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ABSTRACT: The quality factor, Q, of photonic resonators
permeates most figures of merit in applications that rely on
cavity-enhanced light−matter interaction such as all-optical
information processing, high-resolution sensing, or ultralow-
threshold lasing. As a consequence, large-scale efforts have been
devoted to understanding and efficiently computing and optimizing
the Q of optical resonators in the design stage. This has generated
large know-how on the relation between physical quantities of the
cavity, e.g., Q, and controllable parameters, e.g., hole positions, for
engineered cavities in gaped photonic crystals. However, such a
correspondence is much less intuitive in the case of modes in
disordered photonic media, e.g., Anderson-localized modes. Here,
we demonstrate that the theoretical framework of quasinormal
modes (QNMs), a non-Hermitian perturbation theory for shifting material boundaries, and a finite-element complex eigensolver
provide an ideal toolbox for the automated shape optimization of Q of a single photonic mode in both ordered and disordered
environments. We benchmark the non-Hermitian perturbation formula and employ it to optimize the Q-factor of a photonic mode
relative to the position of vertically etched holes in a dielectric slab for two different settings: first, for the fundamental mode of L3
cavities with various footprints, demonstrating that the approach simultaneously takes in-plane and out-of-plane losses into account
and leads to minor modal structure modifications; and second, for an Anderson-localized mode with an initial Q of 200, which
evolves into a completely different mode, displaying a threefold reduction in the mode volume, a different overall spatial location,
and, notably, a 3 order of magnitude increase in Q.
KEYWORDS: photonic resonators, quasinormal modes, Q-factor optimization, non-Hermitian perturbation theory, random systems,
Anderson modes

■ INTRODUCTION
The interaction of light and matter in structured optical
environments that tailor the local density of optical states is at
the core of fields such as cavity electrodynamics,1−3 nonlinear
optics,4−6 and optomechanics.7,8 In many of these fields, the
use of photonic crystals, their band gaps, and engineered
defects within them, such as cavities and waveguides, is
widespread.9 However, the translational order that underpins
such synthetic materials is not necessary, and disordered
systems can expand the parameter space for several
applications due to the large plethora of design freedom.
Moreover, disordered photonic media made of random
distributions of pointlike scatterers with controlled scattering
properties have also been shown to block, guide, and tightly
confine light.10−13 In addition, the nontrivial interplay of order
and disorder can also drastically reshape light transport, with
strong Anderson localization of light as an emblematic
example.14 This has fostered the vision of a vast landscape
from order to disorder with engineered disordered systems as a

complementary alternative to their fully ordered counterpart.15

While the mechanisms governing light transport in ordered
and disordered environments may differ, their fitness as light−
matter interfaces is ultimately determined by their ability to
sustain photonic modes with large optical energy densities, i.e.,
through spectral and spatial light confinement. A paradigmatic
way of doing so16 is via high quality factor, Q, and low mode
volume, V, optical cavities, with the latter figure of merit taking
a different expression depending on the interaction at hand.17

Given the generalized role of Q,18 extensive efforts have been
put into improving the designs and top-down nanofabrication.
While enhancements of various orders of magnitude in Q can
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be achieved through intuitive-based approaches19 and
radiation-limited Qs as high as 9 million have been
demonstrated in optimized two-dimensional photonic-crystal
cavities,20 progress in the case of random photonic systems has
been more limited.21 Such an issue has been addressed at the
ensemble-average level by introducing short-range correla-
tions,22−24 but the Qs of Anderson-localized modes are only on
par with engineered cavities in the case of slow-light photonic-
crystal waveguides subjected to minute fabrication disorder.25

On the other hand, the alternative problem of optimizing the Q
of a single localized photonic mode in a random system, i.e., to
engineer it, has not been tackled. In the more general picture of
wave-matter science, while the optimization of ordered systems
can be considered unambiguous, engineering and optimizing
performances of single realizations of disordered systems is
more difficult. Several approaches have tackled this challenge,
for example, connecting wave-physics to network science, and
succeeded in establishing clear interplays between physical
quantities and tunable parameters.26−28

In the absence of absorption, the Q of a cavity mode is
determined by radiation losses at the boundaries of the domain.
Due to its compatibility with conventional planar semi-
conductor technology, the preferred geometry is a dielectric
slab: this leads to a heuristic distinction between in-plane and
out-of-plane losses, respectively, gauged by Q∥ and Q⊥. The
possibility of increasing the former by increasing the footprint
in the slab plane has implied that most efforts to maximize Q
have been devoted to maximizing Q⊥. This boils down to
modifying the momentum-space representation of the resonant
modes via either first-principles group symmetry arguments,29

the direct observation of the smoothness of the field
envelope,30 real-space analysis of the leaky components,31 or
semianalytic formalisms that tackle the problem as a reverse
design one.32,33 However, while they allow a pathway for
iterative optimization, these approaches are supervised, and
their extension to the case of random modes is not trivial. In
parallel, rapid growth of computational resources has helped
the development of both gradient-free and gradient-based
automated optimization methods such as nature-inspired
search algorithms,34,35 machine learning,27,36,37 and density-
based topology optimization.38 In particular, gradient-based
inverse design, which is transforming the paradigm of high-
efficiency component design in nanophotonics,39 uses adjoint
sensitivity analysis to efficiently compute gradients of a wide
variety of objective functions. Traditionally used in finite
difference and finite element solvers,40,41 the adjoint method
has recently been extended to mode-expansion solvers through
automatic differentiation techniques.42 Among the many
desired functional characteristics, these methods have been
employed to optimize the Q of a photonic mode.42 We note,
however, that these have rarely relied on directly solving
Maxwell’s eigenproblem with radiation boundary conditions,43

where Q emerges as a natural quantity through the complex
eigenfrequencies of quasinormal modes (QNMs).44 Here, we
propose a gradient-based automated optimization approach to
maximize the Q of optical resonances in ordered and
disordered dielectric slabs. The method uses first-order non-
Hermitian perturbation theory45 to efficiently compute the
gradients of the Q-factor of a single QNM relative to arbitrary
material boundary displacements, i.e., it optimizes the position
and shape of material boundaries. First, we exploit the method
on L3 cavities surrounded by photonic crystals of different
spatial extensions, i.e., of different footprints, and evidence how

it naturally optimizes for both Q⊥ and Q∥. Then, we employ it
to optimize the Q of an Anderson mode supported by a
dielectric slab with a random distribution of etched holes46 and
demonstrate the optimization process to produce a 3 order of
magnitude enhancement of its Q. By monitoring the spatial
distribution of the mode along the optimization, we observe
the central location and spatial distribution of the mode to
change dramatically, with a final spatial localization comparable
to the one achieved in engineered photonic-crystal cavities.

■ Q-FACTOR OPTIMIZATION METHOD
Resonant electromagnetic fields in plasmonic and dielectric
resonators are unbound; this gives rise to, e.g., an exponential
decay of the resonating field after an excitation is switched off
or lineshapes of finite linewidth in scattering spectra. From a
modeling perspective, these resonances are well described
within the theoretical framework of QNMs, which are the
solutions to the source-free Maxwell wave equation with a
radiation boundary condition.44,45 The resulting eigenvalue
problem admits solutions with complex eigenfrequencies ω̃n =
ωn + iγn, from where the Q-factor of the n-th mode is found as
Qn = ωn/2γn. As a consequence of the radiation condition, the
QNM fields diverge in the far field, which invalidates common
energy normalization approaches in Hermitian systems. This is
circumvented through alternative normalization approaches
that regularize the QNM behavior.47 In this work, we use the
so-called perfectly matched layer (PML) normalization48

E r r E r H r r H r r
1
2

( ( ) ( ) ( ) ( ) ( ) ( ))d
V

n n n n
T

= · ·
(1)

where {En, Hn} is the electromagnetic field of the QNM and
the integral is carried out over the volume VT = V ∪ VPML,
which includes the volume surrounding the cavity, V, and
importantly, the volume VPML occupied by the PML used for
the numerical implementation of the radiation condition. In
recent years, various QNM expansion techniques have been
used to model light-scattering problems49,50 and light−matter
interaction48,51−53 whenever either (or both) photonic or
(and) plasmonic resonances are involved. In addition,
perturbation theories have been adequately generalized to
open resonators using QNMs54 and their predictions
experimentally tested.55,56 Here, we consider the effect of
shifting the boundaries between two materials (labeled 1 and
2). The first-order complex shift to the complex eigenfre-
quency ω̃n of a QNM is given by45,58

S

E r E r

D r D r s r n r
2

( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( ))d

n
n

S
n n

n n

1 2 1
1

2
1= [ ·

· ] · (2)

where En and Dn are the normalized (according to eq 1)
complex electric and displacement fields of the QNM,
respectively; the superscripts “∥” and “⊥” denote field
components, respectively, parallel and perpendicular to the
shifted boundary S, the displacement of which is given by s(r)
and its normal by n(r) pointing from material 1 to material 2
(see Figure 1a). The expression in eq 2 generalizes the formula
in57 to open resonators and has been recently employed to
calculate dissipative optomechanical coupling rates,58 the
sensitivity of ultra-low mode volume dielectric bowtie
nanocavities,59 and the effect of surface roughness in plasmonic
resonators.60 Even if the use of the QNM perturbation theory
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for shape deformations has been proposed to optimize Q,61 a
systematic study evidencing such use is still missing.

In this work, we study the photonic modes of dielectric slabs
with n vertically etched void features, an example of which is an
L3 photonic-crystal cavity,19 whose geometry is shown in
Figure 1b. We validate eq 2 by computing the QNM associated
with the fundamental mode (the so-called Y mode) of an L3
cavity as a function of a symmetric and rigid shift s = (S1x,0) in
the position of the two holes bounding the cavity along its axis.
We use a commercial finite-element complex eigensolver
(COMSOL Multiphysics62) and reduce the computational size
by employing the appropriate boundary conditions for the
symmetry of the Y mode. Figure 1c compares the finite-
difference numerical derivatives to the result given by the
perturbation theory of eq 2 for both the resonant wavelength
and the quality factor of the QNM of interest, which show
clear quantitative agreement. We observe that, for small values
of S1x, the displacement leads to a red shift, as expected from
the increased effective refractive index, and to an increase of Q,
as evidenced earlier in ref 19. By mapping out the real (Δω)
and imaginary (Δγ) parts of the integrand of eq 2 for a
displacement set S = {(Six, 0)|i ∈ [1, N]} in the unaltered L3
cavity (S1x = 0 nm), as shown in Figure 1d, it also becomes
apparent that most holes around the cavity region produce
considerable changes simultaneously to the loss rate γ and the
frequency ω, warranting automated optimization of Q with
respect to the position of all holes. In the following section, we
report on the gradient-descent optimization of photonic
cavities, where the objective function is the quality factor Q

of a single QNM and where eq 2 is used to estimate the
gradients relative to the in-plane position of all holes (see
Supplementary Section S1 for details). Although the literature
on optimal line search methods is vast, we employ here a
simple line search direction along the gradient and a step
length set to η∇SQ/|∇SQ|, with η chosen to produce
sufficiently smooth convergence (see Supplementary Section
S2 for a study on the effect of η). We note that no constraints
are imposed on the performed optimizations, although
inequality constraints to limit wavelength excursions can be
readily implemented with the real part of eq 2 and additional
constraints might be incorporated with adjoint-based sensi-
tivity analysis.

■ RESULTS AND DISCUSSION
Most previous research on photonic-crystal slab cavities has
focused on maximizing Q⊥ as Q∥ scales with the size of the
etched pattern around the cavity defect, i.e., the number of
Bragg mirrors. However, the optimization of Q for a mode in
an ungapped system (see the case of a random system later)
requires an optimization approach that can simultaneously
address Q⊥ and Q∥. To evidence the versatility of the method
proposed to optimize for both, we perform a systematic study
of the L3 cavity studied in Figure 1 (S1x = 0 nm) for varying
footprints, gauged via the domain radius R (in units of a)
within which circular holes are considered. Figure 2a,b
summarize the results of the Q-factor optimization for R =
9a, including the evolution with iterations of Q, the loss rate γ,
the resonant wavelength, the mode volume (calculated at the
center of the cavity44), and the position of the holes (from red
to blue in Figure 2b). The Q of the initial unoptimized L3
cavity is considerably limited by out-of-plane radiation as
evidenced by the value of Q∥, obtained by integrating the
radiated power over the slab thickness at the edge of the PML-
backed domain,63 which is much higher than that of Q⊥.
Therefore, an initial drop in Q∥ is observed, but both Q∥ and
Q⊥ grow steadily after 20 iterations, indicating that the
optimized configuration naturally accounts for both loss
pathways, which for the final configuration in R = 9a are
approximately of equal importance. We also observe that the
minimum in Q∥ is accompanied by a maximum in the
evolution of the resonant wavelength, for which we observe a
50 nm deviation between the initial resonant wavelength, λi,
and the final one, λf. On the other hand, V slightly increases,
but the 2-order-of-magnitude improvement in Q largely
overcomes that uncontrolled increase in V in terms of the
achieved Purcell factor. The associated position of the circular
holes as iterations evidences that while the optimization
displaces the holes bounding the defect, i.e., those considered
in previous attempts to optimize the Q of this mode,34 the
position of all holes along and around the 30.7° diagonal and
up to the PML evolves during optimization. Such a direction
nearly corresponds to that with the largest Bragg length in
triangular lattice photonic crystals with circular holes,
indicating that in-plane losses are, by construction, integral
to the automated optimization strategy presented here.

We optimize the L3 cavities with different R using the same
finite-element mesh sizes and fixed optimizer parameters, i.e., η
= 2, and the stopping criterion to be the point when the
relative variation between the Q of the running iteration and
the Q 100 iterations before is less than 0.2%. Such a stopping
criterion is used to account for the noisy nature of the
evolution of Q as the number of iterations becomes large,

Figure 1. Quasinormal mode (QNM) perturbation theory on
resonators with material boundary shifts. (a) Sketch of the
displacement S⃗ of a single hole of dielectric constant ε2 in a medium
with dielectric constant ε1. (b) Geometry of an L3 cavity with lattice
constant a = 420 nm, air hole radius r = 0.265a, slab thickness d = 220
nm, and refractive index n = 3.46. The total system size is set to Lx =
20a and Ly = 20a√3/2, which leads to N = 200 holes in total. The
displacement in the x direction of the first holes in the cavity axis, S1x,
is represented, as well as the symmetry employed in the simulation.
(c) Derivatives of the resonant wavelength and quality factor Q of the
L3 cavity relative to S1x as a function of S1x. Both values calculated
through the QNM eigenfrequency ω̃ from the numerical solver (line)
and obtained from the perturbation theory (circles) are included. (d)
Real and imaginary parts of the integrand of eq 1 for s = (Six, 0), with i
being the index for the i-th hole.
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which stems from the large value of η (see Supplementary
Section S2). The effect of domain size on the optimized quality
factor, Qf, which is shown in the top panel of Figure 2c for
values of R varying from 6a to 12a, is pronounced. The
transition from geometries limited by in-plane losses to those
limited by out-of-plane losses is clear from an evaluation of the
ratio Q∥,f/Q∥,i. Specifically, the large ratios for small R indicate
that the dominating source of losses is in-plane losses, while
the drop to 1 for large values of R indicates that the spatial
extent of the photonic-crystal cladding already provides
enough in-plane loss suppression and therefore the optimiza-
tion is, in practice, optimizing Q⊥. As a consequence, this leads
to only minor modifications around the defect for large R and
produces only a small wavelength blue shift, as shown in the
bottom panel of Figure 2c, where the final wavelength λf and
mode volume Vf (solid-dotted lines) are compared to their
initial values (dashed lines) for every value of R. We observe an
increasing blueshift of λf relative to λi for decreasing R. We also
report in Figure 2d the spatial profiles of the y-component of
the electric field Ey of the optimized modes in the plane z = 0
as well as the position of the hole boundaries. While the final
configuration of the holes can deviate considerably from the
initial one, e.g., R = 6a or R = 8a, the modal structure is
preserved regardless of R. This stems from the fact that the
boundary conditions determine field orientations on the
symmetry axis and that the single QNM tracked is well-
isolated spectrally and spatially.

On the contrary, random systems typically exhibit a large
spatial and spectral density of (localized) modes in a given
physical domain, which, for example, is used to alleviate issues
in spectro-spatial matching to solid-state light emitters.21

Therefore, the implications of using the QNM perturbation
theory to optimize the Q of a single QNM in a disordered
system are far from obvious and can eventually lead to a strong
variation in the mode structure, including its spatial location
and confinement level, as we demonstrate here. We apply the
optimization method to an Anderson mode supported by a
gallium arsenide slab (nGaAs = 3.46) of thickness d = 180 nm,
size 36 μm2, and including N = 260 etched holes of radius R =
110 nm (see Supplementary Section S3 for details on the
distribution of the position of the holes, e.g., the structure
factor). The particular QNM we optimize, whose electric field
intensity distribution is reported in the first map of Figure 3a,
has an initial Q of 200, λ = 1273 nm and mode volume V =
1.22(λ/nGaAs)3, and is selected among the many other modes
supported by the structure because it is spatially isolated from
the rest and it is the highest Q in a close spectral neighborhood
(see Supplementary Section 4 for visualization of other
QNMs). The latter facilitates tracking of the QNM of interest
as iterations evolve. The optimization process is run for 5000
iterations, and the evolution of Q, the resonant wavelength,
and the hole positions are summarized in Figure 3b,c. The
value of Q grows at a rather (average) constant pace and
reaches Q = 105 after 5000 iterations, which constitutes, to the
best of our knowledge, the highest Q reported in a purely

Figure 2. Optimization of Q for L3 photonic-crystal cavities of varying footprints. The Q-factor of L3 cavities is optimized by tuning all hole
positions within a circle of radius R. (a) Evolution of the (top) quality factors Q, Q∥, and Q⊥, (middle) the loss rate, γ, of the QNM, and (bottom)
the resonant wavelength and the mode volume, V, of the cavity mode. (b) Evolution of the position of all holes in the bottom-left quadrant of the
photonic-crystal plane from the initial (red) to the final configuration (blue). (c) Dependence of cavity parameters with footprint R. From top to
bottom: Optimized quality factor, Qf, ratio of the final to the initial Q∥, and final resonant wavelength λf and mode volume V. The blue and red
dashed lines in the bottom panel indicate, respectively, the values of the initial wavelength and mode volumes for each R. (d) y-Component of the
electric field, Ey, in the plane z = 0 of the optimized L3 cavities with footprints R = 6a, R = 8a, R = 10a, and R = 12a. The fields are normalized to
their maximum.
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random system on a slab. We note that the steady increase in
Q is also accompanied by considerable fluctuations, which
originate because of a too large choice for η (η = 5) (see
Supplementary Section 2). Fluctuations are also observed for
the resonant wavelength of the mode although no significant
drift is observed in this case. We attribute this to the random
nature of the design that allows the holes to shift in any
direction in the plane. Interestingly, monitoring how the spatial
profile of the mode evolves as the Q-factor increases evidences
that the mode location and spread evolve and therefore that
the initial QNM chosen should be considered just as a seed for
the optimization, contrary to the L3 cavity case. The three
panels of Figure 3a highlight two specific configurations in
addition to the initial one, corresponding, respectively, to Q =
2000 and Q = 105. The middle configuration is chosen to
highlight that the final one, despite the dramatic change in the
spatial profile, is linked to the initial one, since the
intermediate-case profile still preserves a tail corresponding
to the original hotspot. The final optimized mode is located in
a completely different position, and by tracking also the
evolution of the mode volume V (light-blue dots in Figure 3b),
we observe that it exhibits a much tighter localization (V =
0.4(λ/ns)3), leading to a Q/V = 5 × 106 μm−3. This

corresponds to an increase of the Purcell factor from 12 to
18 600, a final value typical of the best photonic-crystal
cavities.19 Interestingly, the optimized configuration exhibits
peculiar properties of both order and disorder; despite the
uncorrelated disorder environment, a high-Q Anderson mode
with a tight spatial localization (typical of point defects in a
perfect photonic order) is displayed, in a system with a high
spectral density of modes (typical of random photonic
patterns). In order to numerically test the general validity of
the optimization approach for random media, we apply the
method to different initial QNMs of the same disordered
system and to a photonic mode supported by a photonic
crystal with a certain degree of disorder, i.e., based on a quasi-
ordered distribution of holes. The results are shown in
Supplementary Sections 5 and 6.

We evaluate the in-plane losses in the initial and optimized
configuration and report that Q∥ increases from Q∥ = 1.3 × 105

(unperturbed mode) until it reaches a value of Q∥ = 2.8 × 105.
This, similar to the case in Figure 2, demonstrates that in the
initial configuration Q is strongly limited by the out-of-plane
losses, which are then optimized at the end of the process, for
which Q∥ ∼ Q. To understand the outcome of the optimization
not only in terms of the single QNM we optimize but also in

Figure 3. Optimization of Q for a photonic mode in a random system. Results of the optimization process applied to a random hole pattern in a
slab of thickness d = 180 nm and with air holes of radius r = 110 nm. (a) Electric field intensity maps of the Anderson mode in the initial
configuration (red diamond), in an intermediate step of the optimization process (dark-red triangle), and at the end of the optimization (blue
square). (b) Evolution of the resonant wavelength (bottom panel) and quality factor and mode volume V (upper panel) of the Anderson mode. (c)
Evolution of the position of all holes in the random design from the initial configuration (red) to the final one (blue). (d) FDTD spectrum of the
initial random system (red spectrum) and at iteration 5000 (blue spectrum). The maps in the insets at the right of the spectra give the indication of
the position of the dipole emitter (green crosses) used in the FDTD simulations.
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terms of the local density of optical states in the frequency
range around it, we investigate the spectral response of the
system in the presence of a single point-like electric dipole. To
do this, we employ a finite difference time domain (FDTD)
commercial software (Lumerical64) and use a spectrally broad
(δλ = 200 nm and pulse length 7.28 fs) electric dipole located
at the brightest spot of the explored QNM, as highlighted for
initial and final configurations with a green cross in the
zoomed-in field maps of Figure 3d. We report the spectrum of
the structure for both the initial and final configurations in
Figure 3d. The FDTD method confirms the stability of the
mode central wavelength during the optimization process and
the increase of the total Q by 3 orders of magnitude.
Interestingly, the high density of modes typical of random
systems prevails after the optimization as can be deduced from
the presence of many other less prominent peaks in the
emission spectrum. This evidences that the optimization of Q
does not occur through the formation of a band gap as it is
achieved in other disordered systems.22−24 This is further
corroborated by the presence, in the final configuration, of
other QNMs in spatial and spectral proximity (see
Supplementary Figure S4 and S5) and by the very limited
change to the hole statistics (see Supplementary Figure S3).
The possibility of achieving a Q/V comparable to photonic-
crystal cavities while preserving the high density of modes in a
small spatial footprint might pave the way to the engineering of
multiple Anderson modes in the same structure once the
appropriate constraints are provided.

■ CONCLUSIONS
In conclusion, we have proposed a gradient-based automated
shape optimization approach to maximize the quality factor Q
of optical resonances. The method, which employs first-order
non-Hermitian quasinormal mode (QNM) perturbation
theory for shape deformations, allows the efficient computation
of the gradients of Q relative to small material boundary
displacements without the need for solving additional
(non)linear algebraic systems. Due to the free-form and
boundary-conformal meshes employed in finite-element
method simulations, the additional calculations are also trivial,
making the actual calculation of the QNMs the only time- and
memory-consuming step. Although the cases considered here
are limited to hole displacements in dispersion-less and
absorption-less dielectrics, the approach naturally extends to
absorptive media44,58 and arbitrary�down to the mesh size�
boundary deformations. We benchmarked our method with
the optimization of cavity modes in dielectric slabs with either
ordered or disordered patterns of scatterers. By simulating a
standard L3 photonic-crystal cavity, we demonstrated that the
approach can simultaneously take into account in-plane and
out-of-plane losses and therefore truly optimize Q for a given
domain size, circumventing issues found in other methods
based on mode-expansion techniques.34 Such optimized low-
footprint cavities may play a prominent role in applications
where compactness determines functionality, such as spatial
light modulators65 or electrically driven nanolasers,66 and
enable optical interconnects for on-chip electronic−photonic
integration, where size discrepancy has slowed down develop-
ments.67 While single QNM perturbation theories are more
intuitively suited to systems with well-isolated QNMs, the
method is also successfully employed on a random system with
a large density of optical modes around the targeted initial
QNM. We optimize the Q of an Anderson-localized mode, for

which we obtain an increase of 3 orders of magnitude. The
optimized mode also exhibits a decrease of the mode volume
and an unchanged resonant wavelength, leading to a Q/V of 5
× 106 μm−3, on par with photonic-crystal cavities.19 Our result
might be relevant for the employment of random structures for
lasing68−70 and sensing71 applications but also for the basic
physical insights it can provide on light confinement in random
systems. We foresee that the optimization approach in a
random system of larger size might unveil novel features of
engineered disordered systems such as hole structural
correlations that are yet unexplored.
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