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ABSTRACT
Traffic deaths and injuries are one of the major global public health
concerns. The present study considers accident records in an urban
environment to explore and analyze spatial and temporal in the
incidence of road traffic accidents. We propose a spatio-temporal
model to provide predictions of the number of traffic collisions on
any given road segment, to further generate a risk map of the entire
road network. A Bayesian methodology using Integrated nested
Laplace approximations with stochastic partial differential equations
(SPDE) has been applied in the modeling process. As a novelty, we
have introduced SPDE network triangulation to estimate the spa-
tial autocorrelation restricted to the linear network. The resulting risk
mapsprovide information to identify safe routesbetween source and
destination points, and can be useful for accident prevention and
multi-disciplinary road safety measures.
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1. Introduction

Road traffic collisions is one of the serious issues in the modern world. According to 2018
global status report on road safety by the World Health Organisation, approximately 1.35
million people die each year as a result of traffic collisions [74]. The rate of occurrence
along with severity of traffic crashes are the principal indicators of urban road safety mea-
sures [74]. Literature suggests that factors such as road infrastructure or types of roads
(highways, double or, single carriage tracks) play a vital role in road safety measures [18].
Indeed, uncontrolled vehicle speed or street junctions without traffic signals increase acci-
dent risk [10], but temporal factors (time of the day or weekend nights) also act as decisive
aspects in the count and impact of accidents [20,33]. Identifying such significant elements
has been a central focus of research in the domain of road safety. Available map appli-
cations offered by larger corporations, such as Google Maps or collaborative geospatial
projects (for example, OpenStreetMap (OSM)) can provide information about the fastest
(shortest) route from source to destination points. The existing applications can suggest,
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however, the shortest route without considering likely risk factors. Multi-disciplinary pre-
dictor aspects are not implemented inmost of these applications. According toWilliamson
and Feyer [76], a particular road can be safe during mid-day, but the same road might
not be safe during office hours. Relevant spatio-temporal factors play a significant role in
identifying safe roads [52]. Traffic components such as street light, road type, or speed lim-
its act as significant factors in determining safe routes [12,44]. Thus, a multi-disciplinary
approach is essential to explore spatio-temporal effects on road collisions. Identifying
significant components [19,60] while performing spatio-temporal modeling of traffic acci-
dents [30,78] have gained an increasing interest in the domain of road safety management.
Research works by [5,6,44] made notable contributions in identifying significant factors
influencing traffic collisions. Bhawkar [8] explored and analyzed the leading factors caus-
ing road accidents on the streets of UK. Shahid et al. [63] mentioned that the causes of
traffic collisions can be broadly classified into spatial and temporal components. A series
of studies [3,20,26,62] analyze historic data to identify risk factors and assess likelihoods
of crash-related events to categorize spatio-temporal factors affecting traffic accidents.
These factors are considered as significant predictors in statistical analysis and prediction
modeling.

Several statistical techniques such as Poisson model variations [13,37,42,49], negative
binomial error structure [53], logistic [28] and linear regressions [1] have been applied to
analyze spatial variability of traffic accidents. In this regard,Wang et al. [72]while analyzing
factors influencing traffic accident frequencies on urban roads, mentioned that accidents
occurring at different locations are related. It supports spatial autocorrelation of traffic acci-
dent events. Spatial methods are able to incorporate geographical correlation in the model
fitting process and, in most of the cases, spatial methods outperform the non-spatial mod-
els [23,77]. In this line, a number of research works [27,29,30,35] suggest that stochastic
spatial processes are one of the most appealing analytical tools to analyze the spatial and
spatio-temporal distribution of traffic collisions. Karaganis and Mimis [29] used spatial
point processes to evaluate the probability of traffic accident occurrence on the national
roads of Greece. In this context, statistical inference comes along with Bayesian methodol-
ogy. Cantillo et al. [12] used a combined GIS-empirical Bayesian approach in modeling
traffic accidents on the urban roads of Colombia. A space-time multivariate Bayesian
model was designed by Boulieri et al. [21] used Bayesian spatial modeling with INLA in
predicting road traffic accidents based on unmeasured information at road segment lev-
els. The use of INLA-SPDE for spatial data is now quite well established in a number of
disciplines with a large number of contributions [7,25,70] and in particular the references
therein. However, in the context to traffic accident event modeling, there are limited con-
tributions implementing Bayesian methodology with INLA-SPDE approach. In addition,
if we consider events with a network support, see [14,45,46] for a nice overview of spatial
and spatio-temporal point pattern analysis on linear networks, then Bayesianmethodology
on road networks using INLA-SPDE is even far under explored.

The aim of this paper is two-fold. On one side we provide a modeling framework to
explore and analyze the spatial and temporal variation in the incidence of road traffic
accidents on individual road segments. The second aim roots in providing an advanced
and realistic computational strategy to create the spatial triangulation restricted only onto
the network topology. In this context, we propose the novel concept of multi-disciplinary
road-safety analysis by introducing spatio-temporal riskmodeling of traffic accidents using
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Bayesianmethodology restricted entirely onto the road network. Ourmodel acts as a com-
prehensive scoring system that can predict a risk index over individual road segments
generating a categorized risk map of the entire road network. The study is conducted on
five years road traffic accidents data from the city of London, UK. R programming lan-
guage (version R 4.0.4) has been used for statistical computing and graphical analysis. All
computations are conducted on a quad-core Intel i7-4790 (3.60GHz) processor with 32GB
(DDR3-1600) RAM.

The rest of the paper is organized as follows. Section 2 presents the OSM street net-
work data and provides some insights of the spatial distribution of traffic accidents in the
city of London, UK. A description of the spatio-temporal modeling framework comes in
Section 3. The design of the risk map algorithm is discussed in Section 3.2. Section 4 is
devoted to present the results of model prediction and risk map analysis. Some discussion
and concluding remarks come in Section 5.

2. Data settings

The Department for Transport of the Government of UK publishes road casualty statis-
tics twice a year. Detailed data about the circumstances of road accidents on public roads
reported to the police, and the corresponding casualties, are recorded using the STATS19
accident reporting form. The complete data set since 1979 is available in the UK Govern-
ment open data repository [69]. The data is free and available under theOpen Government
Licence v3.0 for public sector information. The dataset used in this paper contains detailed
information of traffic accidents for five years, from January 2013 to December 2017, that
have occurred in the city of London, UK. The city has an area of 2.90 km2, comprises six
Lower Layer Super Output Area (LSOA) with an approximate population of around 90,000
citizens. The area is an important local district that contains the historic center and the
primary Central Business District (CBD) of London.

According to Prasannakumar [52] the number of traffic collisions in each road seg-
ment plays a key role in designing predictive models that can reflect the influence of
spatio-temporal factors on traffic accidents. The original traffic accidents dataset retrieved
from [69] has records of daily accidents with geographical coordinates of individual occur-
rence. But one of the principal objectives of the current study is to measure the risk factor
of individual road segments in the study area. As a result, we have applied up-scalingmeth-
ods on both temporal and spatial resolutions. To identify the risk status of respective road
segments rather than checking individual locations of accidents, the spatial resolution has
been up-scaled to road networks, and the temporal unit is considered as month, to avoid
having extreme number of zero-counts per segment. Thus, our target variable is the total
number of accidents occurring in each road segment per month, from 2013 to 2017. An
individual year will have 12 × 1406 = 16872 events, where 1406 is the number of road
segments in the entire study area. This results in 5 × 16872 = 84360 events for five years of
the study period on all road segments.Wenote that in 98%of the cases, we have nomonthly
traffic accidents on any road segment, and only 2% shows monthly accident records rang-
ing from 1 to 4. Figure 1(left) illustrates the frequency distribution of instances with no
accidents (depicted as zero) and more than one accident, and Figure 1(right) depicts the
frequency distribution of only non-zero instances.
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Figure 1. Frequency distribution of monthly instances with (left) no accidents (depicted as zero) and
other values, and (right) only non-zero instances on all road segments in the study area.

Figure 2. OSM street network with locations of traffic accident (2013–2015) highlighted in gray.

The roadnetwork is accessed fromOSMrepository usingRpackageosmdata [51].OSM
data is free and licensed under theOpen Data Commons Open Database License (ODbL) by
the OpenStreetMap Foundation. The OSM street network is illustrated in Figure 2, noting
thatOSMhighway categories such as unclassified, bus_guideway, raceway, path and bridle-
way are not included. Figure 2(right) also depicts individual accident locations (highlighted
in red) over 1406 road segments in the OSM network.

We report that in the model fitting process we have used three covariates such as road
type, road surface and months of a year. According to Transport for London [69], road
surface has five unique categories such as dry, wet, snow, frost and flood (where surface
water is over 3 cm deep). On the other hand, road types are roundabout, one way street,
dual carriageway, single carriageway and slip road. The variable month ranges from 1 to
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12. All three covariates are used as factors in the model. We note that for model fitting we
have used traffic accident records for three years (January 2013 to December 2015) have
been used while the records of following two years (January 2016 to December 2017) have
been used for prediction purposes.

3. Spatio-temporal modeling

Random spatial events, such as traffic accidents, form irregularly scattered point patterns
over regions of interest. In these cases, spatio-temporal point process models are use-
ful tools to perform focused statistical analysis [27,29,35]. Moreover, we can consider
that these events exist on a linear network, and we can find recent literature [21,45,46]
on spatio-temporal point processes over networks that are able to identify spatial auto-
correlations and interactions between points in the pattern. In this context, it is shown that
the occurrence of traffic accidents depend on spatio-temporal interacting and triggering
factors [34].

By aggregating data from locations to counts of events per segment, we open the door to
consider Poisson regressionmodels in combinationwith a Bayesian framework for the pre-
diction of traffic accidents on individual road segments. A Bayesian approach withMarkov
Chain Monte Carlo (MCMC) simulation methods can be used to fit generalized linear
mixed models (GLMM) [75]. MCMCmethods provide multivariate distributions that can
estimate the joint posterior distribution. As mentioned in Section 1, for latent Gaussian
models and models having a large number of geo-locations, the performance of MCMC
methods drops substantially [57,66,68]. As an alternative and computationally faster solu-
tion, prediction of marginal distributions by using a Laplace approximation for integrals
was introduced by Rue et al. [57] with the integrated nested Laplace approximation (INLA)
method. It focuses on models that can be expressed as latent Gaussian Markov random
fields (GMRF) [56].

We indeed follow this approach combining a spatio-temporal Poisson regression
method within a Bayesian framework using INLA and SPDE. In particular, let Yit and Eit
be the observed and expected number of road traffic accidents on the i-th road segment
and at the t-th month, t = 1, . . . ,T. We assume that conditional on the relative risk, ρit ,
the number of observed events follows a Poisson distribution

Yit|ρit ∼ Po(λit = Eitρit)

where the log-risk is modeled as

log(ρit) = β0 + ZT
i βi + ξi + ζt + εi + δit (1)

Here, ξi and ζt account for the spatially and temporally structured random effects, respec-
tively, δit represents spatio-temporal interaction between the two structured effects, and
εi stands for an unstructured zero mean Gaussian random effect and logGamma precision
parameters 0.5 and 0.01, defined as penalized complexity (PC) priors [65].Zi represents the
spatial covariates. We assigned a vague prior to the vector of coefficients β = (β0, . . . ,βp)

which is a zero mean Gaussian distribution with precision 0.001. All parameters associ-
ated to log-precisions are assigned inverse Gamma distributions with parameters equal
to 1 and 0.00005. In the current study, we have chosen to provide default prior distri-
butions for all parameters in R-INLA. These have been chosen partly based on priors
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commonly used in the literature [9,41,47,58]. We report that our results are robust against
other alternative priors, as we run several cases with different priors obtaining the same
results.

Description of the dataset in Section 2 suggests the current model can have problems of
instability, especially with spatial random effects, which would be exacerbated due to zero
inflation. Apart from the baseline Poisson model, both zero-inflated Poisson (ZIP) and
Poisson hurdlemodels can be formulated for zero inflated discrete distributions. They pro-
videmixtures of a Poisson and Bernoulli probabilitymass function to allowmore flexibility
in modeling the probability of a zero outcome [2]. According to Lambert [31], ZIP models
add additional probabilitymass to the outcomeof zero. Poisson hurdlemodels, on the other
hand, are characterized as pure mixtures of zero and non-zero outcomes [24,55,61]. In a
ZIPmodel, the response variable isYit = 0 with probabilityπ , and Po(λit)with probability
1 − π . In particular,

Yit =
⎧⎨
⎩
0 with prob π + (1 − π)e−λit

k with prob (1 − π)
λkite

−λit

k!
, k ≥ 1

On the other hand, a Poisson hurdle model indicates that Yit = 0 with probability π , and
a truncated Poisson distribution with parameter λit with probability 1 − π . Thus, we have

Yit =
⎧⎨
⎩
0 with probability π

k with probability
(1 − π)

1 − e−λ

(
λkite

−λit

k!

)
, k ≥ 1

In themodel fitting process, we have explored three different distributions discussed above
to fit the model in Equation (1). To compute the joint posterior distribution of the model
parameters, we use an INLA-SPDE method, as introduced by Lindgren et al. [32]. SPDE
consists in representing a continuous spatial process, such a Gaussian field (GF), using
a discretely indexed spatial random process such as a Gaussian Markov random field
(GMRF). In particular, the spatial random process ξ , here represented by ξ() to explicitly
denote dependence on the spatial field, follows a zero-mean Gaussian process withMatérn
covariance function represented as

Cov(ξ(xi), ξ(xj)) = σ 2

2ν−1�(ν)
(κ||xi − xj||)νKν(κ||xi − xj||) (2)

where Kν(.) is the modified Bessel function of second order, and ν > 0 and κ > 0 are
the smoothness and scaling parameters, respectively. INLA approach constructs a Matérn
SPDE model, with spatial range r and standard deviation parameter σ .

The parameterized model we follow is of the form

(κ2 − �)(α/2)(τS(x)) = W(x)

where � = ∑d
i=1

∂2

∂x2i
is the Laplacian operator, α = (ν + d/2) is the smoothness param-

eter, τ is inversely proportional to σ , W(x) is a spatial white noise and κ > 0 is the
scale parameter, related to range r, defined as the distance at which the spatial correlation
becomes negligible. For each ν, we have r = √

8ν/κ , with r corresponding to the distance
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where the spatial correlation is close to 0.1. Note that we have d = 2 for a two-dimensional
process, and we fix ν = 1, so that α = 2 in our case [9].

INLA-SPDE requires a triangulation or mesh structure to interpolate discrete event
locations to estimate a continuous process in space [59]. We use centroids of each road
segment as the target locations over which we build the mesh. A detailed description
of building a Delaunay’s triangulation with emphasis on a network mesh is shown in
Section 3.1. Centroids of individual road segments and triangulations in the mesh are
used to generate the projection matrix. Now we use inla.spde2.pcmatern function from R-
INLA package to build SPDEmodel and specify PC priors for the parameters of theMatérn
field. The parameters prior.range and prior.sigma control the joint prior on range and stan-
dard deviation of the spatial field [64,65]. According to Bakka et al. [7], the range value
is selected based on the spatial distribution of event locations in the study area. In the
current study, due to the proximity of accident locations we have decided to use a prior
P(r < 0.01) = 0.01, which means that the probability that the range is less than 10 meters
is very small. Parameter σ denotes the variability of the data. We specify the prior for this
parameter as P(σ > 1) = 0.01.

On the other hand, the temporal random effect (ζt) is assumed to be a smoothed
function, in particular a random walk of order one (RW1) [57]. Using the specifications
discussed above, we design a set of models for three distributions such as Poisson, Pois-
son hurdle and ZIP. Each of these models are explored having different combinations
of three covariates (mentioned in Section 2) and several choices amongst PC priors and
default priors for the parameters to create a SPDE model object in case of a Matérn field.
Details of each model are shown in Table 1 in Appendix. As reported in Equation (1),
we have also introduced a spatio-temporal interaction effect as an independent unob-
served term for each combination of region and period (i, t), thus without any structure
δit ∼ Normal(0, 1/τδ). However, if spatial and temporal main effects are present in the
model, then this interaction only implies independence in the deviations from them.
Note that it is a global space-time heterogeneity effect, and it is usually modeled as white
noise [36]. See also Blangiardo andCameletti [9]. Thus, a second set ofmodels are designed
using the three distribution types with all three covariates included in each case but with
the choice of spatio-temporal interaction and PC priors. A summary of the considered
competing models is depicted in Table 2 in Appendix.

As we have a battery of competing models, we compare them using the deviance infor-
mation criterion (DIC) [67], which is a Bayesian model comparison criterion, represented
as

DIC = goodness of fit + complexity = D(θ) + 2pD

where D(θ) is the deviance evaluated at the posterior mean of the parameters, and
pD denotes the effective number of parameters, which measures the complexity of the
model [67]. When the model is true, D(θ) should be approximately equal to the effective
degrees of freedom, n − pD. DIC may underpenalize complex models with many random
effects.

An alternative is the Watanabe Akaike information criterion (WAIC) which follows a
more strict Bayesian approach to construct a criterion [73]. Gelman et al. [22] claim that
WAIC is more preferable over DIC. Likewise DIC, WAIC estimates the effective number
of parameters to adjust over-fitting. pWAIC is similar to pD in the original DIC. Gelman
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Figure 3. Selected region mesh with non-convex hull boundary.

et al. [22] scales the WAIC of Watanabe [73] by a factor of 2 so that it is comparable
to AIC and DIC. WAIC is then reported as −2(lppd − pWAIC) where lppd is the log
pointwise predictive density and pWAIC is the effective number of parameters. Therefore,
the lowest values of DIC and WAIC suggest the best model. A high number of parame-
ters means more complexity. The best models are those with a high level of complexity
and a high goodness-of-fit. In general, we choose that model showing lower DIC and
WAIC.

3.1. SPDE triangulation design

Due to the densely distributed nature of the road segments in the study area, initially a
continuous spatial structure is chosen for modeling, and triangulation is carried out on the
entire study area. Triangle size is generated using a combination ofmaximumedge and cut-
off. The size controls how precisely the equations will be tailored by the data. Using smaller
triangles increases precision but also exponentially increases computational time [70]. The
best fitting mesh should have enough vertices for effective prediction, but the number
should be within a limit to have control over the computational time. Following this princi-
ple, a series of meshes with varied range in the number of vertices are created. Finally, the
best fitting mesh without offset value and having non-convex hull boundary is selected.
The number of vertices in the selected mesh is 1526. Figure 3 depicts the selected mesh
with the locations of traffic accidents (in red) during the time period of January 2013 to
December 2017.

SPDE network triangulation: The mesh created for the entire region can be used to fit
INLAmodel in the study area. Prediction involves projecting fitted model into the mesh at
precise spatial locations. However, while fitting the mesh (as depicted in Figure 3) a prob-
lem appears. The sampled traffic accidents are discrete spatial points located precisely on
the road networks, but models fitted with a regionmesh cover the entire study area. There-
fore, the predicted locations of traffic accident can be placed in any area with or without
road networks. It is not realistic that the model prediction provides results in locations
without road network where there is no chance of traffic accidents to occur. Thus, the
traditional methods of model prediction using a region mesh are not useful. We need to
introduce the novel idea of designing SPDE triangulation precisely on road networks. The
process is executed following sequential steps where a buffer region for each road segment
is initially created, next a clipped buffer polygon is constructed which comprises only the
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Figure 4. Traffic accident locations on road segments Without buffer (left), and With buffer (right).

area covered by the road network, and finally SPDE triangulation is applied on the clipped
polygon to construct the SPDE Network Mesh. Each step of the network triangulation
process is discussed in brief as follows.

Access OSM network: OSM road network for the study region is accessed using R
package osmdata [51].

Buffer for each road segment: A report by the National Academies of Sciences, Engi-
neering, and Medicine (USA) on quality and accuracy of positional data in transporta-
tion [48] highlighted accuracy and reliability issues of positional data in transportation
researchworks. There are instanceswhere recorded data entries invariably introduce errors
in both geometric and contextual attributes [43]. This happens also with our road traffic
accident data when being positioned over the extracted OSM road network. Figure 4(left)
depicts a sample of traffic accident locations (marked as red points) on the OSM road net-
work. We note that many events are located away from the road segments. Initially, the
buffer width is selected in such a manner to get maximum points within a standard buffer
area for all road segments.We report that theGPS error is very similar for all road segments
irrespective of their individual width. Thus, a common selected buffer width for all road
segments served the best to get maximum points within buffer area. So, we check out with
different buffer widths common for all the road segments. We have used several buffers
widths, and selected a 20 meters buffer as the optimal one where the maximum points lie
within buffer regions for each road segments. In Figure 4(right) we show the built buffers
using the function geo_buffer from R package stplanr [38]. OSM road network with 20
meters added buffer is depicted in Figure 5(left).

Create Clipped Buffer Polygon: Individual buffer segments are merged and converted
into a single polygon clippedwithin a bounding box covering the study area. Figure 5(right)
illustrates the clipped polygon of the buffered segments.

Apply network triangulation: As we need to analyze accident risk factor in each road
segment, events within the buffer area of individual road segments are aggregated and
counted. Then, the centroid of each segment is used as initial triangulation nodes applied
on the clipped polygon. In relation to Delaunay’s triangulation, it is worthy mentioning
about the choice of buffer size and relevant parameters used to design SPDE mesh. Func-
tion inla.mesh.2d in R-INLA provides control for the largest allowed triangle edge length
(max.edge) and minimum allowed distance between points (cutoff ). The number of ver-
tices in the SPDE mesh is regulated by both of these, as well as the boundary region of the
study area. We report two issues while using buffer width proportional to street widths.
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Figure 5. (Left) OSM road network with a 20m buffer; (Right) Clipped polygon of buffered segments.

As mentioned in the previous section, erroneous GPS locations of accident sites leads to
the first issue. In case of narrow streets, substantial numbers of accident points are found
to be located outside the buffer area. The second issue is that when the buffer width goes
below a threshold value, the entire structure of the mesh gets distorted. In contrast, if the
buffer width is particularly large, owing to close proximity of road segments, two or more
segments merge into one. This is not realistic in nature, especially while calculating the
accident risk on individual road segments.

Thus, to avoid these technical issues we have identified a common threshold value for
the buffer width for all road segments irrespective of their individual widths. According
to Verdoy [70], we need to balance between number of vertices used to build the triangu-
lated mesh and computational cost. The best fitting mesh should have enough vertices for
effective prediction, but the number should be within a limit to have control over computa-
tional time. With this concept we have fine tunedmax.edge and cutoff values with several
models to identify the best fitted mesh. A series of SPDE-mesh are generated, and the best
fitting mesh projected only on the road network, as illustrated in Figure 6, is selected. The
number of vertices for the final selected mesh is 12666. Figure 6 depicts the network mesh
together with 84360 accident events.

3.2. Riskmap design

We discuss here how to build traffic accident risk maps onto the network structure coming
from the fitted Poisson model. Coming from the predicted monthly accident occurrences
on individual road segments, we build a Risk Score (Rscore ). Initially, the raw risk score for
any road segment is equal to the sum of the total number of expected monthly accident
counts for that segment. Then, we design a dynamic normalization technique to convert
this raw risk into categorical values defining what we call a Risk Index. Finally, the normal-
ized risk indices are adapted to design the risk map over the entire road network. These
steps are detailed as follows.

In the current study, we have calculated the raw risk score for a road segment as the
sum of monthly accident counts on that segment. Literature on road safety suggests that a
predefined category range has to be decided before modeling any risk map [16]. Thus, we
consider some sort of dynamic normalization technique for the raw risk scores. Initially,
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Figure 6. Selected network mesh with added traffic accident locations.

Table 1. Normalization for risk index values.

Normalize condition Risk index Safety measure

Segment having zero Rscore 0 Low risk
Rscore < Rrange 0 Low risk
Rrange ≤ Rscore < 2 × Rrange 1 Low-medium risk
2 × Rrange ≤ Rscore < 3 × Rrange 2 Medium risk
3 × Rrange ≤ Rscore < 4 × Rrange 3 Medium-high risk
4 × Rrange ≤ Rscore 4 High risk

the risk range is calculated as follows

Rrange = (max .Rscore − min .Rscore)
no. of risk categories

(3)

Next, we have used Rrange to calculate the normalized values. As a relevant example,
the values depicted in Table 1 show that the number of categories in the normalized
scale is the same as the proposed number of risk categories. We note that the proposed
dynamic normalization technique can be applied to similar risk index scales in road safety
management.

We also highlight that the safety measure mentioned in Table 1 follows the European
Road Assessment Programme (EuroRAP) standard to create the risk ratings of the motor-
ways and other national roads in Europe [54]. The risk index algorithm implemented here
has intended to categorize road segments based on the traffic accident records in each
segment. As a result, segments having higher accident counts are categorized as accident-
prone or high risk roads. A similar methodology can be adapted in other traffic risk
modeling algorithms. The Risk index values of individual road segments are adapted to
design final risk maps.
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4. Results

This section presents results of the analysis and methodological approach developed in
Section 3. In particular, we provide results on model fitting and prediction together with
risk maps of accidents.

4.1. Model fitting

The proposed model, mentioned in Equation (1) has been fitted to the accident datasets
for the years 2013 to 2015. The remaining accident records of 2016 and 2017 have been
used for prediction purpose. R-INLA package [41] is used to fit all models mentioned
in Section 3, by adapting and modifying existing coding for space-time analysis [79].
All models are executed separately for the same data set (January 2013 to December
2015).

Deviance information criterion (DIC) and the Watanabe-Akaike information criterion
(WAIC) are used to assess the performance of the models, and to select the best fitting
model by balancing model accuracy against complexity [67]. Models having smaller DIC
value, in spite of the added complexity, provide a more appropriate fit to the sampled
data [9]. Summary results (DIC and WAIC) related to goodness-of-fit for all the fitted
models are reported inTable 1 andTable 2 inAppendix.Wenote that, in each case, the com-
putational time of non-interactive spatio-temporalmodels are found to be substantially low
compared to the other interactive counterparts.

DIC values shown in Table 2 indicate that Poisson models (M1 to M4) provide the
largest DIC values, while, in contrast, Poisson hurdle and ZIP show much better perfor-
mances. Moreover, the zero-inflatedmodels without spatio-temporal interaction (M5,M7,
M9 andM11) provide a better fit than the corresponding spatio-temporal interactive pairs
(M6, M8, M10 and M12). The values reported in Table 2 indicate that for model M7, DIC
(9464.48) and WAIC (9471.32) are substantially lower compared to others.

Thus, to model the spatio-temporal structure of traffic accidents on London road net-
works, the Poisson hurdlemodel without a spatio-temporal interaction term is selected.We
report that model M7 considers spatial and temporal effects together with three covariates
(month, road type and surface) mentioned in Section 2. In each case, the models pro-
vide larger DIC and WAIC values when the covariates are not considered (see Table 1

Table 2. Competing models with DIC and WAIC values.

Model DIC WAIC

M1: Poisson 44137.41 44132.59
M2: Poisson 47251.88 47243.16
M3: Poisson 43433.75 43427.04
M4: Poisson 44041.93 44056.08

M5: Poisson hurdle 9571.01 9570.31
M6: Poisson hurdle 9932.40 9920.95
M7: Poisson hurdle 9464.48 9471.32
M8: Poisson hurdle 9490.83 9493.05

M9: Zero inflated Poisson 9683.70 9686.07
M10: Zero inflated Poisson 9896.62 9890.19
M11: Zero inflated Poisson 9491.44 9482.10
M12: Zero inflated Poisson 9511.15 9568.80
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Figure 7. Marginal posterior distributions of covariate coefficients.

in Appendix). Additionally, the models perform better when PC priors are applied for
the parameters to create the SPDE model object in case of Matérn model. As a note,
in the current study, regardless of distribution type, the models show a better fit with
the inclusion of all three covariates and PC priors under the case of no spatio-temporal
interaction.

The posterior distribution of fixed and random effects included in the model are
depicted in Figures 7 and 8. In particular, Figure 7 shows the marginal posterior dis-
tributions of all fixed effects related to covariates road type, road surface and month,
confirming the Gaussian distribution centered at zero. Additionally, Table 3 in Appendix
depicts the coefficients and credibility intervals of all fixed effects. We note that the covari-
ate road type has no influence in our model. The positive mean values for the covariate
road surface indicate positive influence in the model. However, in case of the month vari-
able, only July shows positive significance while all other months have no influence in the
model. In Section 5, we further detail the influence of variables on the model in further
details.

Figure 8 depicts the marginal posterior mean of the spatial ξi and temporal ζt random
effects. The horizontal axis of Figure 8 (top) represents 12666 triangulation nodes of SPDE
network mesh used in the model. A stronger spatial effect is observed on the nodes of tri-
angles on the road segments having higher accident counts (highlighted in Figure 6 as dark
red patches). Similarly, Figure 8 (bottom) exhibits the variation of the marginal posterior
mean of the temporal random effects over the 36 months for the model fitting years (2013
to 2015).

We finally note that spatial effect parameters κ and τ have mean values 162.53 and
0.2804 as depicted in Figure 9 that shows the marginal posterior distributions of the two
hyperparameters for the spatial random field. Using κ and τ we can get the value of spatial
range r = 0.0174 km or 17.4m.
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Figure 8. Top: marginal posterior mean of the spatial random effect ξ(.); Bottom: marginal posterior
mean of the temporal random effect ζt .

Figure 9. Marginal posterior distributions of hyperparameters κ and τ for the spatial random field ξ(.).
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Figure 10. Residual (observed minus predicted) plots for: (Left) 2016; (Right) 2017.

Figure 11. Year 2016: (Left) Risk map; (Right) Original data of traffic accidents.

Figure 12. Year 2017: (Left) Risk map; (Right) Original data of traffic accidents.

4.2. Model prediction

Using the fitted model, we can analyze goodness-of-fit of the model by considering predic-
tion over unsampled locations [79]. This prediction involves projecting the fitted model
into the mesh at each road segments.

The proposedmodel is tested using test years (2016 and 2017) combined with the entire
model fitting that used the years 2013 to 2015. From the final predicted result for both test
years, we extract monthly predicted values for individual years. In each case, we calcu-
late corresponding residuals of these predictions (observed minus predicted). Figure 10(a
,b) depict such residuals; we note the residuals are generally close to zero and have no
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Figure 13. Identified zones having consistent risk value for (Left) 2016 and (Right) 2017.

Figure 14. Highlighted streets with upward trend toward higher risk between 2016 (left) and 2017
(right).

particular structure. Root mean square error (RMSE) value acts as an indicator to assess
the performance of a fitted model. We obtained RMSE = 0.0135 for 2016, and RMSE
= 0.0121 for 2017, which are similar and particularly small. Further discussion on model
performance is reviewed in Section 5.

4.3. Riskmap

We calculate the risk index for individual road segments following the indications in
Section 3.2, and using the safetymeasure scale shown in Table 1. The normalized risk index
values are calculated using the predicted values for years 2016 and 2017. The risk maps are
visualized in an interactive geospatial platform using R packagemapview [4]. Figure 11(a)
illustrates the risk map for 2016 and corresponding original traffic accident locations are
depicted in Figure 11(b). Similar results for 2017 are presented in Figure 12(a ,b). The color
scale (0 through 4) used in eachmap follows the same safety measure scale used in Table 1.

The predicted risk maps are visually compared with original traffic accidents records
during the same time span. Some interesting observations are noted. For both years, most
of the roads in the outskirts of the city are predicted to be relatively safe than the city cen-
ter. Indeed, during these years, roads near the city center are predicted with medium to
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high risk levels. Figure 13 highlights three consistent risk zones for both years. The left-
most highlighted area being outside the city center shows a steady low risk zone.While the
other two highlighted zones represent consistent high risk roads. The identified zones show
similar trends when we compare with original accident records during 2016 and 2017.

Wenote some interesting annual variations in particular road segments identified by our
model predictions. If we look at Figure 14, with some streets highlighted by white circles,
we see that the predictions from 2016 to 2017 are following an upward trend toward a
higher risk. Indeed, the number of accidents in these streets increased from one year to the
next.

5. Conclusions and discussion

The current study presents a spatio-temporal model predicting the occurrence of traffic
accidents in an urban environment. The model is used to create dynamic risk maps for a
road network. To balance computation time and accuracy, the present research work took
advantage of the spatio-temporal nature of the data, and used Bayesian methodology by
including INLA and SPDE in the modeling process.

Literature [11,39,40] suggests that model fitting using diverse subset combinations of
variables provides opportunities to improve prediction accuracy. In the proposed model,
we have included three covariates (see Section 2). Out of them, except variables road sur-
face and one of themonths (see Table 3 inAppendix) have no influence on themodel. Thus,
future research works can explain some of the noted variations on improving prediction
accuracy by careful inclusion of significant exogenous variables related to traffic flow, traffic
control and temporal variables such as time of accident occurrence. Furthermore, studies
like [17,50] suggest future research works in exploring reliable and large training data set
that can improve the performance of the proposed model.

In recent years, spatio-temporal modeling of road traffic accidents and riskmapping has
gained attention, especially in the domain of multi-dimensional road safety management.
Besides, travel risk maps are gaining popularity among business travellers, tourists and
emergency service providers. Results and findings of the current study illustrate that the
proposedmodel can generate predicted risk maps of the entire road network for any urban
study area. In this sense, it is dynamic in nature. Themodel is flexible and general, and thus
can be adapted to similar problems. It can handle different types of covariates in space or
time, spatial and temporal structures and space-time interactions. The predicted riskmaps
of traffic accidents is one of our interesting outcomes.We can produce the road safety index
of all road segments, including small details of each junctions or sharp turnings. In our
particular problem, we can point to which elements authorities can take dedicated actions
to control and reduce traffic accidents as our model identifies significant elements that
can be controlled and modified by humans. This means we provide a real, pragmatic and
realistic element for institutions to take actions on reducing the risk of traffic accidents.

Moreover, identification of potentially dangerous roads and regions can act as baseline
information for geospatial analysis on road safety. The results can have strategic applica-
tions in developing GIS analytical tools to identify and depict possible safe routes. As the
risk map provides information about the entire road network, it can be flexible enough to
generate possible alternative safe route(s) between any source and destinations pairs.
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Another important use of the model is analyzing the change and trend pattern of traf-
fic accidents. We can find some literature suggesting this line of research in the city of
London [8,15,71], and similar works in other countries [5,34]. As depicted in Figure 14,
identification of gradual changes in risk values and their potential factors, are of interest
for future research works on change point detection.

Consequently, the novelty of the study is the introduction of SPDE network triangula-
tion or SPDE network mesh to estimate the spatial auto-correlation of discrete events. As
such, it took a new step in INLA-SPDE modeling to perform spatio-temporal predictive
analysis only on selected areas (specifically for road networks), instead of performing on
entire continuous region. In a broader picture, the study contributes to the relatively small
amount of literature on spatio-temporal analysis using INLA-SPDE of spatial events pre-
cisely on road networks. The methodology is dynamic and can be adapted and applied to
other locations globally.
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