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Abstract

Prospective birth cohorts offer the potential to interrogate the relation between early life
environment and embedded biological processes such as DNA methylation (DNAme).
These association studies are frequently conducted in the context of blood, a
heterogeneous tissue composed of diverse cell types. Accounting for this cellular
heterogeneity across samples is essential, as it is a main contributor to inter-individual
DNAme variation. Integrated blood cell deconvolution of pediatric and longitudinal birth
cohorts poses a major challenge, as existing methods fail to account for the distinct cell
population shift between birth and adolescence. In this paper, we critically evaluated the
reference-based deconvolution procedure and optimized its prediction accuracy for
longitudinal birth cohorts using DNAme data from the Canadian Healthy Infant
Longitudinal Development (CHILD) cohort. The optimized algorithm, CellsPickMe,
integrates cord and adult references and picks DNAme features for each population of
cells with machine learning algorithms. It demonstrated improved deconvolution
accuracy in cord, pediatric, and adult blood samples compared to existing benchmark
methods. CellsPickMe supports blood cell deconvolution across early developmental
periods under a single framework, enabling cross-time-point integration of longitudinal
DNAme studies. Given the increased resolution of cell populations predicted by
CellsPickMe, this R package empowers researchers to explore immune system
dynamics using DNAme data in population studies across the life course.
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Introduction

The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that
exposures during sensitive developmental windows, most especially within the first
years of life, can influence long-term physiological functioning and the health trajectory
of a person*?. DNA methylation (DNAme), an epigenetic mark that is mitotically
heritable but malleable to environmental changes, has been proposed as a molecular
process that contributes to the biological embedding of early life experiences®™®.
Pregnancy and birth cohorts have been established with longitudinal follow-up with
deep phenotyping, including DNAme profiling, to examine the association between
environmental exposures and health outcomes later in life® ™2,

However, this early developmental period coincides with profound remodeling of the
hematopoietic landscape®°. This includes a rapid loss of nucleated red blood cells
(NRBCs) after birth!”°, increased neutrophil proportion accompanied with high

neutrophil heterogeneity in neonates® %

, and changes in naive and memory
lymphocyte profiles upon antigen exposure including vaccinations'**>?*%* The dynamic
of peripheral blood cell populations provides insight into individuals’ immune status,
stress response, as well as developmental and aging trajectory®22; yet, it creates an
additional layer of complexity to epigenomic investigations, as cellular functions and
identities are intrinsically linked to their DNAme signature®-3*

Longitudinal birth studies have reported persistent and wide-spread alterations in
DNAme within the first years of life***. These studies compared the DNAme patterns
of cord blood with that of peripheral blood collected at pediatric time points, ranging
from neonates (less than 1 month old), infants (birth — 2 years), children (2 — 12 years),
to adolescents (12 — 21 years)*~°. In this context, cellular composition of a
heterogeneous tissue like blood can be bioinformatically inferred without readily
available cell count data, using DNAme-based deconvolution methods*®. Several cell
type deconvolution algorithms have been independently developed for adult and cord
blood samples using a reference-based approach, leveraging cell-type specific DNAme
signatures from sorted cells***°. However, without a method to harmonize

deconvolution of cord, pediatric, and even adult blood under a single framework, direct
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inference of DNAme changes across the early developmental period is inevitably
confounded by a profound variance in cellular composition**~**,

To address this methodological gap, it is crucial to note that not only does the cellular
composition of blood varies with age, but so does the DNAme profile of sorted cells®" >~
7 The findings suggest that applying a reference dataset developed from cord blood or
adult blood in pediatric populations may introduce prediction errors*. Additionally,
performing cellular deconvolution in longitudinal birth cohorts spanning a range of ages
currently require multiple, non-comparable references. To overcome this conundrum,

we proposed an integrated DNAme reference of cord and adult sorted blood cells, with
the goal of capturing cell-type-specific signals that account for changes in the
hematopoietic landscape. In addition to reference dataset selection, we evaluated the
impact of other steps in the reference-based cell type deconvolution procedure,

including data normalization, feature selection, and regression-based prediction®. The
algorithm’s performance was assessed using the pediatric blood samples of a Canadian
population-based prospective birth cohort, the Canadian Healthy Infant Longitudinal
Development (CHILD) cohort™. The resulting reference-based deconvolution procedure,
CellsPickMe, utilizes machine learning-based method to pick DNAme features for each
cell population. CellsPickMe with the curated UniBlood references facilitates the joint
deconvolution of cord and whole blood and supports the inference of cell type
proportions in longitudinal pediatric cohorts where age-appropriate reference datasets

are currently unavailable.

Results
Cellular maturity and developmental time point covaries with DNAme pattern

We first explored whether there is a distinct DNAme signature across developmental
stages that can impact pediatric cellular deconvolution process. To examine DNAme
variation through the life course, we applied principal component analysis (PCA) to
sorted DNAme reference data sets of cord and adult blood: FlowSorted.CordBlood.450k
(referred as Cord), FlowSorted.Blood.EPIC (referred as IDOL), and

FlowSorted.Blood.Extended.EPIC (referred as Extended). Immune cells clustered
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distinctly on both a lineage axis along PC1(myeloid to lymphoid) and a maturity axis
along PC2 (neonatal — naive — memory) (Figure 1A). The nRBCs showed a distinct
DNAme pattern, clustering in the middle of lymphocytes and granulocytes on the
lineage axis, and further down the maturity axis compared to other cord immune cells.
For T and B cells, there was an evident gradient along the maturity axis, transitioning
from neonatal, adult naive, a mixture of adult naive and memory (IDOL reference did not
distinguish between the two), and adult memory cells (Figure 1A).

To study whether the pattern of DNAme variation is recapitulated in whole blood where
bulk DNAme is representative of all cell types present in the sample, we clustered the
DNAme profiles of sorted immune cells with that of cord and whole blood from two
longitudinal birth cohorts, the Isle of Wight (IOW) and the Canadian Healthy Infant
Longitudinal Development (CHILD) cohorts, along with an artificial blood cell mixture
from adult sorted cells, and whole umbilical cord blood from the Cord reference. Aside
from technical batch effect and biological sex, which contributed to PC1 and PC2
variance, we observed an analogous trend of lineage and maturity axes along PC3 and
PC4 (Figure 1B). The heterogeneous blood samples clustered in the middle of PC3, as
they are composed of a mixture of myeloid and lymphoid cells. These included the
CHILD and I0OW'’s post-natal blood, the artificial blood mixture and the Cord reference
cord blood samples. The CHILD cord blood showed a high overlap with the CORD
samples and nRBC cells, whereas the IOW neonatal dried blood spots, with a reduced
nRBC fraction, clustered adjacently as previously observed®. As the CHILD and IOW
participants aged, their samples shifted down the maturity axis (Figure 1B). At age 1,
the CHILD samples clustered discretely from both cord and adult samples. As
individuals aged, age 5 CHILD samples and age 10 and 18 IOW samples became more

similar, yet remained in a distinct cluster from the age 26 IOW and ABM samples.

Optimization procedure of reference-based cell type deconvolution
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Building on evidence indicating that developmental stages in childhood are linked to
distinct DNAme profiles, we aimed to refine the cell type deconvolution process for
pediatric blood samples. Figure 2 shows a flowchart of the prediction process, along
with alternative options to the benchmark method, EstimateCellCounts2 (ECC2)*. To
that end, we utilized the CHILD cohort, with samples from cord blood at birth and
peripheral blood at age 1 and 5 collected from approximately 800 children™*. In addition,
the absolute lymphocytes, monocytes, and granulocyte composition of the samples
were quantified with a clinical-grade complete blood count (CBC), which was
considered as the ground truth cell count measure for CHILD. We trained the optimal
prediction pipeline in the age 5 samples and tested its validity in age 1 and cord
samples. We further examined the performance of the optimized cell type prediction
pipeline in independent validation cohorts, and compared them to the benchmark
method ECC2 in terms of mean absolute error (MAE) of predicted to CBC-based cell
type proportions, whether the predicted proportions align with age-specific clinical
intervals, and the amount of variance (adjusted R?) explained by the predicted
proportions (Figure 2).

Normalization method impacted the prediction performance across reference datasets

As the first step of the deconvolution process, we examined which blood reference
dataset was most relevant to pediatric cohorts using CHILD age 5 samples. As no
pediatric blood reference is available, we created three UniBlood references composed
of both adult and cord blood cells to capture cellular heterogeneity across the
developmental spectrum (Table 1). The UniBlood7 and UniBlood13 references
considered the same cell types from cord and adult sorted cells to be the same
population, aiming to identify development-agnostic cell-type DNAme signatures. In
contrast, UniBlood19 considered cord and adult sorted cells as different populations
(e.g. cord and adult monocytes), while taking into account the development-associated

DNAme changes in immune cells.

Table 1. Cellular composition and dataset included for the three reference datasets we
compiled in this study, UniBlood7, UniBlood13, and UniBlood19.
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UniBlood7

UniBlood13

UniBlood19

FlowSorted.Bloo
d.450k

FlowSorted.Bloo
d.EPIC (IDOL)

FlowSorted.Bloo
d.Extended.EPIC
(Extended)
FlowSorted.Cord
Blood.450k
(Cord)

Yes

Yes

Yes

only monocytes,
neutrophils, and NK
cells

Yes

6 randomly selected
NRBC samples

only monocytes, neutrophils, and
NK cells

Yes

6 randomly selected samples for
every cell type

Adult and cord
cell types
grouped?

Yes

No

No

Cell types
included

Seven cell
types: B cells,
CD4+ T cells,
CD8+ T cells,

NK cells,
monocytes,
granulocytes,
and nRBCs

Thirteen cell types:
naive and memory B
cells, naive and memory
CD4+ T cells, naive and
memory CD8+ T cells,
Tregs, NK cells,
monocytes, neutrophils,
basophils, eosinophils,
and nRBCs

Nineteen cell types: neonatal,
naive, and memory B cells,
neonatal, naive, and memory
CDA4+ T cells, neonatal, naive, and
memory CD8+ T cells, adult Tregs,
neonatal and adult NK cells,
neonatal and adult monocytes,
neonatal granulocytes, adult
neutrophils, basophils, and
eosinophils, and nRBCs
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Since the literature suggests the performance of the deconvolution to be dependent on
normalization methods®’, references and normalization methods were evaluated
together. We compared six reference datasets (Cord®’, UniBlood7, UniBlood13,
UniBlood19, IDOL*, and Extended®’; Figure 1, Table 1) in combination with
normalization methods commonly employed for DNAme microarray data, including
Quantile Normalization (Quantile), normal-exponential out-of-band normalization (Noob),
and Functional Normalization (Funnorm), all applicable to RGChannelSet objects only>".
To allow for applications in other data objects, we also assessed the performance of
guantile normalization on beta matrices (Quantile.B) as well as the no normalization

(None) conditions.

We compared the prediction performance of references by calculating the absolute error
(AE) of predicted to lymphocyte, monocyte, and granulocyte proportions measured with
CBC. We observed the performance of references to be dependent on the
normalization method. For example, when comparing across references under Noob or
Funnorm normalization, UniBlood13, UniBlood19, and Extended references resulted in
the lowest AE (pagj < 0.05, Figure 3). On the other hand, IDOL reference yielded the
lowest AE with Quantile normalization. For each condition, we also calculated the
CETYGO score, which estimates deconvolution accuracy based on the deviation
between a samples’ DNAme and the expected DNAme based the predicted cell type
proportion and the reference profiles*. In concordance to the AE, Extended and
UniBlood19 led to lower CETYGO score (indicating better prediction performance) with
Noob and Funnorm normalization, whereas Extended and IDOL resulted in lower
CETYGO score with Quantile normalization (Supplementary Figure 1). Additionally,
Quantile normalization led to the lowest prediction error across the board for all
reference panels (Figure 3). Statistically, with cell type and reference panel accounted
for, the Quantile normalization method significantly outperformed all other methods
(Supplementary Table 1). The RGChannelSet-based normalization methods
consistently outperformed Quantile.B (pagj < 2.22e*%), which in turn significantly
outperformed the no normalization condition (Pag; = 1.68e™). CETYGO score also
corroborated the improved performance with Quantile normalization (Supplementary
Figure 1). Despite the utility of CETYGO score, we showed that the metric failed to
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predict AE at the sample level (Supplementary Figure 2). Given the consistent
performance of Quantile normalization, we decided to move forward with this

normalization procedure.

UniBlood19 reference unveiled epigenetic signatures associated with developmental
immune cell transition

As the previous analysis focused on the prediction accuracy of the CBC subsets:
lymphocytes, monocytes, and granulocytes, we next examined whether the predicted
cell type proportions were accurate in additional cell type subsets (e.g. naive CD4+ T
cells). We compared the estimated proportions to age-specific clinical intervals reported
in literature as we expected CHILD age 5 participants to align with healthy

parameters>>>’.

Using Quantile normalization, we observed a full alignment with clinical intervals for
references predicting 6 to 7 cell types (Cord, UniBlood7, and IDOL) (Figure 4A). With
increasing cell type resolution, we observed some deviation from the clinical intervals.
Extended, UniBlood13, and UniBlood19 all overpredicted the proportion of CD8+ T cells
and Tregs, and underpredicted the proportion of eosinophils (Figure 4A). Extended and
UniBlood13 also overpredicted naive B cells, whereas UniBlood13 and UniBlood19
underpredicted memory CD4+ T cells. UniBlood13 reference yielded predictions that fell
far outside the clinical intervals for multiple cell types, while the predictions with
UniBlood19 and Extended were closer to expected based on clinical range. Noob
normalization led to higher alignment with the clinical intervals for references predicting
12 or more cell types, whereas not performing normalization led to significant deviation
from clinical intervals across references for most cell populations, highlighting the role of
data normalization in deconvolution accuracy (Supplementary Figure 3A-B). Overall,
IDOL reference had the highest percentage of predicted categories matching the clinical
intervals across normalization methods, partly because it predicted fewer cell types
(Supplementary Table 2), and Quantile normalization led to the highest alignment with

clinical intervals, closely followed by Noob normalization.

By stratifying cord and adult immune cells in our reference panel, UniBlood19, we were

able to delineate cell types in our pediatric samples that more closely resembled cord
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immune cells. These cell populations are more prevalent in peripheral blood during the
pediatric time point, such as immature granulocytes (predicted as neonatal granulocytes)
and transitional B cells (predicted as neonatal B cells)'®**. We predicted a low
prevalence of both populations in CHILD age 5 samples, showing an underprediction of
transitional B cells compared to the clinical interval (Figure 4A). To further illustrate the
differences in deconvolution output across several reference datasets, we visualized the
estimated cell type proportions of CHILD age 5 samples using the UniBlood19
reference (Supplementary Figure 4). We estimated a non-negligible proportion of
neonatal cells, suggesting some of the immune cells at age 5 exhibit DNAme profiles
more similar to that of neonatal cells. To explore whether this finding reflects biological
changes during immune development or simply an artifact of the algorithm, we
performed the same prediction with UniBlood19 reference for 3 other data sets: CHILD
age 1, an artificial adult blood cell mixture (GSE182379) and an adult whole blood
cohort (GSE112618). We observed higher estimates of neonatal cell type proportions in

the pediatric age range and a decline with age (Figure 4B).

Finally, we wished to know which reference yielded predictions that explained the
highest amount of variance. We observed that the deconvolution derived from
UniBlood19 (the reference with the highest granularity) yielded the highest adjusted R2
estimates (Supplementary Figure 5). Overall, we selected two reference panels in our
analyses: IDOL and UniBlood19. The IDOL reference was chosen for the lowest MAE
when Quantile normalization was employed, and the UniBlood19 reference was
selected due to the higher variance explained, and the potential of investigating cord to

adult immune transition in future studies.

Elastic net and random forest consistently performed well amongst feature selection

methods

The next step in the deconvolution process is feature selection to identify a subset of
DNAme loci best predicting each cell type. For the benchmark method ECC2, the
default method for feature selection is based on top 100 probes selected from T-tests
for each cell type. While several preselected probe sets for cell type deconvolution are

39,42,58

available , they fail to account for the normalization procedure, which can affect
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both the features selected and the coefficients estimated. We employed machine
learning methods, including lasso, elastic nets (EN), random forests (RF), boosted
logistic regression (BLR), category and regression tree (CART), and gradient boosting
machine (GBM) to curate a list of DNAme probes predictive of cell type identity post

normalization.

Similar to previous sections, we evaluated the prediction performance with MAE to CBC.
Comparing the machine learning feature selection methods against the default method,
t-tests using 1000 probes per cell type for prediction, we found multiple methods (all
except for lasso and BLR) yielding comparable performance to t-tests for the IDOL
reference (Figure 5A). In contrast, EN and RF significantly outperformed t-test and
other methods for UniBlood19 reference (Figure 5B). To assess the effect of selected
CpGs on cell type proportion prediction performance, we altered the number of probes
supplemented for each cell type (k) from 10 to 5000. No clear relation between k and
MAE was observed for IDOL reference, but t-test, EN, and RF consistently resulted in
low MAE, with the first two yielding slight increased MAE past k = 1000, whereas RF
performance improved with increasing k (Figure 5C). For the UniBlood19 reference,
MAE decreased as k increased for t-test, RF, and EN, with slight exception with k =
5000 (Figure 5D). Specifically, EN consistently yielded the lowest MAE with k > 300.
Overall, EN with k = 1000 performed well for both IDOL and UniBlood19 references,
and was chosen as the feature selection method moving forward. Finally, we observed
an equivalent performance across regression methods in the CHILD blood sample, so
we decided to move forward with constraint projection that is well adopted in blood
(Supplementary Figure 6)%.

The optimized pipeline outperformed benchmark methods in test datasets

After optimizing the pipeline in CHILD age 5 samples, with quantile normalization, IDOL
or UniBlood19 reference, EN feature selection, and constraint projection (hereafter
referred to as the CellsPickMe algorithm), we evaluated the CellsPickMe performance
by comparing it against benchmark algorithms in the reserved CHILD and external
validation cohorts. We first explored the performance of CHILD age 1 peripheral blood

and cord blood. We found the CellsPickMe algorithm with UniBlood19 reference led to
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lower MAE than ECC2 with either the IDOL or Extended reference (Figure 6A). We
observed a similar phenomenon in the CHILD cord blood samples as well. Although not
an exclusive cord blood reference, CellsPickMe with the UniBlood19 reference achieved
lower MAE than ECC2 with the Cord reference, with or without using the preselected
IDOL probes (Figure 6B). Furthermore, the CellsPickMe algorithm predicted
predominantly neonatal cells with comparable estimated nRBC proportions to using the
Cord reference, demonstrating the algorithm’s ability to detect DNAme signature

specific to neonatal cells and applied them in deconvolution (Figure 6C).

Finally, we validated the performance of CellsPickMe in an independent cohort. We
utilized both the IDOL and UniBlood19 references and compared their performance to
ECC2 using either the IDOL or Extended reference. In GSE112618 (adult whole blood),
we observed the lowest MAE using CellsPickMe with IDOL (pagj < 0.05), and a
comparable MAE between CellsPickMe with UniBlood19 reference and ECC2 with
Extended reference (Figure 7). Additionally, CellsPickMe with IDOL significantly
outperformed all other methods in adult blood, demonstrating the utility of machine
learning-based feature selection method even with the same reference dataset being

employed.

Discussion

Through systematic and rigorous evaluation of algorithmic performance, we optimized a
cell deconvolution procedure, CellsPickMe, that can be applied to blood datasets across
the developmental spectrum. The algorithm enhanced cell type prediction with features
such as multi-age reference datasets, data-driven feature selection, and performance
evaluation using CETYGO. In our optimization process, we noted that quantile
normalization with the IDOL reference led to low prediction error, whereas the
UniBlood19 reference uniquely elucidated cell type proportion differences in
longitudinal birth cohort studies with matched cord and pediatric samples. Machine
learning approaches, like EN and RF, not only matched or slightly improved prediction
accuracy, but also offered a defined set of cell type-specific probes for downstream

analysis. Ultimately, the optimized pipeline — featuring quantile normalization, the
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UniBlood19 or IDOL reference, EN, and constraint projection — surpassed the existing
benchmark in predicting cell types for CHILD age 1 and cord blood samples, as well as

external adult datasets.

We were inspired to create the UniBlood reference datasets because of one curious
phenomenon observed in the PCA of sorted cells’ DNAme, that there was a distinct
maturity axis amongst the top PCs. Interestingly, the cord samples exist on this
continuum as an extension of the naive cell state. When we overlayed DNAme profiles
of various developmental time points with that from the sorted cells, there was a distinct
cluster of age 1 samples away from the cord blood, and another of the age 5 samples
that was closer to the adult blood than their age 1 counterpart. This suggests pediatric
cell types have intermediate DNAme profiles not currently accounted for in existing
references. Our findings align with immune phenotype profiling with mass cytometry,
which has shown that the immune landscape changes drastically immediately post-birth,
with uncorrelated profiles between cord blood to that one-week post birth.*> We also
observed this rapid shift in the immune system reflected in the optimization process,
where the IDOL reference consistently showed high prediction accuracy and high
alignment with age-specific clinical intervals. This suggests that, while the DNAme
profiles of pediatric blood at age 5 is distinct from both cord blood and adult blood, it is
more like the latter. The observation speaks to the need to have a reference dataset
with unified cord and adult blood cells to accurately assess this cellular transition in the

pediatric age range.

With the postnatal loss of nRBCs and rapid shift in neonatal immune system, DNAme
research has reported challenges in integrating cord blood and pediatric peripheral
blood****. Applying adult references on cord blood has been shown to be inadequate in
accounting for cellular heterogeneity®’. Similarly, we have demonstrated that applying
cord references in pediatric peripheral blood samples yielded poor performance. The
three UniBlood references offer the strategical advantage of harmonizing deconvolution
of samples collected across multiple developmental time points under a single
framework. This facilitates comparisons of association test results across

developmental time points because cellular composition can be accounted for with the
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same constituent cell types. We also noted that UniBlood7 and UniBlood13
underperformed compared to UniBlood19, potentially because the former two
references intended to identify developmentally agnostic cell type markers when cell-
type-specific DNAme patterns changed significantly with early development. As a result,
UniBlood19, which treated cord and adult blood cells as independent identities, was
able to better capture cell-type-specific DNAme signatures and resulted in improved
prediction performance.

The literature has shown that neonatal immune cells are distinct from their adult

counterpart in both identity and functions, including B cells®*™*, T cells®™®*,

67.58 ‘and granulocytes®’°. The neonatal immune system needs

monocytes®® NK cells
to be simultaneously capable of tolerating the maternal environment, as well as rapidly
adapting to the pathogen exposure upon birth.>**®* Because of the rapid shift from
maternally derived immunity after birth, it has been observed that immature
granulocytes and transitional B cells are more prevalent in cord blood, with diminishing
proportions later in life.%9>*>4155918 The negnatal immune cells’ DNAme profile was
sufficiently unique that CellsPickMe was able to accurately reproduced this dynamic,
predicting high proportion of neonatal immune cells in cord blood and decreasing
proportion in samples of older ages. Furthermore, the UniBlood19 reference can
estimate neonatal cell populations, such as neonatal B cells and neonatal granulocytes.
Quantifying these cell types not only informs immune development but also functions as
relevant medical biomarkers. For instance, as transitional B cells serve as a pivotal link
between immature and mature B cells — negative selection against autoreactive

clones — altered frequency of transitional B-cell subsets have been linked to systemic
lupus erythematosus and other autoimmune disorders’*~". In the example of immature
granulocytes, we hypothesize that the captured DNAme signature is linked to not just
immature granulocytes, but also low density neutrophils (LDNSs), as their identity overlap
in cord blood®®. LDNSs are lighter neutrophils that are found in peripheral blood
mononuclear cells after gradient centrifugation. These cells possess
immunosuppressive or proinflammatory characteristics, and have higher abundance in
cord blood, pregnancy, or in patients with autoimmune diseases, cancer, and
infection®"*~"’. Our findings suggest that epigenetics is a viable avenue to explore
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immune cell development and transition across developmental trajectory,
supplementing useful yet distinct information to commonly studied immune markers like

cell surface markers and cytokine milieu.

As cell identity and epigenetics are inextricably linked, one of the challenges was the
selection of DNAme sites that are most predictive of given cell types. We aimed to build
an algorithm that is both robust and adaptive. Instead of generating a curated list of
DNAme sites, we performed the feature selection step post-normalization because the
prediction performance is dependent on the preprocessing pipeline, as evidenced by
both the discrepancy in MAE and alignment with clinical interval with and without
normalization. We explored a handful of machine learning methods with embedded
regularization steps to identify the probe sets that best predict cell type identity.
Surprisingly, the benchmark method of selecting 100 probes with t-tests consistently
performed well across experimental conditions. The results point to the relevance of
cross-validating a range of machine learning algorithms for optimization purposes. The
observation echoed the “no free lunch” theorem for optimization, which proposes that
the optimal solution of a given problem varies, and no one solution is superior for all

problems or data sets.”®"°

We also tested a range of k — number of initial features available for the regularization
algorithm — and showed, for IDOL reference, optimal performance can be achieved
with t-tests, EN, and RF, with as few as 10 probes per cell type. This option can
potentially be implemented for users who wish to improve deconvolution efficiency both
in terms of time and computational memory usage. Ultimately, we observed that EN and
RF consistently resulted in low prediction error at higher k. For users who intend to
investigate the biological process underlying immune cell-specific DNAme signature, we

recommend performing feature selection with EN or RF with k between 1000 and 5000.

While our study hints towards the application of DNAme-based deconvolution in
studying immune system dynamics, there are some aspects that warrant further
consideration. For one, CBC was considered as the ground truth cell count measure for
CHILD. Despite being a well-established method for examining cellular composition in

clinical settings, it cannot resolve lymphocyte subsets, which is critical for understanding
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immune responses®. Furthermore, collapsing the subsets can potentially bias the
performance assessment process. We also do not have the genetic information of the
samples included in the reference datasets. There can potentially be cell-type-specific
methylation quantitative trait loci that drive feature selection, which can impact the
deconvolution performance. Another consideration when utilizing CellsPickMe is the
relatively longer runtime compared to other methods, but this is due to the inclusion of
normalization and pre-selection of the prediction features which increases the rigor and
reproducibility of our tool. While our method is more time-consuming, we have shown
that these two steps significantly improve deconvolution outcomes, but computational
demands should be considered when approaching these methods. Finally, despite
having validated the prediction accuracy of CellsPickMe in CHILD as well as external
cord and adult blood datasets, we have not examined its performance in more diverse
settings, such as non-predominantly European genetic ancestry, elderly populations, or
diseased conditions. Future studies can address the gap by comparing CellsPickMe

predicted cell type proportions to empirical cell counts in these cohorts.

In this study, we demonstrated CellsPickMe's superior performance beyond pediatric
datasets, to cord and adult blood samples as well. Additionally, the feature selection
methods employed in CellsPickMe demonstrated improved prediction performance
across validation datasets we tested and output a list of cell-type-specific DNAme sites
that can be further explored. We also reported on the utility of applying CETYGO score
for evaluation of the appropriateness of given reference datasets and normalization
methods and incorporated this internal error assessment metric in the package for easy
application. Overall, CellsPickMe improved upon existing cellular deconvolution
methods in blood, enhancing researchers’ ability to explore and account for immune

dynamics in their DNAme investigations, especially in longitudinal pediatric studies.

Methods
Cohort description

a. Canadian Healthy Infant Longitudinal Development (CHILD)
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The CHILD cohort is a population-based prospective birth cohort study that recruited
3621 pregnant mothers across four sites in Canada®’. At birth, the cord blood
samples of children enrolled in the study were collected from the umbilical cords (n =
838). At age one and five years (referred to as age 1 and age 5 hereatfter),
peripheral blood samples were also collected as previously described (n = 1616)2.
Out of the participants, the majority of them identifies as White (75%), followed by
East Asian (8%), South East Asian (5%), First Nations (3%), Multiracial (3%), South
Asian (2%), Black (2%), and Hispanic (2%). DNA was extracted from the cord, age 1,
and age 5 blood samples, and the DNAme profiles assayed.

b. Isle of Wight (IOW)
The IOW birth cohort is a whole population prospective study that enrolled all
children born on the Isle of Wight, UK, between January 1989 and February 1990 (n
= 1536)". Blood samples were collected from the participants at birth (n = 777) as
Gutherie cards, and at age 10 (n = 406), 18 (n = 141), and 26 years (n = 295) as
peripheral blood draws. The DNAme profiles were then assessed as previously

described®.
DNA sample collection and methylation array for the CHILD cohort

DNA was isolated from cord and peripheral whole blood from CHILD cohort samples
using the DNeasy Blood & Tissue Kit (Qiagen, Venlo, Netherlands). The DNA
concentration and quality were evaluated via a NanoDrop 8000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). For DNA methylation profiling, the
purified DNA was bisulfite converted with the EZ-96 DNA Methylation Kit (Zymo
Research, Irvine, CA, USA) and assayed with the Infinium MethylationEPIC BeadChip
array (lllumina, San Diego, CA). The resulting raw intensity IDAT files contained
866,836 data points covering 863,904 CpG sites.

CHILD cohort DNA methylation data processing

All available CHILD whole blood DNAme data were read into and further processed with
RStudio (version 4.0.3).%* Quality control was performed using the ewastools v1.7
package based on technical parameters evaluated on the 636 control probes®. The

minfi v1.44 package was then used to evaluate methylated and unmethylated intensities,
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and check for sex concordance between reported and predicted biological sex®.
Outliers and poorly performing samples were then identified, with the former detected

with the lumi package®"®°

, and the latter defined as those with a high detection p-values
(p > 0.01 in > 1% of probes), DNAme intensities significantly deviating from the average
of negative control probes, or a bead count of less than three on more than 1% of
probes. The 59 SNP probes on the array were used to further confirm sample
relatedness amongst the cord blood, age 1 and age 5 samples for each child. Samples
that failed one or more of the quality control metrics were removed (n = 29). After quality
control, technical replicates were also removed (n = 22). Overall, 807 samples at age 5

and 795 samples at age 1 remained after sample filtering for cell deconvolution.
Pan-age blood reference-based cell deconvolution

We followed the well adopted statistical procedures in cell type deconvolution®®, as
outlined in Figure 2. The method assumed the statistical model:

i
B = z Wibi + &
i=1

where B represented the beta matrix of sample DNAme, and w and b represented the
proportion and beta value profile of cell type i in the sample, respectively. The error term
represented variability from either cell types not included in the reference dataset, other
biological sources of DNAme variability, or technical noise. The prediction algorithm
aimed to calculate b; in a subset of cell-type-specific DNAme sites in the reference

dataset for the estimation of w; in the sample dataset.

Step 1. Reference selection

To create a cell type deconvolution algorithm that allows for cell type prediction in
both cord and peripheral blood, four published DNAme datasets of purified blood cell
types were combined to create the UniBlood references — the
FlowSorted.Blood.450k (Reinius) ®, FlowSorted.Blood.EPIC (IDOL)%*,
FlowSorted.CordBlood.450k (Cord)®’, and FlowSorted.Blood.Extended.EPIC
(Extended)*® references. The first two of these encompass 6 immune cell types (B-
cells, CD4+ T-cells, CD8+ T-cells, natural killer [NK] cells, monocytes, and
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granulocytes), whereas the cord blood reference also includes nRBCs. Finally, the
Extended reference® includes 12 cell subtypes sorted at finer granularity (naive and
memory B cells, naive and memory CD4+ T cells, naive and memory CD8+ T cells,
regulatory T cells (tregs), natural killer (NK) cells, monocytes, basophils, eosinophils,
and neutrophils). We curated three UniBlood references, with different dataset

composition.

1. UniBlood7: Included IDOL, Reinius, and Cord reference datasets. The cord and
adult blood cells of the same types were grouped together (e.g. CD4+ T cells of the
3 datasets were grouped together and considered as one cell type).

2. UniBlood13: Included Extended and nRBCs from the Cord reference. As nRBCs
have the most distinct DNAme profile and is absent in adult blood, this data set
assumed the other cell types maintain similar DNAme profiles across development,
and only the absent nRBC is required to deconvolute cord and pediatric samples.

3. UniBlood19: Included Extended and Cord reference datasets. This reference set
considers neonatal and adult blood cells as distinct entities. This data set assumed
that neonatal and adult blood cells’ DNAme profiles are distinct. To ensure equal
representation of cord and adult cell types, we randomly sampled 10 samples for

each cell type in the Cord reference (seed = 1234) prior to combining the datasets.

We compared the influence of UniBlood references on deconvolution accuracy,
against that of the Cord, IDOL, and Extended reference.

Step 2. Normalization of reference and sample datasets

Normalization aimed to reduce batch effect between reference and sample datasets
and generate comparable sample distribution to ensure the estimated coefficients in
the reference applies to the samples. We compared common normalization
strategies, including those applicable to RGChannelSet object (Noob normalization
[Noob], as implemented with minfi::preprocessNoob, Functional normalization
[Funnorm], as implemented with minfi::preprocessFunnorm, Quantile normalization
[Quantile], as implemented with minfi::preprocessQuantile), those applicable to beta
matrix (Quantile normalization [Quantile.B], as implemented with

limma::normalizeQuantiles), and a no normalization condition.
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Step 3. Feature selection

The process of reference-based cell type prediction then selects probes that best
discern the cell types included in the reference. The benchmarking approach uses T-
tests to select for probes with the highest mean difference when comparing a given
cell type with all others. Alternatively, pre-selected probe sets exist, including IDOL
probes*, IDOL-ext probes®®, and DNAase hypersensitive sites (DHS)?%. We
proposed new probe selection methods based on machine learning algorithm that
has intrinsic feature selection process. Random forest (RF), elastic net (EN),
boosted logistic regression (BLR), gradient boosted machine (GBM), and
classification and regression tree (CART) were implemented with leave-one-out

cross validation (LOOCYV) using the caret package.

Step 4. Coefficient estimation and regression-based prediction

Sample cell type proportions are estimated with linear regression under constraints
such that w; > 0 and Y!_, w; < 1. The most common implementation of such
conditions is constraint projection (CP) with quadratic programming to optimize the
two inequality constraints (Houseman)®®. Two other popular approaches are robust
partial correlation (RPC) and support vector regression (SVR) (EpiDISH &
CIBERSORT)®. These two methods apply the normalization constraints a posteriori
by setting negative estimates to 0 and readjusting each estimate proportionally so
that the cell types sum up to 1. We compared the deconvolution performance with

the three regression methods.
Model Performance Assessment

To compare the performance across conditions for a given prediction step, three main
metrics were assessed: absolute error (AE), comparison with age-specific clinical count
interval, and variance explained accounting for the number of covariates (adjusted R?)
for DNAme. For the CHILD samples, the complete blood count (CBC), comprised of
lymphocytes, monocytes, and granulocytes portions, was considered as the ground
truth. After inference, the predicted proportions were summed for each of the three cell

subsets, with neutrophils, basophils, and eosinophils adding up to the granulocyte
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proportion, and T cells, B cells, and NK cells adding up to the lymphocyte proportion.
AE was calculated as the difference between predicted and actual cell type proportions
for each subset. One-way ANCOVA tests were applied across conditions to evaluate
the differences in AE distribution, with post-hoc Tukey’s test to correct for multiple
testing and identify the groups with significantly different distributions. Additionally, the
CEIll TYpe deconvolution GOodness (CETYGO) score was calculated as the root mean
squared error of the DNAme based on the estimated cell type proportions and the
observed DNAme*®. The CETYGO score ranges from 0 to 1, with a lower score
indicating a better fit of the reference dataset and prediction procedure for the samples

of interest.

For the comparison with the clinical interval, we calculated the median predicted
proportion for each combination, and considered the prediction to overlap with the
clinical range reported in the literature if the median falls within the 10" and 90™

|.16:52:5355°57 Finglly, we assessed the variance in the DNAme

percentile of the interva
data explained by cell type proportion estimated under across reference datasets and

normalization methods. The estimated proportions were first summarized with principal
component analysis. We applied EWAS on the estimated cell type PCs accounting for

90% of variance explained in the estimated proportion.
DNAme ~ CT_PC]-conditionA + CT_PC2 conditiona + ... + CT_PCX conditionA
DNAme ~ CT_PC1 conditions T CT_PC2 conditions * ... + CT_PCy conditionB

We then compared the distribution of the adjusted R” across measured DNAme sites
among prediction conditions. One-way ANOVA with post-hoc Tukey’s test were utilized

to calculate statistical significance.
Code Availability

An R package is available on GitHub (https://github.com/maggie-fu/CellsPickMe) and

can be installed through devtools::install_github("maggie-fu/CellsPickMe").
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Figure 1. Principal component analysis showing the main patterns of DNAme variation in A)
sorted cord and adult peripheral blood cell populations (plotted as text indicating their cell
type) and B) the sorted cells from A with umbilical cord blood from Cord reference (pink
dots), artificial mixture of adult blood cells (red dots), and two additional longitudinal pediatric
cohorts: CHILD (green dots) and IOW (orange-brown dots). The ellipses were created
based on 95% confidence interval using the ggplot2:: stat_ellipse() function. In both A and B,
three of each sorted cell type were randomly sampled and shown to reduce visual cluster.
nv: Naive cells; mem: Memory cells; Treg: Regulatory T cells; NK: Natural killer cells; Mono:
Monocytes; Gran: Granulocytes; Neu: Neutrophils; Bas: Basophils; Eos: Eosinophils; nRBC:
Nucleated red blood cells.
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Figure 2. Schematic diagram of the standard reference-based DNAme cell type prediction
pipeline and options evaluated in the optimization procedure. Top: Prediction steps and
corresponding functions for implementation in bold (left) and options for the corresponding
steps (right), with the bold option being the default in the benchmark method,
estimateCellCounts2, and we used these default options as the starting point of the
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optimization process. Bottom: Methods for evaluation, including the calculation of absolute
error, comparison to clinical ranges, and estimation of variance explained. Created with
Biorender.com.
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Figure 3. Violin plot of absolute prediction error of cell type proportions (predicted cell type
proportion — actual proportion derived from complete blood count) across normalization
methods (rows) and reference panels (columns) in CHILD age 5 samples. The mean absolute
error of a given reference-normalization method pair condition is shown above the violin plot,
with compact letter display indicating the significance of absolute error differences across
reference panels within a normalization method. Significance is calculated with one-way

ANOVA with post-hoc Tukey'’s test.
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Figure 4. A) Age-specific clinical interval of hematological fractions reported in children at 5
years of age (gray bars) and predicted cell type proportions of CHILD age 5 blood samples
based on DNAme profiles (dots). Six cell reference datasets were employed (columns) and
Quantile normalization was performed. The clinical intervals were compiled from six
publications with participants across sexes and of various genetic ancestry’ ™, all measured
with flow cytometry or hematology analyzers. The range presented here represents the most
lenient 10™ and 90™ percentile range reported across literature (Supplementary Table 3). The
colored dots are the median predicted proportion of a given cell population (salmon: inside
clinical interval; black: outside clinical interval). For transitional B cells and immature
granulocytes, the values correspond to estimated neonatal B cells and neonatal granulocytes
proportions. WBC: white blood cells. B) Estimated blood cell proportions with the UniBlood19
reference panel, for four datasets with samples from difference age group: CHILD age 1,
CHILD age 5, artificial mixture of adult-derived blood cells (GSE182379) and adult whole
blood samples (GSE112618). The “_cord” suffix indicates predicted neonatal cells. nv: Naive
cells; mem: Memory cells; Treg: Regulatory T cells; NK: Natural killer cells; Mono: Monocytes;
Gran: Granulocytes; Neu: Neutrophils; Bas: Basophils; Eos: Eosinophils; nRBC: Nucleated
red blood cells.
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Figure 5. (A-B) Absolute prediction error of cell type proportions (predicted — true) across
machine-learning-based feature selection methods based on A) IDOL reference and B)
UniBlood19 reference with Quantile normalization, using top 1000 cell-type-specific probes
per cell type. (C-D) MAE of predicted cell type proportions across varying number of
available features (k) for each feature selection method based on C) IDOL reference and D)
UniBlood19 reference
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Figure 6. (A-B) Absolute prediction error of cell type proportions in the CellsPickMe
optimized deconvolution algorithm and the benchmark estimateCellCounts2 method in
reserved CHILD A) age 1 and B) cord blood samples. C) Deconvolution prediction
results for CHILD cord blood using either the benchmark estimateCellCounts2 method,
with or without the IDOL probe list, or CellsPickMe with UniBlood19 reference.

P40 2303

saqoid10ql pod 2203

6LPoo|gIun NPIdS|12D


https://doi.org/10.1101/2025.04.22.649907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.04.22.649907; this version posted April 24, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

o
w

b ab ab a
0.029 0.023 0.024 0.019

o
o

o
—_—

-
4

Absolute Error (% Cell Type)

o e 2O o
9 {\b 006 L
(j’ ’ *59 .6, “@, p
{é/ < (\\ Lo
Vv’ X9
g @’ 8
< N
Q-\al- &
Qf)
(IQ'

Figure 7. Absolute prediction error of cell type proportions in the CellsPickMe
optimized deconvolution algorithm and the benchmark estimateCellCounts2 method in
an external validation adult whole blood dataset (GSE112618).
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