
Advancing Pediatric and Longitudinal DNA Methylation Studies with CellsPickMe, 

an Integrated Blood Cell Deconvolution Method 

Maggie P. Fu (1-3), Karlie Edwards (1-3), Erick I. Navarro-Delgado (1-3), Sarah M. 

Merrill (4), Negusse T. Kitaba (5), Chaini Konwar (1-3), Piush Mandhane (6), Elinor 

Simons (7), Padmaja Subbarao (8), Theo J. Moraes (8), John W. Holloway (5, 9), Stuart 

E. Turvey (1, 3, 10), Michael S. Kobor (1-3) 

 

(1) Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of 

British Columbia, Vancouver, BC, Canada. 

(2) Centre for Molecular Medicine and Therapeutics and Department of Medical 

Genetics, University of British Columbia, Vancouver, BC, Canada. 

(3) British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. 

(4) Department of Psychology, University of Massachusetts Lowell, Lowell, MA, USA. 

(5) Human Development and Health, Faculty of Medicine, University of Southampton, 

Southampton, UK.  

(6) Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.  

(7) Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, MB, 

Canada.  

(8) Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, 

Canada.  

(9) NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, 

Southampton, UK.   

(10) Department of Pediatrics, The University of British Columbia, Vancouver, Canada. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2025. ; https://doi.org/10.1101/2025.04.22.649907doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.22.649907
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 

Prospective birth cohorts offer the potential to interrogate the relation between early life 

environment and embedded biological processes such as DNA methylation (DNAme). 

These association studies are frequently conducted in the context of blood, a 

heterogeneous tissue composed of diverse cell types. Accounting for this cellular 

heterogeneity across samples is essential, as it is a main contributor to inter-individual 

DNAme variation. Integrated blood cell deconvolution of pediatric and longitudinal birth 

cohorts poses a major challenge, as existing methods fail to account for the distinct cell 

population shift between birth and adolescence. In this paper, we critically evaluated the 

reference-based deconvolution procedure and optimized its prediction accuracy for 

longitudinal birth cohorts using DNAme data from the Canadian Healthy Infant 

Longitudinal Development (CHILD) cohort. The optimized algorithm, CellsPickMe, 

integrates cord and adult references and picks DNAme features for each population of 

cells with machine learning algorithms. It demonstrated improved deconvolution 

accuracy in cord, pediatric, and adult blood samples compared to existing benchmark 

methods. CellsPickMe supports blood cell deconvolution across early developmental 

periods under a single framework, enabling cross-time-point integration of longitudinal 

DNAme studies. Given the increased resolution of cell populations predicted by 

CellsPickMe, this R package empowers researchers to explore immune system 

dynamics using DNAme data in population studies across the life course.
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Introduction 

The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that 

exposures during sensitive developmental windows, most especially within the first 

years of life, can influence long-term physiological functioning and the health trajectory 

of a person1,2. DNA methylation (DNAme), an epigenetic mark that is mitotically 

heritable but malleable to environmental changes, has been proposed as a molecular 

process that contributes to the biological embedding of early life experiences3–8. 

Pregnancy and birth cohorts have been established with longitudinal follow-up with 

deep phenotyping, including DNAme profiling, to examine the association between 

environmental exposures and health outcomes later in life9–13.  

However, this early developmental period coincides with profound remodeling of the 

hematopoietic landscape14–16. This includes a rapid loss of nucleated red blood cells 

(nRBCs) after birth17–19, increased neutrophil proportion accompanied with high 

neutrophil heterogeneity in neonates20–22, and changes in naïve and memory 

lymphocyte profiles upon antigen exposure including vaccinations14,15,23,24. The dynamic 

of peripheral blood cell populations provides insight into individuals’ immune status, 

stress response, as well as developmental and aging trajectory25–28; yet, it creates an 

additional layer of complexity to epigenomic investigations, as cellular functions and 

identities are intrinsically linked to their DNAme signature29–31 

Longitudinal birth studies have reported persistent and wide-spread alterations in 

DNAme within the first years of life32–34. These studies compared the DNAme patterns 

of cord blood with that of peripheral blood collected at pediatric time points, ranging 

from neonates (less than 1 month old), infants (birth – 2 years), children (2 – 12 years), 

to adolescents (12 – 21 years)32–35. In this context, cellular composition of a 

heterogeneous tissue like blood can be bioinformatically inferred without readily 

available cell count data, using DNAme-based deconvolution methods36. Several cell 

type deconvolution algorithms have been independently developed for adult and cord 

blood samples using a reference-based approach, leveraging cell-type specific DNAme 

signatures from sorted cells36–40. However, without a method to harmonize 

deconvolution of cord, pediatric, and even adult blood under a single framework, direct 
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inference of DNAme changes across the early developmental period is inevitably 

confounded by a profound variance in cellular composition41–44. 

To address this methodological gap, it is crucial to note that not only does the cellular 

composition of blood varies with age, but so does the DNAme profile of sorted cells37,45–

47. The findings suggest that applying a reference dataset developed from cord blood or 

adult blood in pediatric populations may introduce prediction errors48. Additionally, 

performing cellular deconvolution in longitudinal birth cohorts spanning a range of ages 

currently require multiple, non-comparable references. To overcome this conundrum, 

we proposed an integrated DNAme reference of cord and adult sorted blood cells, with 

the goal of capturing cell-type-specific signals that account for changes in the 

hematopoietic landscape. In addition to reference dataset selection, we evaluated the 

impact of other steps in the reference-based cell type deconvolution procedure, 

including data normalization, feature selection, and regression-based prediction49. The 

algorithm’s performance was assessed using the pediatric blood samples of a Canadian 

population-based prospective birth cohort, the Canadian Healthy Infant Longitudinal 

Development (CHILD) cohort11. The resulting reference-based deconvolution procedure, 

CellsPickMe, utilizes machine learning-based method to pick DNAme features for each 

cell population. CellsPickMe with the curated UniBlood references facilitates the joint 

deconvolution of cord and whole blood and supports the inference of cell type 

proportions in longitudinal pediatric cohorts where age-appropriate reference datasets 

are currently unavailable.  

 

Results 

Cellular maturity and developmental time point covaries with DNAme pattern 

We first explored whether there is a distinct DNAme signature across developmental 

stages that can impact pediatric cellular deconvolution process. To examine DNAme 

variation through the life course, we applied principal component analysis (PCA) to 

sorted DNAme reference data sets of cord and adult blood: FlowSorted.CordBlood.450k 

(referred as Cord), FlowSorted.Blood.EPIC (referred as IDOL), and 

FlowSorted.Blood.Extended.EPIC (referred as Extended). Immune cells clustered 
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distinctly on both a lineage axis along PC1(myeloid to lymphoid) and a maturity axis 

along PC2 (neonatal – naïve – memory) (Figure 1A). The nRBCs showed a distinct 

DNAme pattern, clustering in the middle of lymphocytes and granulocytes on the 

lineage axis, and further down the maturity axis compared to other cord immune cells. 

For T and B cells, there was an evident gradient along the maturity axis, transitioning 

from neonatal, adult naive, a mixture of adult naive and memory (IDOL reference did not 

distinguish between the two), and adult memory cells (Figure 1A).  

To study whether the pattern of DNAme variation is recapitulated in whole blood where 

bulk DNAme is representative of all cell types present in the sample, we clustered the 

DNAme profiles of sorted immune cells with that of cord and whole blood from two 

longitudinal birth cohorts, the Isle of Wight (IOW) and the Canadian Healthy Infant 

Longitudinal Development (CHILD) cohorts, along with an artificial blood cell mixture 

from adult sorted cells, and whole umbilical cord blood from the Cord reference. Aside 

from technical batch effect and biological sex, which contributed to PC1 and PC2 

variance, we observed an analogous trend of lineage and maturity axes along PC3 and 

PC4 (Figure 1B). The heterogeneous blood samples clustered in the middle of PC3, as 

they are composed of a mixture of myeloid and lymphoid cells. These included the 

CHILD and IOW’s post-natal blood, the artificial blood mixture and the Cord reference 

cord blood samples. The CHILD cord blood showed a high overlap with the CORD 

samples and nRBC cells, whereas the IOW neonatal dried blood spots, with a reduced 

nRBC fraction, clustered adjacently as previously observed50. As the CHILD and IOW 

participants aged, their samples shifted down the maturity axis (Figure 1B). At age 1, 

the CHILD samples clustered discretely from both cord and adult samples. As 

individuals aged, age 5 CHILD samples and age 10 and 18 IOW samples became more 

similar, yet remained in a distinct cluster from the age 26 IOW and ABM samples.  

 

 

Optimization procedure of reference-based cell type deconvolution 
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Building on evidence indicating that developmental stages in childhood are linked to 

distinct DNAme profiles, we aimed to refine the cell type deconvolution process for 

pediatric blood samples. Figure 2 shows a flowchart of the prediction process, along 

with alternative options to the benchmark method, EstimateCellCounts2 (ECC2)42. To 

that end, we utilized the CHILD cohort, with samples from cord blood at birth and 

peripheral blood at age 1 and 5 collected from approximately 800 children11. In addition, 

the absolute lymphocytes, monocytes, and granulocyte composition of the samples 

were quantified with a clinical-grade complete blood count (CBC), which was 

considered as the ground truth cell count measure for CHILD. We trained the optimal 

prediction pipeline in the age 5 samples and tested its validity in age 1 and cord 

samples. We further examined the performance of the optimized cell type prediction 

pipeline in independent validation cohorts, and compared them to the benchmark 

method ECC2 in terms of mean absolute error (MAE) of predicted to CBC-based cell 

type proportions, whether the predicted proportions align with age-specific clinical 

intervals, and the amount of variance (adjusted R2) explained by the predicted 

proportions (Figure 2).  

Normalization method impacted the prediction performance across reference datasets 

As the first step of the deconvolution process, we examined which blood reference 

dataset was most relevant to pediatric cohorts using CHILD age 5 samples. As no 

pediatric blood reference is available, we created three UniBlood references composed 

of both adult and cord blood cells to capture cellular heterogeneity across the 

developmental spectrum (Table 1). The UniBlood7 and UniBlood13 references 

considered the same cell types from cord and adult sorted cells to be the same 

population, aiming to identify development-agnostic cell-type DNAme signatures. In 

contrast, UniBlood19 considered cord and adult sorted cells as different populations 

(e.g. cord and adult monocytes), while taking into account the development-associated 

DNAme changes in immune cells.  

 

Table 1. Cellular composition and dataset included for the three reference datasets we 
compiled in this study, UniBlood7, UniBlood13, and UniBlood19. 
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 UniBlood7 UniBlood13 UniBlood19 

FlowSorted.Bloo

d.450k 
Yes   

FlowSorted.Bloo

d.EPIC (IDOL) 
Yes 

only monocytes, 

neutrophils, and NK 

cells 

only monocytes, neutrophils, and 

NK cells 

FlowSorted.Bloo

d.Extended.EPIC 

(Extended) 

 Yes Yes 

FlowSorted.Cord

Blood.450k 

(Cord) 

Yes 
6 randomly selected 

nRBC samples 

6 randomly selected samples for 

every cell type 

Adult and cord 

cell types 

grouped? 

Yes No No 

Cell types 

included 

Seven cell 

types: B cells, 

CD4+ T cells, 

CD8+ T cells, 

NK cells, 

monocytes, 

granulocytes, 

and nRBCs 

Thirteen cell types: 

naïve and memory B 

cells, naïve and memory 

CD4+ T cells, naïve and 

memory CD8+ T cells, 

Tregs, NK cells, 

monocytes, neutrophils, 

basophils, eosinophils, 

and nRBCs 

Nineteen cell types: neonatal, 

naïve, and memory B cells, 

neonatal, naïve, and memory 

CD4+ T cells, neonatal, naïve, and 

memory CD8+ T cells, adult Tregs, 

neonatal and adult NK cells, 

neonatal and adult monocytes, 

neonatal granulocytes, adult 

neutrophils, basophils, and 

eosinophils, and nRBCs 
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Since the literature suggests the performance of the deconvolution to be dependent on 

normalization methods37, references and normalization methods were evaluated 

together. We compared six reference datasets (Cord37, UniBlood7, UniBlood13, 

UniBlood19, IDOL42, and Extended39; Figure 1, Table 1) in combination with 

normalization methods commonly employed for DNAme microarray data, including 

Quantile Normalization (Quantile), normal-exponential out-of-band normalization (Noob), 

and Functional Normalization (Funnorm), all applicable to RGChannelSet objects only51. 

To allow for applications in other data objects, we also assessed the performance of 

quantile normalization on beta matrices (Quantile.B) as well as the no normalization 

(None) conditions. 

We compared the prediction performance of references by calculating the absolute error 

(AE) of predicted to lymphocyte, monocyte, and granulocyte proportions measured with 

CBC.  We observed the performance of references to be dependent on the 

normalization method. For example, when comparing across references under Noob or 

Funnorm normalization, UniBlood13, UniBlood19, and Extended references resulted in 

the lowest AE (padj  < 0.05, Figure 3). On the other hand, IDOL reference yielded the 

lowest AE with Quantile normalization. For each condition, we also calculated the 

CETYGO score, which estimates deconvolution accuracy based on the deviation 

between a samples’ DNAme and the expected DNAme based the predicted cell type 

proportion and the reference profiles48. In concordance to the AE, Extended and 

UniBlood19 led to lower CETYGO score (indicating better prediction performance) with 

Noob and Funnorm normalization, whereas Extended and IDOL resulted in lower 

CETYGO score with Quantile normalization (Supplementary Figure 1). Additionally, 

Quantile normalization led to the lowest prediction error across the board for all 

reference panels (Figure 3). Statistically, with cell type and reference panel accounted 

for, the Quantile normalization method significantly outperformed all other methods 

(Supplementary Table 1). The RGChannelSet-based normalization methods 

consistently outperformed Quantile.B (padj < 2.22e-16), which in turn significantly 

outperformed the no normalization condition (padj = 1.68e-5). CETYGO score also 

corroborated  the improved performance with Quantile normalization (Supplementary 

Figure 1). Despite the utility of CETYGO score, we showed that the metric failed to 
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predict AE at the sample level (Supplementary Figure 2). Given the consistent 

performance of Quantile normalization, we decided to move forward with this 

normalization procedure.  

UniBlood19 reference unveiled epigenetic signatures associated with developmental 

immune cell transition 

As the previous analysis focused on the prediction accuracy of the CBC subsets: 

lymphocytes, monocytes, and granulocytes, we next examined whether the predicted 

cell type proportions were accurate in additional cell type subsets (e.g. naïve CD4+ T 

cells). We compared the estimated proportions to age-specific clinical intervals reported 

in literature as we expected CHILD age 5 participants to align with healthy 

parameters52–57.  

Using Quantile normalization, we observed a full alignment with clinical intervals for 

references predicting 6 to 7 cell types (Cord, UniBlood7, and IDOL) (Figure 4A). With 

increasing cell type resolution, we observed some deviation from the clinical intervals. 

Extended, UniBlood13, and UniBlood19 all overpredicted the proportion of CD8+ T cells 

and Tregs, and underpredicted the proportion of eosinophils (Figure 4A). Extended and 

UniBlood13 also overpredicted naive B cells, whereas UniBlood13 and UniBlood19 

underpredicted memory CD4+ T cells. UniBlood13 reference yielded predictions that fell 

far outside the clinical intervals for multiple cell types, while the predictions with 

UniBlood19 and Extended were closer to expected based on clinical range. Noob 

normalization led to higher alignment with the clinical intervals for references predicting 

12 or more cell types, whereas not performing normalization led to significant deviation 

from clinical intervals across references for most cell populations, highlighting the role of 

data normalization in deconvolution accuracy (Supplementary Figure 3A-B). Overall, 

IDOL reference had the highest percentage of predicted categories matching the clinical 

intervals across normalization methods, partly because it predicted fewer cell types 

(Supplementary Table 2), and Quantile normalization led to the highest alignment with 

clinical intervals, closely followed by Noob normalization.  

By stratifying cord and adult immune cells in our reference panel, UniBlood19, we were 

able to delineate cell types in our pediatric samples that more closely resembled cord 
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immune cells. These cell populations are more prevalent in peripheral blood during the 

pediatric time point, such as immature granulocytes (predicted as neonatal granulocytes) 

and transitional B cells (predicted as neonatal B cells)16,54. We predicted a low 

prevalence of both populations in CHILD age 5 samples, showing an underprediction of 

transitional B cells compared to the clinical interval (Figure 4A). To further illustrate the 

differences in deconvolution output across several reference datasets, we visualized the 

estimated cell type proportions of CHILD age 5 samples using the UniBlood19 

reference (Supplementary Figure 4). We estimated a non-negligible proportion of 

neonatal cells, suggesting some of the immune cells at age 5 exhibit DNAme profiles 

more similar to that of neonatal cells. To explore whether this finding reflects biological 

changes during immune development or simply an artifact of the algorithm, we 

performed the same prediction with UniBlood19 reference for 3 other data sets: CHILD 

age 1, an artificial adult blood cell mixture (GSE182379) and an adult whole blood 

cohort (GSE112618). We observed higher estimates of neonatal cell type proportions in 

the pediatric age range and a decline with age (Figure 4B).  

Finally, we wished to know which reference yielded predictions that explained the 

highest amount of variance. We observed that the deconvolution derived from 

UniBlood19 (the reference with the highest granularity) yielded the highest adjusted R2 

estimates (Supplementary Figure 5). Overall, we selected two reference panels in our 

analyses: IDOL and UniBlood19. The IDOL reference was chosen for the lowest MAE 

when Quantile normalization was employed, and the UniBlood19 reference was 

selected due to the higher variance explained, and the potential of investigating cord to 

adult immune transition in future studies.  

Elastic net and random forest consistently performed well amongst feature selection 

methods 

The next step in the deconvolution process is feature selection to identify a subset of 

DNAme loci best predicting each cell type. For the benchmark method ECC2, the 

default method for feature selection is based on top 100 probes selected from T-tests 

for each cell type. While several preselected probe sets for cell type deconvolution are 

available39,42,58, they fail to account for the normalization procedure, which can affect 
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both the features selected and the coefficients estimated. We employed machine 

learning methods, including lasso, elastic nets (EN), random forests (RF), boosted 

logistic regression (BLR), category and regression tree (CART), and gradient boosting 

machine (GBM) to curate a list of DNAme probes predictive of cell type identity post 

normalization. 

Similar to previous sections, we evaluated the prediction performance with MAE to CBC. 

Comparing the machine learning feature selection methods against the default method, 

t-tests using 1000 probes per cell type for prediction, we found multiple methods (all 

except for lasso and BLR) yielding comparable performance to t-tests for the IDOL 

reference (Figure 5A). In contrast, EN and RF significantly outperformed t-test and 

other methods for UniBlood19 reference (Figure 5B). To assess the effect of selected 

CpGs on cell type proportion prediction performance, we altered the number of probes 

supplemented for each cell type (k) from 10 to 5000. No clear relation between k and 

MAE was observed for IDOL reference, but t-test, EN, and RF consistently resulted in 

low MAE, with the first two yielding slight increased MAE past k = 1000, whereas RF 

performance improved with increasing k (Figure 5C). For the UniBlood19 reference, 

MAE decreased as k increased for t-test, RF, and EN, with slight exception with k = 

5000 (Figure 5D). Specifically, EN consistently yielded the lowest MAE with k > 300. 

Overall, EN with k = 1000 performed well for both IDOL and UniBlood19 references, 

and was chosen as the feature selection method moving forward. Finally, we observed 

an equivalent performance across regression methods in the CHILD blood sample, so 

we decided to move forward with constraint projection that is well adopted in blood 

(Supplementary Figure 6)36.  

The optimized pipeline outperformed benchmark methods in test datasets 

After optimizing the pipeline in CHILD age 5 samples, with quantile normalization, IDOL 

or UniBlood19 reference, EN feature selection, and constraint projection (hereafter 

referred to as the CellsPickMe algorithm), we evaluated the CellsPickMe performance 

by comparing it against benchmark algorithms in the reserved CHILD and external 

validation cohorts. We first explored the performance of CHILD age 1 peripheral blood 

and cord blood. We found the CellsPickMe algorithm with UniBlood19 reference led to 
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lower MAE than ECC2 with either the IDOL or Extended reference (Figure 6A). We 

observed a similar phenomenon in the CHILD cord blood samples as well. Although not 

an exclusive cord blood reference, CellsPickMe with the UniBlood19 reference achieved 

lower MAE than ECC2 with the Cord reference, with or without using the preselected 

IDOL probes (Figure 6B). Furthermore, the CellsPickMe algorithm predicted 

predominantly neonatal cells with comparable estimated nRBC proportions to using the 

Cord reference, demonstrating the algorithm’s ability to detect DNAme signature 

specific to neonatal cells and applied them in deconvolution (Figure 6C).  

Finally, we validated the performance of CellsPickMe in an independent cohort. We 

utilized both the IDOL and UniBlood19 references and compared their performance to 

ECC2 using either the IDOL or Extended reference. In GSE112618 (adult whole blood), 

we observed the lowest MAE using CellsPickMe with IDOL (padj < 0.05), and a 

comparable MAE between CellsPickMe with UniBlood19 reference and ECC2 with 

Extended reference (Figure 7). Additionally, CellsPickMe with IDOL significantly 

outperformed all other methods in adult blood, demonstrating the utility of machine 

learning-based feature selection method even with the same reference dataset being 

employed.  

 

Discussion 

Through systematic and rigorous evaluation of algorithmic performance, we optimized a 

cell deconvolution procedure, CellsPickMe, that can be applied to blood datasets across 

the developmental spectrum. The algorithm enhanced cell type prediction with features 

such as multi-age reference datasets, data-driven feature selection, and performance 

evaluation using CETYGO. In our optimization process, we noted that quantile 

normalization with the IDOL reference led to low prediction error, whereas the 

UniBlood19 reference  uniquely elucidated cell type proportion differences in 

longitudinal birth cohort studies with matched cord and pediatric samples. Machine 

learning approaches, like EN and RF, not only matched or slightly improved prediction 

accuracy, but also offered a defined set of cell type-specific probes for downstream 

analysis. Ultimately, the optimized pipeline — featuring quantile normalization, the 
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UniBlood19 or IDOL reference, EN, and constraint projection — surpassed the existing 

benchmark in predicting cell types for CHILD age 1 and cord blood samples, as well as 

external adult datasets.  

We were inspired to create the UniBlood reference datasets because of one curious 

phenomenon observed in the PCA of sorted cells’ DNAme, that there was a distinct 

maturity axis amongst the top PCs. Interestingly, the cord samples exist on this 

continuum as an extension of the naïve cell state. When we overlayed DNAme profiles 

of various developmental time points with that from the sorted cells, there was a distinct 

cluster of age 1 samples away from the cord blood, and another of the age 5 samples 

that was closer to the adult blood than their age 1 counterpart. This suggests pediatric 

cell types have intermediate DNAme profiles not currently accounted for in existing 

references. Our findings align with immune phenotype profiling with mass cytometry, 

which has shown that the immune landscape changes drastically immediately post-birth, 

with uncorrelated profiles between cord blood to that one-week post birth.15 We also 

observed this rapid shift in the immune system reflected in the optimization process, 

where the IDOL reference consistently showed high prediction accuracy and high 

alignment with age-specific clinical intervals. This suggests that, while the DNAme 

profiles of pediatric blood at age 5 is distinct from both cord blood and adult blood, it is 

more like the latter. The observation speaks to the need to have a reference dataset 

with unified cord and adult blood cells to accurately assess this cellular transition in the 

pediatric age range.  

With the postnatal loss of nRBCs and rapid shift in neonatal immune system, DNAme 

research has reported challenges in integrating cord blood and pediatric peripheral 

blood33,34. Applying adult references on cord blood has been shown to be inadequate in 

accounting for cellular heterogeneity37. Similarly, we have demonstrated that applying 

cord references in pediatric peripheral blood samples yielded poor performance. The 

three UniBlood references offer the strategical advantage of harmonizing deconvolution 

of samples collected across multiple developmental time points under a single 

framework. This facilitates comparisons of association test results across 

developmental time points because cellular composition can be accounted for with the 
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same constituent cell types. We also noted that UniBlood7 and UniBlood13 

underperformed compared to UniBlood19, potentially because the former two 

references intended to identify developmentally agnostic cell type markers when cell-

type-specific DNAme patterns changed significantly with early development. As a result, 

UniBlood19, which treated cord and adult blood cells as independent identities, was 

able to better capture cell-type-specific DNAme signatures and resulted in improved 

prediction performance. 

The literature has shown that neonatal immune cells are distinct from their adult 

counterpart in both identity and functions, including B cells59–61, T cells62–64, 

monocytes65,66, NK cells67,68, and granulocytes69,70. The neonatal immune system needs 

to be simultaneously capable of tolerating the maternal environment, as well as rapidly 

adapting to the pathogen exposure upon birth.59,63,64 Because of the rapid shift from 

maternally derived immunity after birth, it has been observed that  immature 

granulocytes and transitional B cells are more prevalent in cord blood, with diminishing 

proportions later in life.60,53,54,15,69,16 The neonatal immune cells’ DNAme profile was 

sufficiently unique that CellsPickMe was able to accurately reproduced this dynamic, 

predicting high proportion of neonatal immune cells in cord blood and decreasing 

proportion in samples of older ages. Furthermore, the UniBlood19 reference can 

estimate neonatal cell populations, such as neonatal B cells and neonatal granulocytes. 

Quantifying these cell types not only informs immune development but also functions as 

relevant medical biomarkers. For instance, as transitional B cells serve as a pivotal link 

between immature and mature B cells – negative selection against autoreactive 

clones – altered frequency of transitional B-cell subsets have been linked to systemic 

lupus erythematosus and other autoimmune disorders71–73. In the example of immature 

granulocytes, we hypothesize that the captured DNAme signature is linked to not just 

immature granulocytes, but also low density neutrophils (LDNs), as their identity overlap 

in cord blood69. LDNs are lighter neutrophils that are found in peripheral blood 

mononuclear cells after gradient centrifugation74. These cells possess 

immunosuppressive or proinflammatory characteristics, and have higher abundance in 

cord blood, pregnancy, or in patients with autoimmune diseases, cancer, and 

infection21,74–77. Our findings suggest that epigenetics is a viable avenue to explore 
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immune cell development and transition across developmental trajectory, 

supplementing useful yet distinct information to commonly studied immune markers like 

cell surface markers and cytokine milieu.  

As cell identity and epigenetics are inextricably linked, one of the challenges was the 

selection of DNAme sites that are most predictive of given cell types. We aimed to build 

an algorithm that is both robust and adaptive. Instead of generating a curated list of 

DNAme sites, we performed the feature selection step post-normalization because the 

prediction performance is dependent on the preprocessing pipeline, as evidenced by 

both the discrepancy in MAE and alignment with clinical interval with and without 

normalization. We explored a handful of machine learning methods with embedded 

regularization steps to identify the probe sets that best predict cell type identity. 

Surprisingly, the benchmark method of selecting 100 probes with t-tests consistently 

performed well across experimental conditions. The results point to the relevance of 

cross-validating a range of machine learning algorithms for optimization purposes. The 

observation echoed the “no free lunch” theorem for optimization, which proposes that 

the optimal solution of a given problem varies, and no one solution is superior for all 

problems or data sets.78,79  

We also tested a range of k — number of initial features available for the regularization 

algorithm — and showed, for IDOL reference, optimal performance can be achieved 

with t-tests, EN, and RF, with as few as 10 probes per cell type. This option can 

potentially be implemented for users who wish to improve deconvolution efficiency both 

in terms of time and computational memory usage. Ultimately, we observed that EN and 

RF consistently resulted in low prediction error at higher k. For users who intend to 

investigate the biological process underlying immune cell-specific DNAme signature, we 

recommend performing feature selection with EN or RF with k between 1000 and 5000.  

While our study hints towards the application of DNAme-based deconvolution in 

studying immune system dynamics, there are some aspects that warrant further 

consideration. For one, CBC was considered as the ground truth cell count measure for 

CHILD. Despite being a well-established method for examining cellular composition in 

clinical settings, it cannot resolve lymphocyte subsets, which is critical for understanding 
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immune responses80. Furthermore, collapsing the subsets can potentially bias the 

performance assessment process. We also do not have the genetic information of the 

samples included in the reference datasets. There can potentially be cell-type-specific 

methylation quantitative trait loci that drive feature selection, which can impact the 

deconvolution performance. Another consideration when utilizing CellsPickMe is the 

relatively longer runtime compared to other methods, but this is due to the inclusion of 

normalization and pre-selection of the prediction features which increases the rigor and 

reproducibility of our tool. While our method is more time-consuming, we have shown 

that these two steps significantly improve deconvolution outcomes, but computational 

demands should be considered when approaching these methods. Finally, despite 

having validated the prediction accuracy of CellsPickMe in CHILD as well as external 

cord and adult blood datasets, we have not examined its performance in more diverse 

settings, such as non-predominantly European genetic ancestry, elderly populations, or 

diseased conditions. Future studies can address the gap by comparing CellsPickMe 

predicted cell type proportions to empirical cell counts in these cohorts.  

In this study, we demonstrated CellsPickMe's superior performance beyond pediatric 

datasets, to cord and adult blood samples as well. Additionally, the feature selection 

methods employed in CellsPickMe demonstrated improved prediction performance 

across validation datasets we tested and output a list of cell-type-specific DNAme sites 

that can be further explored. We also reported on the utility of applying CETYGO score 

for evaluation of the appropriateness of given reference datasets and normalization 

methods and incorporated this internal error assessment metric in the package for easy 

application. Overall, CellsPickMe improved upon existing cellular deconvolution 

methods in blood, enhancing researchers’ ability to explore and account for immune 

dynamics in their DNAme investigations, especially in longitudinal pediatric studies.  

 

Methods 

Cohort description 

a. Canadian Healthy Infant Longitudinal Development (CHILD) 
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The CHILD cohort is a population-based prospective birth cohort study that recruited 

3621 pregnant mothers across four sites in Canada11. At birth, the cord blood 

samples of children enrolled in the study were collected from the umbilical cords (n = 

838). At age one and five years (referred to as age 1 and age 5 hereafter), 

peripheral blood samples were also collected as previously described (n = 1616)81. 

Out of the participants, the majority of them identifies as White (75%), followed by 

East Asian (8%), South East Asian (5%), First Nations (3%), Multiracial (3%), South 

Asian (2%), Black (2%), and Hispanic (2%). DNA was extracted from the cord, age 1, 

and age 5 blood samples, and the DNAme profiles assayed.  

b. Isle of Wight (IOW) 

The IOW birth cohort is a whole population prospective study that enrolled all 

children born on the Isle of Wight, UK, between January 1989 and February 1990 (n 

= 1536)13. Blood samples were collected from the participants at birth (n = 777) as 

Gutherie cards, and at age 10 (n = 406), 18 (n = 141), and 26 years (n = 295) as 

peripheral blood draws. The DNAme profiles were then assessed as previously 

described82.  

DNA sample collection and methylation array for the CHILD cohort 

DNA was isolated from cord and peripheral whole blood from CHILD cohort samples 

using the DNeasy Blood & Tissue Kit (Qiagen, Venlo, Netherlands). The DNA 

concentration and quality were evaluated via a NanoDrop 8000 Spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA). For DNA methylation profiling, the 

purified DNA was bisulfite converted with the EZ-96 DNA Methylation Kit (Zymo 

Research, Irvine, CA, USA) and assayed with the Infinium MethylationEPIC BeadChip 

array (Illumina, San Diego, CA). The resulting raw intensity IDAT files contained 

866,836 data points covering 863,904 CpG sites.  

CHILD cohort DNA methylation data processing 

All available CHILD whole blood DNAme data were read into and further processed with 

RStudio (version 4.0.3).83 Quality control was performed using the ewastools v1.7 

package based on technical parameters evaluated on the 636 control probes84. The 

minfi v1.44 package was then used to evaluate methylated and unmethylated intensities, 
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and check for sex concordance between reported and predicted biological sex85. 

Outliers and poorly performing samples were then identified, with the former detected 

with the lumi package51,86, and the latter defined as those with a high detection p-values 

(p > 0.01 in > 1% of probes), DNAme intensities significantly deviating from the average 

of negative control probes, or a bead count of less than three on more than 1% of 

probes. The 59 SNP probes on the array were used to further confirm sample 

relatedness amongst the cord blood, age 1 and age 5 samples for each child. Samples 

that failed one or more of the quality control metrics were removed (n = 29). After quality 

control, technical replicates were also removed (n = 22). Overall, 807 samples at age 5 

and 795 samples at age 1 remained after sample filtering for cell deconvolution. 

Pan-age blood reference-based cell deconvolution 

We followed the well adopted statistical procedures in cell type deconvolution36, as 

outlined in Figure 2. The method assumed the statistical model: 

� �� w�b� � �
�

���

 

where B represented the beta matrix of sample DNAme, and w and b represented the 

proportion and beta value profile of cell type i in the sample, respectively. The error term 

represented variability from either cell types not included in the reference dataset, other 

biological sources of DNAme variability, or technical noise. The prediction algorithm 

aimed to calculate bi in a subset of cell-type-specific DNAme sites in the reference 

dataset for the estimation of wi in the sample dataset. 

Step 1. Reference selection 

To create a cell type deconvolution algorithm that allows for cell type prediction in 

both cord and peripheral blood, four published DNAme datasets of purified blood cell 

types were combined to create the UniBlood references – the 

FlowSorted.Blood.450k (Reinius) 87, FlowSorted.Blood.EPIC (IDOL)38, 

FlowSorted.CordBlood.450k (Cord)37, and FlowSorted.Blood.Extended.EPIC 

(Extended)39 references. The first two of these encompass 6 immune cell types (B-

cells, CD4+ T-cells, CD8+ T-cells, natural killer [NK] cells, monocytes, and 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2025. ; https://doi.org/10.1101/2025.04.22.649907doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.22.649907
http://creativecommons.org/licenses/by-nc/4.0/


granulocytes), whereas the cord blood reference also includes nRBCs. Finally, the 

Extended reference39 includes 12 cell subtypes sorted at finer granularity (naïve and 

memory B cells, naïve and memory CD4+ T cells, naïve and memory CD8+ T cells, 

regulatory T cells (tregs), natural killer (NK) cells, monocytes, basophils, eosinophils, 

and neutrophils). We curated three UniBlood references, with different dataset 

composition. 

1. UniBlood7: Included IDOL, Reinius, and Cord reference datasets. The cord and 

adult blood cells of the same types were grouped together (e.g. CD4+ T cells of the 

3 datasets were grouped together and considered as one cell type).  

2. UniBlood13: Included Extended and nRBCs from the Cord reference. As nRBCs 

have the most distinct DNAme profile and is absent in adult blood, this data set 

assumed the other cell types maintain similar DNAme profiles across development, 

and only the absent nRBC is required to deconvolute cord and pediatric samples.  

3. UniBlood19: Included Extended and Cord reference datasets. This reference set 

considers neonatal and adult blood cells as distinct entities. This data set assumed 

that neonatal and adult blood cells’ DNAme profiles are distinct. To ensure equal 

representation of cord and adult cell types, we randomly sampled 10 samples for 

each cell type in the Cord reference (seed = 1234) prior to combining the datasets. 

We compared the influence of UniBlood references on deconvolution accuracy, 

against that of the Cord, IDOL, and Extended reference. 

Step 2. Normalization of reference and sample datasets 

Normalization aimed to reduce batch effect between reference and sample datasets 

and generate comparable sample distribution to ensure the estimated coefficients in 

the reference applies to the samples. We compared common normalization 

strategies, including those applicable to RGChannelSet object (Noob normalization 

[Noob], as implemented with minfi::preprocessNoob, Functional normalization 

[Funnorm], as implemented with minfi::preprocessFunnorm, Quantile normalization 

[Quantile], as implemented with minfi::preprocessQuantile), those applicable to beta 

matrix (Quantile normalization [Quantile.B], as implemented with 

limma::normalizeQuantiles), and a no normalization condition. 
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Step 3. Feature selection 

The process of reference-based cell type prediction then selects probes that best 

discern the cell types included in the reference. The benchmarking approach uses T-

tests to select for probes with the highest mean difference when comparing a given 

cell type with all others. Alternatively, pre-selected probe sets exist, including IDOL 

probes42, IDOL-ext probes39, and DNAase hypersensitive sites (DHS)88. We 

proposed new probe selection methods based on machine learning algorithm that 

has intrinsic feature selection process. Random forest (RF), elastic net (EN), 

boosted logistic regression (BLR), gradient boosted machine (GBM), and 

classification and regression tree (CART) were implemented with leave-one-out 

cross validation (LOOCV) using the caret package.  

Step 4. Coefficient estimation and regression-based prediction 

Sample cell type proportions are estimated with linear regression under constraints 

such that w� � 0 and ∑ w� ��

���
1. The most common implementation of such 

conditions is constraint projection (CP) with quadratic programming to optimize the 

two inequality constraints (Houseman)89. Two other popular approaches are robust 

partial correlation (RPC) and support vector regression (SVR) (EpiDISH & 

CIBERSORT)90. These two methods apply the normalization constraints a posteriori 

by setting negative estimates to 0 and readjusting each estimate proportionally so 

that the cell types sum up to 1. We compared the deconvolution performance with 

the three regression methods.  

Model Performance Assessment  

To compare the performance across conditions for a given prediction step, three main 

metrics were assessed: absolute error (AE), comparison with age-specific clinical count 

interval, and variance explained accounting for the number of covariates (adjusted R2) 

for DNAme. For the CHILD samples, the complete blood count (CBC), comprised of 

lymphocytes, monocytes, and granulocytes portions, was considered as the ground 

truth. After inference, the predicted proportions were summed for each of the three cell 

subsets, with neutrophils, basophils, and eosinophils adding up to the granulocyte 
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proportion, and T cells, B cells, and NK cells adding up to the lymphocyte proportion. 

AE was calculated as the difference between predicted and actual cell type proportions 

for each subset. One-way ANCOVA tests were applied across conditions to evaluate 

the differences in AE distribution, with post-hoc Tukey’s test to correct for multiple 

testing and identify the groups with significantly different distributions. Additionally, the 

CEll TYpe deconvolution GOodness (CETYGO) score was calculated as the root mean 

squared error of the DNAme based on the estimated cell type proportions and the 

observed DNAme48. The CETYGO score ranges from 0 to 1, with a lower score 

indicating a better fit of the reference dataset and prediction procedure for the samples 

of interest.  

For the comparison with the clinical interval, we calculated the median predicted 

proportion for each combination, and considered the prediction to overlap with the 

clinical range reported in the literature if the median falls within the 10th and 90th 

percentile of the interval.16,52,53,55–57 Finally, we assessed the variance in the DNAme 

data explained by cell type proportion estimated under across reference datasets and 

normalization methods. The estimated proportions were first summarized with principal 

component analysis. We applied EWAS on the estimated cell type PCs accounting for 

90% of variance explained in the estimated proportion.  

DNAme ~ CT_PC1conditionA + CT_PC2 conditionA + … + CT_PCx conditionA 

DNAme ~ CT_PC1 conditionB + CT_PC2 conditionB + … + CT_PCy conditionB 

We then compared the distribution of the adjusted R2 across measured DNAme sites 

among prediction conditions. One-way ANOVA with post-hoc Tukey’s test were utilized 

to calculate statistical significance.  

Code Availability 

An R package is available on GitHub (https://github.com/maggie-fu/CellsPickMe) and 

can be installed through devtools::install_github("maggie-fu/CellsPickMe"). 
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Figure 1. Principal component analysis showing the main patterns of DNAme variation in A) 
sorted cord and adult peripheral blood cell populations (plotted as text indicating their cell 
type) and B) the sorted cells from A with umbilical cord blood from Cord reference (pink 
dots), artificial mixture of adult blood cells (red dots), and two additional longitudinal pediatric 
cohorts: CHILD (green dots) and IOW (orange-brown dots). The ellipses were created 
based on 95% confidence interval using the ggplot2:: stat_ellipse() function. In both A and B, 
three of each sorted cell type were randomly sampled and shown to reduce visual cluster. 
nv: Naïve cells; mem: Memory cells; Treg: Regulatory T cells; NK: Natural killer cells; Mono: 
Monocytes; Gran: Granulocytes; Neu: Neutrophils; Bas: Basophils; Eos: Eosinophils; nRBC: 
Nucleated red blood cells. 
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Figure 2. Schematic diagram of the standard reference-based DNAme cell type prediction 
pipeline and options evaluated in the optimization procedure. Top: Prediction steps and 
corresponding functions for implementation in bold (left) and options for the corresponding 
steps (right), with the bold option being the default in the benchmark method, 
estimateCellCounts2, and we used these default options as the starting point of the 
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optimization process. Bottom: Methods for evaluation, including the calculation of absolute 
error, comparison to clinical ranges, and estimation of variance explained. Created with 
Biorender.com. 
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Figure 3. Violin plot of absolute prediction error of cell type proportions (predicted cell type 
proportion – actual proportion derived from complete blood count) across normalization 
methods (rows) and reference panels (columns) in CHILD age 5 samples. The mean absolute 
error of a given reference-normalization method pair condition is shown above the violin plot, 
with compact letter display indicating the significance of absolute error differences across 
reference panels within a normalization method. Significance is calculated with one-way 
ANOVA with post-hoc Tukey’s test. 
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Figure 4. A) Age-specific clinical interval of hematological fractions reported in children at 5 
years of age (gray bars) and predicted cell type proportions of CHILD age 5 blood samples 
based on DNAme profiles (dots). Six cell reference datasets were employed (columns) and 
Quantile normalization was performed. The clinical intervals were compiled from six 
publications with participants across sexes and of various genetic ancestry1–6, all measured 
with flow cytometry or hematology analyzers. The range presented here represents the most 
lenient 10th and 90th percentile range reported across literature (Supplementary Table 3). The 
colored dots are the median predicted proportion of a given cell population (salmon: inside 
clinical interval; black: outside clinical interval). For transitional B cells and immature 
granulocytes, the values correspond to estimated neonatal B cells and neonatal granulocytes 
proportions. WBC: white blood cells. B) Estimated blood cell proportions with the UniBlood19 
reference panel, for four datasets with samples from difference age group: CHILD age 1, 
CHILD age 5, artificial mixture of adult-derived blood cells (GSE182379) and adult whole 
blood samples (GSE112618). The “_cord” suffix indicates predicted neonatal cells. nv: Naïve 
cells; mem: Memory cells; Treg: Regulatory T cells; NK: Natural killer cells; Mono: Monocytes; 
Gran: Granulocytes; Neu: Neutrophils; Bas: Basophils; Eos: Eosinophils; nRBC: Nucleated 
red blood cells. 
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Figure 5. (A-B) Absolute prediction error of cell type proportions (predicted – true) across 
machine-learning-based feature selection methods based on A) IDOL reference and B) 
UniBlood19 reference with Quantile normalization, using top 1000 cell-type-specific probes 
per cell type. (C-D) MAE of predicted cell type proportions across varying number of 
available features (k) for each feature selection method based on C) IDOL reference and D) 
UniBlood19 reference 
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Figure 6. (A-B) Absolute prediction error of cell type proportions in the CellsPickMe 
optimized deconvolution algorithm and the benchmark estimateCellCounts2 method in 
reserved CHILD A) age 1 and B) cord blood samples. C) Deconvolution prediction 
results for CHILD cord blood using either the benchmark estimateCellCounts2 method, 
with or without the IDOL probe list, or CellsPickMe with UniBlood19 reference. 
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Figure 7.  Absolute prediction error of cell type proportions in the CellsPickMe 
optimized deconvolution algorithm and the benchmark estimateCellCounts2 method in 
an external validation adult whole blood dataset (GSE112618).  
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