabular logbooks remains expensive and
resource-intensive, making it impractical for widespread use. While few studies
have focused on smaller documents like receipts and business cards [11, 12], the
challenge escalates when dealing with logbooks that contain over 1,000 densely
packed cells. Transfer learning presents a potential solution by utilizing pre-
trained models, yet current digitization pipelines are vulnerable to cascading
errors. The Table Structure Recognition (TSR) model identifies and segments
table regions in these pipelines, while the OCR model extracts text from
these cells [8–10]. Failures in the TSR or OCR stage can propagate through
the pipeline, compounding errors and reducing overall performance. Efforts
to mitigate OCR errors often involve post-processing steps [13, 14]. Such a
composite model, which integrates TrOCR with a language model such as
ByT5 [15] for post-processing, showcases significant adaptability for handling
historical documents that often contain degraded text perturbations.

In this paper, we address the challenges of digitizing historical tabular data
through three key contributions. Firstly, we introduce UoS Data Rescue, a
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novel dataset comprising 1,113 historical logbooks with over 594,000 annotated
text cells, specifically designed to capture the complexities of historical tabular
data, including handwritten entries, aging artifacts, and intricate layouts. This
dataset covers various text types (typed, mixed, handwritten), table layouts,
and time periods (1860s to 1980s), providing a valuable resource for OCR and
table structure recognition research. Secondly, we address cascading errors in
the digitization process by proposing an enhanced training strategy for the
TrOCR model pipeline, named TrOCR-ctx. This approach utilizes contextual
information from neighboring cells to enhance text extraction. By doing so,
TrOCR-ctx significantly reduces extraction errors and minimizes cascading
failures, improving the accuracy of table reconstruction tasks. Finally, we
incorporate ByT5 as an end-to-end model for post-OCR correction within the
pipeline, enhancing the recognition of diverse languages, archaic terminology,
and complex character sets. This setup significantly improves transcription
accuracy across various table layouts, providing robust digitization for historical
documents while effectively handling visual text perturbations [14].

By incorporating context awareness and addressing cascading errors through
transfer learning, our model, TrOCR-ctx, consistently outperforms baseline OCR
systems across diverse datasets, effectively handling complex table structures
and mixed text formats (refer to Section 5). The key findings highlight the
importance of incorporating neighboring cell information to reduce cascading
errors and accurately capture spatial relationships within tables. While primarily
focused on climate records, this methodology is adaptable to various fields
requiring structured document digitization, such as financial archives, medical
records, and historical census data. The research not only offers a practical
framework for large-scale digitization of tabular documents but also enhances
the accessibility of valuable historical records across diverse domains, identifying
areas for future improvement in handling multi-cell layouts and multi-line
text entries. By sharing our code and model weights1, we provide a practical
framework for large-scale digitization efforts, enhancing the accessibility of
valuable historical records and offering tools for researchers to advance data
rescue initiatives across diverse fields.

The contributions of the paper are threefold:

i A novel dataset (UoS Data Rescue) containing 1,113 historical logbooks with
over 594,000 annotated text cells, covering various text types, table layouts,
and time periods from the 1860s to the 1980s, offering a valuable resource
for OCR and table structure recognition research.

ii A novel fine-tuning approach (TrOCR-ctx) that utilizes contextual informa-
tion from neighboring cells, significantly reducing cascading failures and
thereby enhancing the accuracy of table reconstruction tasks.

iii We incorporate ByT5 as an end-to-end model for post-OCR correction
within the pipeline, enhancing the recognition of diverse languages, archaic
terminology, and complex character sets. This approach significantly improves
transcription accuracy and robustness for historical document digitization.

1
URL placeholder
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2 Related studies

The digitization of tabular documents from images has evolved significantly
from traditional rule-based methods to advanced deep-learning models. Early
approaches relied on predefined heuristics to identify tables based on visual
layout features, effectively handling structured formats but struggling with
irregular or complex layouts. As document diversity increased, the limitations of
these rule-based systems became apparent, leading to adopting more adaptable
machine-learning techniques. This review outlines the progression of techniques
in this domain, highlighting key approaches and models that address the
challenges of diverse document formats and the capabilities of OCR systems.

2.1 Rule-Based Approaches

Optical Character Recognition (OCR) has been a foundational technology
in digitizing tabular documents. Early approaches to table detection and
extraction primarily relied on rule-based systems, utilizing predefined heuristics
to identify tables based on visual layout features such as grid lines, alignment,
and consistent spacing [16, 17]. These methods were effective for structured
tables with regular formats, leveraging techniques like grid line detection,
pattern recognition, and bounding box analysis in controlled scenarios. However,
they often struggled with irregular or complex layouts and were inflexible when
confronted with diverse or unstructured data.

While rule-based systems offer advantages in interpretability and precision
for consistent formats, they are constrained by the complexity of rule creation
and their inability to adapt to varying table structures. As the diversity of
documents increased, the limitations of these systems became more pronounced,
necessitating the adoption of more flexible machine learning (ML) techniques.
These advanced approaches provide improved scalability and robustness for
extracting tabular data from complex or unstructured documents, thereby
enhancing the efficacy of OCR technologies in contemporary applications [18].

2.2 Machine Learning Approaches

Machine learning techniques have been introduced to overcome the limitations
of rule-based systems for table extraction, offering greater adaptability and
precision. By combining OCR with statistical models, these methods automate
detection and recognition, enhancing the ability to handle diverse table types
through accurate whitespace identification and data extraction. Supervised
learning techniques, including Convolutional Neural Networks (CNNs) [19–21]
and Support Vector Machines (SVMs) [22], have significantly improved the
identification of tables within complex layouts, with CNNs particularly adept
at recognizing spatial structures in images.

The advent of deep learning has marked a significant leap forward in
table extraction capabilities. End-to-end models like TableNet [23] and TC-
OCR [9] exemplify this progress by integrating table detection and structure
recognition into unified frameworks. TableNet enhances efficiency and accuracy
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by treating these tasks as interdependent sub-problems within a single neural
network, while TC-OCR improves table recognition by combining state-of-
the-art models such as DETR [6], CascadeTabNet [7, 8, 24], and PP-OCR
v2 [25]. This approach effectively addresses variations in table styles and image
distortions, facilitating simultaneous table detection, structure recognition, and
content extraction. Transformer-based models, including DeepDeSRT [26] and
TableFormer [27], further enhance extraction capabilities. DeepDeSRT employs
a pre-trained ResNet-18 backbone to generate structured representations of
tables with high accuracy, while TableFormer predicts bounding boxes for
individual cells, facilitating precise content extraction from PDF documents.
The integration of transfer learning allows these architectures to recognize
printed and handwritten text, making them particularly suitable for digitizing
historical documents with diverse writing styles.

Recent studies on post-OCR correction have increasingly leveraged
transformer-based models to enhance accuracy across various domains [13,
14, 28, 29]. A common trend is using TrOCR as the base OCR model, with
researchers exploring different post-processing approaches. Chen et al. [13]
integrate TrOCR with CharBERT [30], improving accuracy and reducing over-
correction, particularly for historical documents. Seth et al. [14] pair TrOCR
with ByT5, a byte-level transformer model, focusing on visual text perturba-
tions and introducing the LEGIT dataset to study legibility. Rakshit et al. [28]
present a comprehensive pipeline combining OCR (including TrOCR) with
transformer-based NLP tools like ByT5 [15] and BART [31], refining outputs
for printed and handwritten text. Karthikeyan et al. [29] use Roberta [32]
to post-correct medical reports, leveraging masked word prediction to handle
domain-specific terminology. These studies highlight the growing trend of using
transformer-based models for post-OCR correction, demonstrating their ability
to capture visual and linguistic information. Notably, ByT5’s success in han-
dling perturbed text scenes suggests it could be effective for improving OCR
accuracy for historical document extraction in such challenging contexts, where
degraded or unfamiliar characters often appear.

Despite these advancements, challenges remain in handling diverse doc-
ument formats, densely packed cells, nested cells, and noisy images. These
complexities often necessitate considerable computational resources and specific
fine-tuning for different datasets, limiting existing solutions’ practical applica-
tion and scalability. To address these challenges, our work focuses on developing
a specialized dataset focusing on historical climate logbook images and imple-
menting transfer learning strategies, particularly fine-tuning the TrOCR model
to navigate the intricacies of historical climate logbooks. By enhancing the
context-awareness of TrOCR and integrating it with ByT5 for improved multi-
lingual support, we aim to create more resilient pipelines for table extraction,
paving the way for broader adoption in resource-constrained environments and
other fields that require structured document extraction.



Springer Nature 2021 LATEX template

6 Context-aware Tabular Data Reconstruction for Historical Records

2.3 Datasets for Tabular Data Extraction

Several datasets have been developed to support research in Optical Character
Recognition (OCR) and Tabular Data Extraction, each addressing different
document types and challenges. While benchmarks such as PubTabNet, CORD,
SROIE, and LayoutLM-based datasets primarily focus on modern documents,
datasets specifically designed for historical tabular data remain scarce.

PubTabNet, developed by IBM Research Australia, consists of scientific
tables extracted from academic publications, annotated with HTML repre-
sentations for ground-truth validation [33]. While useful for OCR and table
extraction tasks, it primarily focuses on structured, typed text, making it
less suitable for historical documents that often contain handwritten entries,
aging artifacts, and irregular layouts. Datasets such as CORD (Consolidated
Receipt Dataset) [34] and SROIE (Scanned Receipt OCR and Information
Extraction) [35] focus on receipt documents with relatively simple layouts and
limited structural variability. CORD provides multilingual named entity anno-
tations, whereas SROIE consists mostly of English-language receipts. While
these datasets are useful for evaluating OCR models on structured, modern doc-
uments, they do not address the complexities of historical tabular data, which
often involve irregular layouts, handwritten text, and document degradation.

LayoutLM-based [20] datasets leverage multimodal learning by incorporat-
ing both textual content and spatial layout information, enabling models to
better understand document structures. These datasets, often derived from
existing OCR benchmarks, are primarily used for pre-training and fine-tuning
LayoutLM models on tasks such as key information extraction, entity recogni-
tion, and document classification. They are particularly effective for modern
documents with well-defined layouts, such as invoices, forms, and reports. How-
ever, they are not specifically designed for historical table extraction, as they
lack handwritten text variations, irregular table structures, and document
degradation, which are common in archival records.

To address the gap in historical tabular datasets, we introduce
UoS Data Rescue, a large-scale collection of 1,113 historical logbooks spanning
diverse text types (typed, mixed, handwritten), intricate table structures, and
aging artifacts across different periods (1860s–1980s). Unlike modern datasets
such as PubTabNet and LayoutLM-based datasets, which focus on structured,
printed documents, or receipt-based datasets like CORD and SROIE, which con-
tain relatively simple layouts, UoS Data Rescue explicitly captures the unique
challenges of historical documents. The dataset features dense, compact tab-
ular images with tightly packed handwritten and printed text, reflecting the
formatting constraints of archival records. By preserving both table structures
and diverse text content, this dataset enables a more rigorous evaluation of
OCR models, particularly in handling handwritten text, degraded documents,
and complex archival layouts.
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Fig. 1: Block Diagram of the Tabular Data Extraction Pipeline. (a) Table and cell
regions are detected using a semi-supervised Table Structure Recognition (TSR) model.
(b) Each identified table cell and neighboring cell image is processed by TrOCR’s
encoder-decoder architecture to generate OCR output text. (c) The OCR output is
refined using ByT5, a byte-level transformer model, for post-OCR correction, ensuring
accurate text extraction. (d) Finally, the tabular document is reconstructed based
on spatial information from TSR and digitized text from OCR and spell correction,
enabling precise tabular data representation.

3 Research methodologies

This section outlines the dataset and methodologies used to digitize historical
tabular records, which are essential for preserving valuable data. These records
often present challenges due to densely packed cells, handwritten entries, and
complex layouts. To address these issues, we implement a systematic approach
that integrates transfer learning for model fine-tuning and develops a robust
tabular data reconstruction pipeline consisting of three components: (i) Table
Structure Recognition (TSR), (ii) a customized tabular context-aware OCR
model based on TrOCR, and (iii) a reconstruction module. Figure 1 presents
the tabular data reconstruction pipeline. This integrated pipeline improves
text extraction from noisy, aged records, enabling more effective digitization of
tabular data.

3.1 UoS Data Rescue dataset

The dataset used in this study, UoS Data Rescue, consists of 1,113 scanned
historical climate logbook images and includes over 594,000 human annotations
for cell boundaries and transcribed text. This dataset significantly contributes
to OCR and table structure recognition, as it captures various text types (typed,
mixed, handwritten) and table layouts and spans from the 1860s to the 1980s.
To ensure that the dataset reflects the complexities of historical documents, we
employed a maximum variance sampling strategy, selecting logbook regions that
maximize variance in document format, handwriting styles, and time periods.
This approach resulted in broad coverage across low-density regions worldwide
and high-density coverage in specific regions like Africa, aligning with the needs
of climate scientists interested in these areas. Table 1 provides an overview of the
distribution of annotated and unlabeled logbook images, categorized by year,
region, and source. The source documents come from prestigious institutions
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Location Year # Labelled
images

Average
cells/image

Average cells/image
(hard-to-annotate)

# Unlabelled
images

Sources: https://digital.nmla.metoffice.gov.uk/∗

UK✓ 1830-1930 97 208.959 3.804 –
Natal, Africa 1870 26 99.429 0.048 46

Artics✓ 1880 82 477.122 30.220 –
Devon, UK✓ 1890-1940 33 229.545 1.758 –

Ben Nevis, UK 1890 97 1511.247 11.557 –
UK and World✓ 1900 93 622.793 31.141 1330

Philippines 1900 24 740.292 5.458 6077
India (NOAA) 1930 24 2197.429 7.476 380

India (MO) 1970 24 1971.667 17.208 276

Sources: https://digital.nmla.metoffice.gov.uk/

Zanzibar✓ 1881-1882 8 133.500 9.250 12
Blantyre✓ 1882 – – – 6

Egypt✓ 1885-1886 6 699.500 17.667 9
Morocco✓ 1891 – – – 2

Sources: https://libguides.library.noaa.gov/weather-climate/foreign-climate

Mauritius 1862-1972 34 227.559 0.235 13887
Algeria✓ 1877-1968 113 90.947 7.292 22356

Madagascar 1889-1968 40 148.775 2.925 10035
Egypt 1900-1966 51 148.137 6.412 44199

Tunisia✓ 1907-1932 29 119.207 4.034 2531
Uganda 1909-1937 5 188.000 0.000 456

Mozambique 1909-1968 44 289.364 2.909 19547
South Africa✓ 1920-1982 74 109.946 0.757 36502

Libya 1922-1931 3 221.000 12.000 501
Kenya 1936-1937 – – – 31
Angola 1937-1952 – – – 1840

Namibia 1941-1948 – – – 52
Djibouti 1950-1974 – – – 1695

Cameroon 1950-1975 – – – 1830
Morocco 1954-1978 58 223.914 9.724 10575

Guinea-Bissau 1957-1972 – – – 3331

Sources: https://catalog.archives.gov

Bear 1940 12 792.583 1.917 21
Tennessee 1946 36 880.611 1.472 17

Sources: http://archives-climat.fr

Ambanja Août-décembre✓ 1904 5 559.200 95.800 –
Diego-Suarez✓ 1949 47 640.447 30.255 1

Tromelin✓ 1956 48 651.396 33.021 –

Total – 1113 – – 177545
∗Original images sourced with permission from UK Met Office (MO), US NOAA and weatheerrescue.org
(University of Reading) for the https://glosat.org/ project.
✓ The logbooks contain a mix of handwritten and typed text.

Table 1: Overview of the UoS Data Rescue dataset, including the distribution
of annotated and unlabeled logbook images across 34 regions.

such as the UK Met Office2, US NOAA3, US naval ship logs4, and Meteo-
France5. The dataset also captures challenges like handwritten entries, faded
artifacts, and complex layouts. To ensure high-quality annotations, we used a
crowdsourced approach via the Appen platform6, where annotators followed
strict guidelines (See Appendix B) to simplify transcription and minimize errors.

2
https://digital.nmla.metoffice.gov.uk

3
https://libguides.library.noaa.gov

4
https://catalog.archives.gov

5
http://archives-climat.fr

6
https://www.appen.com

UK Met Office
UK Met Office
US NOAA
US navel ship logs
Meteo-France
weatheerrescue.org
GloSAT
https://digital.nmla.metoffice.gov.uk
https://libguides.library.noaa.gov
https://catalog.archives.gov
http://archives-climat.fr
https://www.appen.com
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Dataset
Table Structure Recognition Optical Character Recognition Average

cells per
image in
test set

#Training
Images

#Testing
Images

#Train
text lines

#Test
text lines

UoS Data Rescue 1113 112 497045 97150 867.41
SROIE 1426 273 33626 18704 68.51
CORD 800 100 19367 2355 23.55

PubTabNet 6000∗ 15115 26000+ 606719 40.14
ICDAR15 – – 4468 2077 –

* The original PubTabNet dataset was released with 510K training samples.

* Randomly selected 26000 text lines from the 6000 training samples.

Table 2: Distribution of training and testing data for fine-tuning TSR and
OCR models, highlighting the unique characteristics of each dataset.

To detect table structures and define cell boundaries within each scanned
image to support an efficient and accurate annotation process, we used a pre-
trained semi-supervised TSR model based on CascadeTabNet [8]. This model
automatically identified table layouts and segmented text into individual cells,
allowing annotators to focus on transcribing a manageable number of cells (k =
40) per image. When the TSR model produced incorrect predictions, annotators
manually corrected the errors to ensure high-quality data. For images containing
more than k cells, additional copies were created, each containing no more than
k cells, making the annotation process more precise and manageable.

We employed six annotators, all proficient in English and familiar with Latin
alphabetical characters. The annotation process was conducted in 18 batches,
each containing approximately 1,500 images (40 cells or fewer per image). After
each batch, a quality evaluation was performed to ensure accuracy. Incorrectly
annotated batches were re-run after evaluation. Recognizing that crowdsourced
annotators may lack expertise in transcribing historical handwriting styles, we
instructed them to flag hard-to-annotate cells for correction by the domain
experts, ensuring high-quality data for developing a reliable tabular data
reconstruction model. This rigorous annotation process, combined with the
dataset’s diverse geographic coverage across 34 regions, ensures that the dataset
supports the development of models capable of generalizing across various
logbook types and formats, contributing to the digitization of historical climate
records.

3.1.1 Dataset Characteristics for OCR Model Training

To comprehensively evaluate the robustness of the OCR models, we utilized
a diverse range of datasets that represent various text formats and layouts.
Notably, we employed the in-house curated dataset, UoS Data Rescue, which
stands out due to its exceptionally dense tables—approximately 10 times denser
than those found in other datasets considered for evaluation. This density poses
a unique challenge and fills a critical gap in existing datasets. Additionally,
we employed the ICDAR 2015 Scene Text Recognition dataset [36, 37], and
tabular-structured datasets such as CORD [19, 34, 38], SROIE [12, 20, 35],
and PubTabNet [33, 39]. The ICDAR 2015 dataset serves as a benchmark for
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scene text detection and recognition, featuring images with text embedded
in natural environments. The CORD and SROIE datasets focus on receipt
images, primarily in English, and were used to fine-tune and assess the model’s
performance in recognizing and extracting text from diverse receipt layouts.
The PubTabNet dataset, consisting of scientific tables, was incorporated to
fine-tune and test the model’s ability to manage complex tabular structures.
Table 2 provides an overview of the data distribution for training and testing
sets used to fine-tune the OCR model. These datasets collectively provide a
robust set of scenarios for fine-tuning and evaluating OCR and tabular data
reconstruction (TDR) tasks, ensuring the models are thoroughly tested on
various text formats and layouts.

3.2 Table Structure Recognition

To improve the accuracy of table structure recognition in historical climate
logbooks, we fine-tuned a pre-trained Table Structure Recognition (TSR) model
based on CascadeTabNet [8] using the annotated UoS Data Rescue dataset. The
CascadeTabNet model employs a Cascade Mask R-CNN architecture [40] with
a High-Resolution Network (HRNetV2p W32) backbone [41], which extracts
multi-scale features from document images and refines table detection through
multiple stages. These stages predict the presence of tables and the precise
boundaries of individual cells, making the model particularly effective for
handling complex layouts and noisy, degraded images. The hyperparameters
used to train CascadeTabNet are detailed in Appendix Table 8.

Since the trained model generates a limited number of table cells (up to
2000, including both positive and negative predictions), we implemented a
method to infer missing cells based on the horizontal and vertical alignment of
detected positive cells. This approach ensures complete table reconstruction by
generating candidate cells where gaps are identified and aligning them with
existing cells. This method is crucial in preprocessing data before OCR, as
it accurately identifies table regions and defines cell boundaries. This robust
table structure recognition provides a solid foundation for the downstream
OCR model to perform precise text extraction. Ultimately, this improves the
accuracy and reliability of tabular data reconstruction, supporting the successful
digitization of historical climate records.

3.3 Tabular Context-aware Optical Character Recognition

Building on the robust table structure recognition provided by the fine-tuned
TSR model, our methodology adapts the TrOCR model specifically for extract-
ing tabular data. Originally designed for continuous text recognition, TrOCR
employs a Transformer-based architecture, utilizing a Vision Transformer (ViT)
encoder to process images into visual embeddings, along with an autoregressive
text decoder that generates text from these embeddings. For a comprehensive
understanding of TrOCR’s architecture, readers are encouraged to refer to the
original paper by Li et al. [5].
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In this study, we enhanced TrOCR by incorporating context-awareness of
neighboring table cells to improve its accuracy in digitizing historical tabular
documents. Typically, TrOCR is fine-tuned on individual table cells or text
line images. However, this approach can struggle with densely packed cells or
handwritten text that crosses cell boundaries, leading to misalignment even
when the TSR model accurately detects table layouts. To address this, we
introduced a fine-tuning strategy that includes information from neighboring
cells during training. Specifically, two additional images were generated for
each table cell: one including the neighboring cell to the right and another
including the cell below. The texts from neighboring cells were separated by
boundary identifiers token [SEP], enriching the training dataset with contextual
information and improving the model’s ability to handle irregular layouts
and merged cells. We refer to this context-aware fine-tuning of TrOCR as
TrOCR-ctx.

During digitization, each detected table cell is expanded into two configura-
tions: one with the neighboring cell to the right and another with the one below.
The common text before [SEP] is extracted as the final output for the target
cell. This approach significantly reduces cascading errors caused by isolated
text lines or ambiguous boundaries by leveraging contextual cues during text
extraction. By incorporating neighboring cell information, TrOCR-ctx develops
a more comprehensive understanding of adjacent cells, leading to improved
accuracy in recognizing text from challenging tabular configurations commonly
found in historical documents.

3.4 Post-processing OCR using a ByT5 Model

TrOCR, while effective for many OCR tasks, struggles with multilingual text
in historical documents due to irregular fonts, inconsistent spacing, and image
degradation [13, 14]. These challenges often lead to tokenization errors or
misrecognition of characters, particularly in archaic languages and non-standard
character sets typical of historical records. To address this, we integrate ByT5,
a byte-level Transformer model known for handling perturbed text, into the
pipeline for post-OCR correction [14]. ByT5 processes text at the byte level,
bypassing traditional tokenization, which allows it to handle diverse languages,
archaic terminology, and complex character sets more effectively.

In our pipeline, the output of TrOCR (TrOCR-ctx) is fed into ByT5, which
corrects recognition errors at the byte level. This enables ByT5 to refine text
with non-standard characters and spelling variations, significantly improving
transcription accuracy across various table layouts. For instance, as shown in
Figure 2, ByT5 corrects TrOCR-ctx output by accurately transforming complex
historical text such as “Température,” “Méchéria,” “Géryville,” and “11.2” into
their correct digital forms, handling archaic characters and diacritical marks
with precision. This byte-level approach significantly enhances the accuracy of
digitizing complex multilingual historical documents, making ByT5 particularly
well-suited for challenging OCR tasks involving nuanced text recognition and
correction.
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TrOCR: (a) Temperature. (b) Moeckiria. (c) Geryville. (d) 11, v.

TrOCR+ByT5: (a) Température (b) Méchéria (c) Géryville (d) 11.2

Fig. 2: Examples of ByT5 post-OCR corrections on TrOCR outputs for histor-
ical text images, accurately recognizing complex characters in examples like
‘Température,’ ‘Méchéria,’ ‘Géryville,’ and numerical data ‘11.2.’

Algorithm 1 Tabular Data Reconstruction

Input: TSR and TrOCR-ctx outputs
Output: Reconstructed table with preserved spatial and contextual relation-
ships
Create horizontal and vertical centroid lists
for each cell in the table structure do

Retrieve text output from TrOCR-ctx

Compute centroid for the current cell
if centroid lists are empty then

Add centroid to both horizontal and vertical centroid lists
else

Compute distance to the last centroid in the lists
if distance > k then

Add centroid to lists
end if

end if
Align text to centroid index horizontally and vertically

end for
Initialize table layout using horizontal and vertical centroid lists
Reconstruct table by aligning text using centroid lists
Return: Reconstructed table where each cell is separated by TAB space.

3.5 Tabular Data Reconstruction Module

After extracting text from individual cells, the final step is reconstructing the
digitized text to the original tabular format to preserve spatial and contextual
relationships. Algorithm 1 outlines the reconstruction process. This step is
essential for maintaining the integrity of the digitized data. The reconstruction
module combines outputs from the TSR and fine-tuned TrOCR-ctx models
to accurately recreate the table layout, ensuring alignment with the original
structure. This alignment improves the usability and accuracy of the digitized
data, making it more valuable for research and analysis. Ultimately, the module
enhances the fidelity of the digitization process, preserving historical data in
its true form.
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4 Experimental Setup

To thoroughly assess the robustness and effectiveness of our tabular data
reconstruction pipeline, we evaluate and compare the performance of TrOCR-ctx
model with three fine-tuned OCR models, namely TrOCR [5], Abinet [36], and
PP-OCRv2 (PaddleOCR) [25], across a diverse set of datasets. This approach
comprehensively evaluates each model’s ability to generalize across varied
document types, focusing on the fine-tuned TrOCR-ctx model’s adaptability
and effectiveness in real-world applications.

4.1 Evaluation metrics

To comprehensively evaluate the performance of the OCR models and the
overall TDR pipeline, we employed a range of evaluation metrics tailored to
both TSR and OCR tasks. These metrics offer insights into the accuracy,
precision, and robustness of the models across various aspects of table structure
detection, text extraction, and reconstruction.

4.1.1 Evaluation Metrics for Table Structure Recognition

For TSR, the evaluation focuses on how accurately the model detects table
structures, including cell boundaries and overall layout. In this study, we use
the Weighted Average F1 (wF1) score as the primary metric [42]:

wF1 =
∑
i

wi ·
2 · Precisioni · Recalli
Precisioni +Recalli

(1)

Here, wi represents the weight for each Intersection over Union (IoU) threshold i,
and Precisioni and Recalli are the precision and recall at the ith IoU threshold.
The IoU thresholds are set to 0.6, 0.7, 0.8, and 0.9. A prediction is considered
correct if it meets or exceeds these thresholds, ensuring that precision and recall
are balanced across varying levels of overlap between predicted and actual table
structures.

4.1.2 Evaluation Metrics for Optical Character Recognition

To evaluate the robustness of the OCR models, we used a diverse set of
metrics tailored to assess different aspects of performance, particularly in
handling tabular structured documents. These metrics include ROUGE-L [43],
Word Error Rate (WER) [44], Character Error Rate (CER) [44], Exact Match
(EM) [45], and F1-scores at both character and token levels [45]. Each metric was
selected for its ability to provide unique insights into OCR model performance.
ROUGE-L measures sequence-level accuracy by comparing the longest common
subsequence between predicted text and ground truth, making it useful for
evaluating longer text sequences. WER and CER are standard OCR evaluation
metrics that quantify word and character level errors, respectively, offering
a granular view of text recognition accuracy. Exact Match (EM) provides a
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(a) WER and CER (b) F1-score (Character and Token level)

Fig. 3: Performance evaluation of TrOCR-ctx per epoch, showing the progres-
sion of WER, CER, and F1-scores at both character and token levels. The
labeled epoch indicates the peak performance among the 15 epochs, with the
model converging after approximately 3 epochs.

strict evaluation by checking if the predicted text exactly matches the ground
truth, which is critical for assessing perfect OCR output. Finally, F1-scores at
both character and token levels balance precision and recall, capturing partial
matches where minor errors occur. The F1-score is calculated as follows:

F1-score = 2× Precision× Recall

Precision + Recall

where Precision = M
P
and Recall = M

G
. This formula applies to both evaluation

levels. For the Character-Level F1-Score, M, P, and G represent matched, pre-
dicted, and ground truth characters, respectively. For the Token-Level F1-Score,
these variables denote matched, predicted, and ground truth tokens. These
metrics comprehensively evaluate the OCR model’s robustness in handling
complex historical tabular data.

4.1.3 Overall Performance Metrics

By integrating evaluation metrics for both TSR and OCR, we obtain a com-
prehensive assessment of the entire tabular data reconstruction pipeline. The
weighted F1-score allows us to evaluate the accuracy of table structure detec-
tion, including cell boundaries and overall layout. Meanwhile, OCR metrics
like Rouge-L, Word Error Rate (WER), Character Error Rate (CER), and
F1-scores at both character and token levels provide detailed insights into
text extraction accuracy. These metrics capture exact matches and account
for partial correctness, which is crucial for handling complex historical docu-
ments often plagued by noisy or degraded data. This combination ensures a
holistic evaluation of the digitization process, reflecting the high-level perfor-
mance of table detection and fine-grained text recognition accuracy. Ultimately,
this multi-faceted evaluation approach allows us to pinpoint specific areas for
improvement while preserving the integrity of tabular documents.
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4.2 Experiment Runtime and Hardware Specifications

The experiments were conducted on a multi-GPU system with two NVIDIA
A100 GPUs, each with 80 GB of memory. This setup was essential to handle the
extensive datasets and complex computations required for training TrOCR-ctx

(refer to Table 2). Training TrOCR-ctx for 15 epochs took approximately two
weeks, reflecting the computational demands of incorporating context-aware
text extraction. In comparison, the baseline TrOCR model completed 15 epochs
in about one week, demonstrating that introducing additional context-aware
samples in TrOCR-ctx requires more processing time but improves performance
across various datasets. Figure 3 illustrates the performance of TrOCR-ctx per
epoch, showing improvements in word error rate (WER), character error rate
(CER), and F1-scores at both character and token levels. Notably, the model
converges approximately after the third epoch, indicating efficient learning
despite the computational intensity.

5 Results and Discussion

5.1 OCR Performance Analysis

Table 3 presents the evaluation of OCR models—TrOCR-ctx, TrOCR, Abinet,
and PP-OCRv2—across diverse datasets including UoS Data Rescue, ICDAR
2015, CORD, SROIE, and PubTabNet. These datasets were used to assess
the robustness and accuracy in handling various text formats and layouts,
with the evaluation conducted on properly segmented text lines from the
test sets (refer Table 2). TrOCR-ctx, fine-tuned with context-aware patches,
consistently achieved the highest performance across all datasets. Its superior F1-
scores, ranging from 0.755 to 0.986, highlight its ability to accurately recognize
text in challenging scenarios, such as mixed handwritten and typed text or
complex table structures. This model excelled in handling historical tabular
data, achieving F1-scores of 0.951 for UoS Data Rescue, 0.986 for CORD, 0.967
for SROIE, 0.909 for PubTabNet, and 0.755 for ICDAR 2015. Additionally,
it demonstrated low CER, ranging from 0.014 (SROIE) to 0.102 (ICDAR
2015), and high Rouge-L scores from 0.776 (ICDAR 2015) to 0.957 (CORD).
Among the other OCR models, TrOCR performed better than Abinet and
PP-OCRv2 but lagged behind TrOCR-ctx. TrOCR achieved F1-scores of 0.945
on UoS Data Rescue, 0.834 on CORD, 0.947 on SROIE, 0.859 on PubTabNet,
and 0.750 on ICDAR 2015. Its CER ranged from 0.044 to 0.102, and its Rouge-
L scores from 0.777 to 0.919, indicating solid performance but with room
for improvement compared to TrOCR-ctx. The lower performance of Abinet
and PP-OCRv2 on datasets with complex historical data emphasizes context
awareness, underscoring the importance of robust models like TrOCR-ctx for
such tasks.
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OCR Model Rouge-L WER CER EM F1-score (Char) F1-score (Token)

UoS Data Rescue

TrOCR 0.849 0.055 0.047 0.825 0.963 0.945
TrOCR-ctx 0.857 0.049 0.035 0.847 0.966 0.951
Abinet 0.545 0.557 0.346 0.432 0.681 0.449

PP-OCRv2 0.812 0.348 0.178 0.646 0.825 0.666

CORD

TrOCR 0.898 0.168 0.056 0.802 0.946 0.834
TrOCR-ctx 0.957 0.034 0.016 0.833 0.985 0.986
Abinet 0.520 0.356 0.304 0.574 0.710 0.644

PP-OCRv2 0.789 0.114 0.144 0.746 0.897 0.886

SROIE

TrOCR 0.919 0.053 0.044 0.830 0.984 0.947
TrOCR-ctx 0.940 0.033 0.014 0.849 0.988 0.967
Abinet 0.872 0.629 0.497 0.301 0.507 0.381

PP-OCRv2 0.882 0.432 0.235 0.493 0.777 0.577

PubTabNet

TrOCR 0.878 0.141 0.069 0.748 0.940 0.859
TrOCR-ctx 0.913 0.091 0.067 0.789 0.965 0.909
Abinet 0.315 0.813 0.450 0.153 0.598 0.197

PP-OCRv2 0.833 0.131 0.097 0.700 0.915 0.877

ICDAR 2015

TrOCR 0.777 0.245 0.102 0.744 0.904 0.750
TrOCR-ctx 0.776 0.250 0.102 0.749 0.905 0.755
Abinet 0.151 0.741 0.624 0.259 0.436 0.259

PP-OCRv2 0.665 0.374 0.178 0.626 0.831 0.627

Table 3: Performance comparison of TrOCR-ctx, TrOCR, Abinet, and PP-
OCRv2 models on UoS Data Rescue, CORD, SROIE, PubTabNet, and ICDAR
2015 datasets using segmented text lines. Evaluation metrics include Rouge-L,
Word Error Rate (WER), Character Error Rate (CER), Exact Match, and
F1-scores at both character and token levels.

5.2 Tabular Data Reconstruction Performance

Following the superior OCR performance of TrOCR-ctx, we conducted a
detailed evaluation of its tabular data reconstruction capabilities in multi-
ple datasets, including UoS Data Rescue, CORD, SROIE, and PubTabNet.
The results presented in Table 4, demonstrate a clear performance advan-
tage of TrOCR-ctx over the baseline TrOCR model, primarily due to its
context-aware fine-tuning. By incorporating contextual information during
training, TrOCR-ctx consistently outperformed the baseline in all data sets.
First, we evaluated the performance of TrOCR-ctx without post-correction from
ByT5. The inclusion of contextual information in text extraction significantly
improved performance compared to the non-contextual TrOCR model. Specifi-
cally, TrOCR-ctx achieved 0.61% and 3.20% improvement in the F1 scores at
the character level and token level, respectively, on UoS Data Rescue. Similarly,
it outperformed TrOCR in CORD by 2.58% and 3.71%, in SROIE by 4.60%
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Table structure recognition Tabular data reconstruction

Dataset P R wF1 Rouge-L WER CER EM F1 (Char) F1 (Token)

Without contextual information contextual information (TrOCR)

UoS Data Rescue 0.742 0.919 0.805 0.771 0.281 0.254 0.719 0.819 0.719
CORD 0.970 0.715 0.798 0.890 0.043 0.031 0.863 0.890 0.863
SROIE 0.805 0.796 0.785 0.847 0.046 0.039 0.819 0.869 0.819

PubTabNet 0.959 0.814 0.869 0.618 0.584 0.593 0.408 0.525 0.408

With contextual information contextual information (TrOCR-ctx without ByT5 model)

UoS Data Rescue 0.742 0.919 0.805 0.778 0.258 0.232 0.742 0.824 (∆0.61%) 0.742 (∆3.20%)
CORD 0.970 0.715 0.798 0.917 0.035 0.023 0.895 0.913 (∆2.58%) 0.895 (∆3.71%)
SROIE 0.805 0.796 0.785 0.872 0.025 0.023 0.875 0.909 (∆4.60%) 0.875 (∆6.84%)

PubTabNet 0.959 0.814 0.869 0.636 0.584 0.593 0.416 0.527 (∆0.38%) 0.416 (∆1.96%)

With contextual information contextual information (TrOCR-ctx)

UoS Data Rescue 0.742 0.919 0.805 0.809 0.245 0.213 0.755 0.850 (∆3.79%) 0.755 (∆5.01%)
CORD 0.970 0.715 0.798 0.917 0.023 0.025 0.914 0.921 (∆3.48%) 0.914 (∆5.91%)
SROIE 0.805 0.796 0.785 0.908 0.023 0.022 0.907 0.914 (∆5.18%) 0.907 (∆10.74%)

PubTabNet 0.959 0.814 0.869 0.640 0.592 0.594 0.426 0.536 (∆2.10%) 0.426 (∆4.41%)

Table 4: Performance evaluation of TrOCR-ctx model on Tabular Data Recon-
struction across UoS Data Rescue, CORD, SROIE, and PubTabNet datasets.
Precision and Recall for table structure recognition are calculated based on an
IoU threshold ≥ 0.6.

and 6.84%, and in PubTabNet by 0.38% and 1.96%, at the character level and
the token level, respectively. Next, we evaluated the impact of adding a post-
OCR correction using ByT5 to further refine the output of TrOCR-ctx. This
additional step resulted in significant performance improvements in all datasets.
Specifically, with ByT5 post-correction applied, TrOCR-ctx achieved a 3.79%
and 5.01% improvement in F1-scores at the character-level and token-level on
UoS Data Rescue, respectively. Similarly, it outperformed TrOCR on CORD
by 3.48% and 5.91%, on SROIE by 5.18% and 10.74%, and on PubTabNet
by 2.1% and 4.41%, at character-level and token-level. These results high-
light the effectiveness of context-sensitive fine-tuning in TrOCR-ctx to improve
OCR accuracy and demonstrate the additional benefits of integrating ByT5
for post-OCR correction in handling complex tabular data extraction tasks.

However, both OCR performances on the PubTabNet dataset were notably
lower than others despite having good performance on properly segmented text
lines. This lower performance can be attributed to two main factors. First, the
Table Structure Recognition (TSR) model struggled with accurately aligning
table layouts, even when the Intersection over Union (IoU) score exceeded
0.6. This misalignment significantly impacted the overall performance of the
OCR system. For context, we used a randomly selected subset of 6,000 images
for training and evaluated the model on a test set of 15,115 images from
PubTabNet. Second, TrOCR faced difficulties processing longer multi-line text
entries, which were abundant in PubTabNet. Similar issues were observed
in some logbooks within the UoS Data Rescue dataset containing multi-line
text entries. Additional challenges included handling complex table structures
and irregular cell boundaries, which further affected performance on both
datasets. These findings highlight the need to improve table layout alignment
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Table structure recognition Tabular data reconstruction

Dataset P R F1 Rouge-L WER CER EM F1 (Char) F1 (Token)

Full table 0.742 0.919 0.805 0.809 0.245 0.213 0.755 0.850 0.755
Table body (Mixed) 0.783 0.878 0.820 0.770 0.207 0.199 0.793 0.867 0.793
Table body (Typed) 0.827 0.964 0.885 0.897 0.108 0.121 0.892 0.937 0.892

Text (Mixed) 0.646 0.860 0.707 0.782 0.284 0.287 0.716 0.817 0.716
Text (Typed) 0.659 0.811 0.695 0.772 0.249 0.256 0.751 0.836 0.751

Number (Mixed) 0.774 0.863 0.805 0.943 0.076 0.056 0.924 0.954 0.924
Number (Typed) 0.820 0.920 0.858 0.969 0.047 0.039 0.953 0.974 0.953

Table 5: Performance breakdown of TrOCR-ctx on the UoS Data Rescue

dataset, evaluating various aspects such as full tables, table body, individual
text-only cells, and number-only cells. The table body, text-only, and number-
only cells are further categorized based on a mix of handwritten (Mixed) and
typed (Typed) text.

and multi-line text recognition to enhance OCR accuracy for complex tabular
data reconstruction tasks.

To gain deeper insights into TrOCR-ctx’s performance, we conducted a
detailed evaluation by combining TrOCR’s context-aware OCR capabilities
with the post-OCR correction provided by the ByT5 model. The analysis
focused on various table regions within historical logbook images from the
UoS Data Rescue dataset. Table 5 presents a performance breakdown, highlight-
ing the model’s ability to handle dense tables and complex data, particularly
those containing mixed handwritten content. In the full table evaluation, includ-
ing the header and body, TrOCR-ctx achieved F1-scores of 0.850 at the character
level and 0.755 at the token level. This demonstrates the model’s ability to
capture the overall table structure while maintaining content accuracy across
the image. However, when focusing solely on the table body—where most of
the critical information in historical logbooks resides—the model’s performance
improved, suggesting that alignment issues with header cells may impact over-
all reconstruction accuracy. For table bodies containing a mix of handwritten
and typed text, TrOCR-ctx achieved an F1-score of 0.793 at the token level.
When evaluating only typed text table bodies, the model reached an impressive
F1-score of 0.892 at the token level, indicating its superior handling of typed
content compared to handwritten-mixed entries.

Analysis of different types of cell content (text vs. numbers) extraction
performance revealed significant disparities between text and numerical content
processing. When evaluating different types of cell content, the model showed
exceptional performance on numbered cells, achieving an F1-score of 0.924 for
handwritten-mixed content and 0.953 for typed-only content at the token level.
In contrast, text cells scored lower, with F1-scores of 0.719 for handwritten-
mixed content and 0.751 for typed-only content at the token level. While this
variation suggests that handwritten text and complex layouts in text cells
present more difficulty, the model’s strong performance on numbered cells
demonstrates its potential. With further fine-tuning and targeted improvements,
particularly in handling handwritten text, TrOCR-ctx can continue to advance
in accuracy and robustness for historical document digitization.
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Table structure recognition Tabular data reconstruction

Regions P R F1 Rouge-L WER CER EM F1 (Char) F1 (Token)

Tromelin✓ 0.903 0.903 0.897 0.928 0.088 0.081 0.912 0.949 0.912
Diego-Suarez✓ 0.836 0.866 0.840 0.902 0.115 0.109 0.885 0.936 0.885

UK✓ 0.666 0.998 0.782 0.939 0.131 0.121 0.869 0.942 0.869
Ambanja Août-décembre✓ 0.588 0.944 0.719 0.922 0.131 0.068 0.869 0.945 0.869

South Africa✓ 0.640 0.954 0.764 0.909 0.133 0.178 0.867 0.895 0.867
Natal, Africa 0.757 0.697 0.720 0.951 0.135 0.117 0.865 0.931 0.865

Tunisia✓ 0.853 0.935 0.890 0.906 0.153 0.215 0.847 0.904 0.847
Zanzibar✓ 0.912 0.946 0.928 0.905 0.156 0.162 0.844 0.884 0.844
Algeria✓ 0.787 0.904 0.832 0.913 0.175 0.135 0.825 0.905 0.825
Tennessee 0.414 0.914 0.530 0.822 0.188 0.218 0.812 0.860 0.812

Libya 0.782 0.881 0.819 0.898 0.199 0.205 0.801 0.858 0.801
Bear 0.352 0.875 0.488 0.834 0.201 0.177 0.799 0.869 0.799

Devon, UK 0.907 0.986 0.943 0.839 0.202 0.182 0.798 0.861 0.798
Arctic✓ 0.737 0.969 0.834 0.663 0.313 0.327 0.687 0.727 0.687
Egypt∗✓ 0.420 0.896 0.552 0.791 0.339 0.260 0.661 0.800 0.661

India∗ 0.781 0.915 0.841 0.663 0.345 0.297 0.655 0.789 0.655
Uganda 0.838 0.893 0.864 0.856 0.362 0.460 0.638 0.693 0.638
Morocco 0.508 0.722 0.589 0.706 0.377 0.481 0.623 0.710 0.623
Egypt+ 0.779 0.822 0.783 0.854 0.423 0.381 0.577 0.744 0.577

Madagascar 0.819 0.923 0.864 0.778 0.426 0.598 0.574 0.627 0.574
Mozambique 0.729 0.765 0.730 0.745 0.469 0.770 0.531 0.603 0.531

India+ 0.884 0.876 0.879 0.566 0.473 0.576 0.527 0.665 0.527
UK and World✓ 0.821 0.863 0.834 0.547 0.489 0.812 0.511 0.633 0.511

Mauritius 0.846 0.831 0.834 0.786 0.506 0.725 0.494 0.583 0.494
Ben Nevis, UK 0.981 0.845 0.907 0.627 0.520 0.510 0.480 0.668 0.480

Philippines 0.869 0.858 0.842 0.406 0.711 0.652 0.289 0.482 0.289
∗ The source of these logbooks is from the UK Met Office.
+ The source of these logbooks are from the US NOAA.
✓ The logbooks contain a mix of handwritten and typed text.

Table 6: Performance of TrOCR-ctx across different regions in the
UoS Data Rescue dataset, providing a logbook-wise analysis to evaluate how
the model performs on various logbook types and regions.

To gain deeper insights into regional variations in logbook layouts, we
conducted a logbook-wise evaluation of TrOCR-ctx performance across different
sources and layouts. Table 6 provides a detailed breakdown of performance,
sorted by F1-scores at the token level, revealing significant differences between
logbooks. Logbooks with simpler layouts and clearer handwriting consistently
achieved higher F1-scores, while those with more complex layouts or degraded
handwriting presented greater challenges for the model. Factors contributing
to these variations include densely packed table cells (e.g., India+, Ben Nevis),
irregular layout complexity (e.g., UK and World, Mozambique), mixed content
with varying handwriting quality (e.g., UK and World), and dense multi-line
text entries (e.g., Philippines). These factors made it more difficult for the
model to accurately reconstruct tables in certain cases.

To better understand these performance variations, we conducted a detailed
error analysis of the OCR output. This analysis revealed several key challenges.
First, a notable issue arose from the crowdsourced annotation process, partic-
ularly in the representation of numerical data common in climate logbooks.
For example, annotators frequently misinterpreted decimal points or periods
(.) as interpuncts (·) and periods as degree symbols (°) due to historical hand-
writing styles. While these inconsistencies reflect the authentic appearance
of historical records, they introduced additional complexity in evaluating the
model’s performance on numerical data. Second, we performed an error analy-
sis focusing on character-level substitution errors. Figure 4 illustrates frequent
character substitutions encountered during digitizing the UoS Data Rescue

dataset. These substitutions offer valuable insights into common misrecogni-
tion patterns. High-frequency errors, such as (., ·), (°, ·), and (I, 1), indicate
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Fig. 4: Bar chart illustrating the frequency of TrOCR-ctx substitution errors,
showcasing common character misrecognition between the ground truth and the
OCR-predicted output. This breakdown highlights the top 30 frequently substituted
character pairs, providing insights into recurring OCR inaccuracies and potential
areas for model improvement.

challenges in distinguishing visually similar characters, particularly those with
fine distinctions in handwritten dots, strokes, and numerals. Additionally, sub-
stitutions like (4, 1) and (0, 9) suggest difficulties recognizing certain numeric
characters, likely due to overlapping or similarly shaped glyphs in cursive or
non-standard handwriting styles. Character pairs like (e, r) and (e, é) fur-
ther highlight issues with recognizing subtle handwriting variations, diacritical
marks, and capitalization—common challenges in historical texts with irregular
handwriting and faded ink.

These patterns emphasize the need to further enhance the TrOCR-ctx fine-
tuning to improve accuracy in recognizing frequently misinterpreted characters
in handwritten documents. Understanding these variations and annotation
challenges will guide future improvements in both OCR and TSR models,
particularly in addressing the unique challenges posed by historical documents
with intricate layouts, poor handwriting quality, and specialized numerical
notation.

5.3 Discussion

The performance analysis provides several key insights into the performance of
TrOCR-ctx for tabular data reconstruction. One notable finding is the alignment
issue between full tables and table bodies, where discrepancies in header
alignment negatively impact digitization accuracy. While TrOCR-ctx performs
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well on properly segmented text lines (refer to Table 3), it struggles to maintain
spatial relationships when headers are involved, leading to misaligned data
during reconstruction. Incorporating contextual information from surrounding
cells significantly enhances the model’s ability to capture spatial relationships,
particularly in historical documents with intricate layouts.

The error analysis, as illustrated in Figure 4, reveals common character sub-
stitution errors made by TrOCR-ctx. High-frequency errors, such as confusing
visually similar characters (e.g., ‘.’ and ‘·’, ‘I’ and ’1’), indicate difficulty distin-
guishing fine details in handwritten text. Numeric character recognition also
presents difficulties, with substitutions like ‘4’ for ‘1’ and ‘0’ for ‘9’ suggesting
issues with overlapping or similarly shaped glyphs in cursive or non-standard
handwriting styles.

Performance varies significantly between numbered and text cells. Num-
bered cells consistently achieved higher F1-scores than text cells, especially
when dealing with handwritten entries (refer to Table 5). For instance, num-
bered cells achieved F1-scores of 0.924 for handwritten-mixed content and
0.953 for typed-only content, compared to 0.719 and 0.751 for text cells, respec-
tively. This disparity highlights the ongoing challenges in recognizing complex
handwritten text and layouts. Additionally, TrOCR-ctx performed better on
typed text than handwritten-mixed entries, which often cross cell boundaries
and complicate alignment. This emphasizes the importance of refining table
structure recognition (TSR) to better handle handwritten content. Lastly, the
logbook-wise analysis (refer to Table 6) revealed performance variations based
on layout complexity and handwriting quality, offering further opportunities
for improvement.

In summary, while TrOCR-ctx demonstrates significant advancements in
handling complex tabular data through context-aware fine-tuning, challenges
related to alignment, handwritten text recognition, long multi-line text entries,
and character-level distinctions still need to be addressed for further optimiza-
tion. The error analysis provides valuable insights for future improvements,
particularly in enhancing the model’s ability to distinguish visually simi-
lar characters and handle the intricacies of handwritten text in historical
documents.

6 Conclusion and Future work

This study on digitizing historical tabular records using the context-aware
TrOCR model, particularly TrOCR-ctx, has demonstrated promising results. By
introducing the specialized UoS Data Rescue historical climate logbook dataset,
we provided a robust foundation for training and evaluating OCR models
tailored to the complexities of historical tabular data. Through comprehensive
evaluations across multiple datasets, TrOCR-ctx consistently outperformed
baseline models, proving its effectiveness in recognizing text within complex
table structures and diverse formats, including mixed handwritten and typed
entries. Key findings highlight the importance of context-awareness in OCR
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and table reconstruction. By incorporating information from neighboring cells,
TrOCR-ctx reduced recognition errors and more accurately captured spatial
relationships within tables. However, challenges remain, particularly in aligning
header cells and recognizing handwritten text that crosses cell boundaries.
The model’s strong performance on typed text underscores its potential for
digitizing historical records with well-formatted text while also pointing to
areas for improvement in handling handwritten entries.

Moving forward, future work will focus on refining table cell alignment,
particularly addressing issues with header cells and improving the recognition
of handwritten text—areas where TrOCR-ctx still faces challenges. This could
involve fine-tuning models on more diverse handwritten datasets and developing
advanced preprocessing techniques to better handle complex layouts. Expand-
ing the UoS Data Rescue dataset with more intricate layouts and varied text
styles will provide a broader training ground for OCR models. Additionally,
re-correcting the ground truth based on identified crowdsourced annotation
errors, such as misinterpretations of numerical data (e.g., decimal points mis-
read as interpuncts or degree symbols), could enhance the accuracy of future
evaluations. Efforts will also be made to improve model robustness against
noise and distortions, optimize scalability for large-scale digitization projects,
and incorporate feedback from domain experts to further refine the model’s
performance. Finally, rigorous cross-validation will ensure the model’s gener-
alization across diverse datasets and real-world scenarios, ensuring continued
advancements in historical document digitization.
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A Appendix

(a)

(b)

Fig. 5: Visualization of the tabular data reconstruction process using a UK logbook
image. (a) Table Structure Recognition output: The cells highlighted in blue represent
the predictions made by CascadeTabnet, while those in green denote the newly
generated cells derived from the coordinates of the blue-highlighted cells. (b) Tabular
data reconstruction output: Content extraction using TrOCR-ctx and coordinate-
based alignment for final table reconstruction. The performance of the TSR model
on this image is 0.997 wF1-score, while the text extraction performances are 0.969
and 0.874 F1-scores at character and token levels, respectively.
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(a)

(b)

Fig. 6: Visualization of the tabular data reconstruction process using a Ben Nevis,
UK logbook image. (a) Table Structure Recognition output: The cells highlighted in
blue represent the predictions made by CascadeTabnet, while those in green denote
the newly generated cells derived from the coordinates of the blue-highlighted cells.
(b) Tabular data reconstruction output: Content extraction using TrOCR-ctx and
coordinate-based alignment for final table reconstruction. The performance of the
TSR model on this image is 0.989 wF1-score, while the text extraction performances
are 0.974 and 0.927 F1-scores at character and token levels, respectively.

B Annotation Guidelines

The guidelines for crowd annotators in this task were designed to provide clear
instructions for working with table images containing highlighted cells. The
primary objective for annotators is to accurately correct cell boundaries and
transcribe the highlighted content. For consistency and precision in annotating
various cell types, detailed instructions, as outlined in Table 7, are provided. The
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task encompasses several possible scenarios, each with specific actions to guide
annotators in handling different cell boundaries and content configurations.
1. When the highlighted cell boundaries accurately enclose the text (i.e.,

all text is contained within the cell boundary lines), transcribe the text
directly within the highlighted cell.

2. When the highlighted cell boundaries are inaccurate (e.g., the text extends
beyond the boundary lines), adjust the cell boundaries to fully contain
the text and then transcribe the content.

3. If a highlighted area merges multiple cells into a single box, remove the
highlighted box, create individual boxes for each separate cell, adjust
boundaries as necessary, and transcribe the content within each cell.

Type of cells Cells Examples Transcription

If the text in the cell is easy to read and transcribe, simply
transcribe the content as it appears.

1923

If the highlighted cell covers multiple distinct text regions,
adjust the cell boundary by adding new cells according to the
table structure and transcribe each distinct text region within
its own cell.

Cell 1: 1,
Cell 2: 9.16

If the highlighted cell only partially covers a text region,
correct the cell boundaries in line with the table structure,
then transcribe the text within each corrected cell.

229.18

If a single word or group of words spans across multiple high-
lighted cells, combine these cells by adjusting boundaries
so that each cell contains a single, complete text region. Then,
transcribe the text accordingly.

Information

If any part of the highlighted text cannot be easily tran-
scribed, transcribe the cell as ‘@@@‘. This will alert an expert
to review the cell later for clarification.

@@@

Table 7: Guidelines on the type of cells to transcribe.
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Description Value

Input image size (height x width) 1024x1024
Backbone model used for feature extraction ResNet-50
Number of output channels in the last layer of the backbone 256
Number of input channels 256
Number of fully connected (FC) layers 2
Number of output channels for each FC layer 1024
Number of stages in the cascade 3
Region Proposal Network (RPN) output threshold 2000
RPN minimum positive IoU threshold 0.3
Number of object classes (table or background) 2
Learning rate of the optimizer 0.005
Loss function for classification Cross Entropy
Loss function for bounding box regression Smooth L1

Table 8: Parameters for training CascadeTabNet Model
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