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Abstract
An unsupervised classification method for point events occurring on a geometric network is proposed. The idea relies on

the distributional flexibility and practicality of random partition models to discover the clustering structure featuring

observations from a particular phenomenon taking place on a given set of edges. By incorporating the spatial effect in the

random partition distribution, induced by a Dirichlet process, one is able to control the distance between edges and events,

thus leading to an appealing clustering method. A Gibbs sampler algorithm is proposed and evaluated with a sensitivity

analysis. The proposal is motivated and illustrated by the analysis of crime and violence patterns in Mexico City.

Keywords Bayesian nonparametrics � Penalty function � Random partition model � Spatial clustering

1 Introduction

Violence and insecurity are major concerns in most Latin

American countries. The reasons and causes of increasing

criminality are many, therefore methodologies to study and

to diminish the associated incidence rates are constantly

sought. Cities like São Paulo, Managua, San Salvador and

Mexico City have suffered a notorious increase in crime

levels, linked both to economic factors and to corruption in

the police forces (Pansters and Castillo Berthier 2007). One

of the most urgent demands to politicians and the mayor of

Mexico City is to implement better methods for surveil-

lance and crime control. Some first steps to deal with this

necessity is the identification of areas with high crime

incidence. Such hot-spots need to be identified and char-

acterized in order to get better information for security

forces, and for managers and designers of social programs

to control and mitigate the causes of the high criminality in

those locations.

The point pattern nature of crime occurrences suggests

that a sensible approach for the analysis and modeling of

crime data is based on point process theory. However,

given that most of the crimes in a city are georeferenced

along streets, the usual point process theory, where the

events occur in a Euclidean space, is not always suitable.

This is mainly due to the fact that nearest neighbor dis-

tances need to be defined along a linear network of streets,

e.g. through the Manhattan distance.
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Point processes in linear networks have been intensively

investigated in the last decade. Nowadays, the wide spread

of smartphones has increased the availability of point ref-

erenced data, which has caused a boom of research papers

using point pattern data. For example, the K-function on a

linear network has been investigated by Okabe and

Yamada (2001), Yamada and Thill (2004), Ang et al.

(2012), and Baddeley et al. (2017) among others. Specific

modeling features, such as separability, have been inves-

tigated for example by Mateu et al. (2020) and by Gilardi

et al. (2021).

A common problem that has received particular atten-

tion is how to detect clusters in the network using event

occurrences on it. For instance, if the number of crimes of a

particular class increases in some contiguous streets, it is of

interest to tell if there is a cluster in that area. Police forces

and other public security entities may decide to increase

patrolling or to implement other measures to decrease the

local crime rate.

Most methods for cluster detection in spatial point data

are based on comparison of second order interactions of

point processes such as Ripley’s K-function or the pair

correlation function (Ang et al. 2012; D’Angelo et al.

2022) and score test statistics (Assunção and Maia 2007),

which require knowledge of the density function of the

point process under testing. This is a complicated pace to

follow as finding the density function governing the spatial

distribution of the points is far from a simple exercise. For

example, McSwiggan et al. (2017) propose a density esti-

mator based on diffusions.

On a different direction, scan statistics have also been

applied for cluster detection in linear networks. These

methods scan the sample space by using small regions or

windows, and those windows exhibiting a higher concen-

tration of sample points than the rest define the clusters.

This is determined via some hypothesis testing procedure.

See, for example Abolhassani and Prates (2021) for a

recent review on the topic, and its Sect. 5 for some par-

ticular methods over linear networks. Also, Shiode and

Shiode (2020) propose a method, called NetScan, in this

framework.

Bayesian literature dealing with clustering includes

mixture models and random partition methodologies, nat-

urally appearing when a nonparametric approach is

undertaken. These have been extended to the spatial setting

by incorporating latent variables in the weight structure of

the underlying random probability measure (Duan et al.

2007). However, as in the aforementioned approaches, the

availability of linear network valued density functions is

required to perform clustering.

Here, we present a model that unveils clustering struc-

tures on linear networks based on point events. Our pro-

posal induces a spatially dependent random partition model

that captures the inherent clustering structure. Specifically,

the spatial dependence enters through a penalty function in

the corresponding predictive distribution. More impor-

tantly, we focus on modeling the occurrence of events on

each edge of the linear network instead of modeling the

point process itself. This allows us to cluster the edges,

preserving the spatial location of the events, but casting

aside the complex topology imposed by the linear network.

Furthermore, it will be posible to easily estimate the hot-

spot locations since they should be related to higher inci-

dence rates.

We also analyze the effect of model parameters with

simulated data on a street network, and present an appli-

cation to real crime incidence data in Mexico City.

Although crimes can be classified in different types and

severity, we choose armed robberies in a specific zone of

the city, due to their high incidence.

2 Clustering via random partitions

Common clustering methodologies aim at gathering

observations xi, i ¼ 1; . . .; n, into groups. A clustering p
can be defined as a partition of the set of observations

x ¼ fx1; . . .; xng into k nonempty and non-overlapping

groups, say p1; . . .; pk, for some 1� k� n, so p ¼
fp1; . . .; pkg where pj � x for all j. For the sake of sim-

plicity, partitions will be written as p1= � � � =pk. Observa-
tions belonging to the same group are supposed to be more

similar among them than any other in a different group.

Mathematically, all possible arrangements for p is in

bijection with the combinatorial class of set partitions

(Flajolet and Sedgewick 2009), here denoted by P. Thus,

quantifying the uncertainty inherent to a clustering problem

can be done by proposing and studying random partitions,

i.e., P-valued random variables, and their distributions.

A particular class of partition distributions available in

the literature comprises the so-called exchangeable parti-

tion probability functions (EPPFs). This class appears

naturally when studying the clustering of exchangeable

observations, driven by species sampling processes, and

when working with random probability measures (RPMs),

the daily-use tool for most Bayesian nonparametric mod-

els; see, for example, Hjort et al. (2010) for a thorough

review. Any almost surely discrete RPM can be written as

~pð�Þ ¼
X1

j¼1

wjdnjð�Þ; ð1Þ

where fwjgj[ 1 and fnjgj[ 1 denote independent random

sequences of weights and locations, respectively, satisfyingP
i� 1 wi ¼ 1 almost surely (a.s.), and ni � m0 independent

and identically distributed [iid], with m0 a non-atomic
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distribution. There are several ways to model the sequence

of random weights fwjgj[ 1. Perhaps, one of the more often

used is the so-called stick-breaking representation, which

defines them as

wj ¼ vj
Y

l\j

ð1� vlÞ; ð2Þ

for v1; v2; . . . a sequence of (0, 1)-valued random variables.

Some distributions or processes related to this framework

are the following: (a) The canonical Dirichlet process with

the choice vj �Beð1; hÞ [iid], for some h[ 0 (Sethuraman

1994); (b) the two parameter Dirichlet Process when

vi �Beð1� r; hþ irÞ independent [ind], for r 2 ½0; 1Þ
with h[ � r or r\0 with h ¼ mjrj and m 2 Nþ (Perman

et al. 1992); (c) the geometric process with vi ¼ k and k a

(0, 1)-valued random variable (Fuentes-Garcı́a et al. 2010).

More general constructions can be found, for example, in

Favaro et al. (2016), Gil Leyva Villa et al. (2020), Gil

Leyva Villa and Mena (2021); on a different direction, for

directly defining random weights wj, see De Blasi et al.

(2020).

For the particular case of the Dirichlet process, i.e. when

weights are size-biased, the induced EPPF takes the form

Prðp ¼ p1= � � � =pkÞ ¼q0ð#p1; � � � ;#pkÞ

¼ hk

ðhÞn"

Yk

j¼1

Cð#pjÞ;
ð3Þ

where ðxÞn" ¼ xðxþ 1Þ � � � ðxþ n� 1Þ is known as the

Pochhammer symbol or rising factorial (Ewens 1972;

Antoniak 1974), and #pj stands for the size of the

jth group.

With the above framework in mind, we consider the

following model for cluster detection. Let y1; . . .; yn be a

dataset to be clustered, and let p be a P-valued random

partition with prior distribution q0. Our interest lies in the

posterior distribution of p, that is

pðp j y1; . . .; ynÞ / ‘ðy1; . . .; yn j pÞq0ðpÞ: ð4Þ

Following a model-based approach, the likelihood function

‘ is factorized according to the different groups, pj, of p in

such a way that observations belonging to one group are

modeled by a single probability distribution jj. It is com-

mon to fix such a distribution and only vary its parameter,

so jjð�Þ :¼ jð�;/jÞ for some finite dimensional parameter

/j. Thus, the likelihood function ‘ is obtained after

marginalizing kernel parameters /j, j ¼ 1; . . .; k, i.e.

‘ðy1; . . .; yn j pÞ ¼
Yn

i¼1

Z

U

Y

i2pj
jðyi;/jÞm0ðd/jÞ;

where U represents the support of /j. Finally, the clustering

model can be written hierarchically as

yi j /; p� jð/jÞ1ði 2 pjÞ[ind]; i ¼ 1; . . .; n;

/j j p� m0[iid]; j ¼ 1; . . .; k;

p� q0;

ð5Þ

where m0 is the prior distribution for kernel parameters.

3 Clustering over linear networks

As outlined in the Introduction, we are interested in dis-

covering a clustering structure induced by point patterns

over linear networks. We define a linear network, L, as a

geometric simple graph with a finite set of edges

E ¼ fe01; . . .; e0mg, and where their endpoints form the set of

vertices of L. Notice that a linear network is embedded in

some region U � R2.

Thus, in order to perform clustering over a linear net-

work, we have two sets of measurements: spatial location

variables, say vi 2 L for i ¼ 1; . . .; n, and their respective

responses, xi. These latter could be constant, e.g. xi ¼ 1,

meaning that an event occurred at location vi. Each loca-

tion variable vi influences the clustering, in the sense that

responses close to each other, under some metric, are more

likely to be grouped together.

Among the existing literature dealing with spatial clus-

tering, some of them consider location variables v1; . . .; vn
as covariates. For example, MacEachern (1999, 2000)

defines the dependent Dirichlet process, where an RPM ~p,

as in (1), is indexed by some covariate z, leading to random

densities of the form

~pzð�Þ ¼
X1

j¼1

wj;zdnj;zð�Þ:

Usually, random atoms are let fixed across the different

values of z and only the random weights depend on the

covariates. Several generalizations have been developed

from here, see, for example, Jo et al. (2017).

On a different approach, Duan et al. (2007) define

generalized spatial Dirichlet process models, where the

base measure m0 for the atoms of (1) is defined over some

stationary Gaussian process and the random weights are

constructed by means of some multivariate stick-breaking

procedure which makes use of the spatial locations. Simi-

larly, Reich and Fuentes (2007) introduce the spatial

dependency via a kernel function, depending on the spatial

location variables, weighting the random variables gener-

ating the sticks wj in (2). Another way to include these

spatial location variables is presented, for example, in

Müller et al. (2011) and Page and Quintana (2016). Their

approach is of the type of Model (4) where the prior for the

partition is a product partition model (Hartigan 1990), and

include an extra term g for each cohesion, which is a
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function of all covariates associated to the same cluster. On

a slightly different approach, Blei and Frazier (2011)

modify the predictive distribution for the Dirichlet process,

giving spatial dependence to observed clusters, but not to

the new ones.

The main hindrance of these approaches for our context

is the lack of non-trivial probability distributions over

linear networks. Our proposal aims to overcome this dif-

ficulty by casting aside the topology induced by the net-

work as follows. We are given a point pattern process over

L, that is, a set of locations vj 2 L, j ¼ 1; . . .;m, indicating

the occurrence of some event (e.g. a crime). Let yi be the

random variable defined as the number of events occurred

on edge e0i, i.e.

yi ¼ #fvj 2 e0i : j ¼ 1; . . .;mg:

For our purposes, it is only required to work with the

nonzero variables yi; for simplicity we asume yi [ 0 for

i ¼ 1; . . .; n for some n. Furthermore, we need to define the

new spatial location variable for yi, say ei; some options are

discussed below. With these new variables yi and ei, our

interest is now to cluster the edges E of L through their

corresponding yi using ei as the spatial location.

Notice that we no longer worry about the complex

topology of the linear network, but only on the region U it

is contained. Moreover, grouping the network’s edges

makes sense, since it will allow us to detect the posible hot-

spots.

Under this framework, our proposed model for cluster-

ing is the following. The base model is the one presented in

Eq. (4), and detailed in (5), but the spatial information will

be incorporated in the prior for the random partition p, q0.
Given a cluster p ¼ p1= � � � =pk, a location variable uj,

j ¼ 1; . . .; k, is introduced and associated to each group pj.
Thus, counts yl, whose associated points el are closer to

location uj, are more likely to be put together in the cor-

responding group pj. One way to measure the closeness of

a point, e, and a location, u, is through a penalty function,

for example

wðe; u j sÞ ¼ expf�sðe� uÞ0ðe� uÞg; ð6Þ

for some s[ 0.

Regarding the definition of the new spatial variable ei, it

seems appropriate it is a function or statistic of all events

recorded along its corresponding edge e0i. We have chosen

the centroid for the sake of interpretability. If vi1 ; . . .; vim 2
L are such that vij 2 e0i, j ¼ 1; . . .;m for some m, the cen-

troid is defined as

ei ¼
1

m

Xm

j¼1

vij :

Now it is necessary to incorporate the penalty function w in

the partition distribution q0. For this purpose, we make use

of the joint distribution of the membership variables

d ¼ ðd1; d2; . . .; dnÞ. Given a partition p ¼ p1= � � � =pk,
membership variables d are such that di ¼ j if and only if

i 2 pj for some 1� j� k, and for i ¼ 1; . . .; n. Fuentes-

Garcı́a et al. (2019), Miller (2019) and Gil Leyva Villa and

Mena (2021) provide detailed discussions regarding the

relationship of these two distributions.

Taking the EPPF induced by the Dirichlet process in

Eq. (3), the predictive distribution for any di, i ¼ 1; . . .; n,

is

Prðdnþ1 ¼ d j d1; . . .; dnÞ

¼

h
nþ h

if d 62 fd1; . . .; dng;

1

nþ h
if d ¼ dl for some dl 2 fd1; . . .; dng:

8
>><

>>:

Therefore, by including the penalty function w, we

obtained the following distribution.

Definition 1 The spatially dependent predictive distribu-

tion for the membership variables ðd1; . . .; dnÞ, obtained

from the EPPF for the Dirichlet process with total mass

h[ 0 and penalty function w, using Eq. (6), is

Prðdi ¼ d j d�i; e; u; u
	; sÞ

/

h
nþ h

wðei; u	 j sÞ if d 62 d�i;

1

nþ h
wðei; ul j sÞ if d ¼ dl for some dl 2 d�i;

8
>><

>>:

ð7Þ

where d�i ¼ fd1; . . .; di�1; diþ1; . . .; dng, for 1� i� n, e ¼
fe1; . . .; eng is the set of spatial variables, u is the set of

locations, and u	 is a draw from some non-atomic distri-

bution l0 over U.

Hence, our proposed model is obtained by extending

Model (5) as follows

yi j p;/; e; u� jð/jÞ1ði 2 pjÞ[ind]; i ¼ 1; . . .; n;

p j e; u� q0ðe; uÞ;
/j j p� m0[iid]; j ¼ 1; . . .; k;

uj � l0 [iid];

ð8Þ

where q0ðe; uÞ corresponds to the spatial EPPF inherent to

Eq. (7) in the definition above. The model j for the counts

yi can be any discrete distribution supported over

f1; 2; . . .g, e.g. the Poisson or negative binomial, and once

it is defined, m0 will be specified.

Among the different discrete kernel functions j, we

choose a shifted Poisson of parameter k. We say a random
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variable Y follows a shifted Poisson distribution of

parameter k, if

PrðY ¼ yÞ ¼ ky�1e�k

ðy� 1Þ! ; y ¼ 1; 2; . . .;

for some k[ 0. By using this kernel function, parameter k
will contain information regarding the intensity of the

occurrence of the recorded events for each detected group.

Completing the elements of Model (8), we have

/j :¼ kj, and its prior, m0, follows a gamma distribution of

parameters (a, b). In addition, l0 will be the uniform dis-

tribution over U. Therefore, the likelihood function takes

the form

‘ðy j p; k; e; uÞ ¼
Yn

i¼1

kyi�1
j e�kj

ðyi � 1Þ! 1ði 2 pjÞ

¼
Yk

j¼1

k

P
i2pj

yi�nj

j e�njkj

Q
i2pjðyi � 1Þ! ;

where nj ¼ #pj is the size of the jth group. The posterior

distribution of interest is the following

pðp; k; u j yÞ / ‘ðy j p; k; e; uÞpðk j pÞpðp j e; uÞpðuÞ:
ð9Þ

Due to the complexity of the posterior in (9), it is necessary

to resort to numerical methods, specifically we make use of

a Gibbs sampler to obtain estimates of the model param-

eters. At each iteration, it is assumed there are k groups, so

the full conditional distribution for each kernel parameter

kj, j ¼ 1; . . .; k, is

pðkj j k�j; p; yÞ / k

P
i2pj

yi�njþa�1

j e�ðnjþbÞkj ;

which is a gamma distribution of parameters

ð
P

i2pj yi � nj þ a; nj þ bÞ. The second set of parameters

corresponds to the locations uj, j ¼ 1; . . .; k, for which full

conditional distributions take the form

pðuj j u�j; p; s; e; yÞ

/ exp �snju
0uþ 2su0

 
X

i2pj
ei

!( )
1ðuj 2 UÞ:

Being a bounded distribution, it is straightforward to

sample from it.

Sampling for the random partition p, is done via the

membership variables di, i ¼ 1; . . .; n. For the case there is

a new group, d 62 d�i,

Prðdi ¼ d j d�i; e; k; k
	; u; u	; s; yÞ / hwðei; u	 j sÞjðyi; k	Þ;

with u	 and k	 drawn from their respective prior distribu-

tion, l0 and m0. On the other hand, where there is only a

switch from one group to another already existing, d ¼ dl
for some l,

Prðdi ¼ d j d�i; e; k; k
	; u; u	; s; yÞ / wðei; ul j sÞjðyi; klÞ:

The total mass parameter h can be included in the sampling

process as explained, for example, in Escobar and West

(1995). Finally, for the penalty function w, parameter s can
be also included in the Gibbs sampler by assigning a

gamma prior of parameters (c, d), so its conditional dis-

tribution is conjugate and given by

pðs j p; u; e; yÞ / sc�1

exp �s

 
d þ

Xn

i¼1

e0iei � 2
Xk

j¼1

u0j
X

i2pj
ei þ

Xk

j¼1

nju
0
juj

!( )
:

4 Simulation study and sensitivity analysis

Our methodology is tested by using two simulated datasets.

We are mainly interested in studying the effect of model

parameters, which are the penalty parameter s, the kernel

parameter k, and the total mass parameter h.
The first synthetic dataset consists of a sample of

200 event points over a small linear network (Fig. 1). A

sample of size n ¼ 14 is obtained after computing the non-

zero counts yi; then, their associated centroids ei are

computed. The Gibbs sampler detailed in the previous

section was run for 7000 iterations; posterior estimates

were computed using only the last 2000 of them. A gamma

prior of parameters (1.1, 0.1) is set for parameter k. The
performance of parameters h and s is studied by assigning

them different values. For the total mass parameter h, its
values are chosen such that the prior expected number of

groups is 2, 7 and 13. Thus, h will take the values 0.3669,

4.8986 and 82.1121. On the other hand, penalty parameter

s was fixed to 10r, for r ¼ 2; 5; 7; 9.

Fig. 1 Small simulated dataset. Sampled event points are presented in

gray, and the corresponding edge centroid, ei, in blue circles. The size
of each circle corresponds to its count value yi

Stochastic Environmental Research and Risk Assessment (2023) 37:1983–1995 1987
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The reported estimated clustering corresponds to the

posterior modal partition, denoted by ~p, a reasonable

choice for discrete-valued point estimates. The results of

this first simulation study show that the total mass

parameter, h, works as already known for Dirichlet process

priors, since it mainly influences the posterior distribution

for the number of groups. However, there is not much

change in the estimated clustering. Regarding the penalty

parameter s, it can be seen it is of high influence for pre-

serving spatial clustering restrictions. When this parameter

is small, our method performs like a traditional clustering

technique, since only three groups are detected, corre-

sponding to small, medium and large counts (Fig. 2a). On

the other hand, when s is large, the posterior modal parti-

tion correctly incorporates spatial restrictions (Fig. 2d).

Since all the scenarios tested perform similarly when

varying h, we only present the case h ¼ 4:8986 in Fig. 2;

the supplementary material presents the rest of the cases.

4.1 Kernel parameter k as a resolution
parameter

We now consider a larger simulated dataset in order to

illustrate the role of parameter k. This second synthetic

dataset was obtained by using a bigger linear network and

is formed by 522 simulated event points, having

n ¼ 206 non-zero counts yi (see Fig. 3).

Posterior estimates are obtained from the last 5000

iterations of the Gibbs sampler, after discarding a first

batch of 10,000. For the total mass and penalty parameters,

h and s, prior distributions are assigned as follows: a

(1.1, 0.1) gamma distribution for h, and a

ð1011; 104Þ gamma distribution for s. The prior for the

intensity kernel parameter, k, is a (1.1, 0.1) gamma dis-

tribution. Figure 4 presents the posterior modal partition. It

is worth mentioning that the posterior modal partition has

probability 0.002 and contains 58 groups.

Since our main motivation is in identifying hot-spots in

a linear network, i.e. set of edges with a particular intensity

of events, we explore how the Poisson kernel parameter k
can be used to select such relevant clusters.

Given the posterior modal partition ~p, for each group ~pj,
j ¼ 1; . . .; k, there is a sample, of size m, of its corre-

sponding kernel parameter kj, namely kj;l for l ¼ 1; . . .;m

for each j. Based on this, we can compute, for example, the

mean intensity for each cluster, �kj, defined as

�kj :¼
1

m

Xm

l¼1

kj;l; j ¼ 1. . .k:

Hence, hot-spots can be identified as those clusters having

mean intensity above some positive threshold k	, so the

resulting restricted clustering will only contain groups j

such that �kj � k	.
Exploring the posterior distribution for kernel parame-

ters kj conditioned on ~p, Fig. 5 presents their boxplot.

There, we can visually compare the differences among the

incidence of events for each group in the modal clustering.

Fig. 2 Posterior modal partition,

~p, for the small simulated

dataset, where h ¼ 4:8986, and
s varies. Groups are identified

by the color of the centroids;

colors across panels are totally

unrelated
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Furthermore, Fig. 6 displays the selected clusters for a

resolution level k	 2 f1; 2; 4; 6g, with the highest k	 cor-

responding to higher incidence of events. Moreover, it is

also possible to compute the posterior distribution for the

number of groups conditioned to this k	. At each iteration,

there are some values for the number of groups kðtÞ together

with their corresponding kernel parameter, kðtÞj for

j ¼ 1; . . .; kðtÞ. Then, the posterior distribution for the

number of groups, Kn, given only clusters with parameter k
above k	, is

PrðKn ¼ � j k	Þ 
 1

T

XT

t¼1

#fkðtÞj � k	 : j ¼ 1; . . .; kðtÞg;

with T the sample size of the Gibbs sampler. Figure 7

presents the posterior distribution for the above values of

k	, together with the unconditioned case.

5 Application: incidence of violent crimes
in Mexico City

The increasing violence and criminality levels in Mexico

have become a public safety problem, not only because its

effects on the social tissue but also because the material

and psychological effects it produces on people (Jiménez

Ornelas 2003). Of particular interest is the incidence of

crimes in Mexico City, the capital of the country. Mexico

City is the residence of the federal government, and unlike

the rest of the states in the country, it has only one police

force, under the command of the Secretary of Public

Security. Like other cities, Mexico City has areas

responding to social factors associated to criminality such

as high population density and lack of education and

employment, while other areas are associated to factors

promoting opportunity for crimes. The reduction of crime

incidence comes as a combination of social policies and

efficient police actions through intelligence to increase

police presence in areas where crime incidence is high. A

huge step towards the systematization of crime reports was

taken in 2009, when Mexico City Police began recording

the geographic location of crimes reported to their force.

Despite the high crime incidence, the analysis of crime

incidence in Mexico City is difficult. The lack of confi-

dence in the justice system makes that over 80% of crime

occurrences go undenounced. According to the civilian

organization México Evalúa, only 6.8% of crimes are

investigated and prosecuted (Piña Garcı́a and Ramı́rez-

Ramı́rez 2019; Mendieta Ramı́rez 2019).

Although not all such reports make the way to the jus-

tice system and they represent only a small fraction of

actual crime incidence, those reports ending in a prosecu-

tion by the legal system provide valuable information as

they represent a thinned version of the spatial point pattern

of actual crime incidence (Valenzuela Aguilera 2020). A

quick police response to a rising crime rate in space and

time is only possible if clustering of crime reports is

detected promptly. In this section, our clustering method is

tested using real data of crime reports.

Data used in this application correspond to cases with an

investigation folder, namely those denounced to the

authorities by the victim or their legal representatives

between January 1st 2018 and December 31st 2019. The

database is of public domain and was obtained from the

Fiscalı́a General de Justicia (Attorney’s Office) of Mexico

City’s website.1 When a crime occurs, the police goes to

Fig. 3 Larger simulated dataset.

Sampled event points are

presented in gray, and the

corresponding edge centroid, ei,
in blue circles. The size of each

circle corresponds to its count

value yi

1 https://datos.cdmx.gob.mx/dataset/carpetas-de-investigacion-fgj-

de-la-ciudad-de-mexico.
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the crime site to assist the victim, and the location is

recorded by the GPS system in the police cars or their

mobile phones. Thus, all crime records are georeferenced

to a particular location on a street.

The database includes information about time of the

crime occurrence, municipality, neighborhood and other

information that is considered useful by the authorities and

policymakers. It also records many crime types, such as

rape, murder and 27 different types of robbery. All these

types of robbery were merged into a single crime category

for our purposes.

We selected a section in the northwest of Mexico City as

highlighted in black color in Fig. 8. The chosen neigh-

borhood contains a mixture of business, industrial as well

as wealthy and low income neighborhoods having high

crime occurrence. Figure 8a shows in red color the location

Fig. 4 Posterior modal partition for the second simulated dataset. Since there are 58 groups, resulting groups were split into the different panels;

each one contains ten groups at most. Colors across panels are completely uncorrelated

1990 Stochastic Environmental Research and Risk Assessment (2023) 37:1983–1995
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of a chosen smaller study area within Mexico City. The

region highlighted in red is zoomed in Fig. 8b with the

road network along with locations of individual crime

events.

Figure 8b illustrates a total of 2875 crime incidences

distributed as homicide (46), robbery (2784) and violence

rape (45) in the smaller study area. It clearly depicts an

uneven distribution of crime types. For further analysis we

have selected robbery which has the highest occurrence

among the three crime categories. Thus, the rest of the

analysis is conducted using 2784 records of robbery during

the entire time period of 2018 and 2019.

Posterior estimates were computed for this dataset using

5000 iterations after discarding 10,000. The whole process

took 6.55 min on an Intel� CoreTM i7 CPU at 1.80 GHz

with 16 Gb of RAM. Priors for penalty and total mass

parameters, s and h, remain as for the second simulated

dataset. Different choices were tested for the prior for

Fig. 5 Boxplots for the kernel

parameter kj associated to each

group given the posterior modal

partition. On the x axis, the

label for each group is presented

according to those of Fig. 4

Fig. 6 Restricted clustering, based on the modal partition, where posterior mean intensities, �kj, are above different values of k
	: 1, 2, 4 and 6. The

size of each circle and its color are as explained in Figs. 3 and 4
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kernel parameter k, from where we chose a

(10, 0.03) gamma. The supplementary material contains all

the explored cases. The selected prior allows us to have a

moderate number of clusters where each one can be iden-

tified as a hot-spot.

We further analyzed the impact of the resolution-level

parameter k	 where k	 2 f2; 4; 6g; see Fig. 9, where the

dotted horizontal lines in the boxplots depict the three

resolution levels. Additionally, Fig. 10 depicts the loca-

tions of robbery clusters on the street network for two

resolution levels k	, 4 and 6, which can be understood as

the more relevant hot-spots. In the same figure, clusters are

shown along with road segments highlighted in red.

Despite the high crime incidence in the selected subarea

of Mexico City, the proposed method is able to detect the

presence of several clusters in the zone. All these clusters

take place in areas where a mix of small stores, offices and

metro or train stations are located. Only the cluster at the

center of the analyzed region is located in a poor residential

neighborhood. It is not clear if the areas where clusters

Fig. 7 Posterior distributions for the number of groups for the second simulated dataset

Fig. 8 Region studied in Mexico City. Right panel also contains the distribution of crime events on the road network categorized by crime type

1992 Stochastic Environmental Research and Risk Assessment (2023) 37:1983–1995
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occur are gang territories or not, but they are clearly zones

where the mix of different economic activities attracts

many potential victims.

Our proposal has the advantage that the dynamics of

crime clustering may be detected in a relatively fast and

simple way. Although the convergence speed of the Gibbs

sampler depends on the number of edges, if super-com-

puting is not available, i.e., one has limited computational

power, our method can be implemented in targeted parts of

a city where local authorities need prompt results to trigger

police assistance. Another potential use of this study could

be the forecasting of true crime incidence rates. Indeed, as

recently reported in the National Survey of Victimization

and Perception of Public Safety 2020, there is a signifi-

cantly percentage of crimes not reported. See ine-

gi.org.mx/programas/envipe/2020 for further

details.

6 Concluding remarks

We have presented a simple yet effective model for clus-

tering constrained on linear networks based on point events

using random partitions under a nonparametric Bayesian

approach. The proposal of removing the topology induced

by the linear network, and modeling the occurrence of

events over each edge instead, greatly simplifies the clus-

tering task. Furthermore, making the random partition

distribution spatially dependent through the penalization

function w allows us to reveal clusters of high incidence of

events. We found that parameter s, besides strenghtening

the spatial component in clustering, is related to the edge’s

length. In our application, those events are armed rob-

beries, of particular interest to citizens and law forces.

The Poisson kernel parameter k also plays an important

role as it highly influences the number of clusters together

Fig. 9 Boxplots for the kernel

parameter kj associated to each

group given the posterior modal

partition. On the x axis, the

label for each group is

presented. Horizontal dotted

lines correspond to the different

values for k	 2 f2; 4; 6g

Fig. 10 Road segments along with clusters for the street network; cases k	 2 f4; 6g
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with their intensity. Additionally, it controls the resolution

of high event incidence. In the application at issue, this

parameter helps to identify street configurations with high

crime record. All this said, our methodology could be used

for other applications as described in Chapter 17 of Bad-

deley et al. (2016).

We believe our proposal adds a valuable tool to the

existing clustering techniques over spatial point patterns.

The key fact of the network structure makes this proposal

new in this field, and can be considered an attractive while

easy-to-use tool in the analysis of point patterns over linear

networks.

Here, we have used the clustering induced by the

modified Dirichlet process, however other nonparametric

priors, such as those belonging to the Gibbs-type family,

could also be used.
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