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Abstract
Digitizing historical tabular records is essential for preserving and analyzing valuable data across various fields, but it
presents challenges due to complex layouts, mixed text types, and degraded document quality. This paper introduces a
comprehensive framework to address these issues through three key contributions. First, it presents UoS_Data_Rescue,
a novel dataset of 1,113 historical logbooks with over 594,000 annotated text cells, designed to handle the complexities of
handwritten entries, aging artifacts, and intricate layouts. Second, it proposes a novel context-aware text extraction approach
(TrOCR-ctx) to reduce cascading errors during table digitization. Third, it proposes an enhanced end-to-end OCR pipeline
that integrates TrOCR-ctx with ByT5, combining OCR and post-OCR correction in a unified training framework. This
framework enables the system to produce both the raw OCR output and a corrected version in a single pass, improving
recognition accuracy, particularly for multilingual and degraded text, within complex table digitization tasks. The model
achieves superior performance with a 0.049 word error rate and a 0.035 character error rate, outperforming existing methods
by up to 41% in OCR tasks and 10.74% in table reconstruction tasks. This framework offers a robust solution for large-scale
digitization of tabular documents, extending its applications beyond climate records to other domains requiring structured
document preservation. The dataset and implementation are available as open-source resources.

Keywords Optical Character Recognition · Tabular Structure Recognition · Semi-Supervised Learning ·Historical Document
Analysis · Data Annotation

1 Introduction

Digitizing historical tabular records, including climate data,
agricultural logs, and financial ledgers, is essential for
advancing research across various fields. These records con-
tain valuable long-term data that help researchers identify
historical patterns and trends. However, many records exist
in analog formats, typically stored as tables in logbooks,
ledgers, and archival documents. Extracting structured infor-
mation from these sources poses unique challenges, espe-
cially for conventionalOptical Character Recognition (OCR)
systems, which are mainly designed for continuous text.
These systems often struggle with the complex layouts of
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tables, leading to inaccuracies in capturing spatial relation-
ships among cells, rows, and columns. This can result in
fragmented or misaligned data, significantly reducing the
quality and usability of the digitized information. Addition-
ally, the scarcity of annotated historical logbook images
further complicates the development of robust models for
such tasks.

Recent advancements in transfer learning have shown
substantial promise in addressing these challenges. Trans-
fer learning allows models trained on large datasets to adapt
to new, specific tasks with smaller datasets, thereby lever-
aging existing knowledge and features. Pre-trained models
such as AlexNet [1] and Inception [2] have been successfully
fine-tuned for OCR tasks in scenarios like script recognition
and historical document digitization [3, 4]. Transformer-
based models such as TrOCR [5] have also demonstrated
effective text recognition capabilities for handwritten entries,
making themparticularly suitable for digitizing historical cli-
mate records. Similarly, deep learning models like DETR [6]
and CascadeTabNet [7] have been applied for table struc-
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ture recognition, enabling more accurate detection of cells,
rows, and columns in complex tables [8–10]. These methods
suggest that combining OCR advancements with structured
data recognition can significantly improve the digitization of
complex tabular data, even in resource-constrained environ-
ments.

Despite the technological advancements in the OCR
model, building an end-to-end system for digitizing historical
tabular logbooks remains expensive and resource-intensive,
making it impractical for widespread use. While few stud-
ies have focused on smaller documents like receipts and
business cards [11, 12], the challenge escalates when deal-
ing with logbooks that contain over 1,000 densely packed
cells. Transfer learning presents a potential solution by utiliz-
ing pre-trained models, yet current digitization pipelines are
vulnerable to cascading errors. For instance, the Table Struc-
ture Recognition (TSR) model identifies and segments table
regions in these pipelines, while the OCRmodel extracts text
from these cells [8–10]. Failures in the TSR or OCR stage
can propagate through the pipeline, compounding errors and
reducing overall performance. Efforts tomitigateOCR errors
often involve post-processing steps [13, 14]. Such a compos-
ite model, which integrates TrOCR with a language model
such as ByT5 [15] for post-processing, showcases significant
adaptability for handling historical documents that often con-
tain degraded text perturbations.

In this paper, we address the challenges of digitiz-
ing historical tabular data through three key contributions.
Firstly, we introduce UoS_Data_Rescue, a novel dataset
comprising 1,113 historical logbooks with over 594,000
annotated text cells, specifically designed to capture the com-
plexities of historical tabular data, including handwritten
entries, aging artifacts, and intricate layouts. This dataset
covers various text types (typed, mixed, handwritten), table
layouts, and time periods (1860s to 1980s), providing a
valuable resource for OCR and table structure recognition
research. Secondly, we address cascading errors in the digi-
tization process by proposing an enhanced training strategy
for the TrOCR model pipeline, named TrOCR-ctx. This
approach utilizes contextual information from neighboring
cells to enhance text extraction. By doing so, TrOCR-ctx
significantly reduces extraction errors andminimizes cascad-
ing failures, improving the accuracy of table reconstruction
tasks. Finally, we incorporate ByT5 as an end-to-end model
for post-OCR correction within the pipeline, enhancing the
recognition of diverse languages, archaic terminology, and
complex character sets. This setup significantly improves
transcription accuracy across various table layouts, providing
robust digitization for historical documents while effectively
handling visual text perturbations [14].

By incorporating context awareness and addressing cas-
cading errors through transfer learning, our model,
TrOCR-ctx, consistently outperforms baseline OCR sys-

tems across diverse datasets, effectively handling complex
table structures and mixed text formats (refer to Section 5).
The key findings highlight the importance of incorporating
neighboring cell information to reduce cascading errors and
accurately capture spatial relationships within tables. While
primarily focused on climate records, this methodology is
adaptable to various fields requiring structured document
digitization, such as financial archives, medical records, and
historical census data. The research not only offers a practical
framework for large-scale digitization of tabular documents
but also enhances the accessibility of valuable historical
records across diverse domains, identifying areas for future
improvement in handling multi-cell layouts and multi-line
text entries.

By sharing our code and the dataset 1, we provide a practi-
cal framework for large-scaledigitization efforts, enhancing
the accessibility of valuable historical records and offering
tools forresearchers to advance data rescue initiatives across
diverse fields.

The contributions of the paper are threefold:

i Anovel dataset (UoS_Data_Rescue) containing1,113
historical logbooks with over 594,000 annotated text
cells, covering various text types, table layouts, and time
periods from the 1860s to the 1980s, offering a valu-
able resource for OCR and table structure recognition
research.

ii A novel fine-tuning approach (TrOCR-ctx) that utilizes
contextual information from neighboring cells, signifi-
cantly reducing cascading failures and thereby enhancing
the accuracy of table reconstruction tasks.

iii We incorporate ByT5 as an end-to-end model for post-
OCR correction within the pipeline, enhancing the
recognition of diverse languages, archaic terminology,
and complex character sets. This approach significantly
improves transcription accuracy and robustness for his-
torical document digitization.

2 Related studies

The digitization of tabular documents from images has
evolved significantly from traditional rule-based methods
to advanced deep-learning models. Early approaches relied
on predefined heuristics to identify tables based on visual
layout features, effectively handling structured formats but
struggling with irregular or complex layouts. As document
diversity increased, the limitations of these rule-based sys-
tems became apparent, leading to adopting more adaptable
machine-learning techniques. This review outlines the pro-

1 https://github.com/gyanendrol9/context-aware_table_extraction,
https://zenodo.org/records/15730546.
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gression of techniques in this domain, highlighting key
approaches andmodels that address the challenges of diverse
document formats and the capabilities of OCR systems.

2.1 Rule-based approaches

Optical Character Recognition (OCR) has been a founda-
tional technology in digitizing tabular documents. Early
approaches to table detection and extraction primarily relied
on rule-based systems, utilizing predefined heuristics to iden-
tify tables based on visual layout features such as grid lines,
alignment, and consistent spacing [16, 17]. These methods
were effective for structured tables with regular formats,
leveraging techniques like grid line detection, pattern recog-
nition, and bounding box analysis in controlled scenarios.
However, they often struggled with irregular or complex lay-
outs and were inflexible when confronted with diverse or
unstructured data.

While rule-based systems offer advantages in inter-
pretability and precision for consistent formats, they are
constrained by the complexity of rule creation and their
inability to adapt to varying table structures. As the diver-
sity of documents increased, the limitations of these systems
becamemore pronounced, necessitating the adoption ofmore
flexible machine learning (ML) techniques. These advanced
approaches provide improved scalability and robustness for
extracting tabular data from complex or unstructured docu-
ments, thereby enhancing the efficacy of OCR technologies
in contemporary applications [18].

2.2 Machine learning approaches

Machine learning techniques have significantly advanced
table extraction, overcoming the limitations of traditional
rule-based systems by offering greater adaptability and pre-
cision. By combining OCR with statistical models, these
methods automate detection and recognition, enabling accu-
rate whitespace identification and data extraction across
diverse table types. Supervised learning approaches, such
as Convolutional Neural Networks (CNNs) [19–21] and
Support Vector Machines (SVMs) [22], have improved the
identification of tables within complex layouts, with CNNs
particularly adept at recognizing spatial structures in images.

The advent of deep learning has marked a significant leap
forward in table extraction capabilities. End-to-end models
like TableNet [23] and TC-OCR [9] integrate table detection
and structure recognition into unified frameworks. TableNet
treats these tasks as interdependent sub-problems within a
single neural network, while TC-OCR combines state-of-
the-art models such as DETR [6], CascadeTabNet [7, 8,
24], and PP-OCR v2 [25], effectively addressing variations
in table styles and image distortions. Transformer-based
models, including DeepDeSRT [26] and TableFormer [27],

further enhance extraction capabilities. DeepDeSRT lever-
ages a pre-trainedResNet-18 backbone to generate structured
representations of tables, while TableFormer predicts bound-
ing boxes for individual cells, facilitating precise content
extraction from PDF documents. The integration of transfer
learning allows these architectures to recognize both printed
and handwritten text, making them particularly suitable for
digitizing historical documents with diverse writing styles.

Transformer-based models have driven significant recent
advances in OCR post-processing and end-to-end table
extraction. Sequence-to-sequence models such as ByT5 and
related transformer models have been effectively leveraged
for robust post-OCR correction, substantially reducing char-
acter error rates in bothmodern and historical documents [14,
15]. The emergence of multimodal large language mod-
els, including Gemini 2.0 Flash2 and GPT-4o3, has further
advanced the field by integrating visual and textual cues, set-
ting new benchmarks for OCR correction in multilingual and
noisy data scenarios [28].

Hybrid frameworks such as Table Transformer (TATR)
[29, 30] and UniTable [31] provide unified architectures that
jointly detect tables, recognize their structure, and extract
cell content. In the domain of post-OCR correction, Chen et
al. [13] combineTrOCR[5]withCharBERT[32], resulting in
improved accuracy and reduced overcorrection, particularly
for historical documents. Seth et al. [14] pair TrOCR with
ByT5 [15], a byte-level transformer model, to address visual
text perturbations. Rakshit et al. [33] present a comprehen-
sive pipeline that integrates OCR (including TrOCR) with
transformer-based NLP tools such as ByT5 and BART [34],
refining outputs for printed and handwritten text.

Despite these advancements, challenges remain in han-
dling diverse document formats, densely packed or nested
cells, and noisy images, especially in historical docu-
ments with mixed handwriting and aging artifacts. Many
state-of-the-art solutions require substantial computational
resources and specific fine-tuning for different datasets, lim-
iting their scalability and practical application. To address
these challenges, our work introduces a specialized dataset
UoS_Data_Rescue focused on historical climate log-
book images and implements transfer learning strategies,
particularly fine-tuning the TrOCR model to navigate the
intricacies of historical records. By improving the context
awareness of TrOCR (TrOCR-ctx) and integrating it with
ByT5 for robust multilingual post-correction, our pipeline
advances the field by enabling more resilient and accu-
rate table extraction, particularly in resource-constrained and
archival environments.

2 https://deepmind.google/models/gemini/flash/.
3 https://openai.com/index/hello-gpt-4o/.
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2.3 Datasets for tabular data extraction

Several datasets have been developed to support research
in Optical Character Recognition (OCR) and Tabular Data
Extraction (TDE), each of which addresses different types
of documents and challenges. TDE encompasses both the
identification of table structures (such as cell boundaries and
spatial relationships) and the extraction of cell content (text
or numbers). Although some datasets focus exclusively on
table structure recognition, a subtask of TDE, others provide
both structure and content, which are crucial for end-to-end
tabular data extraction.

In particular, datasets such as the ICDAR2013TableCom-
petition [35], TableBank [36], and FinTabNet [37] are widely
used benchmarks for the Table Structure Recognition (TSR)
task. These datasets primarily provide annotations for table
and cell boundaries, enablingmodels to learn how to segment
and identify the structure of tables within documents. How-
ever, they typically do not include detailed transcriptions of
cell content, and thus are focused on the structural aspect of
tables rather than complete tabular data extraction.

In contrast, TDE datasets include both the structure of the
table and information about cell content. PubTabNet, devel-
oped by IBM Research Australia, is an excellent example. It
consists of scientific tables extracted from academic publica-
tions, annotatedwithHTML representations for ground-truth
validation [38]. Although PubTabNet is valuable for OCR
and table extraction tasks, it focuses primarily on structured,
typed text, making it less suitable for historical documents
that often contain handwritten entries, aging artifacts, and
irregular layouts.

Other datasets such as CORD (Consolidated Receipt
Dataset) [39] and SROIE (Scanned Receipt OCR and Infor-
mation Extraction) [40] focus on receipt documents with
relatively simple layouts and limited structural variabil-
ity. CORD provides multilingual named entity annotations,
while SROIE consists mostly of English-language receipts.
These datasets are useful for evaluatingOCRmodels in struc-
tured, modern documents, but do not address the complex-
ities of historical tabular data, which often involve irregular
layouts, handwritten text, and document degradation.

LayoutLM-based [20] datasets leveragemultimodal learn-
ing by incorporating both textual content and spatial layout
information, enabling models to better understand document
structures. These datasets, often derived from existing OCR
benchmarks, are primarily used for pre-training and fine-
tuning LayoutLM models on tasks such as key information
extraction, entity recognition, and document classification.
They are particularly effective for modern documents with
well-defined layouts, such as invoices, forms, and reports.
However, they are not specifically designed for historical
table extraction, as they lack variations in handwritten text,

irregular table structures, and document degradation, which
are common in archival records.

To address the gap in historical tabular datasets, we
introduce UoS_Data_Rescue, a large-scale collection of
1,113 historical logbooks spanning diverse text types (typed,
mixed, handwritten), intricate table structures, and aging
artifacts throughout different periods (1860-1980s). Unlike
modern datasets such as PubTabNet and LayoutLM-based
datasets, which focus on structured, printed documents, or
receipt-based datasets like CORD and SROIE, which contain
relatively simple layouts, UoS_Data_Rescue explicitly
captures the unique challenges of historical documents. The
dataset features dense, compact tabular images with tightly
packed handwritten and printed text, reflecting the format-
ting constraints of archival records. By preserving both table
structures anddiverse text content, this dataset enables amore
rigorous evaluation of OCR models, particularly when han-
dling handwritten text, degraded documents, and complex
archival layouts.

3 Researchmethodologies

This section outlines the dataset and methodologies used to
digitize historical tabular records, which are essential for pre-
serving valuable data. These records often present challenges
due to densely packed cells, handwritten entries, and complex
layouts. To address these issues, we implement a systematic
approach that integrates transfer learning for model fine-
tuning and develops a robust tabular data reconstruction
pipeline consisting of three components: (i) Table Structure
Recognition (TSR), (ii) a customized tabular context-aware
OCRmodel based on TrOCR, and (iii) a reconstructionmod-
ule. Figure 1 presents the tabular data reconstruction pipeline.
This integrated pipeline improves text extraction from noisy,
aged records, enabling more effective digitization of tabular
data.

3.1 UoS_Data_Rescue dataset

The dataset used in this study, UoS_Data_Rescue, com-
prises 1,113 scanned historical climate logbook images, with
over 594,000 human annotations for cell boundaries and
transcribed text. This dataset is specifically designed to sup-
port OCR and table structure recognition tasks by capturing
diverse text types (typed, mixed, handwritten) and intri-
cate table layouts. Table 1 provides a detailed overview of
the distribution of unlabeled and annotated logbook images
classified by year, region, and source. The source docu-
ments originate from prestigious institutions such as the UK
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Fig. 1 Block Diagram of the Tabular Data Extraction Pipeline. (a)
Table and cell regions are detected using a semi-supervised Table Struc-
ture Recognition (TSR) model [7, 8]. (b) Each identified table cell and
neighboring cell image is processed byTrOCR’s encoder-decoder archi-
tecture to generate OCR output text. (c) The OCR output is refined

using ByT5, a byte-level transformer model, for post-OCR correction,
ensuring accurate text extraction. (d) Finally, the tabular document is
reconstructed based on spatial information from TSR and digitized text
from OCR and spell correction, enabling precise tabular data represen-
tation

Table 1 Overview of the UoS_Data_Rescue dataset, including the
distribution of annotated and unlabeled logbook images across 34
regions. The checkmark (�) indicates that the logbooks include a mix

of handwritten and typed text, highlighting the diversity and complexity
of the dataset

Location Year # Labelled
images

Average
cells/image

Average
cells/image
(hard-to-
annotate)

# Unlabelled
images

Sources: https://digital.nmla.metoffice.gov.uk/ ∗

UK� 1830-1930 97 208.959 3.804 –

Natal, Africa 1870 26 99.429 0.048 46

Artics� 1880 82 477.122 30.220 –

Devon, UK� 1890-1940 33 229.545 1.758 –

Ben Nevis, UK 1890 97 1511.247 11.557 –

UK and World� 1900 93 622.793 31.141 1330

Philippines 1900 24 740.292 5.458 6077

India (NOAA) 1930 24 2197.429 7.476 380

India (MO) 1970 24 1971.667 17.208 276

Sources: https://digital.nmla.metoffice.gov.uk/

Zanzibar� 1881-1882 8 133.500 9.250 12

Blantyre� 1882 – – – 6

Egypt� 1885-1886 6 699.500 17.667 9

Morocco� 1891 – – – 2

Sources: https://libguides.library.noaa.gov/weather-climate/foreign-climate

Mauritius 1862-1972 34 227.559 0.235 13887

Algeria� 1877-1968 113 90.947 7.292 22356

Madagascar 1889-1968 40 148.775 2.925 10035

Egypt 1900-1966 51 148.137 6.412 44199

Tunisia� 1907-1932 29 119.207 4.034 2531

Uganda 1909-1937 5 188.000 0.000 456

Mozambique 1909-1968 44 289.364 2.909 19547

South Africa� 1920-1982 74 109.946 0.757 36502

Libya 1922-1931 3 221.000 12.000 501

Kenya 1936-1937 – – – 31

Angola 1937-1952 – – – 1840
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Table 1 continued

Location Year # Labelled
images

Average
cells/image

Average
cells/image
(hard-to-
annotate)

# Unlabelled
images

Namibia 1941-1948 – – – 52

Djibouti 1950-1974 – – – 1695

Cameroon 1950-1975 – – – 1830

Morocco 1954-1978 58 223.914 9.724 10575

Guinea-Bissau 1957-1972 – – – 3331

Sources: https://catalog.archives.gov

Bear 1940 12 792.583 1.917 21

Tennessee 1946 36 880.611 1.472 17

Sources: http://archives-climat.fr

Ambanja Août-décembre� 1904 5 559.200 95.800 –

Diego-Suarez� 1949 47 640.447 30.255 1

Tromelin� 1956 48 651.396 33.021 –

Total – 1113 – – 177545

∗Original images sourced with permission from UK Met Office (MO), US NOAA and weatheerrescue.org (University of Reading) for the https://
glosat.org/ project.

Met Office4, US NOAA5, US naval ship logs6, and Meteo-
France7.

The dataset captures challenges inherent in historical doc-
uments, including handwritten entries, faded artifacts, and
complex layouts. Of particular note, 635 tabular images con-
tain a mix of handwritten and typed text, spanning logbooks
from the 1830s to the 1980s (as shown in Table 1). This
diversity ensures that the dataset reflects the complexities of
historical records. To achieve broad coverage and representa-
tion of these complexities,we employed amaximumvariance
sampling strategy that maximized variance in document for-
mat, handwriting styles, and time periods. This approach
resulted in extensive coverage across low-density regions
globally and high-density coverage in specific regions like
Africa, aligning with the needs of climate scientists focused
on these areas.

To ensure high-quality annotations, we use a crowd-
sourced approach via the Appen platform8. Six annotators
proficient in English and familiar with Latin alphabeti-
cal characters were employed to annotate the dataset in
18 batches, each containing approximately 1,500 images
with no more than 40 cells per image. After each batch,
quality evaluationswere conducted to ensure accuracy; incor-
rectly annotated batches were re-run following evaluation.

4 https://digital.nmla.metoffice.gov.uk.
5 https://libguides.library.noaa.gov.
6 https://catalog.archives.gov.
7 http://archives-climat.fr.
8 https://www.appen.com.

To promote annotation consistency, we adopted a major-
ity vote protocol: “an annotation was considered correct
if at least three annotators agreed on the transcribed text”.
This approach helpedmitigate individual errors and provided
a measure of consensus. Recognizing that crowd-sourced
annotatorsmay lack expertise in transcribing historical hand-
writing styles, annotators flagged difficult-to-annotate cells
for correction by domain experts. This rigorous annotation
process ensures high-quality data for developing reliable tab-
ular data reconstruction models.

To streamline the annotation process and support effi-
cient table structure recognition, we used a pre-trained
semi-supervised Table Structure Recognition (TSR) model
based on CascadeTabNet [8]. The TSR model automatically
detected table layouts and segmented text into individual
cells, allowing annotators to focus on transcribing man-
ageable portions of each image (k = 40 cells). For images
containing more than k cells, additional copies were created
with no more than k cells per image to simplify anno-
tation. Annotators manually corrected errors produced by
the TSR model to ensure high-quality data. Combined with
its geographic coverage across 34 regions worldwide, this
robust approach makes UoS_Data_Rescue an invaluable
resource for advancing OCR capabilities and supporting the
digitization of historical climate records.

In addition to the labelled scanned images,
UoS_Data_Rescue also includes a large unlabelled col-
lection of 177,545 scanned images. This extensive unlabelled
dataset provides a rich resource for unsupervised learning and
semi-supervised trainingmethods, which can be leveraged to
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Table 2 Distribution of training and testing data for fine-tuning TSR and OCR models, highlighting the unique characteristics of each dataset

Dataset Table structure recognition Optical character recognition Average cells per image in test set

#Training Images #Testing Images #Train text lines #Test text lines

UoS_Data_Rescue 1113 112 497045 97150 867.41

SROIE 1426 273 33626 18704 68.51

CORD 800 100 19367 2355 23.55

PubTabNet 6000∗ 15115 26000+ 606719 40.14

ICDAR15 – – 4468 2077 –

* The original PubTabNet dataset was released with 510K training samples
* Randomly selected 26000 text lines from the 6000 training samples

further improve OCR models by learning from the diverse
patterns and structures present in these images.

3.1.1 Dataset characteristics for OCRmodel training

To comprehensively evaluate the robustness of OCR mod-
els, we used a wide range of datasets that represent various
text formats and layouts. Notably, we employed the in-house
curated dataset,UoS_Data_Rescue, which stands out due
to its exceptionally dense tables, approximately 10 times
denser than those found in other datasets considered for
evaluation. This density poses a unique challenge and fills
a critical gap in existing datasets. Furthermore, we used
the ICDAR 2015 Scene Text Recognition dataset [41, 42],
and tabular-structured datasets such as CORD [19, 39, 43],
SROIE [12, 20, 40], and PubTabNet [38, 44]. The ICDAR
2015 dataset serves as a benchmark for scene text detection
and recognition, featuring images with text embedded in nat-
ural environments. The CORD and SROIE datasets focus on
receipt images, primarily in English, and were used to fine-
tune and assess the model’s performance in recognizing and
extracting text from diverse receipt layouts. The PubTabNet
dataset, consisting of scientific tables, was incorporated to
fine-tune and test the model’s ability to manage complex
tabular structures. Table 2 provides an overview of the data
distribution for training and testing sets used to fine-tune the
OCR model. These datasets collectively provide a robust set
of scenarios for fine-tuning and evaluating OCR and tabu-
lar data reconstruction (TDR) tasks, ensuring the models are
thoroughly tested on various text formats and layouts.

3.2 Table structure recognition

To improve the accuracy of table structure recognition in his-
torical climate logbooks, we fine-tuned a pre-trained Table
Structure Recognition (TSR) model based on CascadeTab-
Net [8] using the annotated UoS_Data_Rescue dataset.
The CascadeTabNet model employs a Cascade Mask R-
CNN architecture [45] with a High-Resolution Network
(HRNetV2p_W32) backbone [46], which extracts multi-

scale features from document images and refines table
detection through multiple stages. These stages predict the
presence of tables and the precise boundaries of individual
cells, making the model particularly effective for handling
complex layouts and noisy, degraded images. The hyper-
parameters used to train CascadeTabNet are detailed in
Appendix Table 8.

Since the trained model generates a limited number of
table cells (up to 2000, including both positive and nega-
tive predictions), we implemented a method to infer missing
cells based on the horizontal and vertical alignment of
detected positive cells. This approach ensures complete table
reconstruction by generating candidate cells where gaps are
identified and aligning them with existing cells. This method
is crucial in preprocessing data before OCR, as it accu-
rately identifies table regions and defines cell boundaries.
This robust table structure recognition provides a solid foun-
dation for the downstream OCR model to perform precise
text extraction. Ultimately, this improves the accuracy and
reliability of tabular data reconstruction, supporting the suc-
cessful digitization of historical climate records.

3.3 Tabular context-aware optical character
recognition

Building on the robust table structure recognition provided
by the fine-tuned TSR model, our methodology adapts the
TrOCR model specifically for extracting tabular data. Orig-
inally designed for continuous text recognition, TrOCR
employs a Transformer-based architecture, utilizing a Vision
Transformer (ViT) encoder to process images into visual
embeddings, along with an autoregressive text decoder that
generates text from these embeddings. For a comprehensive
understanding of TrOCR’s architecture, readers are encour-
aged to refer to the original paper by Li et al. [5].

In this study, we enhanced TrOCR by incorporating
context-awareness of neighboring table cells to improve its
accuracy in digitizing historical tabular documents. Typi-
cally, TrOCR isfine-tunedon individual table cells or text line
images. However, this approach can struggle with densely
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packed cells or handwritten text that crosses cell boundaries,
leading to misalignment even when the TSR model accu-
rately detects table layouts. To address this, we introduced a
fine-tuning strategy that includes information fromneighbor-
ing cells during training. Specifically, two additional images
were generated for each table cell: one including the neigh-
boring cell to the right and another including the cell below.
The texts from neighboring cells were separated by bound-
ary identifiers token [SEP], enriching the training dataset
with contextual information and improving the model’s abil-
ity to handle irregular layouts and merged cells. We refer to
this context-aware fine-tuning of TrOCR as TrOCR-ctx.
The hyperparameters used to train TrOCR are detailed in
Appendix Table 9.

During digitization, each detected table cell is expanded
into two configurations: one with the neighboring cell to the
right and anotherwith the onebelow.The common text before
[SEP] is extracted as the final output for the target cell.
This approach significantly reduces cascading errors caused
by isolated text lines or ambiguous boundaries by leverag-
ing contextual cues during text extraction. By incorporating
neighboring cell information, TrOCR-ctx develops a more
comprehensive understanding of adjacent cells, leading to
improved accuracy in recognizing text from challenging tab-
ular configurations commonly found in historical documents.

3.4 Post-processing OCR using a ByT5model

TrOCR, while effective for many OCR tasks, struggles with
multilingual text in historical documents due to irregular
fonts, inconsistent spacing, and image degradation [13, 14].
These challenges often lead to tokenization errors or mis-
recognition of characters, particularly in archaic languages
and non-standard character sets typical of historical records.
To address this, we integrate ByT5, a byte-level Transformer
model known for handling perturbed text, into the pipeline
for post-OCRcorrection [14]. ByT5 processes text at the byte
level, bypassing traditional tokenization, which allows it to
handle diverse languages, archaic terminology, and complex
character sets more effectively.

In our pipeline, the output of TrOCR (TrOCR-ctx) is fed
into ByT5, which corrects recognition errors at the byte level.
This enablesByT5 to refine textwith non-standard characters
and spelling variations, significantly improving transcription
accuracy across various table layouts. For instance, as shown
in Figure 2, ByT5 correctsTrOCR-ctx output by accurately
transforming complex historical text such as “Température,"
“Méchéria," “Géryville," and “11.2" into their correct digital
forms, handling archaic characters and diacritical marks with
precision. This byte-level approach significantly enhances
the accuracy of digitizing complex multilingual historical
documents, making ByT5 particularly well-suited for chal-

Algorithm 1 Tabular Data Reconstruction
Input: TSR and TrOCR-ctx outputs
Output: Reconstructed table with preserved spatial and contextual
relationships
Create horizontal and vertical centroid lists
for each cell in the table structure do

Retrieve text output from TrOCR-ctx
Compute centroid for the current cell
if centroid lists are empty then

Add centroid to both horizontal and vertical centroid lists
else

Compute distance to the last centroid in the lists
if distance > k then

Add centroid to lists
end if

end if
Align text to centroid index horizontally and vertically

end for
Initialize table layout using horizontal and vertical centroid lists
Reconstruct table by aligning text using centroid lists
Return: Reconstructed table where each cell is separated by TAB
space.

lenging OCR tasks involving nuanced text recognition and
correction.

3.5 Tabular data reconstructionmodule

After extracting text from individual cells, the final step is
reconstructing the digitized text to the original tabular format
to preserve spatial and contextual relationships. Algorithm 1
outlines the reconstruction process. Specifically, the algo-
rithm calculates the geometric centroids of each detected cell
and organizes these centroids into horizontal and vertical lists
corresponding to the rows and columns of the table. The rec-
ognized text is then assigned to the appropriate cell positions
based on the proximity of the centroid, ensuring an accurate
placement of the content within the reconstructed table.

Aligning table headers, particularly multicolumn headers,
poses additional challenges for the centroid-based approach,
which is otherwise effective for table bodies. To address this,
we measure the deviation between each detected header cell
centroid and its expected position within the table body grid,
aligning each header to the nearest table body centroid. This
metric helps identify and correct alignment errors in com-
plex header scenarios, improving the overall accuracy of the
reconstruction. This step is essential to maintain the integrity
of the digitized data. The reconstruction module combines
the outputs of the TSR and fine-tuned TrOCR-ctx models
to accurately recreate the table layout, ensuring alignment
with the original structure. This alignment improves the
usability and accuracy of the digitized data, making them
more valuable for research and analysis. Ultimately, the
module enhances the fidelity of the digitization process, pre-
serving historical data in its proper form.
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Fig. 2 Examples of ByT5 post-OCR corrections on TrOCR outputs for historical text images, accurately recognizing complex characters in
examples like ‘Température,’ ‘Méchéria,’ ‘Géryville,’ and numerical data ‘11.2.’

4 Experimental setup

Existing end-to-end models [11, 12] often require substan-
tial computational resources, which limits their practical
use on large, densely structured historical datasets such as
UoS_Data_Rescue. Due to these constraints, we were
unable to perform direct comparisonswith these state-of-the-
art end-to-end methods in this study. Instead, our modular
pipeline is designed to be more resource-efficient and adapt-
able to environments with limited computational capacity.
To thoroughly evaluate the robustness and effectiveness of
our tabular data reconstruction pipeline, we compare the
performance of the TrOCR-ctx model with three other
fine-tuned OCR models: TrOCR [5], ABINet [41], and
PP-OCRv2 (PaddleOCR) [25]. By benchmarking across a
diverse set of datasets, our evaluation provides a compre-
hensive assessment of each model’s ability to generalize to
different document types while highlighting the practical-
ity and adaptability of our approach for real-world historical
document digitization.

4.1 Evaluationmetrics

To comprehensively evaluate the performance of the OCR
models and the overall TDR pipeline, we used a variety of
evaluation metrics tailored to both the TSR and OCR tasks.
These metrics offer insights into the accuracy, precision, and
robustness of the models in various aspects of table structure
detection, text extraction, and reconstruction.

4.1.1 Evaluation metrics for table structure recognition

For TSR, the evaluation focuses on how accurately themodel
detects table structures, including cell boundaries and overall
layout. In this study, we use the Weighted Average F1 (wF1)
score as the primary metric [47]:

wF1 =
∑

i

wi · 2 · Precisioni · Recalli
Precisioni + Recalli

(1)

Here, wi represents the weight for each Intersection over
Union (IoU) threshold i , and Precisioni and Recalli are the
precision and recall at the i th IoU threshold. The IoU thresh-
olds are set to 0.6, 0.7, 0.8, and 0.9.A prediction is considered

correct if it meets or exceeds these thresholds, ensuring that
precision and recall are balanced across varying levels of
overlap between predicted and actual table structures.

4.1.2 Evaluation metrics for optical character recognition

To evaluate the robustness of the OCR models, we used
a diverse set of metrics tailored to assess different aspects
of performance, particularly in handling tabular structured
documents. These metrics include ROUGE-L [48], Word
Error Rate (WER) [49], Character Error Rate (CER) [49],
Exact Match (EM) [50], and F1-scores at both character and
token levels [50]. Each metric was selected for its ability
to provide unique insights into OCR model performance.
ROUGE-L measures sequence-level accuracy by compar-
ing the longest common subsequence between predicted text
and ground truth, making it useful for evaluating longer
text sequences. WER and CER are standard OCR evaluation
metrics that quantify word and character-level errors, respec-
tively, offering a granular view of text recognition accuracy.
Exact Match (EM) provides a strict evaluation by check-
ing if the predicted text exactly matches the ground truth,
which is critical for assessing perfect OCR output. Finally,
F1-scores at both character and token levels balance preci-
sion and recall, capturing partial matches where minor errors
occur. The F1-score is calculated as follows:

F1-score = 2 × Precision × Recall

Precision + Recall

where Precision = M
P and Recall = M

G . This formula applies
to both evaluation levels. For the Character-Level F1-Score,
M, P, and G represent matched, predicted, and ground truth
characters, respectively. For the Token-Level F1-Score, these
variables denotematched, predicted, andground truth tokens.
These metrics comprehensively evaluate the OCR model’s
robustness in handling complex historical tabular data.

4.1.3 Overall Performance Metrics

By integrating evaluation metrics for both TSR and OCR, we
obtain a comprehensive assessment of the entire tabular data
reconstruction pipeline. The weighted F1-score allows us to
evaluate the accuracy of table structure detection, including
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cell boundaries and overall layout. Meanwhile, OCR met-
rics like Rouge-L, Word Error Rate (WER), Character Error
Rate (CER), and F1-scores at both character and token lev-
els provide detailed insights into text extraction accuracy.
These metrics capture exact matches and account for partial
correctness, which is crucial for handling complex histori-
cal documents often plagued by noisy or degraded data. This
combination ensures a holistic evaluation of the digitization
process, reflecting the high-level performance of table detec-
tion and fine-grained text recognition accuracy. Ultimately,
this multifaceted evaluation approach allows us to pinpoint
specific areas for improvement while preserving the integrity
of tabular documents.

4.2 Experiment runtime and hardware
specifications

The experiments were conducted on a multi-GPU system
with two NVIDIAA100 GPUs, each with 80 GB of memory.
This setup was essential to handle the extensive datasets and
complex computations required for training TrOCR-ctx
(refer to Table 2). Training TrOCR-ctx for 15 epochs
took approximately two weeks, reflecting the computational
demands of incorporating context-aware text extraction.
In comparison, the baseline TrOCR model completed 15
epochs in about one week, demonstrating that introducing
additional context-aware samples in TrOCR-ctx requires
more processing time but improves performance across
various datasets. Figure 3 illustrates the performance of
TrOCR-ctx per epoch, showing improvements in word
error rate (WER), character error rate (CER), andF1-scores at
both character and token levels.Notably, themodel converges
approximately after the third epoch, indicating efficient
learning despite the computational intensity.

5 Results and discussion

5.1 OCR performance analysis

Table 3 presents the evaluation of OCR models—TrOCR-
ctx, TrOCR, Abinet, and PP-OCRv2—across diverse
datasets including UoS_Data_Rescue, ICDAR 2015,
CORD, SROIE, and PubTabNet. These datasets were used to
assess the robustness and accuracy in handling various text
formats and layouts, with the evaluation conducted on prop-
erly segmented text lines from the test sets (refer Table 2).
TrOCR-ctx, fine-tunedwith context-aware patches, consis-
tently achieved the highest performance across all datasets.
Its superior F1-scores, ranging from 0.755 to 0.986, high-
light its ability to accurately recognize text in challenging
scenarios, such as mixed handwritten and typed text or
complex table structures. This model excelled in handling

historical tabular data, achieving F1-scores of 0.951 for
UoS_Data_Rescue, 0.986 for CORD, 0.967 for SROIE,
0.909 for PubTabNet, and 0.755 for ICDAR 2015. Addi-
tionally, it demonstrated low CER, ranging from 0.014
(SROIE) to 0.102 (ICDAR 2015), and high Rouge-L scores
from 0.776 (ICDAR 2015) to 0.957 (CORD). Among the
other OCR models, TrOCR performed better than Abinet
and PP-OCRv2 but lagged behind TrOCR-ctx. TrOCR
achievedF1-scores of 0.945 onUoS_Data_Rescue, 0.834
on CORD, 0.947 on SROIE, 0.859 on PubTabNet, and 0.750
on ICDAR 2015. Its CER ranged from 0.044 to 0.102, and
its Rouge-L scores from 0.777 to 0.919, indicating solid
performance but with room for improvement compared to
TrOCR-ctx. The lower performance of Abinet and PP-
OCRv2 on datasets with complex historical data emphasizes
context awareness, underscoring the importance of robust
models like TrOCR-ctx for such tasks.

5.2 Tabular data reconstruction performance

Following the superior OCR performance of TrOCR-ctx,
we conducted a detailed evaluation of its tabular data
reconstruction capabilities in multiple datasets, including
UoS_Data_Rescue, CORD, SROIE, and PubTabNet. The
results presented in Table 4, demonstrate a clear performance
advantage of TrOCR-ctx over the baseline TrOCR model,
primarily due to its context-aware fine-tuning. By incorpo-
rating contextual information during training, TrOCR-ctx
consistently outperformed the baseline in all data sets. First,
we evaluated the performance of TrOCR-ctxwithout post-
correction from ByT5. The inclusion of contextual informa-
tion in text extraction significantly improved performance
compared to the non-contextual TrOCR model. Specifically,
TrOCR-ctx achieved 0.61% and 3.20% improvement in
the F1 scores at the character level and token level, respec-
tively, on UoS_Data_Rescue. Similarly, it outperformed
TrOCR in CORD by 2.58% and 3.71%, in SROIE by 4.60%
and 6.84%, and in PubTabNet by 0.38% and 1.96%, at
the character level and the token level, respectively. Next,
we evaluated the impact of adding a post-OCR correction
using ByT5 to further refine the output of TrOCR-ctx. This
additional step resulted in significant performance improve-
ments in all datasets. Specifically, with ByT5 post-correction
applied,TrOCR-ctx achieved a 3.79%and 5.01% improve-
ment in F1-scores at the character-level and token-level
on UoS_Data_Rescue, respectively. Similarly, it outper-
formed TrOCR in CORD by 3.48% and 5.91%, in SROIE by
5.18% and 10.74%, and in PubTabNet by 2.1% and 4.41%,
at the character-level and the token-level. These results high-
light the effectiveness of context-sensitive fine-tuning in
TrOCR-ctx to improve OCR accuracy and demonstrate the
additional benefits of integrating ByT5 for post-OCR correc-
tion in handling complex tabular data extraction tasks.
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Fig. 3 Performance evaluation of TrOCR-ctx per epoch, showing the progression of WER, CER, and F1-scores at both character and token
levels. The labeled epoch indicates the peak performance among the 15 epochs, with the model converging after approximately 3 epochs

Table 3 Performance
comparison of TrOCR-ctx,
TrOCR, Abinet, and PP-OCRv2
models on
UoS_Data_Rescue, CORD,
SROIE, PubTabNet, and ICDAR
2015 datasets using segmented
text lines. Evaluation metrics
include Rouge-L, Word Error
Rate (WER), Character Error
Rate (CER), Exact Match, and
F1-scores at both character and
token levels

OCR Model Rouge-L WER CER EM F1-score (Char) F1-score (Token)

UoS_Data_Rescue

TrOCR 0.849 0.055 0.047 0.825 0.963 0.945

TrOCR-ctx 0.857 0.049 0.035 0.847 0.966 0.951

Abinet 0.545 0.557 0.346 0.432 0.681 0.449

PP-OCRv2 0.812 0.348 0.178 0.646 0.825 0.666

CORD

TrOCR 0.898 0.168 0.056 0.802 0.946 0.834

TrOCR-ctx 0.957 0.034 0.016 0.833 0.985 0.986

Abinet 0.520 0.356 0.304 0.574 0.710 0.644

PP-OCRv2 0.789 0.114 0.144 0.746 0.897 0.886

SROIE

TrOCR 0.919 0.053 0.044 0.830 0.984 0.947

TrOCR-ctx 0.940 0.033 0.014 0.849 0.988 0.967

Abinet 0.872 0.629 0.497 0.301 0.507 0.381

PP-OCRv2 0.882 0.432 0.235 0.493 0.777 0.577

PubTabNet

TrOCR 0.878 0.141 0.069 0.748 0.940 0.859

TrOCR-ctx 0.913 0.091 0.067 0.789 0.965 0.909

Abinet 0.315 0.813 0.450 0.153 0.598 0.197

PP-OCRv2 0.833 0.131 0.097 0.700 0.915 0.877

ICDAR 2015

TrOCR 0.777 0.245 0.102 0.744 0.904 0.750

TrOCR-ctx 0.776 0.250 0.102 0.749 0.905 0.755

Abinet 0.151 0.741 0.624 0.259 0.436 0.259

PP-OCRv2 0.665 0.374 0.178 0.626 0.831 0.627

However, both OCR performances on the PubTabNet
dataset were notably lower than others, despite having good
performance on properly segmented text lines. This lower
performance can be attributed to two main factors. First,
the Table Structure Recognition (TSR) model struggled with

accurately aligning table layouts, even when the Intersec-
tion over Union (IoU) score exceeded 0.6. Thismisalignment
significantly impacted the overall performance of the OCR
system. For context, we used a randomly selected subset of
6,000 images for training and evaluated the model on a test
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Table 4 Performance evaluation of TrOCR-ctx model on Tabular Data Reconstruction across UoS_Data_Rescue, CORD, SROIE, and
PubTabNet datasets. Precision and Recall for table structure recognition are calculated based on an IoU threshold ≥ 0.6

Table structure recognition Tabular data reconstruction

Dataset P R wF1 Rouge-L WER CER EM F1 (Char) F1 (Token)

Without contextual information contextual information (TrOCR)

UoS_Data_Rescue 0.742 0.919 0.805 0.771 0.281 0.254 0.719 0.819 0.719

CORD 0.970 0.715 0.798 0.890 0.043 0.031 0.863 0.890 0.863

SROIE 0.805 0.796 0.785 0.847 0.046 0.039 0.819 0.869 0.819

PubTabNet 0.959 0.814 0.869 0.618 0.584 0.593 0.408 0.525 0.408

With contextual information contextual information (TrOCR-ctx without ByT5 model)

UoS_Data_Rescue 0.742 0.919 0.805 0.778 0.258 0.232 0.742 0.824 (�0.61%) 0.742 (�3.20%)

CORD 0.970 0.715 0.798 0.917 0.035 0.023 0.895 0.913 (�2.58%) 0.895 (�3.71%)

SROIE 0.805 0.796 0.785 0.872 0.025 0.023 0.875 0.909 (�4.60%) 0.875 (�6.84%)

PubTabNet 0.959 0.814 0.869 0.636 0.584 0.593 0.416 0.527 (�0.38%) 0.416 (�1.96%)

With contextual information contextual information (TrOCR-ctx with ByT5 model)

UoS_Data_Rescue 0.742 0.919 0.805 0.809 0.245 0.213 0.755 0.850 (�3.79%) 0.755 (�5.01%)

CORD 0.970 0.715 0.798 0.917 0.023 0.025 0.914 0.921 (�3.48%) 0.914 (�5.91%)

SROIE 0.805 0.796 0.785 0.908 0.023 0.022 0.907 0.914 (�5.18%) 0.907 (�10.74%)

PubTabNet 0.959 0.814 0.869 0.640 0.592 0.594 0.426 0.536 (�2.10%) 0.426 (�4.41%)

set of 15,115 images fromPubTabNet. Second, TrOCR faced
difficulties processing longer multi-line text entries, which
were abundant in PubTabNet. Similar issues were observed
in some logbooks within the UoS_Data_Rescue dataset
containing multi-line text entries. Additional challenges
included handling complex table structures and irregular
cell boundaries, which further affected performance on both
datasets. These findings highlight the need to improve table
layout alignment and multi-line text recognition to enhance
OCR accuracy for complex tabular data reconstruction tasks.

To gain deeper insights into TrOCR-ctx’s performance,
we conducted a detailed evaluation by combining TrOCR’s
context-aware OCR capabilities with the post-OCR correc-
tion provided by the ByT5 model. The analysis focused on
various table regions within historical logbook images from
the UoS_Data_Rescue dataset. Table 5 presents a perfor-
mance breakdown, highlighting the model’s ability to handle
dense tables and complex data, particularly those contain-
ing mixed handwritten content. In the full table evaluation,
including the header and body, TrOCR-ctx achieved F1-
scores of 0.850 at the character level and 0.755 at the token
level. This demonstrates the model’s ability to capture the
overall table structure while maintaining content accuracy
across the image. However, when focusing solely on the table
body—where most of the critical information in historical
logbooks resides—the model’s performance improved, sug-
gesting that alignment issues with header cells may impact
overall reconstruction accuracy. For table bodies containing
a mix of handwritten and typed text, TrOCR-ctx achieved
an F1-score of 0.793 at the token level. When evaluating

only typed text table bodies, themodel reached an impressive
F1-score of 0.892 at the token level, indicating its superior
handling of typed content compared to handwritten-mixed
entries.

Analysis of different types of cell content extraction per-
formance (text vs. numbers) revealed significant disparities
between text and numerical content processing. When eval-
uating different types of cell content, the model showed
exceptional performance on numbered cells, achieving an
F1-score of 0.924 for handwritten-mixed content and 0.953
for typed-only content at the token level. In contrast, text
cells scored lower, with F1-scores of 0.719 for handwritten-
mixed content and 0.751 for typed-only content at the
token level. While this variation suggests that handwritten
text and complex layouts in text cells present more diffi-
culty, the model’s strong performance on numbered cells
demonstrates its potential. With further fine-tuning and tar-
geted improvements, particularly in handling handwritten
text, TrOCR-ctx can continue to advance in precision and
robustness for the digitization of historical documents.

To gain deeper insights into regional variations in log-
book layouts, we conducted a logbook-wise evaluation of
TrOCR-ctx performance across different sources and lay-
outs. Table 6 provides a detailed breakdown of performance,
sorted by F1-scores at the token level, revealing significant
differences between logbooks. Logbooks with simpler lay-
outs and clearer handwriting consistently achievedhigher F1-
scores, while those with more complex layouts or degraded
handwriting presented greater challenges for the model. Fac-
tors contributing to these variations include densely packed
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Table 5 Performance breakdown of TrOCR-ctx on the
UoS_Data_Rescue dataset, evaluating various aspects such as full
tables, table body, individual text-only cells, and number-only cells.

The table body, text-only, and number-only cells are further categorized
based on a mix of handwritten (Mixed) and typed (Typed) text

Table structure recognition Tabular data reconstruction
Dataset P R F1 Rouge-L WER CER EM F1 (Char) F1 (Token)

Full table 0.742 0.919 0.805 0.809 0.245 0.213 0.755 0.850 0.755

Table body (Mixed) 0.783 0.878 0.820 0.770 0.207 0.199 0.793 0.867 0.793

Table body (Typed) 0.827 0.964 0.885 0.897 0.108 0.121 0.892 0.937 0.892

Text (Mixed) 0.646 0.860 0.707 0.782 0.284 0.287 0.716 0.817 0.716

Text (Typed) 0.659 0.811 0.695 0.772 0.249 0.256 0.751 0.836 0.751

Number (Mixed) 0.774 0.863 0.805 0.943 0.076 0.056 0.924 0.954 0.924

Number (Typed) 0.820 0.920 0.858 0.969 0.047 0.039 0.953 0.974 0.953

Table 6 Performance of TrOCR-ctx across different regions in the UoS_Data_Rescue dataset, providing a logbook-wise analysis to evaluate
how the model performs on various logbook types and regions

Table structure recognition Tabular data reconstruction

Regions P R F1 Rouge-L WER CER EM F1 (Char) F1 (Token)

Tromelin� 0.903 0.903 0.897 0.928 0.088 0.081 0.912 0.949 0.912

Diego-Suarez� 0.836 0.866 0.840 0.902 0.115 0.109 0.885 0.936 0.885

UK� 0.666 0.998 0.782 0.939 0.131 0.121 0.869 0.942 0.869

Ambanja Août-décembre� 0.588 0.944 0.719 0.922 0.131 0.068 0.869 0.945 0.869

South Africa� 0.640 0.954 0.764 0.909 0.133 0.178 0.867 0.895 0.867

Natal, Africa 0.757 0.697 0.720 0.951 0.135 0.117 0.865 0.931 0.865

Tunisia� 0.853 0.935 0.890 0.906 0.153 0.215 0.847 0.904 0.847

Zanzibar� 0.912 0.946 0.928 0.905 0.156 0.162 0.844 0.884 0.844

Algeria� 0.787 0.904 0.832 0.913 0.175 0.135 0.825 0.905 0.825

Tennessee 0.414 0.914 0.530 0.822 0.188 0.218 0.812 0.860 0.812

Libya 0.782 0.881 0.819 0.898 0.199 0.205 0.801 0.858 0.801

Bear 0.352 0.875 0.488 0.834 0.201 0.177 0.799 0.869 0.799

Devon, UK 0.907 0.986 0.943 0.839 0.202 0.182 0.798 0.861 0.798

Arctic� 0.737 0.969 0.834 0.663 0.313 0.327 0.687 0.727 0.687

Egypt∗� 0.420 0.896 0.552 0.791 0.339 0.260 0.661 0.800 0.661

India∗ 0.781 0.915 0.841 0.663 0.345 0.297 0.655 0.789 0.655

Uganda 0.838 0.893 0.864 0.856 0.362 0.460 0.638 0.693 0.638

Morocco 0.508 0.722 0.589 0.706 0.377 0.481 0.623 0.710 0.623

Egypt+ 0.779 0.822 0.783 0.854 0.423 0.381 0.577 0.744 0.577

Madagascar 0.819 0.923 0.864 0.778 0.426 0.598 0.574 0.627 0.574

Mozambique 0.729 0.765 0.730 0.745 0.469 0.770 0.531 0.603 0.531

India+ 0.884 0.876 0.879 0.566 0.473 0.576 0.527 0.665 0.527

UK and World� 0.821 0.863 0.834 0.547 0.489 0.812 0.511 0.633 0.511

Mauritius 0.846 0.831 0.834 0.786 0.506 0.725 0.494 0.583 0.494

Ben Nevis, UK 0.981 0.845 0.907 0.627 0.520 0.510 0.480 0.668 0.480

Philippines 0.869 0.858 0.842 0.406 0.711 0.652 0.289 0.482 0.289

∗ The source of these logbooks is from the UK Met Office
+ The source of these logbooks are from the US NOAA
� The logbooks contain a mix of handwritten and typed text
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table cells (e.g., India+, Ben Nevis), irregular layout com-
plexity (e.g., UK and World, Mozambique), mixed content
with varying handwriting quality (e.g., UK and World), and
dense multi-line text entries (e.g., Philippines). These factors
made it more difficult for the model to accurately reconstruct
tables in certain cases.

To better understand these performance variations, we
conducted a detailed error analysis of the OCR output. This
analysis revealed several key challenges. First, a notable
issue arose from the crowdsourced annotation process, par-
ticularly in the representation of numerical data common in
climate logbooks. For example, annotators frequently misin-
terpreted decimal points or periods (.) as interpuncts (.) and
periods as degree symbols (◦) due to historical handwrit-
ing styles. While these inconsistencies reflect the authentic
appearance of historical records, they introduced additional
complexity in evaluating themodel’s performance on numer-
ical data. Second, we performed an error analysis focusing
on character-level substitution errors. Figure 4 illustrates
frequent character substitutions encountered during digitiz-
ing the UoS_Data_Rescue dataset. These substitutions
offer valuable insights into commonmisrecognition patterns.
High-frequency errors, such as (., .), (◦, .), and (I, 1), indi-
cate challenges in distinguishing visually similar characters,
particularly those with fine distinctions in handwritten dots,
strokes, and numerals. Additionally, substitutions like (4, 1)
and (0, 9) suggest difficulties recognizing certain numeric
characters, likely due to overlapping or similarly shaped
glyphs in cursive or non-standard handwriting styles. Char-
acter pairs like (e, r) and (e, é) further highlight issues with
recognizing subtle handwriting variations, diacritical marks,
and capitalization—common challenges in historical texts
with irregular handwriting and faded ink.

These patterns emphasize the need to further enhance
the TrOCR-ctx fine-tuning to improve accuracy in recog-
nizing frequently misinterpreted characters in handwritten
documents. Understanding these variations and annotation
challenges will guide future improvements in both OCR and
TSRmodels, particularly in addressing the unique challenges
posed by historical documents with intricate layouts, poor
handwriting quality, and specialized numerical notation.

5.3 Discussion

Performance analysis provides several key insights into the
performance of TrOCR-ctx for tabular data reconstruc-
tion. One notable finding is the alignment issue between
full tables and table bodies, where discrepancies in header
alignment negatively impact digitization accuracy. While
TrOCR-ctx performswell on properly segmented text lines
(refer to Table 3), it struggles to maintain spatial relation-
ships when headers are involved, leading to misaligned data
during reconstruction. Incorporating contextual information

from surrounding cells significantly enhances the model’s
ability to capture spatial relationships, particularly in histor-
ical documents with intricate layouts.

The error analysis, as illustrated in Figure 4, reveals com-
mon character substitution errors made by TrOCR-ctx.
High-frequency errors, such as confusing visually similar
characters (e.g., ‘.’ and ‘.’, ‘I’ and ’1’), indicate difficulty
distinguishing fine details in handwritten text. Numeric char-
acter recognition also presents difficulties, with substitutions
like ‘4’ for ‘1’ and ‘0’ for ‘9’ suggesting issues with overlap-
ping or similarly shaped glyphs in cursive or non-standard
handwriting styles.

Performance varies significantly between numbered and
text cells. Numbered cells consistently achieved higher
F1-scores than text cells, especially when dealing with hand-
written entries (refer to Table 5). For instance, numbered cells
achieved F1-scores of 0.924 for handwritten-mixed content
and 0.953 for typed-only content, compared to 0.719 and
0.751 for text cells, respectively. This disparity highlights the
ongoing challenges in recognizing complex handwritten text
and layouts. Additionally, TrOCR-ctx performed better on
typed text than handwritten-mixed entries, which often cross
cell boundaries and complicate alignment. This emphasizes
the importanceof refiningTableStructureRecognition (TSR)
to better handle handwritten content. Lastly, the logbook-
wise analysis (refer to Table 6) revealed performance vari-
ations based on layout complexity and handwriting quality,
offering further opportunities for improvement.

In summary, while TrOCR-ctx demonstrates signifi-
cant advancements in handling complex tabular data through
context-aware fine-tuning, challenges related to alignment,
handwritten text recognition, long multi-line text entries,
and character-level distinctions still need to be addressed for
further optimization. The error analysis provides valuable
insights for future improvements, particularly in enhancing
the model’s ability to distinguish visually similar characters
and handle the intricacies of handwritten text in historical
documents.

6 Conclusion and future work

This study on the digitization of historical tabular records
using the context-aware TrOCR model, particularly
TrOCR-ctx, has demonstrated promising results. By intro-
ducing the specialized UoS_Data_Rescue historical cli-
mate logbook dataset, we provided a robust foundation
for training and evaluating OCR models tailored to the
complexities of historical tabular data. Through compre-
hensive evaluations across multiple datasets, TrOCR-ctx
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Fig. 4 Bar chart illustrating the
frequency of TrOCR-ctx
substitution errors, showcasing
common character
misrecognition between the
ground truth and the
OCR-predicted output. This
breakdown highlights the top 30
frequently substituted character
pairs, providing insights into
recurring OCR inaccuracies and
potential areas for model
improvement

consistently outperformed baselinemodels, proving its effec-
tiveness in recognizing text within complex table structures
and diverse formats, including mixed handwritten and typed
entries. Key findings highlight the importance of context-
awareness inOCRand table reconstruction. By incorporating
information from neighboring cells, TrOCR-ctx reduced
recognition errors and relationships more accurately within
the tables. However, challenges remain, particularly in align-
ing header cells and recognizing handwritten text that crosses
cell boundaries. The model’s strong performance on typed
text underscores its potential for digitizing historical records
with well-formatted text while also pointing to areas for
improvement in handling handwritten entries.

Moving forward, future work will focus on improving
the alignment of table cells, particularly addressing issues
with header cells and improving the recognition of handwrit-
ten text—areas where TrOCR-ctx still faces challenges.
This could involve fine-tuning models on more diverse
handwritten datasets and developing advanced preprocess-
ing techniques to better handle complex layouts. Expanding

theUoS_Data_Rescuedatasetwithmore intricate layouts
and varied text styles will provide a broader training ground
for OCRmodels. Additionally, re-correcting the ground truth
based on identified crowdsourced annotation errors, such as
misinterpretations of numerical data (e.g., decimal points
misread as interpuncts or degree symbols), could enhance
the accuracy of future evaluations. Efforts will also be made
to improve model robustness against noise and distortions,
optimize scalability for large-scale digitization projects, and
incorporate feedback from domain experts to further refine
the model’s performance. Finally, rigorous cross-validation
will ensure themodel’s generalization across diverse datasets
and real-world scenarios, ensuring continued advancements
in historical document digitization.

A Appendix

See Figures 5 and 6.
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Fig. 5 Visualization of the tabular data reconstruction process using a
UK logbook image. (a) Table Structure Recognition output: The cells
highlighted in blue represent the predictions made by CascadeTabnet,
while those in green denote the newly generated cells derived from the
coordinates of the blue-highlighted cells. (b) Tabular data reconstruction

output: Content extraction using TrOCR-ctx and coordinate-based
alignment for final table reconstruction. The performance of the TSR
model on this image is 0.997 wF1-score, while the text extraction per-
formances are 0.969 and 0.874 F1-scores at character and token levels,
respectively
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Fig. 6 Visualization of the
tabular data reconstruction
process using a Ben Nevis, UK
logbook image. (a) Table
Structure Recognition output:
The cells highlighted in blue
represent the predictions made
by CascadeTabnet, while those
in green denote the newly
generated cells derived from the
coordinates of the
blue-highlighted cells. (b)
Tabular data reconstruction
output: Content extraction using
TrOCR-ctx and
coordinate-based alignment for
final table reconstruction. The
performance of the TSR model
on this image is 0.989
wF1-score, while the text
extraction performances are
0.974 and 0.927 F1-scores at
character and token levels,
respectively

B Annotation guidelines

The guidelines for crowd annotators in this task were
designed to provide clear instructions for working with table
images containing highlighted cells. The primary objective
for annotators is to accurately correct cell boundaries and
transcribe the highlighted content. For consistency and pre-
cision in annotating various cell types, detailed instructions,
as outlined in Table 7, are provided. The task encompasses
several possible scenarios, eachwith specific actions to guide
annotators in handling different cell boundaries and content
configurations.

1. When the highlighted cell boundaries accurately enclose
the text (i.e., all text is contained within the cell boundary
lines), transcribe the text directly within the highlighted
cell.

2. When the highlighted cell boundaries are inaccurate (e.g.,
the text extends beyond the boundary lines), adjust the
cell boundaries to fully contain the text and then tran-
scribe the content.

3. If a highlighted area merges multiple cells into a single
box, remove the highlighted box, create individual boxes
for each separate cell, adjust boundaries as necessary, and
transcribe the content within each cell.
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Table 7 Guidelines on the type of cells to transcribe

Type of cells Cells Examples Transcription

If the text in the cell is easy to read and
transcribe, simply transcribe the content
as it appears.

1923

If the highlighted cell covers multiple dis-
tinct text regions, adjust the cell boundary
by adding new cells according to the table
structure and transcribe each distinct text
region within its own cell.

Cell 1: 1, Cell 2: 9.16

If the highlighted cell onlypartially covers
a text region, correct the cell boundaries in
line with the table structure, then transcribe
the text within each corrected cell.

229.18

If a single word or group of words spans
across multiple highlighted cells, combine
these cells by adjusting boundaries so that
each cell contains a single, complete text
region. Then, transcribe the text accord-
ingly.

Information

If any part of the highlighted text cannot
be easily transcribed, transcribe the cell as
‘@@@‘. This will alert an expert to review
the cell later for clarification.

@@@

Table 8 Parameters for training
the CascadeTabNet model

Description Value

Input image size (height x width) 1024x1024

Backbone model used for feature extraction ResNet-50

Number of output channels in the last layer of the backbone 256

Number of input channels 256

Number of fully connected (FC) layers 2

Number of output channels for each FC layer 1024

Number of stages in the cascade 3

Region Proposal Network (RPN) output threshold 2000

RPN minimum positive IoU threshold 0.3

Number of object classes (table or background) 2

Learning rate of the optimizer 0.005

Loss function for classification Cross Entropy

Loss function for bounding box regression Smooth L1
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Table 9 Parameters for training the TrOCR model

Hyperparameter Value

Image Size (120, 80)

Maximum Text Length 190

Optimizer Adam

Loss Function CrossEntropyLoss
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