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Abstract

Genetic variation and 3D chromatin structure have major roles in
gene regulation. Due to challenges in mapping chromatin con-
formation with haplotype-specific resolution, the effects of genetic
sequence variation on 3D genome structure and gene expression
imbalance remain understudied. Here, we applied Genome Archi-
tecture Mapping (GAM) to a hybrid mouse embryonic stem cell
(mESC) line with high density of single-nucleotide polymorphisms
(SNPs). GAM resolved haplotype-specific 3D genome structures
with high sensitivity, revealing extensive allelic differences in
chromatin compartments, topologically associating domains
(TADs), long-range enhancer-promoter contacts, and CTCF loops.
Architectural differences often coincide with allele-specific differ-
ences in gene expression, and with Polycomb occupancy. We show
that histone genes are expressed with allelic imbalance in mESCs,
and are involved in haplotype-specific chromatin contacts marked
by H3K27me3. Conditional knockouts of Polycomb enzymatic
subunits, Ezh2 or Ringl, show that one-third of ASE genes,
including histone genes, is regulated through Polycomb repression.
Our work reveals highly distinct 3D folding structures between
homologous chromosomes, and highlights their intricate connec-
tions with allelic gene expression.
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Introduction

Mammalian cells contain two parental chromosome copies, each with
extensive heterozygous sequence variations. Genetic diversity of
parental alleles confers advantages over repressive mutations, and is
associated with longer lifespan (Xu et al, 2019) and reduced risk of
aging-related diseases (Belloy et al, 2020). Many repressive hetero-
zygous variants, with broad cell functions, are also found in healthy
individuals (Schmenger et al, 2022), and loss of heterozygosity and
single allele amplifications are features of many cancers (LaFramboise
et al, 2005; Nichols et al, 2020). Skewed allelic gene expression has
been reported to affect 6 to 80% of genes, depending on the species
and tissue (Dixon et al, 2015; Crowley et al, 2015; Murata et al, 2012;
Pinter et al, 2015; Chen et al, 2016; Savol et al, 2017; Cleary and
Seoighe, 2021). DNA methylation at gene promoters or transcription
factor binding sites has been implicated in allele-specific expression of
imprinted genes in mouse and human (Noordermeer and Feil, 2020).
More recently, genome-wide analyses of monoallelic expression in the
murine zygote, morula and blastocyst, revealed a more prominent
role of Polycomb repression than DNA methylation in allelic
imbalance of gene expression (Santini et al, 2021; Inoue et al, 2017).
The relative contributions of genetic and epigenetic mechanisms to
random allelic expression imbalance are less well understood, but
suggested to be highly gene-specific (Crowley et al, 2015; Marion-Poll
et al, 2021).

Little is known about haplotype-specific differences in 3D genome
structure and their contributions to allelic asymmetries in gene
expression. The sparsity of genetic variation between haplotypes makes
it technically challenging to map 3D genome structure with haplotype
specificity by either sequencing or imaging technologies. In ligation-based
methods, such as Hi-C, the unequivocal assignment of ligation events to
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the correct haplotype (phasing) requires the presence of at least one SNP
on either side of the ligation product and therefore has inherently low
sensitivity (reviewed in Li et al, 2021). Nevertheless, phased Hi-C data has
revealed intrinsic parental variability for the mammalian female X
chromosomes, upon random inactivation, and in the timing of
chromatin folding during meiosis, but few structural differences have
been reported between the two parental copies of somatic chromosomes,
except at a small number of imprinted genes (Ferguson-Smith, 2011; Rao
et al, 2014b; Reinius and Sandberg, 2015; Giorgetti et al, 2016; Tan et al,
2018; Han et al, 2020; Tan et al, 2021; He et al, 2023).

GAM is a ligation-free technology which captures long-range
chromatin interactions spanning whole chromosomes and has
revealed extensive specificity in the 3D chromatin structure of specific
cell types (Beagrie et al, 2017; Beagrie et al, 2023; Winick-Ng et al,
2021; Fiorillo et al, 2021). GAM measures 3D genome topology by
sequencing the DNA content from a collection of thin (~200 nm)
nuclear cryosections, and infers 3D chromatin contacts from the
probability of co-segregation of genomic regions across the collection
of nuclear slices. As whole genomic regions (typically 20-50 kb long)
are called positive in GAM data from the accumulation of many
sequencing reads, including many SNP-containing reads, we reasoned
that the phasing of GAM data should be highly efficient. Local
haplotype fidelity of GAM data has been previously shown
(Markowski et al, 2021), supporting our efforts to generate
haplotype-specific insights into chromatin folding from GAM data.

To investigate differences in the 3D genome folding of homologous
chromosomes, we applied GAM to a hybrid mESC line with high SNP
density. We developed novel computational pipelines to phase GAM
data, and discovered extensive 3D structural differences between the two
parental chromosomes across all length scales, including in A/B
compartments, topologically associating domains (TADs), and at the
contact level. We also collected total RNA-seq data and found that 15%
of expressed genes have allele-specific expression (ASE) bias in mESCs,
including some imprinted genes, but also many housekeeping,
ribosomal, and histone genes. ASE genes were often located in regions
with haplotype-specific structural differences, which coincided with
H3K27me3 occupancy, haplotype-specific enhancer—promoter contacts,
or CTCF loops. We also inferred chromatin compaction from GAM
data, and found that the most active alleles are consistently more
decondensed than the least active ones. We discovered that many histone
genes are ASE genes in mESCs, and that histone genes are involved in
allele-specific long-range chromatin contacts marked by H3K27me3
occupancy. Finally, we used conditional knockouts of Polycomb
enzymatic subunits and showed that the expression of many, but not
all ASE genes, including histone genes, is under Polycomb regulation.

Results
Overview of datasets collected

To investigate haplotype-specific differences in 3D genome
structure using GAM, we collected data from the F123 mESC line
(Gribnau et al, 2003). The F123 line was originally derived from F1
hybrid embryos from a CAST/S129 cross and its genotype has high
SNP density (average 1 SNP/124 nucleotides across autosomes;
Fig. 1A). GAM data was produced in multiplex mode which
combines three independent nuclear profiles (3NP) in each GAM
sample (Beagrie et al, 2023; Winick-Ng et al, 2021), and collected
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from two biological replicates. After quality control, the replicate
datasets were merged, resulting in the largest GAM dataset to date,
obtained from approximately 3,700 single mESCs (Fig. EV1A).
To address the impact of haplotype-specific 3D genome
structure on gene expression and chromatin regulation, we also
mapped gene expression using total RNA-seq, chromatin occu-
pancy using ChIP-seq of RNA polymerase II phosphorylated on
Serine-5 (Pol2-S5p) or Serine-7 (Pol2-S7p) residues of its
C-terminal domain, and the Polycomb mark H3K27me3 (Fig. 1B).
We collected and remapped published datasets produced in F123
mESCs for ChIP-seq of CTCF, cohesin (RAD21), H3K4me3 and
H3K27ac (Huang et al, 2021; Data ref: Hui and Ren 2020),
chromatin accessibility (ATAC-seq; Juric et al, 2019b; Data ref:
Juric et al, 2019a), and DNA methylation (whole-genome bisulfite
sequencing; Li et al, 2019; Data ref: Li et al, 2019). Finally, we also
considered published annotations of lamina-associated domains
(LADs) obtained by Lamin Bl DamID from the mESCs clone
E14Tg2A (Peric-Hupkes et al, 2010b; Data ref: Peric-Hupkes et al,
2010a). The datasets produced, publicly available, and the
processed data resources are summarized in Dataset EV1.

GAM-phaser: a pipeline to phase GAM data

GAM contact maps are produced by measuring the frequency of
co-segregation of genomic windows of a given length across the
collection of nuclear profiles (NPs; Beagrie et al, 2017). The reads
sequenced in each GAM sample are used to identify, in a binary
fashion, the presence or absence of genomic windows of a given
resolution in that sample (Fig. 1C). As each GAM sample is
obtained from thin nuclear slices and contains only 5-15% of the
genome (Beagrie et al, 2023), the sequencing depth required to
detect positive windows is promptly saturated in each GAM library
(approx. 2-3 million reads; see Methods section “GAM library
preparation and high-throughput sequencing”). With enough
sequencing depth, the effective resolution of GAM contact matrices
depends on the number of NPs collected to enable sampling all
possible window co-segregation events up to a given genomic
distance or across each chromosome (Beagrie et al, 2023).

We developed the GAM-Phaser pipeline to phase GAM data to
the CAST and S129 haplotypes (Fig. EV1B). Briefly, the positive
genomic windows in each GAM sample are first defined in
unphased GAM datasets (Fig. 1C), using a sample-specific thresh-
old of nucleotide coverage, as previously described (Winick-Ng
et al, 2021). Next, SNP-containing reads are phased to CAST and
S$129 haplotypes. For a conservative detection of haplotype-specific
windows in each GAM sample, we applied the read detection
threshold defined for unphased windows to the SNP-containing
reads. After phasing genomic windows, it becomes possible to
distinguish whether a given GAM sample contains DNA from one
or both chromosome copies (Sample 1 and 2, respectively; Fig. 1D).

The overall phasing efficiency achieved across all F123 GAM
datasets was a total of 37% of all sequencing reads assigned, with a
similar proportion to CAST or S129 haplotypes (Fig. EV1C).
However, it was possible to phase 70-75% genomic windows at
10-100 kb resolutions, respectively, which were evenly detected
between CAST and S129 windows (Fig. EVID). The high efficiency
of GAM data phasing results from the presence of multiple
nucleotide polymorphisms, which collect many SNP-containing
reads, in each positive genomic window. In comparison, phasing of

© The Author(s)
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Hi-C data from equivalent hybrid mESC lines has achieved only 26
or 35% phasing efficiency of ligation events (Fig. EVIE; Giorgetti
et al, 2016; Bonora et al, 2021). Comparison of informative contact
entries in phased GAM and phased Hi-C matrices from human
GM12878 B-lymphoblastoid cells of lower SNP density (Rao et al,
2014b; Data ref: Rao et al, 2014a) shows the detection of 79-93% of
all possible intrachromosomal contacts in GAM data, at 50 kb for
all genomic distances, compared with only 20-51% in Hi-C data at
the same resolution (Fig. EV1F). Genomic windows were rarely
phased to both CAST and S129 haplotypes in the same nuclear
profile (Fig. EV1D, dual phasing). To exemplify the low expected
co-detection of allelic windows in the same nuclear slices, we took
published imaging data using fluorescence in situ hybridization in
thin cryosections (cryo-FISH) performed in a different ESC line
(clone 46C), which targeted the genomic regions containing Hoxb1
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or Hoxb13 with fosmid probes covering ~40 kb (Barbieri et al, 2017;
Dataset EV2). Cryo-FISH data analyses confirmed that a minority
of nuclear sections contain both copies of each locus (13% and 11%,
respectively; Fig. EVIG).

To determine a suitable resolution of the phased GAM data, we
calculated the detectability of window co-segregation events at
different genomic resolutions, as previously (Beagrie et al, 2017,
Winick-Ng et al, 2021). For a robust analysis of allele-specific
chromatin structure, we chose a window resolution of 50 kb for
downstream analyses, which gives detection of >97% co-
segregation events across all genomic distances (Fig. EV1H).
Higher resolutions down to 10kb also gave good co-segregation
frequencies for unphased data; for example, 99% of all possible
pairs of 10 kb genomic windows within 10 Mb were co-detected in
at least one GAM sample.

Molecular Systems Biology Volume 21 | Issue 7 | July 2025 | 735-775 737
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Figure 1. GAM shows structural differences between alleles.

(A) F123 mESCs are derived from the cross between S129 and CAST mice. In the F123 genome, the median SNP distance is 55 bp (solid line), and the mean is 124 bp
(dashed line). (B) Overview of the data used in this study. Two biological replicates were collected or available for all datasets, and one replicate for Pol2-S5p, Pol2-S7p
and H3K27me3 ChlIP-seq. (C) Schematics showing phasing from two GAM samples. Reads mapped to chromosome 8 are shown above positive windows. Each window
can contain a different number of SNPs, and reads mapped to these regions are used for GAM phasing. (D) Phasing shows that most of the reads belong to one of the
haplotypes; black bars below the phased reads represent phased positive genomic windows. Large sections of the chromosome are phased in GAM data. (E) Unphased
and phased GAM maps, TAD borders and the total RNA-seq track are shown for chr5: 20-28 Mb. Colored rectangles mark differences in chromatin contacts between the
CAST and S129 haplotypes, with orange and purple corresponding to increased number of contacts for S129 or CAST, respectively. (F) Heatmap of insulation scores
calculated with square sizes that range from 400 to 800 kb. The insulation score heatmaps are represented for the same region as in (E). Boxes highlight regions with
structural differences between CAST and $129. (G) UpSet plot shows the number of common and unique TADs to each haplotype. (H) Normalized insulation score in
TADs categorized according to (G) is represented in a genomic window centered on the TSS +1,000 kb. Significance of insulation differences was determined with
Mann-Whitney test (*** represents P < 10" for all comparisons). P values are as follows: common borders, CAST against S129: 0.83; CAST against unphased: 0.41; S129
against unphased: 0.28; CAST unique borders, CAST against $129: 8.9 x 1074%; CAST against unphased: 2.7 x 107'%; $129 against unphased: 1.7 x 107'%; $129 unique borders,
CAST against $129: 1.3 x 10-%7; CAST against unphased: 1.4 x 10~7; S129 against unphased: 5.6 x 10~". Number of CAST, S$129 and common borders are 911, 889, and 1265,
respectively. Other plots show the average number of CTCF, RAD21 and ATAC-seq peaks, Housekeeping genes and LADs around the TSS. Dashed lines depict the
expected number of features using circular permutations and averaging the score from 10 iterations. (I) A and B compartment annotations and normalized eigenvector
values for unphased and phased matrices for the region shown in (E). Box highlights a region with notable differences between CAST and S129 matrices. (J) Compartment
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assignments show 18% different annotations between CAST and S129.

GAM detects extensive haplotype-specific differences in
chromatin contacts

To begin assessing the extent of haplotype-specific differences in
chromatin contacts captured in GAM data, we compared unphased
and phased contact matrices (Fig. 1E). We found extensive
structural variability between the CAST- and S129-phased matrices,
and noticed that both local and long-range contacts are stronger
and more obvious in the haplotype-specific matrices than in the
unphased, average matrices (Fig. 1E, orange and purple rectangles,
respectively for strong contacts in S129 or CAST haplotypes).
Structural variability between haplotypes becomes even more
prominent when plotting whole chromosome matrices, where
clusters of increased long-range contacts are clearly visible across
large genomic distances (Fig. EV2A, orange and purple arrows,
respectively). Contact distance decay and momentum curves
showed similar frequency of contacts between haplotypes within
<5Mb of genomic distance, but became visibly distinct at long-
range distances with different haplotype preferences depending on
the chromosome (Fig. EV2B), suggesting that larger-scale proper-
ties contribute to allelic chromatin structures.

Most TAD borders are haplotype-specific

To quantify haplotype-specific differences at the level of TAD
organization, we calculated insulation scores at different length
scales, using 400-800 kb square sizes (Crane et al, 2015; Winick-Ng
et al, 2021), and found clear differences in insulation between
parental genomes (Fig. 1F; see boxes and Fig. EV2C for an
additional example; for insulation score data see permanent data
repository Irastorza-Azcarate et al, 2024). Consistent with the
unphased matrices being an average of the CAST- and S129-
specific matrices, we confirmed that the CAST and S129 insulation
scores correlated less with each other than with unphased
insulation scores (400 kb insulation square sizes; Fig. EV2D).
Next, we computed TAD borders in unphased and phased
matrices using the 400kb insulation square size, as previously
described (Winick-Ng et al, 2021). More than 40% of all TAD
borders detected are haplotype-specific (911 and 889 unique to
CAST and S129) compared with 1265 common borders detected in
both haplotypes (Fig. 1G; Dataset EV3; for all combinations see
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Fig. EV2E). The distinct insulation between haplotype-specific
TAD borders was confirmed by comparing average insulation plots
(Mann-Whitney test, ***P<10°" for all comparisons; Fig. 1H).
Many borders common to both haplotypes were also detected in
unphased matrices (1061), as expected, and some CAST- and S129-
specific borders could also be detected in the unphased matrices but
not in the other haplotype (373 and 351, respectively; Fig. EV2E),
likely reflecting their strong prevalence in one haplotype chromo-
some across the cell population. However, many CAST- and S129-
specific borders were not captured in the unphased matrices (514
and 518, respectively), highlighting the specificity of chromatin
topology in the two haplotypes.

We asked whether haplotype-specific TAD borders were
enriched for CTCF, cohesin or housekeeping (HK) genes, as
previously shown for unphased TAD borders (Dixon et al, 2012).
CTCF and cohesin were found highly enriched in both common
and haplotype-specific borders, whereas housekeeping genes and
chromatin accessibility (ATAC-seq) are more strongly enriched in
common borders (Fig. EV2E). We also noted a preference for
common borders to more likely correspond to LAD/interLAD
transitions (22.9%) than CAST- and S129 unique borders (14.4% or
11.4%, respectively; Fig. EV2F).

Haplotype-specific compartments account for 20%
of the genome

Previous work in mouse T cells from B6XxCAST hybrid mice detected
only 4% of compartment changes between haplotypes (Han et al,
2020), and region-specific examples of compartment changes have also
been reported at specific loci in hybrid mESCs (Rivera-Mulia et al,
2018). To quantify the extent of haplotype differences in compartment
A/B annotation genome-wide in GAM data, we computed eigenvector
values from principal component analysis (PCA) from unphased and
haplotype-specific GAM matrices (Fig. 1I, box; see also whole
chromosome regions in Fig. EV2G; Dataset EV4). Genome-wide
analyses showed compartment changes between the two alleles in 18%
of the genome, in contrast with 49% and 32% of the genome being
annotated A-A or B-B, respectively (Fig. 1J). We observed that the
distributions of eigenvector values of allele-specific matrices are more
symmetrical compared to the unphased values and cover a wider
range, suggesting that compartmentalization states are better captured

© The Author(s)
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in the phased data than in the haplotype-averaged unphased data
(Fig. EV2H).

To investigate the functional consequences of extensive
haplotype-specific differences in chromatin structure on gene
expression and their relationship with chromatin-based mechan-
isms of gene regulation, we quantified the haplotype-specific
differences in gene expression and chromatin features in F123
mESCs, and characterized their co-occurrence across the linear
genome. Subsequently, we integrated allele-specific 3D genome
structure with the linear distribution of allele-specific gene
expression and chromatin occupancy.

Allele-specific expressed genes are enriched in
housekeeping, ribosomal, and histone gene groups

To understand the extent of allele-specific gene expression in F123
mESCs, we measured gene expression from total RNA-seq data for
protein-coding and long noncoding genes, after selecting the most
expressed transcript isoform (based on the levels of Pol2-S5p and
Pol2-S7p at annotated transcription start sites; see “Methods”). We
calculated differential allelic expression as previously described
(Castel et al, 2015), considering both exonic and intronic regions
(for gene expression levels see permanent data repository Irastorza-
Azcarate et al, 2024). Out of 17,956 expressed genes, we detected
13,713 genes similarly expressed from both alleles, 2222 genes with
ASE imbalance ( |log2 fold change | 21, adjusted P value < 0.05 and
TPM = 1), of which 1308 and 914 genes were more expressed from
the CAST or S129 genomes, respectively, and 2,021 genes were
expressed without SNP (Fig. 2A). ASE genes are all genes exhibiting
expression imbalance, while monoallelic genes are a subgroup of
ASE genes which contain only reads from one allele. Among the
ASE genes, we found 193 monoallelic genes, including several
histone genes, such as Hist2h2ac, 15 imprinted genes, including
Lin28a and Pegl3, all more expressed from the CAST allele, and
Cdknlc, more expressed from the S129 allele (Fig. 2B). The paternal
allele more frequently exhibited higher expression, as previously
reported in murine embryonic fibroblasts and adult tissues
(Crowley et al, 2015; Savol et al, 2017).

Gene Ontology (GO) enrichment analysis showed that ASE genes
are involved in metabolic processes, immunity response and encode
ribosomal proteins (Fig. 2C; Dataset EV5). Separate GO enrichment
analysis of CAST and S129 ASE genes showed no haplotype-specific
enrichment of biological functions. Amongst the ASE genes, we found
many ribosomal protein genes (32%, 30/94; Fig. 2D), a group of genes
which were previously reported to be expressed with allelic imbalance
in other mouse tissues or cell types, and in Medaka and catfish tissues
(Murata et al, 2012; Pinter et al, 2015; Crowley et al, 2015; Chen et al,
2016). The ASE gene list also contained 38% of all histone genes (26/
69) and 8% of housekeeping genes (Dataset EV6). The ASE imbalance
of histone genes has been reported in mouse embryonic fibroblasts,
and can also be observed by mining publicly available resources from
mouse tissues (Crowley et al, 2015; Pinter et al, 2015; Savol et al, 2017),
but has so far not been investigated.

H3K27me3 occupies a third of ASE gene promoters
ASE imbalance is thought to be achieved by repression mechanisms

acting on one allele (Garcia et al, 2014), and some studies report a
major role of Polycomb repression in monoallelic expression,
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predominantly at the maternal allele (Inoue et al, 2017; Santini et al,
2021). To explore whether Polycomb repression mechanisms are also
important more generally in expression imbalance, we mapped
H3K27me3, Pol2-S5p, and Pol2-S7p occupancy in F123 mESCs.
Previous genome-wide analyses in mESCs showed that the
promoters of signaling or metabolic genes are often occupied by
H3K27me3, Pol2-S5p and Pol2-S7p, in a mixed Polycomb-Active
(PRCa) promoter state, thought to result from allele-specific
deposition of Polycomb or fluctuations between active and
Polycomb repression in different cells (Brookes et al, 2012; Ferrai
et al, 2017). To investigate whether ASE imbalance relates with
direct Polycomb occupancy on the promoters of ASE genes, we
classified all non-overlapping gene promoters in F123 mESCs
according to their H3K27me3, Pol2-S5p or Pol2-S7p occupancy.
One-third of ASE genes have PRCa promoter states (H3K27me3 +
S5p +S7p+, 477 genes; Fig. 2E), including signaling and
metabolic genes, such as Mapkl3 and Apoe, respectively (gene
promoter classification tables are available in the permanent data
repository Irastorza-Azcarate et al, 2024). Consistent with the
repressive effects of Polycomb, the expression of ASE genes marked
by H3K27me3, S5p and S7p is approximately half of the expression
levels of ASE genes occupied by S5p and S7p only (Fig. EV3A).
To further explore a functional role of Polycomb in the
repression of ASE genes, we took advantage of published RNA-
seq data for AID-mediated acute depletion of the catalytic subunit
of PRC1 (RING1AX° RING1B*™ in E14-tg2a ES cells; Dobrini¢ and
Klose, 2021b; Data ref: Dobrini¢ et al, 2021a). We found that 290
ASE genes are both marked by H3K27me3 in F123-ESCs, and are
upregulated upon AID-induced RING1B depletion in the AID-E14-
ESCs (Fig. 2F, permanent data repository Irastorza-Azcarate et al,
2024). Other ASE genes may also be under Polycomb influence, as
they are characterized by H3K27me3 occupancy in F123-ESCs (219
genes) or by being upregulated in the AID-induced RINGIB
depletion in E14 ESCs. These analyses also confirm that many ASE
genes (395 genes) are not associated with Polycomb repression or
occupancy, and are likely regulated by other mechanisms.

Chromatin features at ASE gene promoters are
mostly biallelic

To further investigate other chromatin-mediated mechanisms that
might contribute to ASE imbalance, we applied peak finders to ATAC-
seq, H3K4me3, H3K27ac, CTCF, cohesin (RAD21), H3K27me3, Pol2-
S5p and Pol2-S7p data (peaks coordinates are provided in the
permanent data repository Irastorza-Azcarate et al, 2024). Occupancy
peaks were relatively short (on average 305-1507 base pairs; Fig. EV3B),
except for H3K27me3 and Pol2 modifications (on average 2000-3400).
Most peaks could be phased (41-86%), but they were not allele-specific
(biallelic peaks; Fig. 2G). A minority of phased peaks were classified as
CAST (2.4-4.6%) or S129 (0.6-3.1%) specific, and were slightly more
abundant in the CAST haplotype, a preference also observed in the
number of CAST ASE genes.

We measured the overlap between ASE gene promoters and
haplotype-specific peaks, and found that most ASE gene promoters
coincide with biallelic peaks of ATAC, H3K4me3, H3K27ac, and
Pol2-S5p/S7p, less frequently with CTCF and H3K27me3, and
rarely with RAD21 (Fig. 2H). CAST-specific peaks that overlap
with ASE gene promoters are preferentially found at promoters of
genes more highly expressed from the CAST haplotype (1-16%
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Figure 2. Allele-specific expressed (ASE) genes are enriched for | keeping, rib | protein and histone genes, and many contain Polycomb.

(A) Number and percentage of CAST and S129 ASE genes expressed with no SNP, genes that are biallelic, and genes that are not expressed. (B) Volcano plot of all
expressed genes containing SNPs. Genes with a |log2 fold change | >1 and an adjusted P value of <0.05 were classified as ASE. Number of genes: 37,178. (C) Significant
Gene Ontology (GO) terms of ASE genes. (D) Bar plot showing percentage of genes classified as housekeeping, ribosomal machinery complex and histone proteins. (E)
Overlap of CAST and S129 ASE genes with H3K27me3, Pol2-S5p, and Pol2-S7p. (F) Overlap of CAST and S129 genes with H3K27me3 peaks and upregulated genes (AID
up), downregulated genes (AID down) or genes with no change (AID NC), for AID-mediated acute depletion of the catalytic subunit of PRC1 (Dobrini¢ and Klose, 2021b).
(G) Number and percentage of H3K4me3, H3K27ac, H3K27me3, Pol2-S5p, Pol2-S7p, CTCF and RAD21 ChIP-seq and ATAC-seq peaks that are CAST or S129-specific,
common or could not be phased. (H) Number of CAST (top) and S129 gene promoters (bottom) that overlap with different features. (I) The number of CAST, S129,
common and non-phased ATAC-seq peaks in intergenic, intron, and promoters. The color indicates the type (gray: not expressed; dark green: biallelic expressed; green:
expressed with no SNP; orange: S129-specific; purple: CAST-specific; black: unknown) of the closest gene to the ATAC peak.

depending on chromatin feature), in contrast with S129-specific
peaks which rarely coincide with S129-specific promoters (0.4-2%).
This tenfold haplotype imbalance is unlikely to be technical, as, for
example, the detection of CAST and S129 ATAC peaks is almost
even (2.5% and 1.3%, respectively). Amongst the ASE gene
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promoters marked by H3K27me3 (511 genes, Fig. 2F), only a minor
fraction have allele-specific occupancy of H3K27me3 (43 ASE gene
promoters; Fig. 2H). The presence of H3K27me3 at ASE gene
promoters, the upregulation of ASE genes following acute depletion of
Polycomb catalytic subunits, and the limited allele-specificity at the
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most repressed allele, suggest that Polycomb repression may
contribute to ASE imbalance through other mechanisms, possibly
via its presence in intergenic regions or gene bodies, or through
structural folding effects.

Allele-specific intergenic regulatory regions are often
close to ASE genes expressed in the same haplotype

To explore allele-specific long-range effects in ASE imbalance, we
considered ATAC peaks in proximity to ASE gene promoters, in
intergenic and intronic regions. We found that CAST ATAC peaks
are preferentially nearest to CAST ASE genes, while S129 ATAC
peaks are closer to S129 ASE genes (Fig. 2I). The observation that
both CAST- and S129-specific ATAC peaks have a preference for
proximity to ASE genes more expressed in the same haplotype
suggests a role for enhancer-promoter (E-P) chromatin contacts in
ASE imbalance. We searched for transcription factor motif
enrichment at CAST or S129 ATAC peaks present at promoters,
intergenic or genic regions, and found a single transcription factor,
ZFP57, enriched in CAST-specific peaks at CAST gene promoters,
and not in other promoters or genomic regions (Fig. EV3C; for list
of motifs in ATAC-seq peaks see permanent data repository
Irastorza-Azcarate et al, 2024). ZFP57 is a zinc finger protein
involved in the maintenance of imprinted genes through binding of
DNA methylated regions (Mackay et al, 2008, Shi et al, 2019). We
also explored the association of ASE imbalance with differential
methylation in F123 mESCs. After identifying differentially
methylated genes from published phased whole bisulfite sequencing
data in F123 mESCs (Li et al, 2019; Data ref: Li et al, 2019), we
found that only 61 ASE gene promoters were found associated with
allele-specific DNA methylation (2.7% of all ASE genes; Fig. EV3D;
Dataset EV7), including three imprinted genes, Mest, Snrpn and
Pegl3 (Dataset EV6). Mest is a CAST ASE gene which shows
stronger chromatin contacts at the maternal than paternal Mest
locus (Fig. EV3E), in line with previous reports in neonatal and
adult neurons, using Dip-C (Tan et al, 2021).

To complete the exploration of linear chromatin features and
their association with ASE imbalance, we considered CTCF and
RAD21 peaks. Most CTCF peaks are biallelic (57,273), and only
2540 and 2258 are CAST or S129-specific, respectively (Fig. 2G). In
contrast, most Rad21 peaks could not be phased (15,512), and only
627 or 156 peaks were assigned to the CAST or S129 alleles,
respectively. Although CTCF peaks rarely overlap ASE gene
promoters (Fig. 2H), some allele-specific CTCF peaks overlap
promoters of monoallelic expressed genes, for example, Cdkn2b
and Hist2h4 (see permanent data repository Irastorza-Azcarate
et al, 2024). These results suggest that CTCF and RAD21 are not a
major feature of ASE imbalance. We also noticed that haplotype-
specific CTCF peaks are present at approximately one quarter of
TAD borders, but they always co-occur with biallelic CTCF peaks,
and show no preference for borders of the matching haplotype
(Fig. EV3F,G), suggesting that CTCF-mediated mechanisms are not
general drivers of haplotype-specific TAD formation.

CAST-specific ASE genes and chromatin features
co-occur in the linear genome

Previous studies in mouse and medaka tissues reported ASE gene
clustering in the linear genome (Garcia et al, 2014; Crowley et al, 2015).

© The Author(s)
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We inspected the position of ASE genes in F123 mESCs across
whole chromosomes and confirmed a tendency for ASE gene
clustering in mESCs (Figs. 3A and EV4A). Genome-wide analyses
showed that CAST and S129 genes are present in all autosomal
chromosomes, tend to be clustered, and are often intermingled with
each other (circular Permutation test, P values=0.0001, 0.0145,
0.0001 for CAST, S129, and CAST + S129; Fig. EV4B). ASE genes
are located in genomic regions with high density of expressed genes
compared with regions without ASE genes (t test: P value=
2.7 x 10~7; Fig. EV4C).

Next, we measured the genomic overlap and clustering of ASE
genes and active chromatin features, and found that CAST genes
and chromatin features often co-occur with each other, in contrast
with S129 features and genes which rarely co-occur (Fig. EV4D,E),
potentially due to parental effects as shown in different tissues
(liver, brain, lung and kidney) or cells, including in F123-derived
fibroblasts, where expression tends to be more abundant from the
paternal allele (Crowley et al, 2015; Savol et al, 2017). CAST and
$129 features are generally segregated along the linear genome, as
shown by the minor co-occurrence of CAST features or CAST
genes with S129 features or S129 genes (Fig. EV4E).

Taken together, our exploration of the linear organization of
ASE genes and chromatin accessibility and occupancy suggests that
different mechanisms may control ASE gene expression, of which
Polycomb occupancy and repression were most often associated
with ASE imbalance. In the next sections, we investigated how these
linear genome features relate with haplotype differences in 3D
genome structure.

ASE clustering occurs preferentially
within compartment A

We asked whether ASE gene clustering was reflected in haplotype-
specific compartment transitions, and found 107 CAST and 79
S129 ASE genes present in genomic regions with A-B or B-A
(CAST-S129) compartment assignments, with a preference for ASE
genes to be more expressed in the compartment A (euchromatic)
annotation of the corresponding haplotype (Fig. 3B; Chi-squared
test, P=0.015). Most other ASE genes are present in compartment
A annotations (Fig. EV5A; circular Permutation test, 10,000
permutations, P value =0.0001), a tendency that is likely driven
by their preferred co-occurrence with biallelic expressed genes.

Haplotype-specific ATAC, CTCF, H3K4me3 and H3K27ac
peaks were also found preferentially associated with haplotype-
specific compartment differences, with CAST-specific peaks being
slightly more abundant in A-B (CAST-S129) compartments, and
S129-specific peaks in B-A regions, with the exception of
S129-specific CTCF peaks which are equally distributed in A-B
and B-A regions (Fig. EV5B).

ASE genes are clustered within TADs enriched for
H3K27me3 occupancy

We then asked whether ASE gene clustering in the linear genome
reflects the TAD organization. ASE genes are present in 45% of
TADs, in all cases together with biallelically expressed genes
(Fig. 3C). Approximately one-third of TADs contain CAST ASE
genes, another third S129 ASE genes, and the last third contain
both (Fig. 3C for CAST TAD annotations, Fig. EV5C for S129 TAD
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Figure 3. ASE genes are clustered in TADs enriched for H3K27me3 occupancy.

(A) Manhattan plot showing log2 fold change of all expressed genes for chromosomes 2, 12, and 13. Genes are colored according to their expression as CAST or S129-
specific, biallelic or do not contain SNPs. Boxes show regions that were zoomed: a region with the majority of CAST ASE genes, majority of S129 ASE genes or a mix of
CAST and S129 ASE genes. (B) Bar plot showing the percentage of genes that overlap with A or B compartments in both haplotypes, or have different compartment
annotations in CAST and S129. The preferred tendency for CAST genes to be in CAST compartment A, and S129 genes to be in $129 compartment A is statistically
significant (Chi-square test= 0.015. Number of A/B with S129 genes: 37, and with CAST genes: 70. Number of B/A with S129 genes: 42, and with CAST genes: 27). (C)
UpSet plots showing, for the CAST allele (5129 allele in Fig. EV5C), groups of TADs containing different sets of types of genes and their number. (D) For each group in (C),
the number of H3K27me3 peaks normalized by TAD length (two-sided t test: *P < 0.05, **P < 0.01, ***P < 0.001; P values from top to bottom in CAST TADs: 1.0 x107'¢,
7.0x107",1.9 10732, 4.4 x 1075, n.s: 0.95, 7.6 x 10~°). Number of TADs with: expressed genes, 749; not expressed genes, 496; CAST genes, 294; S129 genes, 250; and
TADs with CAST and S129 genes, 236. The center of each box plot represents the median, the box boundaries correspond to the Q1 and Q3 quartiles, and the whiskers
extend from the box to the farthest data point lying within 1.5x the interquartile range (IQR) from the box (Q1-1.5 IQR and Q3 + 1.5 IQR, respectively). (E) The differential
(CAST-S129) window detection frequency is represented for each group in (C). Negative values indicate decompaction in the S129 haplotype, while positive values indicate
decompaction in CAST (two-sided t test: *P < 0.05, **P < 0.01, ***P < 0.001; P values from top to bottom for CAST TADs: 0.008, 0.003, 0.018). Number of TADs with:
expressed genes, 749; not expressed genes, 496; CAST genes, 294; S129 genes, 250; and TADs with CAST and S129 genes, 236. The center of each box plot represents
the median, the box boundaries correspond to the Q1 and Q3 quartiles, and the whiskers extend from the box to the farthest data point lying within 1.5x the interquartile
range (IQR) from the box (Q1-1.5 IQR and Q3 + 1.5 IQR, respectively). (F) Summary model displaying differences in chromatin compaction of TADs containing CAST or
S129 ASE genes.
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annotations). ASE gene clustering within TADs is statistically
significant for CAST, S129 or combined CAST/S129 ASE genes
(Permutation test, 10,000 permutations, all P values < 0.0001;
Fig. EV5D,E).

We asked whether TADs containing ASE genes are also
enriched for H3K27me3 peaks, irrespective of whether they were
mono- or biallelic, and found a statistically significant enrichment
compared with TADs containing only biallelic expressed genes or
silent genes (t test, P values <0.001; Figs. 3D and EV5F). The
H3K27me3 enrichment is especially strong in TAD annotations
containing both CAST and S129 ASE genes, compared with TADs
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containing ASE genes of only one haplotype, suggesting allele-
specific local contributions of H3K27me3 to ASE imbalance. Since
chromatin compaction is a feature of Polycomb activity in vitro and
in vivo across short and long genomic regions (Nichols et al, 2020;
Barbieri et al, 2017; Schoenfelder et al, 2015), we first asked whether
the differential presence of CAST or S129 ASE genes within specific
TADs correlated with increased chromatin decompaction in the
haplotype with the larger number of expressed genes. We took
advantage of the fact that the GAM technology inherently detects
relative differences in chromatin compaction (Beagrie et al, 2017),
based on the fact that genomic windows with the same DNA
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Figure 4. Histone genes in the Hist1 cluster establish S129-specific contacts that coincide with H3K27me3 occupancy, and are regulated by Polycomb repression
mechanisms.

(A) Unphased GAM map of the Hist1 locus (chr13: 21.0-24.5 Mb). Below, tracks showing the position of each Hist1 cluster, olfactory receptor cluster and the VMNR
cluster; total RNA-seq data, position of all genes, expressed genes, and genes specific to CAST and 5129 alleles. (B) Phased maps of the same region to the CAST and S129
allele. Below, SNP density track at 30 kb windows, showing a region which contains part of the VMNR cluster and the rightmost Hist1 cluster, devoid of SNPs. The rectangle
highlights contacts between the Hist1 clusters which are strong in the 5129 allele, and weak in the CAST allele. (C) Tracks for H3K27me3 reads and peaks. Below, allele-
specific contacts for each allele extracted from the phased GAM maps that coincide with H3K27me3 peaks. (D) Mass spectrometry SILAC experiments carried out in ESC-
Ezh2-1.3 cells grown in the absence or presence of tamoxifen to induce conditional knockout of Ezh2, in three biological replicates, each with two technical replicates. Ezh2
knockout results in upregulation of histone proteins. Abundance was calculated as intensity divided by number of peptides, while normalized log2fc was calculated applying
the z-score normalization to the log2 of heavy/light (H/L) ratio of the WT experiment divided by the H/L ratio of the conditional knockout. Data points labeled with an
asterisk represent peptides common to several histone genes: Hist1h2a* represents Histlh2ah, H2afj, Histlh2ak, Histlh2af, Hist3h2a, Hist2h2a and Hist2h2aal; while
Hist1h2b* represents Hist1h2bk, Hist1h2bf, Hist1h2bp and Hist1h2bb. (E) Gene Ontology terms for the top 5% upregulated genes for each condition. (F) Boxplots showing
the abundance index and the log2 fold change for histone proteins and ribosomal proteins related to (D). Numbers of data points are 11, 34, 11, and 34, respectively from
left to right. The center of each box plot represents the median, the box boundaries correspond to the Q1 and Q3 quartiles, and the whiskers extend from the box to the
farthest data point lying within 1.5x the interquartile range (IQR) from the box (Q1-1.5 IQR and Q3 + 1.5 IQR, respectively). (G) Proposed model for the Hist1 locus folding
and gene regulation. Haplotype-resolved GAM data shows that the Hist1 clusters come together preferentially in the S129 allele. These contacts may be mediated by
Polycomb which establishes a repressive environment and thus results in lower overall expression. The Hist1 clusters in the CAST allele are spatially separated which
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coincides with increased gene expression.

content but different compaction are detected across the collection
of GAM nuclear slices (NPs) proportionally to their physi-
cal volume (Fig. EV5G). We measured the window detection
frequency (WDF) of genomic windows (Dataset EV8), and found
that genomic regions within TADs containing only CAST or only
S129 ASE genes have on average higher WDF, i.e., are more
decondensed, in the most expressed allele irrespective of haplotype
(Figs. 3E and EV5H). Increased WDF is also observed at the gene
level, as genomic windows containing the most expressed allele are
also more decondensed (Fisher’s exact test P=5.3x10"5%
Fig. EV5I). The observation that TADs with ASE imbalance are
associated with Polycomb occupancy and increased compaction of
the repressed allele, provides orthogonal support for a role of
Polycomb repression in chromatin condensation genome-wide,
which is shown here in the context of haplotype-specific chromatin
regulation (Fig. 3F).

Long-range interactions in the Hist1 gene cluster
are allele-specific

To further explore how the linear clustering of ASE genes relates to
allelic differences in higher-order chromatin contacts, we con-
sidered the Histl locus which contains 19 ASE histone genes. The
Histl locus is the largest and densest of the four histone loci, and
contains three Hist1 subclusters (~200, ~10, and ~500 kb) in a 2 Mb
region, harboring a total of 55 histone genes interspersed with two
silent clusters of sensory receptor genes, Olfr and Vmnr (Fig. 4A).
The Vmnr cluster is annotated as B compartment in unphased
GAM data, and a LAD region, flanked by active histone genes in
compartment A. Most histone genes in the Histl locus are
expressed in F123 mESCs (52 out of 55 genes) of which 35 contain
SNPs. Of the 19 ASE genes in the locus, 14 and 5 genes are more
highly expressed from the CAST or S129 allele, respectively
(Fig. EV6A), indicating that the Histl cluster is more transcrip-
tionally active in the CAST than the S129 chromosome copy.
Unphased GAM data shows that the three Histl locus
subclusters interact with each other (Fig. 4A), establishing long-
range contacts that resemble those found at the human Histl locus
in ESCs by SPRITE (Quinodoz et al, 2018). As the Hist1 locus has a
robust density of SNPs, except across the Vmnr gene cluster, it was
possible to phase most of the region. In the haplotype-specific
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GAM contact matrices, we found that the Histl locus shows
extensive structural differences between CAST and S129 haplotypes
(Fig. 4B), in particular a large S129-specific patch of strong contacts
between the most distant Hist1 subclusters, separated by 1.5 Mb. As
the S129 locus expresses fewer genes than the CAST locus, we
hypothesized that the long-range contacts might relate to histone
gene repression. H3K27me3 occupancy was detected at 11 out of 19
histone ASE genes, and their promoters are classified as PRCa
(Fig. EV6B; see classification table in permanent data repository
Irastorza-Azcarate et al, 2024). Although histone genes have not
previously been reported as targets of Polycomb repression,
evidence for the presence of H3K27me3 or mono-ubiquitinylated
H2A (H2Aubl) at the promoters of histone genes can be traced in
published mESC datasets for Hist3h2ba (Brookes et al, 2012), and
Hist2h3c1, Hist2h4, Hist3h2ba genes (Ferrai et al, 2017) in different
mESC lines.

Histone genes are upregulated upon conditional
Polycomb knockout

To explore potential roles of Polycomb repression in Histl gene
regulation, we calculated differential contacts between CAST and S129
matrices (Fig. EV6C), and extracted all allele-specific contacts in the
region involving windows containing H3K27me3 peaks (Figs. 4C
and EV6D). We found that these long-range contacts connect all
3 clusters in the S129 allele, suggesting that the repression of a larger
number of histone genes in the S129 haplotype may relate to local and
long-range effects of Polycomb repression.

To directly address a functional role for Polycomb repression in
the dampening of histone gene expression, we took advantage of
two previously characterized conditional tamoxifen-inducible
knockout cells of Ringlb (murine ESC-ERT2 clone; Stock et al,
2007) or Ezh2 (murine ESC-Ezh2-1.3 clone; Pereira et al, 2010),
which encode the major enzymatic activities of Polycomb repressor
complex 1 (PRC1) or 2 (PRC2), respectively. Upon addition of
tamoxifen, ESC-ERT2 and ESC-Ezh2-1.3 lose H2Aubl or
H3K27me3, respectively, within 24/48h or 96h (Stock et al,
2007; Pereira et al, 2010). We performed quantitative SILAC mass
spectrometry analysis in the two cell lines, before and after
knockout induction (Dataset EV9). We discovered that histone
proteins were highly upregulated after knockout of either Ringlb or

© The Author(s)
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Figure 5. Enhancer-promoter contacts and CTCF loops coincide with ASE genes.

Ibai Irastorza-Azcarate et al

(A) Features and conditions used to define enhancer-promoter contacts (Enh, Enhancer). (B) Quantification of enhancer-promoter contacts, depending on the different
configurations in each allele. (C) Box plot showing the normalized window detection frequency (WDF) for each configuration. Numbers from top to bottom are: 85, 131, 14,
130, 113, and 6, respectively. The center of each box plot represents the median, the box boundaries correspond to the Q1 and Q3 quartiles, and the whiskers extend from
the box to the farthest data point lying within 1.5x the interquartile range (IQR) from the box (Q1-1.5 IQR and Q3 + 1.5 IQR, respectively). (D) Example region with contact
differences on chr7 with allele-specific enhancer-promoter contacts. (E) Example for decondensation in the CAST allele with allele-specific enhancer-promoter (E-P)
contacts. (F) Features and conditions used to define CTCF loops. (G) Quantification of CTCF loops with Cohesin (Coh.), depending on the different configurations in each
allele. (H) Contact map illustrating an allele-specific CTCF loop on chr17. The track for CTCF orientation shows the directionality of CTCF motifs. Purple arrows point to
CTCF motifs with convergent orientation involved in the CTCF loop with CAST-specific Rad21 peak in one of the anchors.

Ezh2, and were among the proteins with the highest fold change
upregulation (Figs. 4D and EV6E). In fact, GO enrichment analysis
on proteins with 5% highest fold change shows enrichment for
terms associated with DNA packing complex and nucleosome
binding proteins (Fig. 4E; Dataset EV5). In contrast, ribosomal
proteins, also abundantly expressed and characterized by allelic
expression imbalance, are not upregulated upon conditional
Polycomb knockout, supporting the view that ASE imbalance is
not exclusively regulated by Polycomb repression (Figs. 4F
and EV6F, respectively, for Ezh2 and Ringlb knockouts).

Our observations show that many histone genes are ASE genes
regulated by Polycomb repression mechanisms, with promoters
occupied by Pol2-S5p, -S7p and H3K27me3. We also show that
histone genes within the Histl locus establish long-range
chromatin contacts, often occupied by H3K27me3, which bridge
a gene-silent LAD, and occur especially in the S129 haplotype that
expresses fewer Histl genes (see schematics in Fig. 4G).

Allele-specific contacts between ASE genes and
enhancers, and CTCF

Next, we were curious about allele-specific contacts between ASE gene
promoters and putative regulatory regions (enhancers; E), and whether
E-ASE gene contacts would be predominant in the most or least
expressed allele. To define a stringent list of E-ASE gene contacts, we
selected the strongest contacts in each allele (z-scores >2.0; Fig. EV7a)
that connect ASE genes also marked by Pol2-S5p and ATAC peaks,
with putative enhancers also marked by Pol2-S5p, ATAC, and
H3K27ac, within 2Mb genomic distances (Fig. 5A; the table of
differential contacts and features is available in GSE254717).

We first asked whether the selected E-ASE gene contacts are
preferentially established from the most- or least-expressing allele.
Similar numbers of E-ASE gene contacts were found in the most or
least expressed allele, but rarely in both alleles, suggesting that
allele-specific E-ASE gene contacts can alternatively coincide with
the expression of the active allele or with the repression of the least
expressed allele (Figs. 5B and EV7B). The differences in strength of
contacts between the two haplotypes based on NPMI values were
statistically significant (two sample ¢ test; P values < 1le-9 for all
comparisons; Fig. EV7C,D). Regardless of whether the strong
E-ASE gene contact occurs in the haplotype where the ASE gene is
most or least expressed, we found increased decompaction of the
most expressed allele involved in a strong E-ASE gene contact, by
comparing the WDF of the 150 kb genomic regions centered on the
ASE gene promoters (Fig. 5C). These results show that enhancers
can contact their putative target genes independently of their
compaction or expression state, and confirm that allele-specific
expression coincides with increased local decompaction of the
expressed genomic region.

746 Molecular Systems Biology Volume 21 | Issue 7 | July 2025 | 735-775

Strong E-ASE gene contacts that coincide with expression of the
active allele are in line with models of increased gene expression
driven by increased E-P contacts (Carter et al, 2002; Simonis et al,
2006; Noordermeer et al, 2011; Bartman et al, 2016; Barshad et al,
2023). For example, the genes Fuom and Spefll are two CAST ASE
genes which establish strong CAST contacts between themselves
and enhancer-containing windows spanning a>1Mb genomic
region which is contained within the same compartment A
(Fig. 5D). In contrast, the S129 haplotype is characterized by fewer
strong contacts across the whole region, and the presence of a $129-
specific compartment B and a LAD interspersing the two CAST
ASE genes. WDF measurements show the higher decompaction of
the whole region in CAST than S129 haplotypes.

We also found examples of loss of strong E-ASE gene contacts in
the most active allele, in line with enhancer mechanisms where
increased transcriptional activity coincides with loss of E-P contacts
(Benabdallah et al, 2019). For example, the gene Zfp146 is a CAST ASE
gene which establishes a strong E-ASE gene contact in the S129 allele,
spanning 1.7 Mb. Other CAST genes that form strong E-ASE gene
contacts in S129 are Sirt2 and Zfp74, which contact each other
(Fig. 5E). As previously, we find lower WDF in the silent S129
haplotype than CAST haplotype indicating that ASE gene expression is
associated with increased decompaction in the expressing allele.

These results show that allele-specific expression can coincide
alternatively with strong allele-specific E-ASE gene contacts or with
loss of strong E-ASE gene contacts. Irrespective of whether the
proximity to putative regulatory regions occurs in the active or
repressed state, the most expressed allele is characterized by
increased local chromatin decondensation, which may relate to the
formation of transcriptional condensates (Cramer, 2019).

Finally, we searched for strong ASE gene contacts anchored by
CTCF and RAD21 occupancy, which contained CTCF motifs in
convergent orientation and were less than 2Mb apart (Figs. 5F
and EV7E). We found a small number of CTCF loops involving ASE
genes (Fig. 5G), for example, for Camk1d, Gnas and H2-Q2 genes (the
table of differential contacts and features is available in GSE254717).
H2-Q2 is a CAST ASE gene within the Major Histocompatibility
region which is involved in a strong CAST-specific CTCF loop with
$129 ASE gene H2-K1I (Fig. 5H). In total, four histocompatibility genes
are ASE genes: C2 and H2-Q2 are CAST and H2-K1I and H2-DI are
$129 ASE genes. The contact is mediated by two common CTCF peaks
with convergent orientation and two cohesin peaks, in which the peak
in the right anchor is CAST-specific (purple arrows). The CTCEF-
mediated loop in the CAST allele may favor the expression of H2-Q2
but not of H2-K1 in the CAST allele, while the absence of CTCF loop
in the S129 correlates with S129 expression of H2-KI but not H2-Q2.
These results suggest that some CTCF loops may be involved in ASE
imbalance. However, we observe that these genomic regions are also
under Polycomb regulation, for example, in specialized cells such as in
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oligodendroglia (Meijer et al, 2022). Histocompatibility genes are also
marked by Polycomb histone marks in mESCs and throughout
different stages of differentiation of mESCs to neuronal lineages
(Ferrai et al, 2017). Taken together, these examples showcase the
complex interplay between different mechanisms of chromatin and
gene regulation and the challenges in the interpretation of the
extensive allele-specific differences in 3D genome structure.

Discussion

Many genes are expressed with allelic imbalance due to a
combination of genetic differences between the two chromosome
copies, and parental-specific epigenetic mechanisms often attrib-
uted to Polycomb repression or DNA methylation (Ohishi et al,
2019; Savol et al, 2017; Lappalainen et al, 2013; Crowley et al, 2015;
Marion-Poll et al, 2021; Inoue et al, 2017; Santini et al, 2021). While
extensive folding differences between the active and inactive
chromosome X copies have been reported using Hi-C (Giorgetti
et al, 2016; Tan et al, 2018), few differences in 3D chromatin
structure have been reported in autosomes based on ligation-
dependent methods (Lleres et al, 2019; Rao et al, 2014b; Han et al,
2020), likely due to the sparsity of SNPs in the genome and the
requirement for SNP presence on both sides of ligation events
(Rivera-Mulia et al, 2018). In high SNP density mouse crosses, the
maximum fraction of phased ligation events are capped at one-
third of all sequenced ligation events (Giorgetti et al, 2016). These
difficulties have been discussed and currently motivate the
development of imputation or machine learning approaches that
extrapolate unphased events (Miller and Adjeroh, 2024), but these
methods require independent validation.

In GAM technology, chromatin contacts are inferred by spatial
sampling of chromosome structure through slicing nuclei in thin
slices, and sequencing of the genomic content of each slice (Beagrie
et al, 2017). Chromatin contacts are measured from the co-
segregation of genomic windows across the collection of nuclear
slices. As the length of each window is typically 10-50 kb, each
window contains many nucleotide polymorphisms, such that the
phasing can be done with high sensitivity. For example, in hybrid
F123 mESCs, 50-kb windows contain an average of 385 SNPs. The
GAM sampling process therefore makes the phasing of genomic
windows highly efficient, with successful phasing of about 75% of
all detected genomic windows in F123 mESC GAM datasets.

In this study, we collected the largest GAM dataset to date from
the F123 hybrid mESC line, and developed a novel pipeline termed
GAM-Phaser to phase GAM data. Phased GAM data revealed an
unprecedented level of structural differences between autosomes, at
all scales of 3D genome structure and across all autosomes,
demonstrating the power of window-based approaches to map
haplotype-specific differences in chromatin structure.

Mapping ASE imbalance using total RNA-seq detected
approximately 2,222 ASE genes, of which 193 are monoallelically
expressed. Many ASE genes are housekeeping, with roles in
metabolism and signaling, and enriched for genes encoding for
ribosomal subunits and histone genes. By mapping the occupancy
of Pol2-S5p, Pol2-S7p and H3K27me3, we found that ASE genes
often have features of bivalent chromatin and mixed Polycomb-
Active promoter states, previously reported in mESC lines and
throughout neuronal differentiation (Brookes et al, 2012; Ferrai

© The Author(s)
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et al, 2017). Many, but not all, ASEs gene promoters are marked by
H3K27me3, and are upregulated upon acute degradation of
Polycomb enzymatic subunits. Among the ASE genes with
Polycomb-Active promoter states, we found 25 ASE histone genes,
19 of them located within the Histl cluster. ASE genes are present
in gene-dense regions, intermingled with, or close to, biallelic
genes, suggesting that the repression of ASE genes in one allele is
likely specific to gene and genomic neighborhood, and not related
with 3D chromatin structure in a trivial manner. Allele-specific
DNA methylation is not a major feature of ASE imbalance as it
occurs at a minority of ASE genes, as suggested previously (Kerkel
et al, 2008), especially at monoallelic genes. Nevertheless, we
discovered that ZFP57, a transcription factor involved in the
maintenance of imprinted genes through binding of DNA
methylated regions, is specifically enriched at the promoters of
CAST ASE genes, suggesting a parental contribution of DNA
methylation to ASE imbalance.

The extensive differences in 3D genome structure between the
two copies of each chromosome were observed at all levels of 3D
genome organization, both locally and spanning large genomic
distances. Haplotype-specific GAM data detected differences in
compartment A/B annotation in 18% of the genome, a much larger
proportion than the 4% previously reported using Hi-C in cells
with similar SNP density (Han et al, 2020). We also found extensive
differences in chromatin insulation at the level of topologically
associating domains (TADs). The majority (59%) of all TAD
borders detected in CAST and S129 alleles are allele-specific, and
characterized by CTCF and cohesin enrichment, albeit to a lower
extent than TAD borders present in both haplotypes. Allele-specific
CTCF occupancy on chromatin is generally rare (6.5% of all CTCF
peaks), and mostly occurs inside TADs, suggesting that haplotype-
specific TAD border formation is not simply based on haplotype-
specific CTCF occupancy. We found that TAD organization is
related to ASE gene clustering, with ASE genes being present in
only half of all TADs, and their presence coinciding with increased
H3K27me3 occupancy. By assessing chromatin compaction directly
from GAM data, we found that Polycomb occupancy coincides
genome-wide with increased compaction of the least expressed
allele, adding to previous in vitro and in vivo observations (Nichols
et al, 2020; Barbieri et al, 2017).

We explored in more detail the Histl locus, which contains 19
ASE histone genes in F123 mESCs. Chromatin contacts within the
Histl cluster are highly haplotype-specific and most prominent in
the S129 allele characterized by decreased histone gene expression.
The Histl cluster is abundantly covered by H3K27me3-marked
chromatin (25% of 50kb windows are positive for H3K27me3
peaks), and many of the haplotype-specific contacts in the S129
genome occur between genomic windows marked by Polycomb
occupancy. To functionally test a role for Polycomb repression in
histone gene downregulation, we performed mass spectrometry
after tamoxifen-induced knockouts of the two major enzymatic
subunits of Polycomb Repressor Complexes, PRC1 (Ringlb) and
PRC2 (Ezh2). Histone protein levels were found highly upregulated
upon Polycomb knockout, in contrast with ribosomal proteins,
showing that histone genes are targets of Polycomb repression
mechanisms. Further work will be necessary to investigate how the
increased S129-specific contacts at Histl locus relate to the lower
expression of specific histone genes in each haplotype, and how the
ASE imbalance of specific histone genes relates to the cell cycle, the
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histone locus body or Polycomb bodies (Ghule et al, 2008; Nizami
et al, 2010; Quinodoz et al, 2018).

Finally, we found that allele-specific expression can coincide
with strong allele-specific E-ASE gene contacts or with loss of
strong E-ASE gene contacts, but not both, in the same gene. Allele-
specific CTCF loops were also rare but occasionally associated with
ASE genes. Immune system genes were found at haplotype-specific
CTCF loops, and are ASE genes in other biological systems,
including in F1 crosses between goats and Ibex, or between modern
humans and Neanderthals, and associated with disease (Yang et al,
2022, McCoy et al, 2017). Moreover, histocompatibility genes are
susceptible to cis-regulation variants (Gutierrez-Arcelus et al,
2020). The observation that histocompatibility genes form highly
haplotype-specific contacts in a haplotype- or parental-specific
manner indicates a role for 3D genome structure in the diversity of
major histocompatibility complexes and the capacity of the
immune system evolution, which requires further work in relevant
biological systems (Sommer, 2005).

Overall, the variety of chromatin regulatory mechanisms
connected with ASE imbalance suggests that it is tuned by
combinations of different mechanisms and is highly gene-specific
(Crowley et al, 2015; Marion-Poll et al, 2021). These findings also
demonstrate the value of haplotype-specific 3D genome structure to
help address mechanisms of disease due to genetic variation or
epigenetic deregulation of genes. Future questions and limitations
of the present study are the contribution of parental versus genetic
sequence effects, which can be addressed by mapping allele-specific
differences in the alternative cross (S129xCAST) and using other
genotype crosses. Further efforts are required to understand the
stability and evolution of allele-specific chromatin structures in
differentiation and in different cell lineages. The detected
differences between CAST/paternal and S129/maternal phasing of
local features open new questions about parental-specific epigenetic
mechanisms acting on ASE imbalance, which require further in-
depth study. Further work is also necessary to enable the phasing of
GAM from human samples, which are characterized by ten times
lower SNP densities than F123 mESCs. Finally, it is still an open
question to what extent phasing the allele-specific topology of the
two chromosome copies can help to interpret the effects of genetic
variation on gene (de)regulation, towards a deeper understanding
of genome biology and gene regulation mechanisms.

Methods

Reagents and tools table

Identifier or
catalog
number

Reagent/resource  Reference or source

Experimental models

Ibai Irastorza-Azcarate et al

F123 mESC cells
(hybrid cell line,
derived from a F1 M.
musculus S129/J)ae
and M. castaneous
mouse cross)

mESC-ERT2
RinglA-/- cells

Gribnau et al, 2003

Stock et al, 2007
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Identifier or
catalog

Reagent/resource  Reference or source number

mESC-Ezh2-1.3 cells Pereira et al, 2010

Antibodies

Mouse anti-RNAP2  BiolLegend 904001

S5p (clone

CTD4H8)

Rat anti-RNAP2 S7p Chapman et al, 2007 Prof Dr Dirk

(clone 4E12) Eick,
Helmbholtz-
Zentrum-
Miinchen,
Germany

Rabbit anti- Millipore 07-449

H3K37me3

Oligonucleotides and other sequence-based reagents

GAT-7N Biomers 5- GTG AGT
GAT GGT TGA
GGT AGT GTG
GAG NNN
NNN N

GAT-COM Biomers GTG AGT GAT
GGT TGA GGT
AGT GTG GAG

Chemicals, enzymes, and other reagents

DMEM Invitrogen 11995065

KnockOut™ DMEM _Invitrogen 10829-018

KnockOut Serum Invitrogen 10828028

Replacement

L-glutamine, Invitrogen 25030-024

200 mM Solution

MEM Non-Essential Invitrogen 11140-035

Amino Acids

Solution, 100X

2-Mercaptoethanol Invitrogen 31350-010

ESGRO® (LIF) Millipore ESG1107

Gelatin Sigma-Aldrich G1393

CF-1IRR Global Stem GSC-6201G

PCR Mycoplasma AppliChem A3744,0020

Test Kit

4-hydroxytamoxifen Sigma-Aldrich H7904

TRIzol Reagent Invitrogen 15596026

Agilent RNA 6000 Agilent 5067-1511

Nano Kit

Turbo DNase | Ambion AM1907

TruSeq Stranded Illumina 15031048

total RNA library

preparation kit

Paraformaldehyde, VWR 43368.9M

16% W/V

Sucrose Sigma-Aldrich 50389

PBS tablets Sigma-Aldrich P4417

PEN membrane Leica Microsystems 11600289

steel frame slides
4.0 ym
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Identifier or Identifier or
catalog catalog

Reagent/resource  Reference or source number Reagent/resource  Reference or source number
Cresyl violet Sigma-Aldrich C5042 The Genome Analysis Toolkit (GATK) 4.1.3.0
PCR Cap Strip filled Carl Zeiss Microscopy 415190-9161- ChromA https://github.com/marianogabitto/
with opaque 000 ChromA, Gabitto et al, 2020

dhesi terial
achesive matena Bayesian Change-  Xing et al, 2012
Guanidinium-HCl Sigma-Aldrich G7294 point Model (BCP)
8M, pH 85 peak-finder
Triton X-100 Sigma-Aldrich T9284 Equipment
Tween-20 AppliChem A4974 Ultracryomicrotome Leica Biosystems EM UC7
EDTA 0.5 M, pH 8.0 AppliChem A4892 Laser Leica Microsystems LMD7000

. . microdissection
Qiagen protease Qiagen 19157 microscope
DeepVent® (exo-)  NEB M0259L NGS sequencer Illumina NextSeq500/
DNA Polymerase

550

Deoxynucleot.ide NEB NO447L Liquid handling TTP Mosquito HV
(dNTP) Solution

. system
Mix

Bi I Agilent 2100

Quant-iT® Invitrogen P7589 e;::tr:'zglez:esis s Bioanalyzer
PicoGreen dsDNA
assay kit PCR cycler BioRad C1000
Illumina Nextera XT Illumina FC-131-1096 HPLC system Eksigent Eksigent
lib ti
klitrary preparation Mass spectrometer Thermo Orbitrap Velos
TruSeq ChIP Library Illumina 1P-202-1012 Bioruptor sonicator Diagenode Bioruptor Plus
Preparation Kit
High Sensitivity Agilent 5067-4626
DNA analysis kit
L-lysine, +8 Da Cambridge Isotope Laboratories CNLM291H Cell culture
L-arginine +10 Da  Cambridge Isotope Laboratories CNLM-539H
Soft F123 mESCs (a male, hybrid cell line) was, derived from a F1 S129/Jae

oftware and Cast mouse cross (Gribnau et al, 2003). Cells were cultured in a layer
Cutadapt https://cutadapt.readthedocs.io/en/ of mitotically inactivated feeder murine embryonic fibroblasts under

stable/, Martin, 2011

Burrows-Wheeler
Aligner

https://bio-bwa.sourceforge.net, Li
and Durbin, 2010

bcftools http://samtools.github.io/bcftools/
bcftools.html

samtools https://www.htslib.org/doc/
samtools.html

bedtools https://bedtools.readthedocs.io/en/
latest/, Quinlan and Hall, 2010

SNPsplit https://

www.bioinformatics.babraham.ac.uk/
projects/SNPsplit/, Krueger and
Andrews, 2016

Bismark software
package

https://
www.bioinformatics.babraham.ac.uk/
projects/bismark/, Krueger and
Andrews, 2011

bowtie2 (v 2.3.4.3)

https://bowtie-bio.sourceforge.net/
bowtie2/index.shtml, Langmead and
Salzberg, 2012

GEM-Tools suite

Marco-Sola et al, 2012

TAR (v 2.7.2¢)

Dobin et al, 2012

HTSeqg-count

Anders et al, 2014

DESeqg2

Love et al, 2014

© The Author(s)

standard conditions (DMEM, supplemented with 15% KSR, 1x
Glutamax, 10 mM non-essential amino acids, 50 uM beta-mercap-
toethanol, 1000 U/ml leukemia inhibitory factor, LIF). Before harvesting,
mESCs were passaged onto feeder-free 0.1% gelatin-coated plates for at
least 2 passages to remove feeder cells. As feeder removal results in
reduced levels of LIF in the culture, the LIF concentration in the media
was doubled when the cells were in feeder-free culture conditions. Cells
were harvested after ~48 h at 70-80% confluency. F123 mESC batches
all tested negative for Mycoplasma infection, performed according to the
manufacturer’s instructions (AppliChem, Cat#A3744,0020). F123
mESCs were obtained from the 4DN consortium (https:/
data.4dnucleome.org/biosources/ADNSRTNKUDSA). Cell line authen-
tication was initially performed by the consortium and independently
confirmed in this study using a set of SNPs specific to the F123 line.
ESC-ERT2 RinglA~'~ cells (Stock et al, 2007) were maintained
in an undifferentiated state by co-culture on mitomycin-inactivated
mouse embryonic fibroblasts on 0.1% gelatin-coated flasks in
DMEM supplemented with non-essential amino acids, 2 mM
L-glutamine, 0.1 mM 2-mercaptoethanol (all from Gibco), 20%
FCS (Autogen Bioclear, Calne, UK) and 1000 U/ml of leukemia
inhibitory factor (ESGRO-LIF, Chemicon/Millipore). For the
Ring1B conditional deletion, ESC-ERT2 cells were plated feeder-
free on gelatin-coated plates 12h before supplementing the
medium with 800 nM 4-hydroxytamoxifen (H7904, Sigma, Poole,
UK), and grown for 48 h. ESC-ERT2 RinglA '~ cells were regularly

Molecular Systems Biology Volume 21 | Issue 7 | July 2025 | 735-775 749

"0LT'TZZ'STT /8 d| W) G202 ‘0T AJne uo Bio'ssaidoguue mmay/:sdny wo.y papeojumoq


https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
https://bio-bwa.sourceforge.net/
http://samtools.github.io/bcftools/bcftools.html
http://samtools.github.io/bcftools/bcftools.html
https://www.htslib.org/doc/samtools.html
https://www.htslib.org/doc/samtools.html
https://bedtools.readthedocs.io/en/latest/
https://bedtools.readthedocs.io/en/latest/
https://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/
https://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/
https://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/marianogabitto/ChromA
https://github.com/marianogabitto/ChromA
https://data.4dnucleome.org/biosources/4DNSRTNKUDSA
https://data.4dnucleome.org/biosources/4DNSRTNKUDSA

Molecular Systems Biology

tested for Mycoplasma infection as a service provided by MRC
Laboratory of Medical Sciences. ESC-ERT2 RinglA~~ cells were
from the lab of Haruhiko Koseki, where the cell line was originally
generated (Stock et al, 2007).

ESC-Ezh2-1.3 cells (Pereira et al, 2010) were maintained in an
undifferentiated state by co-culture on mitomycin-inactivated
mouse embryonic fibroblasts on 0.1% gelatin-coated flasks in
Knockout DMEM supplemented with non-essential amino acids,
2mM L-glutamine, 0.1 mM 2-mercaptoethanol (all from Gibco),
20% FCS (Autogen Bioclear, Calne, UK), 5% Knockout Serum
Replacement (Invitrogen), and 1000 U/ml of leukemia inhibitory
factor (ESGRO-LIF, Chemicon/Millipore). For the Ezh2 condi-
tional deletion, ESC-Ezh2-1.3 cells were plated feeder-free on
gelatin-coated plates 12 h before supplementing the medium with
800 nM 4-hydroxytamoxifen (H7904, Sigma, Poole, UK), and
grown for 96 h, including replating at 48 h. ESC-Ezh2-1.3 cells were
regularly tested for Mycoplasma infection as a service provided by
MRC Laboratory of Medical Sciences. ESC-Ezh2-1.3 cells obtained
from the lab of Amanda Fisher, where the cell line was originally
generated (Pereira et al, 2010).

Total RNA sequencing

Total RNA was extracted from F123 mESCs using TRIzol Reagent
(Invitrogen, Cat# 15596026) following the manufacturer’s instruc-
tions. Total RNA was analyzed on the Bioanalyzer using the Agilent
RNA 6000 Nano Kit to ensure intact, non-degraded RNA presence
and was subsequently treated with TURBO DNase I (Ambion, Cat#
AM1907). Total RNA-seq libraries were generated from 1 pg of
DNase-treated RNA using the TruSeq Stranded total RNA library
preparation kit (Illumina, Cat# 15031048) according to the
manufacturer’s instructions. Samples were pooled and paired-end
(75bp) sequenced using an Illumina NextSeq500/550 sequencer,
following the manufacturer’s instructions.

Genome architecture mapping (GAM)

Fixation of F123 mESCs was performed as described previously
(Beagrie et al, 2017). Briefly, mESCs were grown to 70% confluency,
media was removed, and cells were fixed in 4% and 8%
paraformaldehyde in 250 mM HEPES-NaOH (pH 7.6; 10 min and
2h, respectively), gently scrapped, and softly pelleted, before
embedding (>2 h) in saturated 2.1 M sucrose in PBS, and frozen in
liquid nitrogen on copper sample holders. Frozen mESC samples
are stored indefinitely in liquid nitrogen. Two independent
biological replicates were collected.

Ultrathin cryosections were cut with a glass knife using an
ultracryomicrotome (Leica Biosystems, EM UC7) at ~230nm
thickness, and transferred to UV-irradiated PEN membrane steel
frame slides 4.0 um (Leica Microsystems, 11600289) for laser
microdissection. Before laser microdissection, cryosections were
washed in sterile-filtered, molecular biology grade, 1x PBS (3 times,
5min each) to remove the sucrose, sterile-filtered water (3 times,
5 min each), and stained with sterile-filtered 1% (w/v) cresyl violet
(Sigma-Aldrich, C5042) in water, for 10 min, followed by two
washes with water (30 s each). Individual nuclear profiles (NPs)
were isolated using a laser microdissection microscope (Leica
Microsystems, LMD7000). NPs were collected in a PCR Cap Strip
filled with opaque adhesive material (Carl Zeiss Microscopy,
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415190-9161-000). For each collection day, 1 or 2 caps were left
empty and taken through the whole-genome amplification (WGA)
and sequencing process as a negative control for quality control
purposes (labeled as “ONP” samples in Dataset EV10).

Whole-Genome Amplification (WGA) was performed as
described previously (Winick-Ng et al, 2021) with minor
modifications. Briefly, DNA was extracted from NPs at 60 °C in
the lysis buffer (20 mM Tris-HCI pH 8.0, 1.4 mM EDTA, 560 mM
guanidinium-HCI, 3.5% Tween-20, 0.35% Triton X-100) containing
0.75 units/ml Qiagen protease (Qiagen, 19155). After 24 h of DNA
extraction, the protease was heat-inactivated at 75°C for 30 min
and the extracted DNA was amplified via two rounds of PCR. At-
first quasi-linear amplification was performed with random
hexamer GAT-7N primers with an adapter sequence. The lysis
buffer containing the extracted genomic DNA was mixed with 2x
DeepVent mix buffer (2x Thermo polymerase buffer (10x), 400 um
dNTPs, 4 mM MgSO, in ultrapure DNase free water), 0.5 uM GAT-
7N primers (5-GTG AGT GAT GGT TGA GGT AGT GTG GAG
NNN NNN N) and 2 units/pl DeepVent® (exo-) DNA polymerase
(New England Biolabs, M0259L), and incubated for 11 cycles in the
BioRad thermocycler. The second exponential PCR amplification
was performed in the presence of 1x DeepVent mix, 10 mM dNTPs,
0.4 uM GAT-COM primers (5-GTG AGT GAT GGT TGA GGT
AGT GTG GAG) and 2 units/ul DeepVent (exo-) DNA polymerase
in the programmable thermal cycler for 26 cycles.

GAM library preparation and high-
throughput sequencing

After whole-genome amplification, the DNA WGA product was
purified with SPRI beads (1.7x) The DNA concentration of each
sample was quantified using the Quant-iT® PicoGreen dsDNA
assay kit (Invitrogen #P7589). Genomic sequencing library was
prepared from 1 ng of purified DNA using the Illumina Nextera XT
library preparation kit (Illumina #FC-131-1096), following the
manufacturer’s instructions or with a reduced volume of reagents
to 20%. The library preparation step was done either manually or
using TTP Mosquito HV liquid handling system, as specified in
Dataset EV10. After the library preparation, DNA was again
purified with in-house SPRI beads (1.7x) and equal amounts of
DNA from each sample was pooled together (up to 196 samples)
for the sequencing. The final pool of libraries was purified two more
times with SPRI beads (1.7x) and analyzed using DNA High
Sensitivity on-chip electrophoresis on an Agilent 2100 Bioanalyzer.
The samples were sequenced on an Illumina NextSeq500/
550 sequencer as single-end 75bp reads, according to the
manufacturer’s instructions.

SNP calling in F123 hybrid (N-masked
genome generation)

The high SNP density of the F123 genome was used to phase the
reads from sequenced GAM libraries to the maternal and paternal
haplotypes. For generating haplotype-specific calls for the hybrid
F123 (CASTxS129) cells, the parental genome sequencing data
from publicly available databases was used. The genome sequence
of Mus musculus castaneus was downloaded from the European
Nucleotide Archive (accession number ERP000042). Mus musculus
musculus S129/SvJae genome sequence data was downloaded from
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the Sequence Read Archive (accession number SRX037820). Read
trimming  was  performed using  Cutadapt  (https://
cutadapt.readthedocs.io/en/stable/, Martin, 2011) and mapped the
reads to the mm10 genome assembly using the Burrows-Wheeler
Aligner (https://bio-bwa.sourceforge.net, Li and Durbin, 2010).
SNP location and sequence were identified using bcftools (http://
samtools.github.io/bcftools/bcftools.html). SNPs that were detected
in less than 5 reads, and quality below 30 were excluded from the
analysis.

Phasing of GAM data with the GAM-Phaser pipeline

GAM-Phaser is a pipeline developed here for GAM data phasing,
summarized in Fig. EV1B. GAM-Phaser takes as input a VCF file
(file containing position of SNPs) and raw GAM sequencing data
(fastq files) and outputs haplotype-specific GAM window segrega-
tion tables for each haplotype considered. GAM-phaser takes
advantage of the existing SNPsplit package (Krueger and Andrews,
2016) to mask high-quality paternal and maternal SNPs with
N-character in a genome. The mm10 reference genome assembly
was used (Dec. 2011, GRCm38/mm10).

GAM-Phaser generates an N-masked genome using the informa-
tion about the genomic coordinates of SNPs and the reference genome
assembly via the SNPsplit package. At the next step, raw GAM
sequencing data are mapped to the N-masked genome using default
parameters of bowtie2 (version 2.3.4.3; Langmead and Salzberg, 2012).
The reads mapped to the N-masked genome are checked for the
presence or absence of a SNP, and sorted to the haplotype-specific
bam-files with SNPsplit package. Next, the genome is partitioned into
equal-sized windows, and the coverage of all reads, CAST-phased
reads and S129-phased reads is computed using bedtools for all
collected F123 GAM libraries (Quinlan and Hall, 2010). Afterwards,
the optimal threshold between the sequencing noise and the signal is
determined separately for each GAM sample of the total dataset. The
optimal threshold of nucleotide coverage for calling positive windows
is calculated as the lowest coverage per bin that gives the highest
percent of windows that have at least one neighboring positive window
on at least one side. Windows are phased to the CAST haplotype when
the number of nucleotides covered by the reads containing CAST
SNPs is higher or equal to the optimal threshold, and to the S129 allele
when the number of nucleotides covered by the reads containing S129
SNPs is higher or equal to the optimal threshold.

Quality control of GAM samples

After read mapping and positive window calling, the quality of each
GAM sample in the dataset collected was assessed to ensure that the
laser microdissection, DNA extraction and subsequent experimental
steps were successful. Quality control metrics calculated for each GAM
sample include the number of uniquely mapped reads to the mouse
genome, the percentage of orphan windows (windows without at least
one neighbor) and the percent of total genome coverage. To exclude
potentially cross-contaminated samples, Jaccard similarity index was
calculated between the sequences of positive and negative windows
from all GAM samples that were processed together on the same 96-
well plate, as previously reported (Winick-Ng et al, 2021). Samples
with a Jaccard similarity index >0.4 were excluded from the data
analysis as potentially cross-contaminated. A sample was considered
to be of good quality if it had <60% orphan windows, >50,000 uniquely

© The Author(s)
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mapped reads and did not appear as cross-contaminated (Fig. EV8A).
The detailed quality metrics for all samples including sequencing
depth are provided in Dataset EV10. Out of 2234 GAM samples
collected, 1986 (88.9%) passed quality control, according to the sample
quality criteria.

The final GAM dataset was composed of 3707 high-quality
nuclear profiles (NPs), and sampled from two biological replicates:
863 NPs were collected in 3NP mode (549 from replicate 1 and 314
from replicate 2), 8 NPs in 2NP mode (replicate 2), while 1,122 NPs
were collected in INP mode (from replicate 1) and combined to
3NP in silico (see Datasets EV11 and EV12), as described
previously (Winick-Ng et al, 2021, Beagrie et al, 2023) (Fig. EV1A).

Randomization, blinding, and sample size

Randomization and blinding were not relevant for the current
study. The experiments and the subsequent analyses were
performed on the F123 mESC line, for which no clinical trial,
treatment or disease comparison was performed.

The appropriate number of samples for a GAM dataset varies and
depends on multiple parameters such as nuclear volume, level of
chromatin compaction, and quality of DNA extraction (Beagrie et al,
2017; Winick-Ng et al, 2021; Beagrie et al, 2023). In previous work, we
have explored mathematically how the number of GAM samples
affects different variables (Beagrie et al, 2023; Extended data
Fig. 3B,CF, therein); for example, a GAM dataset collected in 3NP
multiplex mode can detect contacts that occur with probabilities of at
least 20% across the cell population with 1600 nuclear slices, for all
intrachromosomal genomic distances. To take into account technical
variations in the efficiency of DNA extraction from each GAM sample,
the optimal resolution of a given GAM dataset is calculated upon data
collection. To determine optimal resolution for each GAM dataset, we
use nonparametric Kendall rank correlation coefficient to ensure good
detection of all possible intrachromosomal co-segregation events
(further details below). The F123 GAM dataset in the present study has
median intrachromosomal co-segregation frequency of 11-16 for
50 kb windows, and 4-6 for 20 kb windows, depending on chromo-
some, with a distance cutoff of 10 Mb. When higher resolution data is
required, depending on the goals of the project, further GAM
samples can be collected from the same frozen cells, which are kept
indefinitely in liquid nitrogen.

For total RNA-seq experiments in F123 mESCs, libraries were
generated from two biological replicates, to account for experi-
mental variability. No statistical method was used to predetermine
sample size. The information about the read length and the
sequencing depth is provided in Dataset EV1.

For ChIP-seq experiments, no statistical method was used to
predetermine sample size. The information about the read length
and the sequencing depth is provided in Dataset EV1.

Determining the resolution of pairwise
co-segregation matrices

The quality of chromatin contact maps from GAM data can be defined
by two main metrics: resolution (genomic length) of genomic bins, and
contact detectability (number of entries in the contact matrix which were
observed at least once). The effective resolution of GAM datasets
generally depends on the number of NPs collected (Beagrie et al, 2023),
as each GAM sample contains only 5-15% of the genome, and enough
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NPs are necessary to sample the co-segregation of all possible genomic
windows in each chromosome. The reads sequenced in each GAM
sample are used to identify the presence or absence of genomic bins in
that sample in a binary fashion that does not directly affect the sensitivity
to detect contacts. The chromatin contacts are defined as normalized co-
segregation frequencies between genomic bins, and their sensitivity
depends on how many events are counted (i.e., how many GAM samples
were collected). Since each GAM sample has so little DNA (5-10% of the
DNA of a single cell), the sequencing depth required to detect positive
windows in each sample is promptly saturated with a low sequencing
depth of 2-3 million reads per sample NP in the present data. This is
approximately double the depth used in the first GAM manuscript, of
1-2 million (Beagrie et al, 2017; Beagrie et al, 2023). To assess the quality
of genome sampling in the F123 datasets, the distribution of raw co-
segregation events for all intrachromosomal pairs of genomic windows
was compared to the standard Poisson distribution, at different
resolution(s) and genomic distance(s) using a nonparametric Kendall
rank correlation coefficient. The calculation of raw co-segregation events
was followed by Yeo-Johnson power transformation. Standard Poisson
distribution was computed using the mean and the standard deviation
derived from the distribution of the real co-segregation events at each
tested resolution(s) and genomic distance(s). Kendall's T correlation
coefficient >0.95 was considered as the indication of good quality of
genome sampling at the specified resolution and genomic distance.

GAM data normalization

Raw co-segregation GAM matrices were normalized using normal-
ized pointwise mutual information (NPMI) for all pairs of windows
genome-wide, as previously described (Winick-Ng et al, 2021).
NPMI describes the difference between the probability of a pair of
genomic windows being found in the same NP given both their
joint distribution and their individual distributions across all NPs.
For visualization purposes, scale bars were adjusted to a range 0
and the NPMI value corresponding to the 99th percentile of all
NPMI values for each genomic region displayed.

Window detection frequency calculation

Window detection frequency (WDF) is a GAM specific parameter
representing the relative of times each genomic window is captured in
the whole GAM dataset (Beagrie et al, 2017). If we consider two loci
with equal genomic length but different compactions, the actual
volume of the more compact locus is relatively smaller than the least
compact locus, even though they have the same DNA content.
Through the slicing process of GAM data collection, loci with larger
volume are captured more frequently than loci with smaller volume.

The WDF of each genomic window is calculated from the GAM
segregation tables, by dividing the total number of samples in
which this window is called positive by the total number of samples
in the dataset.

WDF(genomic window) = Number of samples with positive window/

Total number of samples

WDF was calculated from the combined 3DN-GAM segregation
tables at 50kb resolution, separately for CAST and S129 alleles
(Dataset EV8).
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Identification of undersampled regions in GAM
contact matrices

The WDF of genomic windows was also used to exclude from
further analyses the genomic windows which are insufficiently
sampled in the GAM process. WDF scores from across all windows
in the genome follow a normal distribution. To detect outliers, a
smoothing algorithm was applied to the WDF values per
chromosome in stretches of eleven consecutive 50kb genomic
windows. Next, normalized delta (ND) was calculated for each
window, according to

ND = (raw_Signal — smoothed_Signal) /smoothed_Signal

If the ND is larger than a fold change of 5, the window is excluded
from the curated dataset.

Next, the four adjacent windows (2 upstream and 2 down-
stream) to the window being removed were also removed, to ensure
good quality of sampling in the final GAM data used for further
analyses. Finally, genomic bins with an average mappability score
below 0.2 are removed. Genome mappability for mm10 mouse
genome assembly was computed using GEM-Tools suite (Marco-
Sola et al, 2012) setting read length to 75 nucleotides. The mean
mappability score was computed for each genomic bin with
bigWigAverageOverBed utility from Encode.

Selection of a non-redundant gene list

The most expressed isoform for each gene was identified using the
same strategy as in (Ferrai et al 2017) with some modifications.
Briefly, a complete expression analysis table containing 39,261
unique genes and 88,437 isoforms was considered. Almost 20,000
genes (n=19,003) had a single annotated isoform. For the
remaining 20,258 genes, a single isoform was selected based on
the following criteria: (i) gene isoform with the highest amount of
reads for Pol2-S5p in the 2-kb window centered on the TSS (14,051
genes); (ii) if ambiguity was still present, the gene isoform with the
highest amount of reads for Pol2-S7p in the 2-kb window centered
on the TSS was selected (1623 genes); (iii) if ambiguity was still
present, the longest gene isoform was selected (3827 genes); (iv) if
ambiguity was still present, a random annotated isoform was
selected (757 genes).

Promoter state classification

To classify gene promoter states, we followed the same strategy as
in (Ferrai et al, 2017) with some modifications. Briefly, gene
promoters were considered positive for Pol2-S5p, Pol2-S7p, or
H3K27me3 when: (i) the 2kb windows centered on the TSS
overlapped with a region enriched for the mark, and (ii) the
amount of reads in the TSS window was above a threshold. The
threshold was defined as the 5th percentile of the distribution of
reads in the TSS window of positive genes. Overlapping genes
(3558) and genes whose TSSs were in close proximity (6855) were
excluded from the classification. In total, we identified 6435 active
genes, 12,968 inactive genes, 1716 PRC repressed and 5082
Polycomb-Active genes.
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RNA-seq data analysis

RNA-seq data from F123 was processed for standard and allele-
specific gene expression analysis. The quality of the paired-end
RNA sequencing reads was verified using FASTQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc). No reads needed
to be trimmed or removed due to quality concerns. The paired-end
reads derived from RNA sequencing were mapped to the most recent
mouse reference genome assembly mm10 (GRCm38.p6) using STAR
(version 2.7.2¢) (Dobin et al, 2012) under consideration of the current
mm1l0 annotation (downloaded from ensemble: ftp:/ftp.ensembl.org/
pub/current_gtf/mus_musculus/Mus_musculus. GRCm38.98.gtf.gz)
and available information of genomic variants in the mml10 F123
genome (described in SNP calling in F123 hybrid). Following
recommendations about best practices for data processing in allelic
expression analysis (Castel et al, 2015), duplicate reads were removed
from the data using Picard MarkDuplicates (version 2.21.1: https:/
software.broadinstitute.org/gatk/documentation/tooldocs/4.1.3.0/
picard_sam_markdupl icates_MarkDuplicates.php). Default options
were used with the exception of REMOVE_DUPLICATES = TRUE.
To quantify the overall expression of genes, mapped reads overlapping
exons and introns were assigned to the respective genes and
summarized as gene-specific count values using HTSeq-count (Anders
et al, 2014). The use of HTSeq-counts to generate gene-level read
count values is recommended by the gold standard tool used for
differential gene expression analysis DESeq2 (Love et al, 2014).
Options were set to count reads overlapping exons and introns of
genes, accounting for the paired-end nature of reads, only considering
primary alignments and the default minimal alignment quality of 10.
The same annotation file was used as described before in the read
mapping step.

Subsequently, TPM values were calculated by normalizing count
values for gene length and library size. To differentiate between the
expression of genes located on the two parental alleles, reads that
overlap heterozygous genomic variants were counted in an allele-
specific manner. Reads overlapping those heterozygous variants
located within exons and introns of genes were counted using
GATK ASEReadCounter (The Genome Analysis Toolkit
(GATK) version 4.1.3.0: https://software.broadinstitute.org/gatk/
documentation/tooldocs/4.1.3.0/org_broadinstitute_he llbender_-
tools_walkers_rnaseq_ ASEReadCounter.php). Subsequently, only
genomic variants within regions of high mappability and with a
minimum total coverage of 20 reads were considered to reduce the
risk of introduced biases. In case multiple genomic variants were
present within the same gene, the counts were aggregated over the
gene in an allele-specific manner using the available haplotype
information described above in the read mapping step. Aggregated
counts were tested for significant allele-specific expression differ-
ences (binomial test vs 0.5), and the false discovery rate was
controlled for by correcting resulting p values for multiple testing
using the Benjamini and Hochberg method. Genes were defined as
differentially expressed by an adjusted P value < 0.05, a fold change
(log2) 21 and TPM 2 1 between reads mapping to CAST and S129.
The ASE ratio was calculated as the ratio of read counts supporting
the CAST haplotype and total read count. The Log2 fold change
was defined as the log-scaled ratio of reads supporting the CAST
haplotype divided by the read count observed in the S129
haplotype.

© The Author(s)
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Gene Ontology (GO) enrichment

GO enrichment analysis of genes with allele-specific expression was
performed using Web Gestalt (https://www.webgestalt.org/). All
expressed genes were used as the background universe. Over-
representation analysis was performed selecting Gene Ontology as a
Functional database in the website with default settings.

Insulation scores calculation and TAD border calling

TAD calling was performed by calculating insulation scores in
NPMI GAM contact matrices at 50kb resolution using the
insulation square method as previously described (Winick-Ng
et al, 2021). The insulation score was computed with insulation
square sizes ranging from 100 to 1000 kb for the unphased matrices
and each haplotype. TAD borders were called using a 400kb
insulation square size and based on local minima of the insulation
score with one genomic bin added on each side.

Allele quantification with cryo-FISH

We obtained the source cryo-FISH data for the detection of 40 kb
genomic regions containing the Hoxbl or Hoxb13 genes performed
in mESCs clone 46C, which reports for each nuclear slice, whether
1 or 2 copies of each locus are present (Barbieri et al, 2017). We
counted the number of sections that contained both alleles and
divided for the number of sections that contained one or two
alleles. We performed this analysis for two channels: the green that
corresponded to Hoxb1 locus and the red that corresponded to the
Hoxb13 locus.

Identification of compartments A and B

Compartments were calculated from 100 kb resolution GAM co-
segregation matrices as previously described (Beagrie et al, 2017).
In brief, each chromosome was represented as a matrix of observed
interactions O(i,j) between locus i and locus j. We then calculated
the expected interactions E(i,j) matrix, where each pair of genomic
windows is the mean number of contacts with the same distance
between i and j. A matrix of observed over expected values O/E(i,j)
was produced by dividing O by E. A correlation matrix C(i,j) was
calculated between column i and column j of the O/E matrix. PCA
was performed for the first three components on matrix C. Loci
with PC eigenvector values with the same sign that correlate
best with GC content were called A compartments, whereas regions
with the opposite sign were B compartments. Finally, the first PC
was chosen for all chromosomes. Eigenvector values on the same
chromosome in compartment A were normalized from 0 to 1,
whereas values on the same chromosome in compartment B were
normalized from —1 to 0.

Identification of allele-specific contacts

Allele-specific contacts were identified using a previously developed
pipeline for finding differential contacts between two contact maps
(Beagrie et al, 2023; Winick-Ng et al, 2021) with some adjustments
to adapt for the allelic setting. Following the removal of
undersampled regions and setting a maximum contact distance of
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50 Mb, each chromosomal contact matrix at 50 kb resolution from
CAST and S129 NPMI was transformed into their z-scores
equivalent, by adjusting for the mean and variance across all
contact distances. Next, the difference between both alleles was
computed by subtracting normalized S129 contacts from CAST
contacts (delta z-score=CAST-S129). Finally, contacts with delta
z-score below —1 or above 1, and NPMI intensities above 0.3 in
either of the two maps were selected as S129-specific or CAST-
specific contacts, respectively, to focus the subsequent analyses on
the strongest contacts.

Identification of strong allelic contacts

Strong allelic contacts represent the highest values on each
chromosome of each allele. In contrast to allele-specific contacts
which are specific to one haplotype, strong contacts are not
informed by the alternative allele and, in consequence, strong
CAST contacts can also be strong in the S129 allele, and vice versa.
The strongest contacts in the CAST allele and S129 allele were
extracted using an NPMI score >0.3 and a z-score >2.0 in the
distance-normalized matrices from each haplotype, respectively
(see Identification of differential contacts).

Distance decay and derivatives calculation

Decay plots and momentum curves (Abdennur et al, 2024) of S129
and CAST contact maps were calculated using the mean contact
intensity over distance displayed at logarithmic scale (logl0).
Momentum curves were obtained from the ksmooth R function
using a Normal kernel with bandwidth of 0.3. The slope values in
CAST or S129 contact decay are based on derivatives obtained from
the difference between observed mean intensity scores at equidi-
stant breakpoints, set at logl0-scaled distance intervals of 0.1.

ATAC-seq data mapping, processing, QC, and phasing

ATAC-seq reads were mapped, quality controlled, and split into
their respective genomes using SNPsplit. Then, peaks were called
with  ChromA
Gabitto et al, 2020). D score was calculated for each peak, as a
measure of their allelic imbalance in order to assign allele-specific
peaks followed by a permutation test to assess their significance (Xu
et al, 2017). Finally, a stringent filtering was applied to identify
allele-specific peaks, requiring both biological replicates to have a D
score between —0.3 and 0.3 (reads ratio score), a minimum of ten
reads in the peak, and a P value < 0.01 in the permutation test, after
FDR correction according to Benjamini and Hochberg.

(https://github.com/marianogabitto/ChromaA,

Motif calling in ATAC-seq peaks

First, annotatePeaks.pl script from the Homer tools suite was run
in the CAST-specific, S129-specific, common or unphased ATAC
peaks, to classify them depending on their genomic position. Then,
for each type, the closest gene was identified, which is the most
likely to be the target gene. Finally, for each of these groups,
findMotifsGenome.pl was run to find the enriched motifs. Q value
of <0.05 and P value of <0.001 was used as cutoff for enriched
motifs.
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ChlP-seq data collection, QC, mapping, and processing

Chromatin immunoprecipitation experiments were performed as pre-
viously described (Brookes et al, 2012; Ferrai et al, 2017). Pol2-S5p was
detected with mouse antibodies CTD4HS8 clone (BioLegend, Cat#
904001); Pol2-S7p with rat antibodies 4E12 clone (Chapman et al, 2007;
kindly provided by Dirk Eick); Polycomb mark H3K27me3 was detected
with rabbit antibodies (Millipore, Cat# 07-449). ChIP-seq libraries were
prepared from 10 ng of immunoprecipitated DNA using TruSeq ChIP
Library Preparation Kit (Ilumina, IP-202-1012) according to the
manufacturer’s instructions with minor modifications. Library size was
assessed before high-throughput sequencing by Bioanalyzer (Agilent)
using the High Sensitivity DNA analysis kit (Agilent, Cat# 5067-4626).
ChIP-seq libraries were sequenced 75bp single-end using Ilumina
NextSeq500/550 sequencer, according to the manufacturer’s instructions.

ChIP-seq peak calling and phasing

Raw ChIP-seq reads were mapped to the N-masked genome using
default parameters of bowtie2 (version 2.3.4.3; Langmead and
Salzberg, 2012). Genome-wide enriched regions for Pol2-S5p, Pol2-
S7p, and H3K27me3 were identified with Bayesian Change-point
Model (BCP) peak-finder (Xing et al, 2012, default settings).
Genome-wide enriched regions for H3K27ac, H3K4me3, CTCF and
Rad21 were identified with MACS2 peak-finder (Zhang et al, 2008;
broad peaks, default settings). If two biological replicates were
available (CTCF, H3K4me3, H3K27ac, Rad21), the peak calling was
performed in each dataset separately and then peaks identified in
both datasets were used for further analysis. Next, ChIP-seq reads
were phased for all datasets using the SNPsplit package and the
number of reads in each peak was computed with bedtools coverage
(Fig. EV8B; Quinlan and Hall, 2010). To classify the peaks as allele-
specific, the ratio between CAST and S129 allele-specific reads was
computed for each peak. Peaks that have log2 fold change > 2 were
selected as allele-specific. Peaks that had <10 SNP-containing reads
were excluded from further analysis. Number of allele-specific reads
for all CTCF, Rad21, H3K27ac, H3K4me3, H3K27me3, Pol2-S5p
and Pol2-S7p peaks, as well as LFC values were provided in the
permanent data repository (Irastorza-Azcarate et al, 2024).

ASE upregulation upon AlD-dependent acute depletion
of RING1B protein in a Ringla knockout ESC line

DeSeq2 differential expression analysis for AID-dependent PRC-
acute depletion of RINGIB protein in a Ringla knockout ESC line
were taken from GSE159399 (Dobrini¢ and Klose, 2021b), after 8 h
of knockdown (Supplementary file GSE159399_RINGIAKO.
RINGI1BAID_spikenormalised_DESeq2_NucRNAseq IAA_8h_v-
s_UNT.txt.gz). The geneSymbol column was used to identify ASE
genes. Genes excluded from the promoter state classification
(overlapping genes and genes whose TSSs were in close proximity)
were also excluded from this analysis.

CTCF orientation calling
annotatePeaks.pl script was used from the Homer suite tools to call

the orientation of CTCF motifs in CTCF peaks (http://
homer.ucsd.edu/homer/ngs/annotation.html).

© The Author(s)
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Genome-wide feature co-occurrence

First, the genome is binned in 200 kb bins. Second, for each feature,
the number of peaks is counted in each bin, creating a list. Finally,
these lists are correlated and a Pearson correlation coefficient is
calculated for each comparison.

Differential DNA methylation

Since bisulfite treatment causes C to T transitions, certain SNP
positions may not be used for allele-specific reads sorting since
they might reflect either an allele-specific difference or a
methylation state. To overcome this limitation, a modified
N-masked genome was prepared using Bismark software package
(Krueger and Andrews, 2011) and analyzed publicly available
whole-genome bisulfite sequencing data (Li et al, 2019) with
SNPsplit package in whole-genome bisulfite sequencing (WGBS)
compatible mode (Krueger and Andrews, 2016). The reads were
trimmed using the Trim Galore package using the default settings
prior to mapping (Martin, 2011). The methylation calls for every
analyzed C were extracted using bismark_methylation_extractor
script.

For each allele, CpGs with a methylation percentage higher than
50 were taken for further analysis. Next, the ratio of methylated/
unmethylated CpGs in the promoter (+ 1000 bp from TSS) of genes
longer than 2000 bp was calculated. The ratio in the CAST allele
was subtracted to the ratio in the S129 allele, giving the differential
percentage of possible methylated CpGs. Finally, differentially
methylated promoters were those where this differential percentage
exceeded the 5th percentile.

Proteomics

ESC-ERT2 cells grown in DMEM media for SILAC were used as
SILAC reference. Cells were cultured in DMEM media lacking
L-lysine and L-arginine amino acids, supplemented with 15%
knockout serum replacement (KOSR; Invitrogen, #10828), cyto-
kine leukemia inhibitory factor (LIF, Merck, #ESG1107) and heavy
amino acid isotopes (L-lysine, +8 Da; Cambridge Isotope Labora-
tories, #CNLM291H; L-arginine +10Da; Cambridge Isotope
Laboratories, #CNLM-539H; Bendall et al, 2008). Three biological
replicates were collected. Cells were lysed in urea buffer (8 M urea,
Tris 100 mM, pH 8.25) and sonicated a Bioruptor sonicator
(Diagenode), using 10 cycles of sonication (30s ON, 30s OFF).
After centrifugation to remove debris, protein concentration was
measured by Bradford colorimetric assay and 50 pg protein
extract were mixed with an equal amount of reference heavy
sample. The disulfide bridges of proteins were then reduced in
2mM DTT for 30min at 25°C and successively free cysteines
alkylated in 11 mM iodoacetamide for 20 min at room temperature
in the dark. LysC digestion was then performed by adding 2 pg of
LysC (Wako) to the sample and incubating for 18 h, under gentle
shaking at 30 °C. After LysC digestion, the samples were diluted 3
times with 50 mM ammonium bicarbonate, before addition of 7 pl
of immobilized trypsin (Applied Biosystems) and incubation
for 4h under rotation at 30°C. 18 ug of the resulting peptide
mixtures were desalted on STAGE Tips (Rappsilber et al, 2002)
and the eluates dried and reconstituted to 20 ul of 0.5% acetic acid
in water.

© The Author(s)
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LC-MS/MS analysis

Five microliters of each sample were injected into the HPLC
system (Eksigent) coupled to an Orbitrap Velos mass spectrometer
(Thermo); each biological replicate was analyzed in two technical
replicates. The chromatographic separation using a 240 min
gradient ranging from 5% to 45% of solvent B (80% acetonitrile,
0.1% formic acid; solvent A = 5% acetonitrile, 0.1% formic acid). A
30 cm long capillary column (75 um inner diameter) was packed
with 1.8 um C18 beads (Reprosil-AQ, Dr. Maisch). A tip was
generated on one end of the capillary nanospray using a laser
puller, allowing fritless packing. The nanospray source was
operated with a spray voltage of 1.9kV and an ion transfer tube
temperature of 260°C. Data were acquired in data-dependent
mode, with one survey MS scan in the Orbitrap mass analyzer
(30,000 resolution at 400 m/z) followed by up to 10 MS/MS scans
in the Orbitrap analyzer (15,000 resolution at 400 m/z) on the most
intense ions. Once selected for fragmentation, ions were excluded
from further selection for 45 s, to increase new sequencing events.

Proteomics data analysis

Raw data were analyzed using the MaxQuant proteomics pipeline v
2.1.3.0 and the built in the Andromeda search engine (Cox and
Mann, 2008; Cox et al, 2011) with the Uniprot mouse protein
database. Carbamidomethylation of cysteines was chosen as fixed
modification, and acetylation of
N-terminus were chosen as variable modifications. Two missed

oxidation of methionine

cleavage sites were allowed and peptide tolerance was set to 7 ppm.
The search engine peptide assignments were filtered at 1% FDR at
both the peptide and protein level. The ‘match between runs’
feature was enabled, ‘second peptide’ feature was enabled, while
other parameters were left as default.

Data availability

The datasets and computer code produced in this study are available in
the following databases: GAM data: Gene Expression Omnibus
GSE254717 and 4DN data portal 4DNESRQDNGS61 (https://
data.4dnucleome.org/); Total RNA-seq data: Gene Expression Omni-
bus GSE254675; ChIP-seq data: Gene Expression Omnibus
GSE254710; Insulation score values of unphased, CAST and S129
alleles: Zenodo 14066696; Coordinates of phased and unphased peaks:
Zenodo 14066696; Gene expression levels, epigenetic features and
classification of gene transcripts: Zenodo 14066696; Transcription
factor motif enrichment at CAST or S129 ATAC peaks at promoters,
intergenic or genic regions: Zenodo 14066696; Mass spectrometry
proteomics: ProteomeXchange Consortium via the PRIDE (Perez-
Riverol et al, 2021) dataset PXD048969; Custom python scripts to
generate the plots for the figures: GitHub (https://github.com/pombo-
lab/Irastorza-Azcarate_Kukalev_Kempfer_2024); GAM-Phaser pipe-
line, including the full list of SNPs used for CAST and S129 phasing:
GitHub (https://github.com/pombo-lab/GAM_phaser).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-025-00107-3.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-025-00107-3.
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Expanded View Figures

Figure EV1. Strategy, methodology and evaluation of GAM-Phasing pipeline for allele-specific contact maps.

(A) Schematic overview of GAM data collection, quality control steps, and merging of replicates R1 and R2. (B) GAM-phaser pipeline. (C) Percentage of reads that were
phased to each allele. Conflicting reads are reads containing SNPs from both alleles. (D) Percentage of phased positive windows in the entire segregation table for all F123
3NPs passed quality controls GAM samples. (E) Phasing efficiency between GAM and Hi-C. GAM efficiency is measured as phased windows divided by the total number
of called windows, while Hi-C efficiency is calculated dividing phased ligation events to unique ligation events; reported phasing efficiency was obtained from (Giorgetti
et al, 2016). Below, schematic of a phaseable Hi-C ligation event. (F) Number of informative contact entries in the phased F123 GAM dataset in comparison with phased
Hi-C data collected for human GM12878 B-lymphoblastoid cells (Rao et al, 2014b), at all intrachromosomal distances and for distances up to 10 Mb. (G) Number of
nuclear sections that are positive for the presence of two or one Hoxb1 or Hoxb13 locus detected by cryo-FISH using 40 kb fosmid probes (n =341 Hoxb1 loci, n =362
Hoxb13 loci, n = 2584 nuclear sections imaged; data source from Barbieri et al, 2017). (H) Percentage of locus pairs detected at least once and Kendall's t coefficient values
for different resolutions and different distances. These metrics were used to decide on optimal resolutions of the maps.
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Figure EV2. Comparison of i tion, TADs and compartments between $S129 and CAST haplotypes.

(A) GAM matrices of chromosomes 8 and 15 showing both alleles at 50 kb resolution. Colored arrows show structural differences between alleles. (B) Distance decay
curves and momentum curves for contact intensities across all distances in CAST and S129 chromosomes 8 and 15. (C) 4 Mb region in chromosome 10 showing an allele-
specific TAD border in the S129 allele. Below, RNA-seq track, insulation scores and compartment tracks for all maps. (D) Pearson correlation coefficient (r) between

combinations of CAST, S129 and unphased insulation scores at 400 kb. (E) Upset plot of TAD border combinations between CAST, $129 and the unphased maps. Below,
aggregate plots for CTCF, Rad21 and ATAC-seq peaks and housekeeping genes, centered at the TSS ( £ 1kb). Normalized Insulation score is also shown for each group. (F)
Overlap of LADs and iLADs with £1,000 kb around CAST, S129 and common TAD borders, computed from 100 kb resolution GAM matrices to match LAD annotations.
Each heatmap is clustered depending on whether the border overlaps with a LAD/ILAD transition or not. (G) Compartment tracks for CAST, S129 and the unphased maps
for chromosome 10. (H) Compartment eigenvector values distribution for CAST, S129 and the unphased datasets. Discontinuous lines show the median for each dataset.
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Figure EV3. Association of allele-specific epigenetic marks and transcription factors with promoters of ASE genes and 3D genome organization.

(A) Gene expression of the different groups in Fig. 2E. (B) Distribution of Pol2-S5p, Pol2-S7p and H3K27me3 peaks, and phased and unphased ATAC-seq, H3K4me3,
CTCF, H3K27ac and RAD21 peak sizes. Red dots indicate the average size for each dataset. (C) Heatmap showing the enriched presence (cutoffs Q value <0.05 and P
value of <0.001) of different transcription factors that overlap with the peaks of different ATAC-seq groups. ZFP57 is the only transcription factor enriched for an allele-
specific group. (D) ASE gene promoters regarding their differential percentage of methylated CpGs. Colored are those genes with a significant amount of methylated CpGs
in their promoter (top and bottom 5%) in the allele they are not expressed. (E) CAST and $S129 GAM matrices for the Mest locus (Chr6: 30-31.5 Mb). Below, differential
contacts and two tracks showing CAST genes and expressed genes. (F) Most borders contain common CTCF and RAD21 or only CTCF and each allele has a similar
number of CTCF specific to either of the alleles in its borders. (G) Percentage of CTCF peaks that are inside or outside borders.
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Figure EV4. Co-presence of ASE genes and chromatin features in the linear genome.

(A) Genomic position of all expressed genes: CAST genes, S129 genes, biallelic genes and genes without SNPs. Red and Blue bars indicate the position of Histone protein
genes and Ribosomal protein genes. (B) Each of the 3 dots indicate the average distance of all genes of each type (CAST, S129 and CAST or S129) to the closest gene of
that type. The violin plot shows the distribution of these averages if we permute the position of the genes 10,000 times. The permutation is carried out by randomly

selecting the same number of CAST, S129 or CAST + S129 genes from all expressed genes. P values = 0.0001, 0.0145, 0.0001 for CAST, S129 and CAST + S129. (C) 1Mb
windows containing at least 1 ASE gene tend to contain more expressed genes than 1Mb windows that do not contain ASE genes. T test: P value = 2.7 x 10~7". Number of
ASE windows, 1023. Number of non-ASE windows, 868. (D) Genomic location of allele-specific features (genes, ATAC-seq, CTCF, H3K4me3 and H3K27ac peaks) and
unphased features (Pol2-S5p, Pol2-S7p and H3K27me3 peaks) and their density in bins of 200 kb. Arrows indicate two regions with an enrichment of CAST-specific

features. (E) Genome-wide Pearson correlation (r) of the co-occurrence of the features in (D). CAST features correlate well between each other while $129 features do not.
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Figure EV5. Comparative analysis of CAST and S129 alleles in g compartmentalization and chromatin accessibility.

(A) Normalized eigenvector (EV) values for the CAST and S129 allele for each 100 kb bin. Color coded are bins containing only not expressed genes, bins containing biallelic
genes but not ASE genes, bins containing at least one CAST gene but not 5129, bins containing at least one S129 gene but not CAST genes and bins containing at least one CAST
gene and one S129 gene. (B) Percentage of ATAC-seq, CTCF, H3K4me3 or H3K27ac peaks in each compartment combination (A and A, B and B, A and B or B and A for CAST
and S129 alleles, respectively). CAST-specific features show a tendency to overlap more in A/B (A specific compartment in the CAST allele), $S129-specific features tend to
overlap more in B/A (A specific compartment in the S129 allele.). (C) UpSet plots showing for the S129 allele, groups of TADs containing different sets of types of genes and
their number. (D) Relation between the TAD length, the number of expressed genes in a TAD, and number of genes specific to that allele (dot size) for TADs in CAST and S129.
Purple refers to TADs containing CAST genes, orange to TADs containing S129 genes, and gray to TADs containing CAST and S129 genes (for both CAST allele and S129 allele,
respectively). (E) Violin plots showing the number of genes per TAD (observed, Obs.) compared to circular permutations of gene positions in the genome (permuted, Perm.).
10,000 permutations were done for each of the 4 examples in (D) and are compared to the number of genes per TAD in the original data (called real). All P values are <0.0001.
Numbers are 911, 889, 1265 and 1265, respectively. (F) Related to (C), number of H3K27me3 peaks normalized by TAD length (two-sided t test: *P < 0.05, **P < 0.01,
***P < 0.007; P values from top to bottom in S129 TADs: 1.9 x 107", 3.2 x10%°, 1.1x107°, 0.00011, 1.8 x 105, n.s: 0.5092. Number of TADs with: expressed genes, 737; not
expressed genes, 483; CAST genes, 285; S129 genes, 232; and with CAST and S129 genes, 262). (G) Loci with the same genomic length can have different volumes due to
varying compaction. Decompacted loci with larger volumes are captured more frequently in the collection of GAM cryosections than more compacted chromatin. Window
Detection Frequency (WDF) is a GAM-intrinsic measure of relative chromatin compaction, defined by the number of locus detection events in the collection of GAM nuclear
slices (Beagrie et al, 2017). From phased window segregation tables, the WDF can be calculated separately for CAST and S129, as a measure of relative compaction between all
loci in each haplotype. (H) Related to (C), for each group, the differential (CAST-S129) window detection frequency is represented. Positive values indicate decompaction in the
CAST allele, while negative values indicate decompaction in the S129 allele (two-sided t test: *P < 0.05, **P < 0.01, ***P < 0.001; P values from top to bottom for S129 TADs:
0.031, 0.025). Number of TADs analyzed are the same as in (F). (I) Window detection frequency (WDF) values in the CAST and 5129 allele for each bin containing genes.
Fisher's exact test (P = 5.3 x 10~°) shows the significant tendency of windows with high WDF in the CAST allele containing CAST genes and windows with high WDF in the S129
allele containing S129 genes compared to windows with lower WDF. Numbers for CAST and S129 genes with differential WDF > 0.02 are 51 and 17, respectively. For CAST and
S129 genes with differential WDF < —0.02 are 12 and 25, respectively.
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Figure EV6. Differential gene regulation at the Hist1 gene cluster.

(A) Hist1 locus region from Fig. 4A with greater detail. Histone genes are depicted. Number of reads phased for the CAST or S129 allele are shown for all genes in the Hist1
clusters. (B) Proportion of Hist1 genes according to promoter state. (C) Schematic showing the pipeline used to compare CAST and S129 contact intensities and to extract
CAST-specific and S129-specific contacts. (D) Allele-specific contacts at the Hist1 locus as shown in Fig. 4A. Black squares show the contacts where H3K27me3 peaks are
present in both windows of the contact. (E) SILAC experiments were performed in the ESC-ERT2 cells in the presence and absence of tamoxifen to induce knockout of
Ring1b, in three biological replicates. Ringlb knockout results in upregulation of histone proteins. Abundance was estimated by the ratio of intensity and number of peptides.
Normalized log2 fold change was calculated applying the z-score normalization to the log2 of heavy/light (H/L) ratio of the untreated experiment divided by the H/L ratio
of the conditional knockout. (F) Boxplots showing the abundance index and the log2 fold change for detected histone proteins and ribosomal proteins. Numbers of data
points are 8, 32, 8, 32, respectively from left to right.
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Figure EV7. Strong allelic contacts bridge promoters, enhancers, and CTCF sites.

(A) Schematic showing the strategy to identify strong allelic contacts. (B) All possible contacts involving conditions for CAST-specific enhancer-promoter contacts and
$129-specific enhancer-promoter contacts. Lines mark cutoffs for strong and allele-specific contacts in each haplotype. (C) Differences in contact intensities observed in
the CAST and $129 haplotypes for allele-specific enhancer-promoter (E-P) elements associated with CAST contacts that were found to be strong in CAST but weak in
$129 (on the left), or strong in S129 but weak in CAST (on the right). Two sample t test: P values are 4.17e-10 and 8.78e-17, respectively. Numbers are 84 and 130
respectively. (E) All possible contacts involving conditions for CAST-specific CTCF loops and S129-specific CTCF loops. Lines mark cutoffs for strong and allele-specific
contacts in each haplotype. (D) Differences in contact intensities observed in the CAST and S129 haplotypes for allele-specific enhancer-promoter (E-P) elements
associated with S129 contacts that were found to be strong in CAST but weak in 5129 (on the left), or strong in S129 but weak in CAST (on the right). Two sample t test: p
values are 3.92e-12 and 4.42e-14, respectively. Numbers are 112 and 129, respectively.
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Figure EV8. Assessment of read-count thresholds in phasing.

(A) Distribution of percentage of orphan windows, uniquely mapped reads and genome coverage in each GAM sample. Replicate 1, replicate 2 and water (ONP) samples
are shown. Thresholds used to remove potentially low from high quality GAM samples are shown in vertical and horizontal black lines. (B) Distribution of phased
H3K4me3, H3K27ac, CTCF, RAD21, Pol2-S5p, Pol2-S7p, and H3K27me3 peaks, showing their absolute difference in phased reads (CAST-S129) and their log2 fold change.
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