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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.18419/darus-4 The Architecture, Engineering, and Construction (AEC) industry faces data integration challenges due to
360 fragmented silos and diverse data representations, hindering cross-domain queries and early detection of design
Keywords: constraints. Semantic Web Technologies (SWTs) address data integration challenges.

Data integration This paper evaluates the impact of SWTs on co-design workflows by comparing them with alternative
Co-design workflow approaches to assess their effectiveness in supporting interdisciplinary collaboration and design constraint
Ontology detection. Using Design Science Research, a co-design methodology is developed that integrates SWTs with
Knowledge graphs AEC tools for reasoning and federated querying. A component of this methodology is a bidirectional mapping
Tool integration strategy for translating object-oriented data models, demonstrated with the Building Habitat Object Model
Federated querying

(BHoM), an AEC interoperability framework.

Findings reveal that integrating SWTs enables reasoning and complex queries across federated datasets, im-
proving co-design efficiency. These findings support AEC professionals in advancing co-design and data-driven
decision-making, while also informing future research on integrating SWTs into AEC design workflows.

1. Introduction The absence of an integrated overview of project data hampers AEC
project stakeholders’ ability to make logical inferences, conduct cross-

The integration of digital technologies in the Architecture, Engi- domain queries, and derive information from all involved disciplines,
neering, and Construction (AEC) industry has primarily focused on thereby impeding their effectiveness in identifying design restrictions.
specific phases of the building process or individual disciplines [1]. Cross-domain querying refers to the ability to retrieve data from differ-
While this approach has driven advancements in isolated areas, it ent disciplines or domains, allowing queries across them. Current AEC
often results in fragmented workflows that hinder interdisciplinary practice often considers limitations arising from disciplinary design or
collaboration. Co-design is a collaborative methodology that facilitates construction only in the later stages of a linear design process. How-

the simultaneous and feedback-driven development of design methods,
analysis techniques, manufacturing processes, and building systems
across disciplines [2]. In a co-design process, it is crucial to inte-
grate design data, analysis methods, and relevant information from
multiple disciplines, as constraints in one domain influence decisions
in another [3]. However, the focus on isolated phases or disciplines
frequently leads to data being compartmentalized within distinct silos,
which hampers effective co-design [4]. The challenge of achieving
seamless data integration across disciplines remains substantial due to
the varied tools and applications employed, each with its own modeling
and information representation methods [5-8].

ever, research has shown that the most critical decisions in building
design are made during the conceptual design phase [1,9,10]. These
early decisions profoundly impact not only construction costs [9] but
also the subsequent energy use of the building [10].

Several solutions have been proposed to address data integration
challenges in the AEC industry, including common data schemas such
as the Industry Foundation Classes (IFC), collaborative interoperability
frameworks, and Semantic Web Technologies (SWTs). IFC, an interna-
tional standard, facilitates data exchange across AEC software applica-
tions throughout various building lifecycle stages [5,11]. However, it
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primarily serves as a standardized reference rather than a bidirectional
exchange mechanism, often resulting in data loss due to software in-
consistencies [12]. Collaborative interoperability frameworks, such as
the Building and Habitats Object Model (BHoM) [13] and Speckle [14],
support bidirectional data flows and visual data flow modeling, facili-
tating interdisciplinary exchange. Visual data flow modeling represents
operations as nodes linked by data flows [15]. However, these frame-
works rely on mapping rather than direct data linking [16], limiting
integrated data analysis and cross-disciplinary queries. Additionally,
their imperative coding approach complicates logical inference and
declarative reasoning [17]. SWTs, including the Resource Description
Framework (RDF) and the Web Ontology Language (OWL), enable de-
centralized data representation, machine-readable semantics, and com-
plex reasoning [18,19]. Several studies have explored their potential in
the AEC industry [1,19,20]. However, SWTs remain under-integrated
with AEC design tools, particularly visual data flow modeling sys-
tems [1,21], and their impact on workflow efficiency and holistic data
utilization remains unexplored.

In addressing these challenges, we have previously undertaken sev-
eral foundational research efforts, including a review of interoperability
paradigms in the AEC industry [1], the preliminary translation of
BHoM'’s terminological layer to OWL [16], and explorations of se-
mantic reasoning within BHoM building data [3,22]. Building on this
work, this paper develops and evaluates a co-design workflow that
integrates SWTs with collaborative interoperability frameworks to en-
hance cross-domain querying and reasoning. While several studies have
explored the integration of SWTs into AEC workflows [23-25], they
mainly address feasibility rather than providing a systematic evalua-
tion. This research compares the developed co-design workflow against
alternative approaches to assess its impact on cross-domain querying,
design constraint identification, collaboration, and holistic data use. To
support this evaluation, we developed several key components:

1. A co-design workflow that integrates SWTs with collaborative in-
teroperability frameworks, enabling cross-domain querying and
reasoning to enhance data interoperability in AEC projects;

2. A mapping strategy for the bidirectional translation of object-
oriented data models used by collaborative interoperability
platforms — aligned with visual data flow modeling principles
— into OWL/RDF formats and vice versa;

3. A comparative evaluation of the workflow’s effectiveness in rep-
resenting semantic and disciplinary data, managing class defini-
tions and extensibility, supporting cross-domain querying, and
synchronizing data, in contrast to alternative approaches. This
assessment quantifies the impact of SWTs in AEC contexts, rein-
forcing their practical value beyond previous implementations.

This paper follows the Design Science Research (DSR) methodology
to develop and evaluate a co-design workflow [26], integrating SWTs
with AEC design tools. The artifact was developed with continuous
feedback from our industry partner, Buro Happold, and evaluated in
workshops to ensure it met practical requirements. Core co-design
requirements were defined, guiding the development of use cases and
a translation mechanism. A comparative evaluation against alternative
approaches assessed its ability to manage semantic and disciplinary
data, support cross-domain queries, and detect design constraints.

The paper is structured as follows: Section 2 reviews AEC data
schemas, interoperability standards, and data exchange approaches
in the AEC industry. Section 3 identifies the research gap and ob-
jectives. Section 4 outlines the methodology for developing the co-
design workflow by defining requirements and falsifiable use cases, and
by introducing bidirectional translation between object-oriented data
models and OWL/RDF. Section 5 presents a comparative case study of
three co-design approaches: (1) without an interoperability framework,
(2) with an interoperability framework (BHoM), and (3) the proposed
co-design workflow using both SWTs and BHoM. Section 6 evaluates
the workflows based on the criteria from the methodology. Section 7
discusses limitations and future directions, and Section 8 concludes the

paper.
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2. Background

AEC projects are inherently decentralized [27], requiring multidisci-
plinary solutions [28]. Different disciplinary designers employ various
design tools, each with its own schema [27]. This diversity extends
to modeling approaches among architects, engineers, and subcontrac-
tors [6,8], posing challenges like fragmented collaboration and data
interoperability issues [29,30]. Integrating knowledge representations
in AEC projects remains a significant challenge [31], but SWTs offer
a promising solution [32,33]. While various data schemas and inter-
operability standards have been established to support information
exchange, limitations in consistency, bidirectional data flow, and cross-
domain reasoning persist [34]. This section explores the aspects of data
exchange and interoperability in AEC. We begin by discussing AEC data
schemas and interoperability standards, like IFC and other structured
frameworks that facilitate digital data exchange. Next, we examine
approaches to co-design and data exchange, presenting workflows that
rely on multiple data models versus shared data models, highlight-
ing their scalability and integration challenges. We then introduce
SWTs, which enable structured, machine-readable representations of
data, allowing for improved linking, querying, and reasoning across
disciplines [33]. By understanding these approaches, we establish the
basis for evaluating how SWTs can enhance cross-domain querying,
reasoning, and workflow automation in AEC co-design processes.

2.1. AEC data schema and interoperability approaches

IFC, an international standard (ISO 16739-1:2018 [35]), is a data
schema that supports the exchange of digital data between heteroge-
neous applications [36]. Based on the EXPRESS data model, IFC schema
allows encoding in various formats such as XML, JSON, STEP, or
ifcOWL [1]. The IFC data model exhibits a well-defined graph structure
comprising multiple entities, types, and associated data properties, cov-
ering concepts from all disciplines involved in an AEC project [25,37].
While IFC serves as the industry standard for data schema, complemen-
tary standards like ISO 19650 [35], EIR Guidance [38], and DIN SPEC
91400 [39] play significant roles in enhancing data interoperability and
data exchange within the AEC industry, synergizing with the research’s
objective of refining co-design workflows.

2.2. Approaches to co-design and data exchange in AEC

In this subsection, we discuss data exchange approaches in AEC that
facilitate collaborative design. These include: (1) exchange based on
multiple data models, where the data interchange between each pair of
tools differs from how data is exchanged between other pairs of tools;
and (2) exchange based on a shared data model, such as IFC-based
data exchange and visual data flow modeling workflows like BHoM
and Speckle. In this approach, all tools exchange data with the same
shared data model. The data of each tool has a representation on the
shared data model, and the representation of the data of different tools
can overlap. Thus, tools can exchange data using this representation
overlap.

2.2.1. Exchange based on multiple data models

This approach facilitates data exchange by establishing custom
mappings between pairs of tools. By supporting both proprietary data
models and APIs, it enables interoperability across diverse software
applications. In scenarios where multiple tools are involved, to ex-
change data between two tools using different data models we must
use an exchange data model (which usually differs from the data
models used by both tools). The exchanged data can be both proprietary
data models via file transfers and APIs [1,40]. For instance, a work-
flow involving Rhino, Robot Structural Analysis, and ArchiCAD, where
each tool exchanges data with another tool using different formats or
data models, demonstrates this method. For example, ArchiCAD and
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Rhino/Grasshopper communicate through the ArchiCAD-Grasshopper
connection, while Rhino and Robot Structural Analysis share data via
exporting and importing files in DXF and CSV formats. While effective
for specific workflows, this approach does not scale well as the num-
ber of tools increases. Managing multiple direct connections becomes
increasingly complex, leading to interoperability challenges. Addition-
ally, this approach can lead to fragmented workflows, potential data
loss, and synchronization challenges [40].

2.2.2. Exchange based on a shared data model

In this approach, data exchange between tools is structured around
a shared data model. This model can have a unified representation
for all disciplines or a modular approach with discipline-specific data
representations. A key example of a unified representation is IFC-
based exchange, where tools map their internal schemas to the IFC
standard. Widely used in the AEC industry, IFC facilitates interoper-
ability across software and collaboration throughout project lifecycles.
It supports direct software exchanges (e.g., Revit to Tekla), database
management (e.g., I[FC-to-SQL with PostgreSQL), and linked data in-
tegration (e.g., GraphDB) [11]. However, maintaining a single data
representation requires consensus among participants. While the IFC
schema restricts modifications, custom properties can be added through
IfcProxy entities and property sets (PSet) [41]. However, IFC prevents
internal class references, though the buildingSMART Data Dictionary
(bSDD) API provides an alternative for defining custom data struc-
tures. At the same time, to address the rigidity of a unified model, a
modular approach within IFC allows tools to adopt discipline-specific
models [40,42]. Discipline-specific IFC files can be exchanged inde-
pendently or linked to accommodate diverse requirements [43,44].
However, IFC primarily serves as a standardized reference rather than
a bidirectional exchange mechanism, often leading to data loss. Studies
have shown that data loss can occur during IFC-based transfers due to
inconsistencies in software implementations [11]. For instance, Sibenik
et al. [12] observed variations in exported entity counts and missing
elements across different software, highlighting challenges in main-
taining data integrity [11,45]. In current AEC practice, an increasing
portion of design work relies on parametric design and visual program-
ming tools [15,46]. Literature highlights the growing use of visual data
flow modeling in the AEC industry to integrate technologies beyond
traditional design tools, including SWTs [47]. As demonstrated by Reiss
and Renieris [48], visual data flow modeling provides an effective
means of working with dynamic data—information that undergoes
frequent changes and updates throughout the design process [49].
However, integrating IFC into these workflows remains challenging, as
IFC serves more as a structured reference than a dynamic exchange
platform. Frequent mappings between parametric environments and
IFC can lead to data loss, as noted by Sibenik [12]. Several frameworks
facilitate data exchange in visual programming environments via plug-
ins, including Geometry Gym, VisualARQ, Rosetta, BHoM, and Speckle.
This study examines BHoM and Speckle, as both enable bidirectional
data exchange across multiple AEC software. As open-source platforms,
they use internal data schemas to translate information between BIM,
engineering tools, and visual programming interfaces [50]. Both plat-
forms allow tool-specific data representation rather than enforcing a
unified model across disciplines. Speckle provides 50 predefined classes
and prioritizes software connectivity [1], while BHoM offers over 1251
classes with a federated data structure, supporting multiple representa-
tions of building elements [13]. This federated structure aligns with the
multidisciplinary nature of AEC workflows, where different domains
describe building components differently. BHoM also includes prede-
fined functions for data manipulation [16]. However, neither maintains
persistent cross-platform data links, limiting seamless multidisciplinary
queries. This means information is sent from one platform to an-
other, but it is not linked. The absence of a linked data representation
complicates cross-disciplinary queries, making it difficult for designers
to access information seamlessly from multiple disciplines. Therefore,
both platforms can be complemented with external databases for more
robust data storage and management, particularly in projects requiring
extensive data retention or cross-platform data integration.
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2.3. SWTs in the AEC industry

SWTs in AEC can provide assistance in three crucial aspects: (1)
interoperability, as it can enhance the collaboration of various systems
and software within the AEC sector; (2) linking data, as it excels in
connecting information from different domains; (3) and logic and proof,
as it can aid in logical reasoning and proof processes in AEC applica-
tions [33]. Key components of SWTs include ontologies and knowledge
graphs. Ontologies provide a structured framework for domain-specific
knowledge [18], while knowledge graphs link entities and relation-
ships, enhancing data integration [51]. These are implemented using
RDF [52] and OWL [18], which support semantic reasoning and struc-
tured data queries via SPARQL [53]. Existing AEC applications leverage
linked data and ontologies like OWL [33,54-56]. Notably, ifcOWL rep-
resents IFC using OWL, addressing IFC schema limitations such as the
lack of rigorous logic [54]. AEC ontologies also include LBD modular
ontologies like BOT [57], Building Product Ontology [58], Brick Ontol-
ogy [591, and OPM [56], which offer discipline- or domain-specific data
representation, aligning with AEC’s federated nature. Ontologies and
knowledge graphs enable extensibility by expanding data dictionaries
and representing evolving information [60]. Shen et al. emphasize the
need for tighter integration between SWTs and AEC tools to maxi-
mize their potential [21]. Various research initiatives have explored
the application of SWTs in AEC design workflows. For example, Cao
et al. [61] demonstrate how ontologies can automate manufacturability
analysis in industrialized construction. Pauwels et al. [62] provide an
overview of SWTs in AEC, highlighting their role in structuring and
linking data but also noting the challenges of integrating them holisti-
cally into industry workflows. Perisic et al. [63] propose the Extensible
Orchestration Framework, which improves interdisciplinary co-design
through SWTs. Additional efforts aim to link BIM data with semantic
models. The BIM Semantic Bridge [64] facilitates semantic enrichment
by connecting BIM models to ontologies, though its focus remains on
ontology development rather than dynamic data integration. Other ap-
proaches explore graph-based and cloud-based BIM models to support
real-time information exchange. For example, Wang et al. [65] propose
a cloud-based BIM framework that structures domain-specific mod-
els as interlinked graphs, enabling automated inconsistency detection.
Similarly, Cloud BIM (CBIM), introduced by Sacks et al. [23], incorpo-
rates knowledge graphs into federated BIM environments, enhancing
semantic relationships between project components. However, these
approaches lack comparative evaluations against other interoperability
methods. Visualization tools such as the LD-BIM Web App and LBD-
viz [66] facilitate interaction with linked data in BIM systems but only
support reading BIM data and exporting RDF, without enabling the
reverse process, which limits their ability to provide customization for
co-design workflows.

Despite promising developments, existing research, to the best of
our knowledge, does not quantitatively assess the impact of SWTs on
design collaboration, workflow automation, or interdisciplinary rea-
soning. To fully leverage SWTs in co-design workflows, systematic
evaluation is necessary to measure their effectiveness and practical
benefits.

3. Research gaps and objectives

Interdisciplinary co-design in the AEC industry faces persistent chal-
lenges related to data integration, interoperability, and reasoning. Ex-
change based on multiple data models is inefficient when multiple tools
are involved, as it requires direct communication between each pair
of software applications, leading to increased complexity and potential
data inconsistencies [40]. While IFC provides a standardized schema,
it is not optimized for repeated import/export cycles, often leading
to data loss [12]. Collaborative interoperability frameworks such as
BHoM and Speckle facilitate data mapping across AEC tools, but they
do not establish semantic links between information, limiting their
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ability to support cross-domain queries and logical inferences across
disciplines [1]. As a result, workflows rely on manual intervention, im-
peding knowledge-driven decision-making and reasoning in co-design.
While SWTs offer a promising solution by enabling structured data
integration and reasoning, their direct integration into AEC design
software remains limited. Despite promising developments, existing
research, to the best of our knowledge, does not quantitatively assess
the impact of SWTs on design collaboration, workflow automation, or
interdisciplinary reasoning. To leverage SWTs in co-design workflows,
systematic evaluation is necessary to measure their effectiveness and
practical benefits. This study identifies three key research gaps that
need to be addressed:

+ Gap 1: Semantic Representation and Cross-Domain Querying: AEC
workflows require discipline-specific data representations rather
than a single, uniform representation across all domains [28].
While modular approaches support discipline-specific representa-
tions, they often result in fragmented silos that hinder interoper-
ability. Linking discipline-specific datasets to enable cross-domain
querying and reasoning remains a challenge [16].

Gap 2: Consistent and Scalable Data Exchange: Direct data ex-
changes between tools that rely on custom mappings between
individual software applications do not scale well because each
pair of tools requires a different mapping, which can lead to data
loss and a lack of synchronization [12,40]. While SWT-supported
workflows exist, their integration into AEC design software re-
mains limited.

Gap 3: Evaluation of SWTs in Co-Design Workflows: While studies
explore SWT integration in AEC workflows [23], most focus on
feasibility rather than systematic assessment of their impact on
co-design efficiency, cross-domain querying, and collaboration.

To address these gaps, this study establishes three key objectives.
First, it aims to enhance cross-disciplinary querying and extensibility
by leveraging SWTs through linked data principles and knowledge
graphs. This approach strengthens semantic representation, facilitates
disciplinary integration, and improves extensibility, directly addressing
the challenge of semantic representation and cross-domain querying.
Second, it aims to develop a data exchange mechanism by developing
a bidirectional translator between object-oriented building data models
from AEC design software and OWL/RDF, ensuring synchronization
and scalability, thereby addressing research gap 2. Third, it evaluates
the effectiveness of SWTs in co-design workflows through a compar-
ative assessment of an SWTs-integrated workflow against alternative
approaches. This evaluation measures the impact on semantic repre-
sentation, disciplinary data handling, class definition and extensibility,
cross-domain querying, information inference, and data synchroniza-
tion, directly addressing research gap 3. To achieve these objectives,
this research develops a co-design workflow that integrates SWTs to
enhance interoperability in AEC. The Methodology section defines the
requirements necessary for its implementation, while the Evaluation
section assesses its effectiveness through a comparative analysis of
three co-design workflows.

4. Methodology: Integrating SWTs with design tools via data
translation

This section outlines the methodology for developing a co-design
workflow that integrates SWTs with collaborative interoperability
frameworks to enable cross-domain querying and reasoning. A key
component of this approach is a mapping strategy for bidirectional
translation between object-oriented data models—aligned with visual
data flow modeling principles—used by interoperability frameworks
and OWL/RDF formats. The development approach is based on the
principles of DSR and follows a systematic strategy to design, develop,
and evaluate the artifact known as the co-design workflow. We applied
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the DSR methodology by developing the converter with constant feed-
back from our industry partner and evaluated it in workshops. The
initial design phase of the artifact defines the requirements for co-
design and develops use cases derived from the background section
and industry collaboration feedback. The development phase focused
on implementing the translation mechanism illustrated in Fig. 1. The
following subsections present the requirements for co-design and use
cases, followed by the bidirectional translation of data models.

4.1. Requirements to co-design and use cases

In line with the DSR methodology, based on the background section,
research gap, and objectives, as well as in collaboration with the
industry partner key requirements and falsifiable use cases for an in-
tegrated co-design workflow are outlined. These requirements address
the gaps in current AEC data exchange practices, focusing on semantic
representation, flexible class definitions, linked data for reasoning, and
efficient data synchronization. The use cases presented herein will serve
as evaluation criteria in Section 6.

» Requirement 1: Semantic Representation and Disciplinary Repre-
sentation
Enable semantic representation and allow different disciplines to
model building elements based on their unique perspectives and
requirements, granting freedom in schema design. Recognizing
the diversity in the way disciplines define and represent build-
ing elements enhances flexibility and accommodates the varied
analysis needs.

— Use Cases for Requirement 1: (a) Architect represents a col-
umn by its location and other relevant properties; Structural
engineer defines it as an analytical bar with start/end points
and cross-section properties.

Requirement 2: Class Definition and Extensibility

Designers should be able to define new classes and extend ex-
isting ones, including the addition of new attributes/properties
within the data dictionary, all within the design software. This
allows designers to accommodate new project-specific concepts
and enhance existing classes with project-specific attributes.

— Use Cases for Requirement 2: (a) Extend existing classes,
e.g., add simulation results as attributes to the “Bar” class;
(b) Define a new class to represent elements not covered
within the existing schema.

Requirement 3: Linked Data for Reasoning, and Cross-Disciplinary
Queries

Enable linked data representation to facilitate cross-disciplinary
queries, allowing designers to access information from multi-
ple disciplines. Building elements should be depicted from dis-
ciplinary perspectives, and linked data enables holistic decision-
making.

- Use Cases for Requirement 3: (a) Determine optimal acous-
tic ceiling placement considering structural properties; (b)
Decide machinery lab location based on column node reac-
tions; (c) Optimize floor slab openings in the machinery lab,
considering mesh bending moments.

Requirement 4: Data Synchronization - Read back data from the
graph database to the design platform.

In a co-design process, AEC designers need to share information
with each other and be able to read data from different disciplines
involved in the project. This process should be smooth and ide-
ally not involve many manual steps of importing and exporting
information, where information loss can occur. With the approach
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OWL/RDF Data
Linked Knowledge Graph

Fig. 1. Key component of the developed artefact.

using a graph, designers need to be able to read data from
the graph to their software to ensure seamless integration and
collaboration across different disciplines. This capability allows
designers to use disciplinary tools for designing and analyzing
options while having access to a linked data graph of the entire
project. If changes occur in the graph, designers should be able
to propagate these changes into their design platform.

— Use Cases for Requirement 4: (a) Upon determining the
function of a room (e.g., as a machinery lab) by inferring
or calculating data from a linked database, propagate the
machinery lab label information from the graph into the
design software.

4.2. Bidirectional translation of data-models

The translation approach converts object-oriented building models
into OWL/RDF to enhance interoperability across diverse software
tools. This involves mapping key object-oriented elements — classes,
interfaces, properties, and datatypes — into corresponding vocabularies
within SWTs. Fig. 2 illustrates this mapping process, showing the flow
from an object-oriented data model to OWL/RDF. We use BHoM as an
example of an object-oriented data model within an interoperability
framework (See Appendix A for the BHoM Abstract Model) . While
both BHoM and Speckle utilize such models, BHoM was chosen due
to its (1) federated data approach, allowing multiple discrete repre-
sentations of building elements, and (2) extensive set of predefined
classes, reducing the need for new ontologies. This translation pattern
applies to any interoperability framework employing object-oriented
models, provided it can define object properties and functions sepa-
rately, ensuring compatibility with SWTs and linked data principles.
By generalizing this approach, interoperability across AEC design envi-
ronments is enhanced. Existing research, such as Tong et al. [67,68],
has mapped object-oriented database models to OWL/RDF, but existing
converters posed challenges. First, BHoM, as an AEC design plugin, has
specific development requirements. Second, deserializing OWL/RDF
into BHoM and integrating it into design platforms proved complex.
While research on integrating existing mappers could potentially offer
a solution, the unique constraints of our use case made direct adoption
difficult. Instead, we developed a tailored mapping strategy for direct
translation within AEC design tools. Classes in the object-oriented
model are mapped to OWL classes, while interfaces, which often rep-
resent taxonomic concepts, are also translated into OWL classes. The

inheritance relationships between classes and the implementation re-
lationships between classes and interfaces are represented using the
rdfs:subClassOf relationship. Object properties and data properties are
extracted from each class and mapped to OWL object properties and
datatype properties, respectively. Unique identifiers (GUIDs) for each
object are converted into URIs, ensuring each instance is uniquely
identifiable within the RDF graph. Primitive data types such as strings,
integers, and booleans are mapped to their corresponding XML schema
datatypes. Complex data structures such as lists are represented us-
ing RDF sequences to maintain order. The mapping process ensures
that both the structure and semantics of the original data model are
preserved in the OWL/RDF representation.

A key aspect of this framework is integrating geometric data with
semantic information, enabling cross-domain queries and reasoning.
The BHoM to OWL/RDF converter/serializer supports two geometric
representation approaches, balancing storage efficiency and seman-
tic depth. The first serializes geometry (points, lines, meshes) into
strings, optimizing storage and query performance but limiting geomet-
ric reasoning. In contrast, the second approach represents geometric
entities as OWL ontology classes, where each entity is constructed
hierarchically. For instance, a polyline is represented as an ordered
collection of points, with each point stored as an instance containing
X, Y, and Z coordinates. While this method enhances the framework’s
reasoning capabilities, allowing inferences about spatial relationships,
it also increases computational complexity and storage requirements. In
this study, the ontology-based representation was selected to demon-
strate the framework’s semantic reasoning capabilities, particularly
in handling architectural and structural models. The implications of
this choice on graph complexity and performance are explored in the
following sections.

In this research, the generated data includes both RDF-based rep-
resentations and ontology-enriched data, referred to as “bhRDF” and
“bhOWL”, respectively. The bhRDF component provides structured
data optimized for storage and querying in graph databases, while
bhOWL encapsulates ontology definitions based on the BHoM schema.
During BHoM’s data model translation, we developed tools for seam-
less integration with SWTs. While BHoM’s classification structure was
pre-existing, our contributions include: (1) A BHoM to OWL/RDF con-
verter/serializer encoding object models into RDF/OWL for SWT in-
teroperability; (2) An OWL/RDF to BHoM deserializer reconstructing
BHoM objects from RDF/OWL for AEC visual modeling tools; and (3)
A GraphDB connector for storing, querying, and retrieving BHoM data
within a graph database. These tools are collectively referred to as
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Fig. 2. Activity diagram of the mapping process.
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Fig. 3. Grasshopper implementation overview of the translation of BHoM objects to OWL/RDF data (and vice-versa) while designing.

the bhOWL toolkit for co-design workflows. Installation and update
instructions are provided in Appendix D. The prototype is available
at GitHub [69]. For a detailed exploration of BHoM to OWL/RDF
Translation and Vice Versa, refer to “Appendix B: BHoM to OWL/RDF
Translation and Vice Versa. Fig. 3 shows the mapping components
developed in Grasshopper and illustrates how to interact with the RDF
data in Grasshopper. A detailed figure of the SWT components within
Grasshopper is provided in Appendix C.

5. Case study: Comparative study of design workflows

In this section, we present a comparative study of three distinct
design workflows for designing a timber building: (1) Approach 1 —
a design workflow that uses dedicated AEC software for each dis-
cipline but lacks an interoperability framework for data exchange,
(2) Approach 2 - a design workflow that incorporates BHoM as an
interoperability framework, and (3) Approach 3 - the proposed co-
design workflow that utilizes the interoperability framework BHoM
and SWTs, employing the developed mappers for object-oriented data
models (within BHoM) to OWL/RDF and vice versa. The “co-design
workflow” in this study refers to the structured iterative process that
facilitates collaborative design efforts between architectural modeling
and structural analysis disciplines. A detailed overview of the tools
involved in each approach is shown in Fig. 4. In addition, besides
the tools, white boxes indicate scalability with additional software or
disciplines. In Approach 1, tools exchange data based on multiple data
models, as illustrated by the top box showing that the addition of a
new tool or discipline requires direct export/import between each tool.
Approach 2 connects new tools or disciplines through the collaborative

interoperability framework BHoM. Approach 3 integrates new disci-
plines via a graph database, where all project data is synchronized
using SWTs (OWL/RDF graphs) and is mapped through BHoM. We
evaluate these approaches, following DSR, against the criteria based on
the requirements defined in our Methodology section, which include se-
mantic representation, disciplinary data handling, class definition and
extensibility, cross-domain querying capabilities, information inference
capabilities, and data synchronization workflows.

The case study was developed in collaboration with an industry
partner to ensure that the scenarios reflect practical multidisciplinary
design challenges. The timber building features a grid structure com-
posed of timber columns and slabs and is designed as a machinery lab
with an entrance hall, covering 70 square meters (10 m x 7 m). The
facade consists of a curtain wall. A 3D architectural representation is
shown in Fig. 5.

We present four co-design iterations between architecture and struc-
tural engineering to demonstrate the workflow for each approach.
Initially, an architect initiates the design process using a visual pro-
gramming AEC design tool. Second, a structural engineer receives
the design, generates a structural representation, and performs the
analysis. Third, an architect designs a suspended ceiling to function as
an acoustic insulator on a timber structure. To determine the optimal
height for the acoustic ceiling, the architect considers potential defor-
mation and displacement of the structural ceiling, determined through
structural analysis and simulation. In the fourth iteration, the task is
to determine the best location for the machinery lab within the timber
building. The structural engineer provides column node reaction data,
advising against placing heavy equipment near columns with high node
reaction forces to avoid structural problems. The information exchange
requirements for the four steps are defined and illustrated in Fig. 6.
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Fig. 5. 3D Architectural representation of the timber structure.

5.1. Approach 1: Design workflow without interoperability framework

In Approach 1, the design process involves the use of Rhino 3D and
Grasshopper for architectural modeling, and Robot structural analysis
software for engineering calculations.

1. Co-Design Iteration 1 - The Architectural Representation: We
used Rhino to build the 3D geometry of the building, the grid
structure, and the curtain wall. A parametric definition is created
in Grasshopper, allowing adjustments to column spacing, slab
thickness, and opening locations. After having an architectural
design, we exported the geometry from Rhino to a DXF file.

2. Co-Design Iteration 2 - The Structural Representation and Struc-
tural Analysis Setup: We imported the DXF file into Robot Struc-
tural Analysis and redrew the structural elements according to
the architectural geometries. Columns and slabs were identified
and labeled using Define function. Material properties were
assigned, and sections for columns and slabs were defined based
on the design intent. We applied loads, including dead weight
(self-weight of building elements) and live loads (occupancy and
machinery), and performed structural analysis. Results — includ-
ing member forces, deflections, and reactions — are exported as
spreadsheets and graphical charts for further review.

3. Co-Design Iteration 3 - Placement of an acoustic ceiling under
the structural ceiling: The slab deflection results from the struc-
tural analysis are reviewed. The architect then identifies critical
areas and determines the highest Z coordinate for ceiling place-
ment (see Fig. 7). The ceiling is manually modeled in Rhino3D or
Grasshopper using imperative coding, and is exported as a DXF
file for further structural analysis. This approach relies on DXF
file exchanges.

4. Co-Design Iteration 4 - Decide the location of the machinery lab:
Positioning the machinery lab is challenging in this approach
because we intentionally do not use a classification (interoper-
ability) tool. Therefore, we approach the task by identifying the
room’s location manually. We import a CSV file from the struc-
tural analysis software containing Z-direction node reactions
for columns into Grasshopper. Using this data, we color-code
the columns based on their Z-direction reactions. By visualizing
these color-coded columns, we identify those with the highest
reactions and adjust the machinery lab placeholder position ac-
cordingly (see Fig. 8). This process involved exchanging DXF and
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Fig. 7. Co-design Iteration 3: Placement of an acoustic ceiling under the structural ceiling, taking into consideration structural properties of the building.
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Fig. 8. Co-Design Iteration 4: Decide the location of the machinery lab depending on the node reaction of columns.

CSV files and required manual data import into Grasshopper,
utilizing imperative coding for sequential task execution rather
than rule-based placement.

5.2. Approach 2: Design workflow with interoperability framework

In Approach 2, we use Rhino3D, Grasshopper and BHoM for both
architectural and structural engineering workflows, but with different
modeling methods. Additionally, Robot Structural Analysis is used for
structural representation and analysis.

1. Co-Design Iteration 1 - The Architectural Representation: To

represent the building architecture, we used Rhino 3D and
Grasshopper, integrating the BHoM plug-in for schema speci-
fications. We utilized BHoM objects such as level, room, wall,
column, floor, and window, along with material-related classes
(e.g., wood, framing properties) and geometry-related classes
(e.g., point, curve, surface). Additionally, we defined a custom
class, ArchitecturalBuilding, which encapsulates these elements
as properties (e.g., hasLevel for levels, hasColumn for columns),
allowing us to relate objects to one another.

. Co-Design Iteration 2 - The Structural Representation and Struc-
tural Analysis Setup: The process starts by extracting data from
the architectural model using BHoM’s adapters. Non-load-
bearing elements (e.g., walls, windows) are excluded, focusing
on load-bearing components such as columns and slabs.BHoM
functions like AnalyticalBars and Surface map these elements
to their structural counterparts, automatically computing the
necessary parameters. The model is then prepared for structural
analysis in Robot Structural Analysis, where loads, material

properties, and boundary conditions are assigned manually.
Various analyses, including deformation, stresses, and node reac-
tions, are performed and integrated into Grasshopper via BHoM.
Additionally, we introduce a custom class, “Structural Building”,
which relates bars, panels, and self-weight data to the building
through properties like “hasBar”, “hasPanel”, and self-weight.

. Co-Design Iteration 3 - Placement of an acoustic ceiling un-

der the structural ceiling: We used BHoM functions to extract
displacement values (e.g., maximum displacement at specific
nodes) from the structural analysis results. We then manually
calculated the maximum height for the acoustic ceiling, ensuring
it is positioned below points of maximum deflection to avoid in-
terference. In Grasshopper, we created a definition to query and
calculate the Z coordinate for the acoustic ceiling based on these
displacement values. Once the Z coordinate was determined, we
modeled the ceiling manually in Rhino3D.

. Co-Design Iteration 4: Decide the location of the machinery lab:

We utilized BHoM functions to extract structural data such as
load capacities and stress distribution, which were compared
with building design requirements. In Grasshopper, we devel-
oped a definition to query and identify suitable machinery lab
locations based on this data. A BHoM function (or Grasshopper
script) was used to compute the optimal lab location. After ob-
taining the query results, we manually updated the architectural
model in Grasshopper to reflect the chosen lab location. This
process relies on imperative coding, requiring manual coding
and scripting.



D. Elshani et al.

Co-Design lteration 1

S Architectural Representation
E 8 c o 1. a) Start designing
cQ 53 b) Push RDF data to the RDF database
(&)
®? 0 @ 1.
a2
d=
2
<
& e @
® E
7] 7] = o &
< @© ] e
o oQ & =
g of = =
O ©® - un @
20
3 8 - = @
¥ wg
= g z
- O Architectural named graph 0 -
<http://example.org/ArchGraph0> ———

2. Structural named graph 0
@ <http://example.org/StrGraph0>

Co-Design lteration 2
Structural Representation

Discipline I
Structural Design

Desgin

sofware

2.a) Pull necessary RDF data 2.b) Apply Analysis
to the design software

Automation in Construction 176 (2025) 106226

A

Pull RDF data to the
design software

Co-Design lteration 3 & 4 ¢4

Graph Update
»

« > 2
4 = &=
= = =
- > D == @
3 &

Architectural named graph 1
<http://example.org/ArchGraph1>

X ®

Co-Design Iteration X
(Continue with iterations until
e the design is complete)

2.c) Push RDF data
to the RDF database

Fig. 9. Approach 3: Design workflow with an interoperability framework and SWTs.

5.3. Approach 3: Design workflow with interoperability framework and
SWTs

Similar to Approach 2, Approach 3 utilizes BHoM as a collabora-
tive interoperability framework while continuing to utilize Rhino 3D,
Grasshopper, and Robot Structural Analysis software. However, what
distinguishes this approach is the incorporation of a GraphDB as a cen-
tral repository where project data is stored, queried, and updated using
OWL/RDF representations. This enables seamless data integration and
reasoning across disciplines, facilitating inference and cross-domain
queries. A high-level overview of this workflow is depicted in Fig. 9.

1. Co-Design Iteration 1 - The Architectural Representation: This
step is similar to Approach 2, we used Rhino 3D and Grasshopper
along with the BHoM plug-in for the schema specifications. After
modeling objects with existing BHoM classes and adding new
ones (highlighted on the right in Fig. 10), we employed the
developed converter to translate the building schema and its
instances into an OWL/RDF graph. The converter allows toggling
between serializing geometric information as strings or repre-
senting BHoM geometry as ontology classes. We chose to repre-
sent each geometry class as an ontology class to enable querying
both geometric and semantic information. The resulting data
graph was then pushed to the project repository in GraphDB
using the named graph <http://example.org/ArchGraph>.

2. Co-Design Iteration 2: The Structural Representation and Struc-
tural Analysis Setup: This iteration follows Approach 2 up to
the creation of the structural representation in BHoM objects
using Rhino3D, Grasshopper and Robot structural analysis soft-
ware. To connect structural and architectural objects, a new
property named “isRelatedTo” was created. This property stores
the GUID of the corresponding architectural objects when creat-
ing structural objects. We used BHoM’s setProperty function in
Grasshopper to assign this “isRelatedTo” property. This relation-
ship is essential for tracing the origin of structural objects and
linking them to their architectural counterparts.Relations were
established between the architectural floor and structural panel,

as well as between the architectural column and structural bar
(see Fig. 10). The structural graph, including the ‘isRelatedTo’
link, was pushed to the project repository in GraphDB using
the named graph <http://example.org/StrGraph>. The linked
ontologies of the architectural and structural graphs are illus-
trated in Fig. 10, where newly added classes and properties —
expanding beyond the existing BHoM schema — are highlighted
in green and orange.

. Co-Design Iteration 3 - Cross-Domain query: Placement of an

acoustic ceiling under the structural ceiling, taking into consid-
eration the structural properties of the structural ceiling: Unlike
the previous two approaches, this method uses a declarative lan-
guage to determine the optimal placement of the acoustic ceiling
while considering the structural properties of the structural ceil-
ing. Specifically, a federated query is executed to retrieve the Z
coordinate of the panel by accessing data from both the architec-
tural and structural graphs. The query to find the Z coordinate
using linked named graphs is illustrated in listing 1. This pro-
cedure is carried out in GraphDB, and the data is synchronized
simultaneously from both architectural and structural sources.
The retrieved information is then imported into Grasshopper
via the BHoM platform and used to parametrically model the
acoustic ceiling.

Query: What is the maximum height we can place the acoustic
ceiling while taking into account structural factors?

1| PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-
syntax-ns#>

2| PREFIX : <https://schema.org/>

3| PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4

5| SELECT (?maxPanelHeightBar AS ?maxPanelHeight) (7
minMeshValue AS 7?7
minMeshDisplacementsUZZValue)

6| (?maxPanelHeightBar + ?minMeshValue AS ?
difference)

714

s| o

9 SELECT (max(?barZendNode) AS 7
maxPanelHeightBar)

10 WHERE {
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11 GRAPH <http://example.org/StrGraph>

12 {

13 ?bar rdf:type :BH.oM.Structure.
Elements.Bar.

14 ?bar :BH.oM.Structure.Elements.
Bar.EndNode 7EndNode.

15 ?EndNode :BH.oM.Structure.
Elements.Node.Position ?7position.

16 ?position :BH.oM.Geometry.Point.Z

?barZendNode.

17 ¥

18 ¥

19 }

20 {

21 SELECT (MIN(?maxValue) AS ?minMeshValue)

2 {

3 GRAPH <http://example.org/StrGraph>

24 {

25 ?MeshDisplacements rdf:type <https://
schema.org/MeshDisplacements>.

26 ?MeshDisplacements <https://schema.org/
MeshDisplacements.UZZ> 7
MeshDisplacementsUZZValue.

28 BIND (REPLACE (STR(?
MeshDisplacementsUZZValue), "NaN", "0") AS ?
stringValue)

29 BIND (xsd:double (?stringValue) AS 7
maxValue)

30

31 FILTER (isNumeric(?maxValue)) # Filter

out non-numeric values
}
}

}
}

we ey

&

Listing 1: SPARQL Query for Determining Maximum Acoustic Ceiling

Height Based on Structural Data

4. Co-Design Iteration 4: Reasoning: Infer the location of the ma-
chinery lab depending on the node reaction of columns

In contrast to the first two approaches for design iteration 4,
this approach uses a declarative language to determine the
machinery lab’s location based on column node reactions. It
utilizes architectural and structural graph data alongside rule-
based inference in RDF Format (RIF Core Syntax). The rea-
soning step relies on 23 facts, defining the rule type, descrip-
tion, conditions, and consequences. The rule consists of three
main components. The conditions define constraints on node
reactions, spatial boundaries, and permissible locations for the
machinery lab. The constraints filter out locations where struc-
tural stress exceeds acceptable levels. The consequence spec-
ifies the final room label based on the inferred safe zone.

10

Before reaching the final placement rule, intermediate rules
were applied to refine the decision-making process. The spatial
constraints evaluate the minimum and maximum permissible
(X,Y, Z) coordinates, with the rule incorporating functions such
as (e.g., swrlb greaterT hanOrEqual(?x, ?minX)). The input
values—such as minX, maxX, minY, maxY, and
maxN odeReaction—are manually input into GraphDB as hard-
coded constraints. These values represent the results of earlier
structural analysis, and they define the permissible placement
range for the machinery lab, establishing spatial and structural
boundaries within which the lab must be placed.

To enforce the rule, we use GraphDB’s OWL Horst reasoning
capability, which handles OWL 2 DL ontologies and integrates
class descriptions and property axioms. This reasoning infers the
optimal machinery lab placement based on structural and spatial
constraints. To retrieve the inferred location data, we execute a
SPARQL query against the GraphDB repository, which returns
the optimal coordinates or room for placing the machinery lab.
We then populate the architectural graph with a label indicating
the machinery lab’s location directly within the graph structure.
When accessed via BHoM, the updated architectural graph will
already reflect this designation, reflecting the results of the
semantic reasoning into the overall model. The rule is provided
in Listing 2.

Semantic Rule: Placing Machinery Lab in Column-Safe Zones

1| @prefix rdf: <http://www.w3.org/1999/02/22-rdf -
syntax-ns#> .

Q@prefix <https://schema.org/rules>

@prefix swrlb: <http://www.w3.org/2003/11/swrlb#>

w N

5| :PlacingMachineryLabRule

6 rdf:type :Rule ;

7 :description "Rule to place the machinery 1lab
in a room without columns with high node

reactions." ;

8 :hasCondition [

9 rdf:type :Condition ;

10 :hasBar ?bar ;

11 :hasNodeReaction ?nodeReaction ;
12 :nodeReactionUZ 7uz ;

13 :hasPosition 7pos ;

14 :hasEndNode 7?bar ;

15 :hasPosition ?pos ;

16 :hasRoom ?room ;

17 :roomName "MachineryLab" ;
18 :hasBoundary 7?boundary ;

19 :hasPoints ?pointBoundary ;
20 :xCoordinate ?x ;

21 :yCoordinate ?y ;
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22 swrlb:greaterThanOrEqual (7x, ?minX) ;
23 swrlb:lessThanOrEqual (7x, ?maxX) ;

24 swrlb:greaterThanOrEqual (?y, ?minY) ;
25 swrlb:lessThanOrEqual(?y, ?maxY) ;

26 swrlb:lessThanOrEqual (?uz, ?

maxNodeReaction)
1
:hasConsequence [
rdf :type :Consequence ;
30 :isLocatedIn 7bar :room

N
@

NN
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Table 1
Statistics on the resulting ontologies using the developed toolkit, including the number
of OWL classes, properties, individuals, total nodes, and number of edges.

Category Architecture ontology Structural ontology
Classes 49 41
Object Properties 32 29
Datatype Properties 51 69
Individuals 85 704
Nodes 221 847
Edges 1099 5314

Listing 2: Semantic Rule for Placing Machinery Lab in Column-Safe
Zones (SWRL Syntax)

6. Results: Evaluation and comparison of approaches

The evaluation criteria for the case study are based on the re-
quirements outlined in Section 4.1. These criteria include semantic
representation, handling of disciplinary data, class definition and ex-
tensibility, cross-domain querying capabilities, information inference
capabilities, and data synchronization workflows. To assess the perfor-
mance of the approaches, we use two evaluation scales: low to high and
none to extensive. The scale “None” indicates a lack of capability or re-
liance on fully manual processes, with minimal scalability. ‘“Moderate”
reflects partial or semi-automated integration, often requiring manual
intervention or ad-hoc methods. “High” or “Extensive” signifies robust
and scalable capabilities.

6.1. Criterion 1: Semantic representation and disciplinary representation

Approach 1 lacks a formal semantic representation, resulting in
a rigid data structure primarily composed of geometric information.
Although some semantic details are captured in the building’s struc-
tural representation using Robot software’s internal schema, it remains
limited. Approach 2 improves semantic representation by utilizing
the BHoM interoperability framework, which incorporates semantic
information. This approach supports diverse disciplinary models by
allowing different disciplines to represent building elements according
to their specific needs, regardless of the software used. Approach 3
advances both semantic and disciplinary representation by modeling
architectural and structural aspects using BHoM schema classes and
custom definitions, and translating them into OWL/RDF. The architec-
tural graph includes 1250 classes, 32 object properties, 51 datatype
properties, 85 individuals, 221 nodes, and 1099 edges (see Table 1).
It primarily features geometric information, with a large number of
nodes representing primitive and constructive geometries. This results
in large graph sizes and lengthy query response times, especially for
complex geometries. The structural graph, which includes 2000 classes,
29 object properties, 69 datatype properties, 704 individuals, 847
nodes, and 5314 edges, is even larger due to the detailed geometry
required for structural analysis (see Table 1). For visual reference, a
simplified ontology of both representations is shown in Fig. 10, while
the complete ontologies with instances are available in [70]. This
dataset also includes a neutral building model without BHoM schema
specification, ensuring a more generalized and software-independent
representation.

In summary, Approach 1 lacks semantic and disciplinary repre-
sentation. Approach 2 utilizes the BHoM schema to address these
needs, while Approach 3 integrates BHoM with SWTs to enhance both
semantic and disciplinary representation.
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6.2. Criterion 2: Class definition and extensibility

Approach 1 does not provide direct access to defining new classes
within the structural analysis software. While class definitions exist,
they are embedded within the software’s API, requiring additional
complexity to extend via scripting or API calls. This makes customiza-
tion possible but more challenging. Approach 2 utilizes BHoM’s cus-
tom objects, allowing users to define new classes directly within the
Grasshopper interface, without coding. This feature, which we used
extensively in our case study, enables computational designers to create
custom classes for both architectural and structural representations. For
example, we introduced the custom class “ArchitecturalBuilding” to en-
capsulate various building elements and provide a holistic view of the
architectural structure. Similarly, the custom class “StructuralBuilding”
represents the entire structural system, including bars, panels, and their
associated properties (see Fig. 11). Approach 3 incorporates all the
benefits of the BHoM framework as well as the use of RDF to define
classes and properties across disciplines, providing seamless extension
and integration capabilities. Thus, class definition and extensibility are
enhanced by both SWTs and BHoM. In both ontologies depicted in Fig.
10, the highlighted nodes and edges represent newly defined classes,
properties, or relations.

In conclusion, Approach 1 is limited in terms of class definition and
extensibility, relying on manual tool definitions. Approach 2 leverages
BHoM for easier class creation and extension, and Approach 3 enhances
these capabilities further by integrating BHoM with SWTs, providing
comprehensive and flexible data representation.

6.3. Criterion 3: Linked-data for reasoning and cross-disciplinary queries

In terms of cross-domain querying, the three approaches demon-
strate distinct levels of capability. Approach 1 lacks the ability to per-
form cross-domain querying, as the data remains disconnected across
disciplines. Any data import or export is carried out manually, which
limits the possibility of integration or reasoning across sources. Ap-
proach 2 introduces the BHoM framework, enhancing interoperabil-
ity between different disciplinary models through a common schema.
However, the lack of a linked data framework means that each query
must be manually scripted for specific tasks, resulting in limited scal-
ability. So, like Approach 1, it lacks native support for linked data,
restricting cross-disciplinary queries and still relying on imperative
coding. Approach 3 allows for reasoning and cross-disciplinary queries
by using SWTs, representing data in OWL/RDF to create an intercon-
nected knowledge graph. This approach leverages RDF’s declarative
querying and reasoning capabilities to discover implicit relationships
across disciplines. For instance, Fig. 12 visualizes a SPARQL query
that determines the position of an acoustic ceiling relative to a struc-
tural ceiling, illustrating how architectural and structural data interact.
The visualization aids in understanding the query’s logic and data
connections, as outlined in [71].
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Fig. 12. Visualized SPARQL query of interacting parameters of architectural and structural data to determine the acoustic ceiling position in Approach 3.

Similarly, the approaches differ in their support for information
inference. Approach 1 requires users to interpret results manually,
offering no support for reasoning or rule-based decision-making. Ap-
proach 2 provides semi-automated inference capabilities, where some
calculations are supported through scripting using imperative coding.
However, this approach still requires manual intervention, particularly
for more complex tasks. Approach 3 enhances inference capabilities
by employing SWTs and declarative logic, integrating ontology-based
inferences and rule-based reasoning. Ontology-based inferences derive
facts from the BHoM schema, leveraging subclass relationships and
object properties to generate additional links between architectural and
structural data. Rule-based reasoning determined the optimal place-
ment for a machinery lab based on column node reactions. Before
finalizing the placement, multiple intermediate rules were applied
using RDF rules such as: identify high-stress columns, assess adja-
cent rooms, evaluate spatial feasibility, and compute permissible (X,
Y, Z) coordinates. Ultimately, GraphDB’s OWL Horst Reasoning en-
sured placement in zones with minimal structural impact. Overall,
these inferencing processes resulted in 4115 additional inferred facts,
demonstrating enhanced reasoning capabilities, as illustrated in Fig. 13.

6.4. Criterion 4: Data synchronization

To evaluate the three design approaches in terms of data syn-
chronization, we will consider the number of steps required for each
approach to complete the presented design iteration, as well as whether
these steps are achieved manually or if they are automated.

All approaches require a minimum of 2 steps to complete iteration 1.
Approach 1 involves the following steps: (1) Model Building Geometry
and (2) Exporting the Rhino model as .dxf. The other two approaches
differ in the way we export the data. Approach 2 saves BHoM objects,
while Approach 3 sends data to GraphDB. Thus, Approach 2 and 3 focus
on data transfer, while Approach 1 relies on file formats.
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The approaches diverge in the second design iteration. Approach
1 requires eight steps: importing the .dxf file into Robot, defining
structural components manually, cleaning up or remodeling geometry,
assigning structural elements, defining loads, setting up supports, per-
forming structural analysis, and interpreting results. Approaches 2 and
3 each require seven steps, omitting the three manual steps of Approach
1 by using BHoM mappers to map architectural objects (columns to
bars, slabs to panels) to structural ones, ready for structural analy-
sis. For Approach 2, the steps are pulling load-bearing architectural
objects from the architectural model to the structural environment in
Grasshopper, mapping BHoM architectural concepts to structural ones,
pushing structural objects from Grasshopper to Robot, defining loads,
setting up supports, performing structural analysis, and sending results
to Grasshopper. For Approach 3, the steps are similar, with data sent
to and read back from the graph database.

Iterations 3 and 4 show similar step counts for each approach
but differ in execution. Approaches 1 and 2 use imperative coding,
while Approach 3 uses declarative languages. For iteration 3, Approach
1 requires two steps: analyzing results manually and modeling the
acoustic ceiling, with optional iterations of pushing objects to Robot
for additional analysis. In iteration 4, Approach 1 requires three steps:
exporting CSV files from Robot, importing Z-direction node reaction
data into Grasshopper, adjusting the location of the machinery lab, and
optionally exchanging data using DXF and CSV files. Approach 2, with
the same number of steps, differs in data import/export methods. For
Iteration 3, it includes extracting displacement values for modeling the
acoustic ceiling using the BHoM framework, with optional iterations of
pushing objects to Robot for additional analysis. In iteration 4, data is
exchanged via BHoM, with steps including pulling relevant structural
data, creating a query to identify suitable locations, and updating
the architectural model in Grasshopper. The steps of Approach 3 for
iteration 3 include extracting displacement values to model the acoustic
ceiling and running a SPARQL query to model. For iteration 4, the
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Table 2

Number of required steps for each iteration in the three different approaches.
Co-Design iteration Approach 1 Approach 2 Approach 3
Iteration 1 2 2 2
Iteration 2 8 7 7
Iteration 3 2 2 2
Iteration 4 3 3 3
Total 15 14 14

steps involve pulling relevant structural data from the graph, creating
a rule to place the machinery lab in zones without high-node reactions,
and updating the architectural model in the database graph. The total
number of steps can be found in Table 2.

However, the count of steps alone does not fully convey the impact
on data synchronization. Therefore, in Fig. 14, we have categorized
each step in each iteration as manual, semi-automatic, or automatic
based on human intervention. Manual steps entail significant human
involvement. Semi-automatic steps combine automated processes with
human supervision. Automatic steps operate without human interven-
tion once initiated. Overall, Approach 1 involves the most manual steps,
particularly related to data import/export from design platforms. Ap-
proaches 2 and 3, with the same step count, differ in data mapping and
storage. Approach 2 maps data from one discipline to another, losing
the original link and object provenance. Thus, Approach 3 particularly
stands out for its declarative approach, underscoring its advancement
in ensuring data synchronization and enhanced design decision-making
capabilities.

6.5. Summary

The comparison of the three approaches, summarized in Table
3, highlights a progression in capabilities from Approach 1 to Ap-
proach 3. Approach 1 represents the most manual and least integrated
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workflow, with no formal semantic representation, limited class def-
inition, and a reliance on manual data transfer. Consequently, this
Approach lacks scalability, is prone to errors, and offers no support
for cross-disciplinary reasoning or inference. Approach 2 introduces
improvements through the BHoM interoperability framework. It incor-
porates semantic capabilities and facilitates disciplinary data represen-
tation using a unified schema. The framework supports the creation
and extension of classes, which enhances modularity and adaptability
for different disciplines. However, despite these advancements, Ap-
proach 2 still relies on imperative coding for querying and reasoning,
which limits automation and consistency. Information inference re-
quired manual intervention, particularly for complex tasks. Approach
3 demonstrates the most advanced capabilities by combining BHoM
with SWTs. It provides comprehensive semantic representation and
enhanced class extensibility, enabling linked-data reasoning and cross-
disciplinary querying. This Approach supports declarative logic and
rule-based reasoning, allowing the deduction of implicit relationships
and insights directly from linked graphs. For example, as illustrated in
Figs. 12 and 13, Approach 3 achieves information inference by lever-
aging SWTs and reasoning engines, which enhance the accuracy and
scalability of the workflow. Furthermore, Approach 3 ensures data syn-
chronization by maintaining object provenance and leveraging declar-
ative languages, reducing the risk of inconsistencies across iterations.
In addition to its technical advancements, Approach 3 demonstrates a
reduction in manual steps across design iterations (as shown in Table
2), achieving higher levels of automation compared to Approaches 1
and 2. This improvement is particularly evident in Iterations 3 and
4, where the use of declarative languages and RDF graphs eliminates
the need for manual scripting. Overall, the evaluation demonstrates
a trend toward increased scalability and integration as approaches
evolve from manual processes (Approach 1) to interoperable frame-
works with semantic reasoning (Approach 3). While Approach 1 may
still be applicable for small scale projects with minimal data integration
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Table 3

Comparison of the three co-design Approaches: Approach 1: Design workflow without interoperability framework; Approach 2: Design workflow with interoperability framework;

and Approach 3: Design Workflow with interoperability framework and SWTs.
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Indicator Approach 1

Approach 2

Approach 3

None: No formal semantic
representation

Allow semantic
representation

Moderate: Yes. Uses BHoM schema for
data representation

Extensive: Semantic representation
through BHoM and SWTs

Allow disciplinary data
representation

None: No formal disciplinary data
representation handling

Moderate: Allow disciplinary data
representation through BHoM

Extensive: Enhanced disciplinary data
representation handling via SWTs and
BHoM

Low: Limited; manual definition
in tools

New class definition ability
and class extensibility

Moderate: Extensive; utilizes BHoM class
definitions

High: Class definition flexibility
extended by SWTs or BHoM

Cross-Domain Querying None: No cross-domain querying;

manual data import/export

Moderate: Relies on manual scripting

Extensive: Federated queries across
linked graphs

Information Inference Low: Results interpreted manually

Moderate: Semi-automated inference;
requires manual calculations via
imperative coding

High: Automated inference using
declarative logic and SWTs; reasoning
engine significantly enhances insights

Low: Prone to inconsistencies due
to manual data transfer

Data synchronization

Moderate: Synchronization ensured
through the interoperability framework

High: Enhanced data synchronization
using SWTs

needs, Approach 3 stands out as a more effective solution for com-
plex, multidisciplinary co-design scenarios, offering both efficiency and
decision-making capabilities.

7. Discussion, challenges and future work

This paper advances the application of SWTs in the AEC domain
by developing and evaluating a co-design workflow that facilitates
cross-domain querying and reasoning. By integrating SWTs, we have
improved semantic representation, data interoperability, and design
decision-making processes through knowledge inference. The proposed
co-design workflow offers a robust approach to interdisciplinary data
integration. By leveraging linked named graphs, it enables complex
queries across disciplines, enhancing the ability to make informed
design decisions. Incorporating SWTs for knowledge representation
and cross-domain querying and reasoning aligns with the emphasis on
ontology and logic as foundational methods for formalizing knowledge,
as discussed by Hartmann and Trappey [24]. Despite these advance-
ments, challenges persist within the developed workflow, along with
opportunities for extensions, including broader challenges and research
directions. In the following subsections, we discuss these aspects.

7.1. Challenges with the developed workflow

Key issues include the complexity of formulating queries, the dese-
rialization, and handling geometric information.

Query Formulation Complexity: While linked named graphs sup-
port cross-disciplinary queries, formulating queries for AEC problems
remains complex due to their intricate nature and the limited expres-
siveness of SWTs. Pauwels et al. [33] note that while linked data
applications in the AEC industry have been demonstrated, technologies
like reasoners and proof engines have not been widely adopted. They
attribute this to the higher-layer positioning of these tools in the SWT
stack, which is perceived as more challenging to implement. Expanding
on this, we argue that the inherent complexity of AEC problems exac-
erbates these challenges, as SWTs often lack the expressiveness needed
to fully capture intricate domain-specific relationships. To mitigate
this, we propose integrating a data coordinator within the co-design
workflow to support and streamline query formulation.

Deserialization Challenges: Ensuring that queries return graphs
parsable into BHoM objects proved challenging. Deserialization func-
tions well with unmodified graphs but encounters errors when manip-
ulated graphs deviate from the BHoM structure. Issues arise when un-
deleted properties from removed nodes or new relations introduce in-
consistencies. Implementing automatic delete cascade functions within
the knowledge graph could improve consistency by ensuring the proper

14

update or removal of associated data. Similar issues occur with rea-
soners, where multiple type assignments can confuse mappers, leading
to incorrect classifications in custom BHoM objects. Future research
could explore using SHACL to validate RDF graph shapes before de-
serialization, improving consistency across disciplines and reducing
errors.

Handling Geometric Information: Representing geometric data
within the graph introduced computational challenges and increased
storage requirements. To address this, we implemented a flexible con-
verter capable of toggling between serializing geometric data as strings
and representing BHoM geometry as ontology classes. For instance, a
polyline boundary of a space was represented as an ordered collection
of point instances with X, Y, and Z coordinates. This approach facili-
tated the handling of complex geometries, such as meshes for structural
analysis. Meshes consist of points and edges, which made the disci-
plinary graphs large in storage. For example, the structural graph using
meshes was four times larger than the architectural graph (847 nodes
vs. 221 nodes). Future research could explore SWT-compatible methods
to optimize geometry storage, querying, and manipulation, referenc-
ing studies like [72]. Additionally, investigating hybrid RDF-based
databases that integrate semantic and geometric data may provide
greater flexibility and efficiency. A hybrid approach — storing semantic
data in RDF while maintaining complex geometric data in optimized
formats — warrants further evaluation to enhance performance while
preserving interoperability [23].

7.2. Future integrations and possible extensions

Advancing the integration of SWTs in AEC requires both techni-
cal enhancements and considerations of broader interoperability chal-
lenges. While this study primarily focuses on semantic and technical as-
pects, further refinements and extensions are necessary to fully leverage
SWTs for seamless cross-domain collaboration. This section discusses
potential improvements to the developed workflow, including expand-
ing ontology support, enhancing cross-platform compatibility, and ad-
dressing challenges related to automation, scalability, and governance
structures.

+ Enhancing Technical Capabilities: The current toolkit focuses on
OWL and RDF vocabularies, incorporating OWL classes, proper-
ties, and datatypes relevant to our needs. However, it does not
yet support constructs such as disjointWith, equivalentTo, func-
tionalProperty, or inverseFunctionalProperty, which are essential
for defining new object relationships. Expanding the toolkit to in-
corporate these constructs would require additional components
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capable of leveraging the generated graph as input, further im-
proving graph manipulation and reasoning capabilities. While our
approach supports linked data and cross-domain queries, deseri-
alizing graphs aligned with ontologies beyond the BHoM schema
was not within the scope of this study. However, the methodology
is not inherently restricted to BHoM and could be adapted to
alternative models such as Brick, ifcOWL, or Siemens’ indus-
trial ontologies. Since the translation mechanism maps object-
oriented data models to OWL/RDF, extending it to other struc-
tured data schemas following similar principles is feasible. For
broader generalizability, the methodology could be applied across
different environments by modifying the translation layer. For
example, replacing BHoM with Speckle would require mapping
its data to RDF triples, while adapting it to Brick would en-
sure alignment with building automation systems while main-
taining interoperability. Future research could explore incorpo-
rating these ontologies and improving RDF data reading and
exporting for seamless integration with AEC ontologies like BOT
and ifcOWL [56]. Beyond computational and infrastructure con-
straints, the broader application of SWTs in AEC still presents
challenges. The lack of standardized vocabularies across AEC sub-
domains complicates interoperability, making seamless data ex-
change more difficult. Additionally, knowledge graphs introduce
issues related to graph completion, accuracy, and consistency.
Integration efforts remain largely semi-automated, requiring man-
ual intervention for schema alignment and data transformation.
Future research could explore Al-driven approaches, such as ma-
chine learning-assisted ontology alignment and automated graph
completion, to enhance the efficiency and scalability of SWTs in
AEC workflows.

Addressing Governance and Organizational Challenges: While
technical advancements play a crucial role, the successful im-
plementation of SWTs also depends on organizational and legal
considerations. Aligning governance structures and ensuring com-
pliance with cross-border legal frameworks is critical for achiev-
ing seamless integration. Future research could explore these
areas to support comprehensive interoperability in AEC work-
flows, following guidelines such as the European Interoperability
Framework [73].

This study’s interoperability framework ensures mappings and con-
nectivity between tools, highlighting the importance of linking software
through shared mapping methods before integrating disciplinary data.
A key question that emerges is: What is the optimal balance between
connecting software via interoperability frameworks and linking data
across disciplines? Additionally, while integrating SWTs into design
software enhances accessibility for designers, it is important to consider
how workflows can incorporate these technologies without requiring
substantial modifications to existing design processes.

8. Conclusion

This paper has developed and evaluated an AEC co-design workflow
that integrates SWTs with collaborative interoperability frameworks to
enhance cross-domain querying and reasoning. By addressing the chal-
lenges of fragmented data silos and inconsistent data representations
in the AEC industry, the proposed approach demonstrates advance-
ments in semantic representation, cross-disciplinary data integration,
and reasoning capabilities.

A comparative evaluation of three design workflows — (1) without
an interoperability framework, (2) with a framework but without SWTs,
and (3) integrating both SWTs and an interoperability framework —
revealed that the third approach performs best across multiple aspects.
The integration of SWTs enables reasoning, federated queries, and
improved data synchronization, facilitating more efficient decision-
making and constraint identification. The use of declarative logic and
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rule-based reasoning enhances information inference, reducing reliance
on manual intervention and imperative coding. Furthermore, the study
highlights the scalability of the SWTs-integrated workflow, ensuring
adaptability to evolving project requirements while preserving data
integrity across disciplines. This integration is particularly valuable in
early-stage design decisions, where cross-domain dependencies must
be identified promptly to optimize building performance and minimize
costly modifications in later project phases.

Future research should explore further optimizations in query per-
formance and computational efficiency, as well as better alignment
with existing AEC ontologies such as BOT and ifcOWL. Additionally, ex-
panding the workflow’s capabilities to integrate emerging
technologies — such as Al-driven approaches, machine learning-assisted
ontology alignment, and automated graph completion — could further
enhance co-design efficiency.

By advancing interdisciplinary collaboration through linked-data
methodologies, this research provides a foundation for a more inter-
connected and automated AEC industry. Ultimately, this study offers
valuable insights for both scholars and industry professionals seeking
to optimize the application of semantic technologies in AEC workflows.
By acknowledging both the challenges and opportunities associated
with SWTs, this work contributes to the advancement of more effective,
collaborative, and data-driven design processes in the AEC sector.
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Appendix A. BHoM abstract model

BHoM’s object model consists of C# programming language types (like classes, interfaces or enums.) and methods that form BHoM’s object
models and related functionality. Object models are classes like Column, Wall or Room, and they are designed to be a collection of types that
embed only data and not functionality. The functionality is defined separately from the types and bound to them when required. BHoM type
development follows the composition over inheritance principle, using interfaces with semantic meaning rather than subclassing; for instance, all
2D representation classes such as Room or Panel implement the IElement2D interface, thereby avoiding issues like tight coupling or increased
complexity [16].

Hence, to present BHoM abstract model, we assume a finite set C, called the set of classes, which represents BHoM classes and interfaces. The
BHoM data model includes standard C# types (e.g., numbers and strings) and classes that do not belong to BHoM. We therefore assume a finite set
T, called the set of data types, which represents standard C# types and non-BHoM classes and interfaces. Finally, we assume a finite set P, which
represents the properties of the BHoM classes and interfaces. We assume that these three sets C, T, and P are pairwise disjoint.

An essential aspect of the BHoM model is that its elements are described differently depending on the designer’s discipline. The following
examples illustrate this aspect showing a BHoM class having different attributes in structural and acoustic design.

Example 1. Structural Panel: In the structural design, a panel is a planar surface defined by a list of planar edges (over the external contour), a
list of openings that are coplanar with the contour of the panel, a property definition that describes the thickness and the material of the panel,
and the angle. Panels are modeled using the BHoM class Panel with the attributes:

. ExternalEdges of type list(Edge),

. Openings of type list(Opening),

. Property of type ISurfaceProperty,
. OrientationAngle of type double.

A WN -

Elements Panel, Edge, Opening, and ISurfaceProperty are classes (i.e., belong to the set C); element double is a data type (i.e., belong to set T); and
elements ExternalEdges, Openings, Property, and OrientationAngle are properties (i.e., belong to P). The word list modifies the type of the property to
indicate that the type is not an atomic value, but a list of elements of the specified type. For instance, the value for the property ExternalEdges has
to be a list of elements of the type Edge.

Example 2. Acoustic Panel: In acoustic design, a panel is defined by a mesh, an identifier, and a dictionary that maps frequencies to numbers.
Panels are modeled using the BHoM class Panel with the attributes:

1. Surface of type Mesh,
2. PanelID of type int,
3. R of type dict(Frequency, double).

Elements Panel and Mesh belong to set C; elements Frequency, int, and double belong to set T, and elements Surface, PanelID, and R belong to P. The
word dict is used to indicate that the type is not atomic, but a dictionary.

Examples 1 and 2 show that concept Panel has different properties in each discipline. Since designers of the building structure do not need
information regarding the building acoustic (and vice versa), irrelevant information is hidden for them. However, designers from both disciplines
need to interchange information to design and construct a building. In the current workflow, designers translate their designs from one discipline
(e.g., structure) to another (e.g., acoustic). In the BHoM abstract model, a design consists of a set of objects of one discipline. In the translation from
the structure to the acoustic discipline, an object representing a panel losses its structural attributes (e.g., ExternalEdges) and acquires new properties
(e.g., R). Furthermore, the result is not the same object since it changes its identity (i.e., is copied with a different object ID), and a heuristic is
needed to fill out the missing values. The whole design of the building is a set of disciplinary design models where there is no explicit relationship
between objects representing the same entity in the building (e.g., the same panel) and no information about how the missing properties were
filled. These limitations motivate the translation of BHoM models to OWL. The main advantage of this translation is to provide disciplinary and
integrated views of the design. In our translation to OWL, we represent a disciplinary view as a subset of the RDF dataset whose scope is limited
to the objects in the discipline, whereas the integrated view is the merge of the disciplinary views and the following metadata:

1. Provenance relations among design objects. There are multiple reasons to derive design objects. Examples are the translation above between
disciplines and updates in the data in the same discipline. The Wide Web Consortium (W3C) recommends the PROV-O ontology to annotate
artefacts with their provenance.

2. Flexible data scope. In the current BHoM system, objects are grouped in disjoint sets, where each set defines a building design. Objects in the
structural design are not beyond the scope of structural design, and objects of acoustic design are not in the scope of structural design. In
an RDF dataset integrating all building designs, elements can be organized more flexibly. For instance, we can see an update of a building
design as the act of removing and adding elements. Removed elements are not in the scope of the new design, but preserved elements are
in both. Objects can be beyond the scope of design disciplines. For instance, a constraint C in the acoustic design may not be satisfied in the
structural design, leading to an update in the structural design. Hence, the constraint is beyond the scope of acoustic design. Furthermore,
constraint C is valid in the new structural design but not in the old one. This flexibility on the validity of a constraint illustrates the need
to annotate scopes more flexibly. RDF allows annotating data by using multiple reification schemes and named graphs.

3. Current and outdated designs. It is desirable that designers focus on the current design and that the outdated designs be hidden from their
working view. As we already mentioned, designs are updated to satisfy constraints. Hence, an outdated design can be reconsidered if a
constraint is no longer be valid. To this end, the metadata can allow identifying the data that have to be in the current view and old data
that may be reconsidered.

4. The identity of objects. Currently, a new panel object is created when a design is translated from the structural to the acoustic discipline.
Similarly, a panel can be updated, changing its properties. We have to answer whether the old and the new panels are the same panel
(i.e., with a single identity). If we do not consider both panels the same, we must add the corresponding metadata to indicate that the new
panel is derived from the old panel.
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A.1. BHoM’s disciplinary schema

In this section, we will discuss the BHoM abstract model as it pertains to a specific discipline within the AEC industry. The discipline schema
within the BHoM framework serves to organize and manage discipline-specific data in a structured manner. Its primary function is to ensure that
the data is effectively organized and tailored to meet the unique requirements of each discipline within the AEC industry. The disciplinary schema
forms a crucial part of the BHoM framework, facilitating efficient data management, interoperability, and collaboration within the AEC industry by
offering a clear and structured representation of discipline-specific data. In essence, a disciplinary schema comprises class definitions, a hierarchical
relationship between these classes, and properties associated with class definitions. Each property is constrained by a type, indicating the possible
values objects can possess for that property.

Definition 1. Given a set of classes C C C, the set of BHoM types over C, denoted types(C), is the minimal set defined recursively as follows. If
t € CUT then ¢ € types(C). If 7,,1, € types(C) then set(t,), bag(t,), list(z,), and dict(z,, ,) belong to types(C).

Example 3. Consider both definitions of class Panel in Examples 1 and 2, and the set C = {ISurfaceProperty, Edge}. ISurfaceProperty is a BHoM type
over C because ISurfaceProperty € C, double is a BHoM type over C because double € T, list(Edge) is a BHoM type over C because Edge € C, and
dict(Frequency, double) is a BHoM type over C because Frequency € T and double € T

Alternatively, we could have defined types over C. Definition 1 restrict types over a subset C because we want to define types for a specific
discipline. We next state (Definition 2) that the schema of discipline is restricted to a finite set of classes.

Definition 2. A BHoM disciplinary schema S is a quin (C, P, C, dom, range) where:

1. C and P are finite subsets of C and P, respectively,

2. C is a partial order in C,

3. dom : P — C is a function called the property domain,

4. range : P — Types(C) is a function called the property range.

Given a disciplinary schema .S = (¢, P,C, dom,range), a class ¢ € C and a property p € P, we said that property p is a property of class ¢ in the
disciplinary schema .S, denoted c.p € S, if there exists a class ¢/ € C such that dom(p) = ¢’ and ¢ C ¢’. We write properties(c, S) to denote the set
{p:cpesS}.

Example 4. Another example:

In C# it is possible to define two classes with properties with the same name and different data types. This is precluded by Definition 2. Indeed,
it is not difficult to see that if two different classes ¢, and ¢, have the same property p in a disciplinary schema .S (i.e., ¢;.p € S and ¢,.p € S), then
there exists a class ¢ such that ¢ Ccand ¢c; Ccand c.p € S.

We next define the databases that satisfy a BHoM disciplinary schema.

Definition 3. A database over a disciplinary schema S = (C, P,C, dom, range) is a triple (O, type, value) where:

1. O is a finite set disjoint with C, T, P, called the set of objects,
2. type : O - CUT is a function,
3. value is a partial function such that dom(value) C {(o, p) : type(o).p € S}, and if value(o, p) is defined then:

(a) type(value(o, p)) C range(p) if range(p) € C,
(b) type(value(o, p)) = range(p) if range(p) € T.

By defining disciplinary schemas, the BHoM framework enables the encapsulation of discipline-specific attributes and constraints, facilitating
efficient data management and interoperability across diverse design domains. This illustrates how the BHoM framework supports domain-specific
modeling and data integration, laying the groundwork for further advancements in collaborative parametric design.

A.2. The parallels between BHoM’s and SWTs

The object-oriented data model structures data into objects—instances of classes that encapsulate attributes and methods. Object-Oriented
Programming (OOP) integrates data and behavior within objects, a concept widely used in CAD and BIM software. Object-Relational Mappers
(ORMs) are tools that map object-oriented programming classes to relational database tables, enabling developers to interact with databases using
their programming language’s syntax [74]. BHoM follows an object-oriented model but separates functions from data. This separation makes
BHoM similar to a virtual object database like those used to convert objects to relational databases — ORMs. Separating data from behavior
(functions) enables more flexible and loosely coupled code, as seen in the BHoM approach for compatibility with visual data flow modeling [16].
This separation also aligns BHoM’s data representation more closely with that of SWTs. Table 4 compares BHoM and SWTs in terms of identifiers,
database models, data schema, and querying methods. SWTs rely on RDF Schema (RDFS), OWL, and Shapes Constraint Language (SHACL) to
define schema constraints and terminological knowledge for RDF graphs. However, the actual data schema for transferred content is determined
by domain-specific ontologies. These ontologies define structured representations of AEC concepts [75]. BHoM uses JSON key-value pairs for data
exchange, while SWTs support formats such as TTL, N-Triples, JSON-LD, and RDF/XML. Querying in SWTs is performed using SPARQL, whereas
BHoM relies on framework-specific functions in the BHoM_Engine Query classes [76]. For example, a representation of a room in the Architectural
BHoM namespace is:
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Table 4
BHoM and SWTs comparison [16].
Identifiers Database model Data schema Data exchange format Querying
BHoM GUID Object-Oriented BHoM Namespaces JSON BHoM_Engine
and BHoM classes Query and MongoDB
SWTs URI RDF Domain Ontologies (e.g., ifcOWL, TTL, N-Triples, SPARQL
BOT, or project-specific ontologies) JSON-LD, RDF/XML

1| namespace BH.oM.Architecture.Elements

2| {

3 public class Room : BHoMObject, IRegion, IElement2D

4 {

5 public virtual ICurve Perimeter { get; set; } = null;
6 public virtual Point Location { get; set; } = null;

7 }

8|

Listing 3: Representation of a room in the Architectural BHoM namespace

Appendix B. BHoM to OWL/RDF translation and vice-versa

To ensure that building designers use SWTs, this paper suggests that tools in the AEC world should be able to read and write RDF data. This is
one of the main reasons that in this paper we develop a bidirectional converter from building data to OWL/RDF using BHoM, because the BHoM
is already accessible through many AEC software. To make this integration possible, we develop BHoM methods that translate any object to RDF,
including its ontology specifications within a design software. Furthermore, the RDF graph output is directly linked to a graph database, where
data exploration and semantic queries can be done. Similarly, if changes are made, or new graphs are constructed, the RDF graph can be fed into
AEC design tools. The translation is made with the idea of backwards compatibility in mind (OWL/RDF to BHoM objects). The BHoM to OWL/RDF
converter is an open-source project written in C# and is available on GitHub.

In terms of data translators, in this paper three key components are developed: (1) the converter from BHoM objects to OWL/RDF, (2) the
converter back from OWL/RDF to BHoM objects, and (3) a connector to a graph database GraphDB [77]. Through this paper, we exemplify this
process on Grasshopper, as a popular software among AEC professionals [46] and has a user-friendly visual interface that makes working with
SWTs easier. However, the translation to graph can be done in any design software supported by BHoM such as Revit, Dynamo, Excel, and so on.

The converter from BHoM objects to OWL/RDF generates an RDF graph serialized in turtle format. For existing BHoM objects, the naming
conventions translated to RDF are directly influenced by their original name and namespace. For example, a BHoM polyline translated to RDF
is defined as: :BH.oM.Geometry.Polyline, where :BH.oM.Geometry indicates the namespace the Polyline resides in. In a knowledge
graph, the terminological part sets the structure, including the schema or ontology. The assertional part fills in the content of a knowledge graph
with project-specific data. The following subsections present the terminological translation from BHoM to OWL/RDF, the assertional translation
from BHoM to OWL/RDF, and the translation back from OWL/RDF to BHoM.

B.1. Translation of terminologies - BHoM to OWL/RDF

Identifiers. We let the user define a base URI from the Grasshopper component for OWL classes that the generated ontology outputs. The defined
URI is the base web address of the ontology, to which a prefix can be introduced from the same component. E.g.:

1 @base <http://bhom.xyz/bhOWL/>.
2 @prefix : <>

To avoid confusion between native BHoM and non-BHoM objects, we assume that all classes used within one project belong to the same
generated ontology. However, future work will store native BHoM objects in a certain URI, using a bhOWL prefix, whereas only non-native objects
URI and base address will be customized from the Grasshopper components.

Classes. Every BHoM class (e.g. BHoM_Room) is mapped to a class in OWL. BHoM interfaces are ubiquitous and often used to represent concepts
in a taxonomic manner. Since BHoM C# interfaces include properties that each class that implements the interface has, we considered all BHoM
C# interfaces (such as IElement2D or ICurve.) when translating to OWL/RDF to be mapped to an OWL class. In this case, a single object, such as a
“Room” (see Listing 3) becomes an owl:subClassOf OWL classes BHoMObject, IRegion, and IElement2D (including superclasses, and interfaces that
help to construct them). The interface IElement1D represents all types with a linear (1 dimensional) representation, e.g., columns, beams, pipes,
etc.; in this case, every class with a linear representation becomes a subclass of owl:[Element1D class. So, both BHoM classes and BHoM interfaces
are mapped to OWL classes, and class inheritance relations and interface implementation relations are represented with a rdfs:subClassOf predicate.
A definition of a Room BHoM class and IRegion interface is in OWL is defined as:

1 :BH.oM.Architecture.Elements.Room rdf:type owl:Class;

2 rdfs:subClass0f BH.oM.Analytical.Elements#IRegion;
3 rdfs:subClass0f BH.oM.Base.BHoMObject;
4 rdfs:label "Room"@en

1 :BH.oM.Analytical.Elements.IRegion rdf:type owl:Class;

2 rdfs:subClass0f :BH.oM.Base.IBHoMObject;

3 rdfs:subClass0f :BH.oM.Dimensional.IElement2D;
4 rdfs:1label "IRegion'"@en
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Custom Classes. BHoM allows the creation of custom classes. To map such classes to OWL classes, we force the usage of an input “Type” in the
initial BHoM object. Such labeling and naming conventions help to create ontology classes with newly defined custom classes, which can result in
specific re-usable ontologies (for example, timber building ontology). The advantage of such work is that the ontology is generated while designing;
it is flexible enough to be extended and guide the design process.

Object Properties and Data Properties. Object properties and data properties are extracted from each C# class, and mapped to their corresponding
RDF type. For example, the “Perimeter” property, is a property of the C# interface IRegion which the class Room implement. In this case the object
Perimeter in OWL is defined as:

1 :BH.oM.Architecture.Elements.Room.Perimeter rdf:type owl:0ObjectProperty;

2 rdfs:domain :BH.oM.Analytical.Elements.IRegion;
3 rdfs:range :BH.oM.Geometry.ICurve;

4 rdfs:label "Perimeter "@en."

On the other hand, datatype properties are expressed with literals following the XSD schema, following the SWTs stack. For example, each
BHoM object has a GUID, expressed with a string:

1 :BH.oM.Base.BHoMObject.BHoM_Guid rdf:type owl:DatatypeProperty;

2 rdfs:domain :BH.oM.Base.BHoMObject;
3 rdfs:range xsd:string;

4 rdfs:label "BHoM_Guid "Qen

B.2. Translation of assertions - BHoM to OWL/RDF

This subsection delves into the translation process of assertions, starting with unique identifier creation for new assertions by assigning names
and IDs to BHoM objects. It outlines the methodology of constructing URIs based on domain names and provides a detailed illustration. The
discussion extends to the translation of literals, emphasizing the mapping of primitive C# data types to RDF and addressing the intricacies of
handling dictionaries and lists. Additionally, the section explores the representation of RDF ordered collections and elucidates the translation
challenges associated with geometrical data in BHoM.

Identifiers. To create new assertions, we first need to give them a name and a unique ID. Each BHoM object already has a GUID. Following
linked building data principles, IDs need to be URI built on domain names. Therefore, we provide a mechanism within the developed Grasshopper
components that builds a unique URI based on a given domain concatenated with the GUID of the instance.

1 <http://www.example.com/3374A3DC31B4FDF6F> rdf:type owl:NamedIndividual, :BH.oM.Architecture.Elements.Room;
2 :BH.oM.Base.BHoMObject.BHoM_Guid "aea3f8ad-bc636"""xsd:string.

Literals. The RDF and OWL recommendations use the simple types from XML Schema. Whereas translation of primitive C# datatypes (such as
strings, integers, boolean, etc.) are directly mapped to primitive XML datatypes, the translation of dictionaries, enums and lists requires a different
approach.

In RDF ordered collections can be represented using the RDF Collection vocabulary and the rdf:Seq type. An RDF list is a series of nodes, each
linked to the next using the property rdf:rest, with the final node linked to a blank node (also known as a ‘“bNode”) labeled rdf:nil. The actual
values in the list are represented as properties of each node, with the property name typically being rdf:first. A rdf:Seq is a specialized collection
that maintains the order of its members. Each member in the sequence is assigned a unique integer-based position. On the other hand, since BHoM
is a .NET-based software, in BHoM lists can be created, modified and manipulated in various ways, similar to lists in C#. To simplify serialization,
we map BHoM lists to rdf:Seq instead of rdf:list. An example of an BHoM polyline which contains three control points in RDF is present below:

<http://www.example.com/2FB125F5C85CB3BDF08> rdf:type owl:NamedIndividual, :BH.oM.Geometry.Polyline, rdf:Seq;
rdf:_1 <http://www.example.com/50FC7044566B5230E41A962C> ;

1
3 rdf:_2 <http://www.example.com/DA505DCF960046F6025394F5> ;
4 rdf:_3 <http://www.example.com/9B9F6FE119128B7E9F3B901C>

Geometry. The translation of geometrical data is dependent on BHoM’s geometry computation method. In BHoM, a geometry is represented
using the IGeometry interface and its implementing class Geometry oM. The Geometry_oM class contains a collection of objects that represent the
geometry’s defining curves, meshes, surfaces, vectors, etc. For example, a line is represented using the ICurve interface and its implementing class
Line. The Line class contains information such as the start and end points of the line, which define its geometry, as well as additional properties
such as its length and direction. This information is stored in the Line object and can be used to represent a line in a threedimensional model.
When translating to OWL/RDF a BHoM line defined by two points is described as it follows:

1 <http://www.example.com/2FB125F55CB3BDF08> rdf:type owl:NamedIndividual, :BH.oM.Geometry.Line;

2 :BH.oM.Geometry.Line.Start <http://www.uni-stuttgart.de/620E23163FAEFE>;
3 :BH.oM.Geometry.Line.End <http://www.uni-stuttgart.de/OE40647D8182FC1A>;
4 :BH.oM.Geometry.Line.Infinite "False" xsd:boolean.

1 <http://www.uni-stuttgart.de/620E23163FAEFE> rdf:type owl:NamedIndividual, :BH.oM.Geometry.Point;
2 :BH.oM.Geometry.Point.X "O""~xsd:double;
3 :BH.oM.Geometry.Point.Y "0"” " xsd:double;
4 :BH.oM.Geometry.Point.Z "0"” " xsd:double.

1 <http://www.uni-stuttgart.de/620E23163FAEFE> rdf:type owl:NamedIndividual, :BH.oM.Geometry.Point;
2 :BH.oM.Geometry.Point.X "8"" "~ xsd:double;

3 :BH.oM.Geometry.Point.Y "22"""xsd:double;

4 :BH.oM.Geometry.Point.Z "-1"""xsd:double.
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Fig. 15. SWT within Grasshopper through BHoM user interface.

While complex meshes might end up very large in RDF, we have also developed a way to serialize the geometry and store it as a string in

B.3. Translation back from OWL/RDF to BHoM

Base64 encoding. This means geometrical types would not be ontology classes, and there will be only one geometrical node in the graph for each
object (e.g., column). This method still allows for deserialization to BHoM objects and design software; however, such storage would not allow AEC
designers to query geometric information alongside semantic ones in the graph. Therefore, we leave the option to the designers to decide when to
serialize the geometry and when not to.

The translation from the serialized OWL/RDF format back to BHoM (deserialization) takes the serialized file in the target format and reads it

Appendix C. SWT within Grasshopper
SWT within Grasshopper through BHoM User Interface is illustrated in Fig. 15.

Appendix D. Installation and update instructions

with a C# library called DotNetRDF. Using this library allows to support different file formats upon deserialization, although only TTL is tested
and verified, being the only format currently supported in the serialization from BHoM. The DotNetRDF read returns the individual nodes’ data.
The destination schema is derived from the local installation of BHoM. The BHoM objects corresponding to individuals are instantiated using
the appropriate BHoM C# types, whose name is extrapolated from the serialized text. The deserialization supports every type supported in the
serialization, including Custom Types and the supported collections (lists/Seq).

To ensure full functionality of the BHoM framework and RDF conversion tools, follow these installation steps:

1. Download and run the BHoM Installer from BHoM Website.
2. Download the latest release from the “Assets” section and unzip the file.
3. Run Run_installer.bat to fetch additional files from GitHub and finalize the installation.

4. A command window will confirm the progress and success of the installation.

For ontology development and additional functionality:

« Install GitHub Desktop and clone the BHoM repository.
» Open Grasshopper example files from the repository.

» If encountering “could not find local repository” errors, set the GitRootPath in the LocalRepositorySettings component to the

parent directory of the BHoM repository.

+ If BHoM components do not appear in Grasshopper, uninstall and reinstall BHoM.

To update RDF_Prototypes to the latest commit:
» Repeat steps 2 and 3 from the installation process.

For more details, visit the BHoM RDF GitHub Wiki.
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Data availability

The data supporting this study is stored at https://doi.org/10.
18419/darus-4360.
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