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ABSTRACT Given their extensive geographic coverage, low Earth orbit (LEO) satellites are envisioned
to find their way into next-generation (6G) wireless communications. This paper explores space-air-
ground integrated networks (SAGINs) leveraging LEOs to support terrestrial and non-terrestrial users.
We first propose a practical satellite-ground channel model that incorporates five key aspects: 1) the
small-scale fading characterized by the Shadowed-Rician distribution in terms of the Rician factor K, 2)
the path loss effect of bending rays due to atmospheric refraction, 3) the molecular absorption modelled
by the Beer-Lambert law, 4) the Doppler effects including the Earth’s rotation, and 5) the impact of
weather conditions according to the International Telecommunication Union Recommendations (ITU-
R). Harnessing the proposed model, we analyze the long-term performance of the SAGIN considered.
Explicitly, the closed-form expressions of both the outage probability and of the ergodic rates are derived.
Additionally, the upper bounds of bit-error rates and of the Goodput are investigated. The numerical results
yield the following insights: 1) The shadowing effect and the ratio between the line-of-sight and scattering
components can be conveniently modelled by the factors of K and m in the proposed Shadowed-Rician
small-scale fading model. 2) The atmospheric refraction has a modest effect on the path loss. 3) When
calculating the transmission distance of waves, Earth’s curvature and its geometric relationship with the
satellites must be considered, particularly at small elevation angles. 3) High-frequency carriers suffer from
substantial path loss, and 4) the Goodput metric is eminently suitable for characterizing the performance
of different coding as well as modulation methods and of the estimation error of the Doppler effects.

INDEX TERMS Channel model, goodput, performance analysis, space-air-ground integrated networks

I. INTRODUCTION

THE next decade is expected to experience a prolifera-
tion of diverse wireless applications [1], [2]. Applica-

tions like navigation, underwater communication, and subur-
ban communication demand extensive coverage to mitigate
blind spots. However, terrestrial base stations (BSs) often
face obstructions due to environmental factors, leading to
unsatisfactory quality of service (QoS) [3]. As a potential
alternative, satellites may establish line-of-sight (LoS) links
with terrestrial receivers, thereby enhancing the coverage.
Since Geostationary Earth Orbit satellites (GEOs) exhibit a
latency approximately 100 times higher than that of Low
Earth Orbit satellites (LEOs) [4], [5], LEOs are better suit-
ed for delay-sensitive communications in space-air-ground
integrated networks (SAGINs).

Naturally, new applications are always accompanied by
novel challenges: 1) LEOs travel in space at a velocity of
around 7.8 km per second with approximately 90 minutes to
complete a full circle around the Earth, resulting in a severe
Doppler shift and a short serving period. 2) Electromagnetic
waves must propagate through the atmosphere from the
LEOs to the ground, experiencing molecular absorption,
especially in the Troposphere. Below 270 GHz, the primary
components responsible for molecular absorption are oxygen
and water vapor. In frequency bands below 6 GHz, molecular
absorption is negligible since the first significant absorption
peak appears at around 22-25 GHz for water vapour. Since
the L band (1-2 GHz), exploited for the current satellite-
ground communications, avoids severe molecular absorption,
while the bands at higher frequencies than the L band may
experience high absorption peaks owing to various gases.
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3) The atmospheric turbulence imposes extra shadowing
effects and multi-path propagation compared to terrestrial
networks, which requires suitable small-scale fading models.
4) The atmospheric refraction causes bending rays, but their
length must be imposed by to obtain the exact path loss.
Additionally, the path loss of high-frequency carriers is
significantly severe. 5) The propagation of microwaves is
influenced by the weather conditions as well, including rain,
fog, and clouds.

To address these challenges, substantial research efforts
have been dedicated to investigating SAGIN channel mod-
elling and to their performance analysis, which are summa-
rized as follows:

• Small-scale fading: A variety of distribution models
have been considered for small-scale fading. Specif-
ically, although the Log-Normal distribution fits the
shadowing effects well [6], the Shadowed-Rician dis-
tribution [7] has mathematically-tractable expressions
for fundamental channel statistics, which is widely har-
nessed for SAGINs [8]–[10]. Although the Shadowed-
Rician distribution is generally considered to be a sub-
type of Rician distribution, the analytical relationships
between them, particularly regarding the distribution of
the Rician factor K and its properties in SAGINs, have
not been fully explored yet.

• Path loss: Again, due to the variation of atmospher-
ic density, the transmission path of electromagnetic
waves forms a bending ray. The authors of [11], [12]
have characterized the bending rays by the ray-tracing
model. The additional distance caused by atmospheric
refraction may lead to extra path loss, which has not
been considered in current literature. Additionally, the
curvature of the Earth and the geometric relationship
between the satellite and terrestrial users are often
overlooked in the open literature.

• Molecular absorption: In [13], a gas absorption mod-
el has been proposed, which requires experimentally
measured absorption coefficients. A theoretical physics-
based model of molecular absorption has been con-
structed by the Born-Oppenheimer Approximation in
[14]. Based on diffusion loss, Sutherland and Bass [15]
have derived absorption equations for various gases,
including oxygen, nitrogen, carbon dioxide, and ozone.
As a benefit of its mathematical tractability, the Beer-
Lambert-law-based model has been widely exploited in
Terahertz band airplane-satellite communications [16]–
[18]. Despite the significant power-domain loss encoun-
tered in Terahertz band communications, the molecular
absorption model exploited might serve as a viable
option in the context of SAGINs.

• Doppler effects: Considering the geometric relation-
ship between a terrestrial user and a satellite, a nor-
malized maximum Doppler frequency has been derived
in [19] along with its distribution in [20]. Given the
normalized maximum Doppler frequency, the Doppler

shift distribution has been modelled as a Jakes distri-
bution in [21]. Further mitigation of the Doppler ef-
fects has been achieved by non-coherent detection [22]
Doppler frequency shift estimation [23], and orthogonal
time frequency space (OTFS) modulation [24], [25].
Nonetheless, the impact of the Earth’s rotation on
the relative velocity and Doppler effect has not been
investigated.

• Weather conditions: Weather conditions also influence
the propagation of electromagnetic waves, which in-
clude rain [26], [27], clouds [6], [28], and fog [28].
Specifically, the International Telecommunication U-
nion (ITU-R) recommends methods for evaluating the
attenuation due to the weather conditions in decibels
(dB) [26], [28], but the attenuation in the power-domain
is not directly provided.

Against this background, for the first time in literature,
we propose an improved SAGIN channel model that in-
corporates the following practical considerations: 1) the
normalized Doppler frequency along with the impact of the
Earth’s rotation, 2) the Beer-Lambert-law-based model of
molecular absorption, 3) the Shadowed-Rician distribution
in terms of the Rician factor K, 4) the path loss model
considering geographic distances and bending rays, and 5)
the effect of weather conditions in accordance with ITU-
R’s guidance. The novel contributions of this paper are
contrasted to the state-of-the-art in Table 1, which are further
elaborated on as follows:

• We propose a practical channel model for SAGINs,
where LEOs are leveraged to directly serve SAGIN
users. In this model, we consider two types of users:
terrestrial and non-terrestrial users. Taking the Earth’s
rotation into account, we incorporate the Earth’s angular
velocity into the channel modelling between LEOs
and terrestrial users. The Earth’s rotation effect is also
inherently embedded into the velocity of non-terrestrial
users.

• We evaluate five key aspects of SAGIN channel mod-
elling. Firstly, as for small-scale fading, we utilize the
Shadowed-Rician channel and analyze the distribution
in terms of the Rician factor K that characterizes the
LoS and non-line-of-sight (nLoS) components. Second-
ly, as for large-scale fading, we take into account the
curvature of the Earth, the geographical relationship
between users and satellites, and the atmospheric refrac-
tion. The length of the bending propagation trajectory
is calculated by exploiting the ray-tracing model. We
then derive the “straight-line” distance between the
user and the LEO as the benchmark for bending rays.
We compare the satellites’ true elevation angles and
the detected angle of arrival for electromagnetic waves
as well. Subsequently, we present the Beer-Lambert-
law-based model for molecular absorption, followed
by the derivation of the normalized maximum Doppler
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FIGURE 1. Illustration of the system model: (a) The overview of the system model, (b) Aircraft as users, and (c) Base stations or gateways as users.

frequency for both terrestrial and non-terrestrial users.
Finally, we examine the effects of weather conditions
in both dB and in terms of Watts (W).

• Based on the proposed SAGIN channel model, we
have further quantified and analysed the following
three pivotal performance metrics of SAGINs. Firstly,
we calculate the achievable upper bound of bit-error-
rates (BER) considering multiple quadrature amplitude
modulation (M-QAM) methods. Secondly, we derive
the closed-form expression of outage probability (OP),
which serves as an intermediate step for calculating the
ergodic rates (ER). Thirdly, we derive the Goodput (GP)
attained, representing the average value of flawless re-
ception rates that the receiver acquires over an extended
duration.

• Numerical results yield the following conclusions. 1) In
the proposed Shadowed-Rician small-scale fading mod-
el of SAGINs, the parameters of K and m can be appro-
priately adjusted to model the line-of-sight/scattering

conditions and the atmospheric shadowing effect, re-
spectively. 2) For small elevation angles, factors such
as the geographic distances, geometric angles, and the
curvature of the Earth should be considered for accurate
path loss estimation or modelling, by contrast, they
may be neglected for large elevation angles. 3) The
atmospheric refraction model in ITU-R has a limited
impact on path loss. 4) High-frequency carriers lead to
significant path loss.

This paper is structured as follows. Section II presents a
practical channel model that examines the Doppler effect,
the Earth’s rotation, molecular absorption, the Shadowed-
Rician distribution having the Rician factor K, bending rays,
the Earth’s curvature, and weather conditions. Section III
derives the closed-form expressions of BER, OP, ER, and
GP. Section IV provides our numerical results, followed by
the conclusion in Section V.

TABLE 1. The Novelty Table of the Proposed Channel Model for Space-Air-Ground Integrated Networks.

The Novelty Table

Reference
papers

Geometric
Doppler
frequency

Molecular
absorption

Shadowed-
Rician
fading

The Earth’s
rotation

Weather con-
ditions, inc.
rain, fog, and
clouds

Distribution
and analysis
of the Rician
factors

Geometric
path loss
with bending
rays

Goodput
analysis

[19], [20] X X

[13]–[18] X

[7]–[9] X

[10] X X

[6], [26]–[28] X

Our Model X X X X X X X X
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II. A PRACTICAL CHANNEL MODEL
In satellite-ground communication, more severe chal-

lenges emerge than in terrestrial communication due to
atmospheric interactions. Shown as Fig. 1, our SAGIN
encompasses both terrestrial and non-terrestrial users com-
municating with a LEO. To mitigate interference, distinct
sub-bands are assigned for the downlink and uplink channels.
This paper is a downlink channel model. Again, in our
SAGIN model, we explicitly address the following five key
factors: (1) small-scale fading due to atmospheric turbulence
and shadowing, (2) ray bending caused by atmospheric re-
fractivity, (3) molecular absorption of gases, (4) the Doppler
effects, and (5) weather impacts, including rain, fog, and
clouds.

Theorem 1. Considering the attenuation caused by the five
factors, we model the signal received at the user side as:

y =
√
PsPPLPabsPRainPFogPCloudshSTx+ n, (1)

where y is the received signal, x is the transmitted signal,
and n is the additive white Gaussian noise (AWGN) whose
variance is expressed as σ2. We represent the transmit power
of the LEO as Ps. The parameter hST represents the small-
scale fading. It obeys the Shadowed-Rician distribution,
whose probability density function (PDF) and cumulative
distribution function (CDF) are expressed in (7) and (8),
respectively. The path loss PPL is formulated in (21).
The attenuation of molecular absorption, given by Pabs, is
presented in (23). The attenuation equations of fog, rain,
and clouds (presented as PFog, PRain, and PClouds) are
encapsulated in (33) to (35), respectively, in Theorem 8.

Based on the formula of the received signal, the signal-
to-noise ratio (SNR) at the user side is expressed as:

γSNR =
PsPLoss |hST |2

σ2
, (2)

where we define the long-term attenuation, formulated as
PLoss = PPLPabsPRainPFogPClouds.

Proof:
The attenuation parameters, including PPL as the path
loss, Pabs as the molecular absorption loss, and climate
attenuation loss, formulated as PFog for fogs, PRain rain,
and PClouds for clouds, are calculated in the power domain.
Hence, they are placed inside the square root. Hence, the
received signal is expressed as (1). The detailed derivations
of each part proceed as seen in the flow chart, Fig. 2, for
further clarification.

A. SMALL-SCALE FADING WITH SHADOWING EFFECT
The scattering effects experienced in SAGINs due to the

atmosphere differ from those in terrestrial scenarios. Besides
substantial reflections from buildings or walls, the primary
contributors to small-scale attenuation include atmospheric
turbulence, shadowing caused by gases (such as water vapour
and oxygen), and weather conditions (such as fog, clouds,
and rain).

1) SMALL-SCALE FADING DISTRIBUTIONS
The Log-Normal distribution may effectively represent

practical scenarios [29], but this model is characterized by
complex expressions, leading to intractable derivations [7].
As a more convenient alternative, the Shadowed-Rician
model has gained significant popularity [8], [9]. The received
complex channel information [7] is given as:

hST (t) = A(t) exp [jζ(t)]︸ ︷︷ ︸
nLoS

+Z(t) exp(jξ)︸ ︷︷ ︸
LoS

, (3)

where the scattering component, expressed as A(t) is repre-
sented by a Rayleigh distribution with uniformly distributed
phase ζ(t). Additionally, the line-of-sight component com-
bined with atmospheric shadowing effects, given by Z(t),
is modelled as a Nakagami-m distribution with a dominant
phase ξ.

Lemma 1. The PDF of the Shadowed-Rician distribution
is expressed as:

p|hST |2(x) =

(
2b0m

2b0m+ Ω

)m
1

2b0
exp

(
− x

2b0

)
,

× 1F1

(
m, 1,

Ωx

2b0 (2b0m+ Ω)

)
, (4)

where 2b0 = E[PnLoS ] is the average received power of the
ground nLoS component, while Ω = E[PLoS ] is that of the
LoS component with the effect of atmospheric shadowing.
The confluent hypergeometric function of the first kind is
formulated as 1F1(·, ·; ·), and m is the Nakagami-m fading
parameter.

Proof:
This proof is provided in the first part of Appendix A.

Remark 1. Conditioned on m = 1, the Shadowed-Rician
distribution is a Rayleigh distribution with the expectation of
(Ω + 2b0). Conditioned on m → ∞, the Shadowed-Rician
distribution is formulated as a Rician distribution with the
Rician factor as KR = Ω

2b0
. The PDF expressions of the

special cases are presented as:

p|hST |(r)
∣∣∣
m=1

=

(
2b0

Ω + 2b0

)
r

b0
exp

(
r2

Ω + 2b0

)
, (5)

p|hST |(r)
∣∣∣
m→∞

=
r

b0
exp

(
−r

2 + Ω

2b0

)
I0

(√
Ωr

b0

)
. (6)

Proof:
See the second part of Appendix A.

In Lemma 1, to calculate its CDF, the confluen-
t hypergeometric function of the first kind, expressed as

1F1

(
m, 1, Ωx

2b0(2b0m+Ω)

)
, is difficult to formulate in inte-

grals, especially when m > 1. Hence, it is desired to
have a beautiful and tractable expression with meaningful
parameters. Since the parameter m of the Nakagami-m
distribution represents the shadowing effect of the LoS
component, we define two parameters, including: 1) the
shadowed LoS factor, formulated as KLoS = Ω

m , and 2)
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FIGURE 2. The flow chart of this paper: (a) The channel model in Section II, and (b) the performance analysis in Section III.

the isotropic scattering factor, expressed as KSct = 2b0. In
terms of physical meaning, the parameter KSct is the average
received power of the nLoS components. It is also the scale
parameter in the mapped exponential distribution (the square
of the Rayleigh distribution). Furthermore, KLoS is the scale
parameter of the related Gamma distribution, which is the
square of the Nakagami-m distribution.

Theorem 2. Given that m is an integer, the confluent
hypergeometric function of the first kind can be transformed
into a sum of exponential functions by exploiting Laguerre
polynomials. When we harness the two parameters, for-
mulated as KSct = 2b0 and KLoS = Ω

m , the CDF of
the Shadowed-Rician distribution of the small-scale fading
model has an elegant formula, which is represented by
an exponential distribution form multiplied by a binomial
expansion form. Hence, the PDF and CDF expressions are
formulated as:

f|hST |2(x) =

m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1
(KLoS)

k

k!(KSct +KLoS)
m

×
(

x

KSct +KLoS

)k
exp

(
− x

KSct +KLoS

)
, (7)

F|hST |2(x) =1−
m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1
(KLoS)

k

(KSct +KLoS)
m−1︸ ︷︷ ︸

binomial expansion form

×
k∑
p=0

xp

p!

(
1

KSct +KLoS

)p
exp

(
− x

KSct +KLoS

)
︸ ︷︷ ︸

exponential distribution form

,

(8)

where “KLoS +KSct” represents all the components under
the atmospheric shadowing effect with KLoS+KSct ≤ 2b0+

Ω. This clearly indicates that KLoS +KSct = 2b0 +Ω if and
only if m = 1. Additionally, the binomial coefficient is given
by
(
n
k

)
= n!

k!(n−k)! .

Proof:
See Appendix B for derivations in detail.

Corollary 1. By exploiting the PDF of the Shadowed-
Rician fading channel, the expectation |hST |2 is derived as:

E
[
|hST |2

]
= 2b0 + Ω, (9)

which echoes the value range of KLoS +KSct in Theorem
2.

Proof:
The proof is provided in Appendix C.

Remark 2. Since the transmit power, path loss, molecular
absorption, and attenuation due to weather conditions are
independent of each other, the small-scale fading models
the multipath effect without affecting the long-term received
power. Hence, we normalize the Shadowed-Rician distribu-
tion to have a unit power gain, formulated as 2b0 + Ω = 1.
After normalization, the PDF and CDF formulas in Theorem
2 still hold.

2) ANALYSIS OF RICIAN FACTORS
Recall that the parameter m of the Nakagami-m dis-

tribution only represents the atmospheric shadowing effect
for the LoS component. The Shadowed-Rician distribution
may create the misconception that the scattering component
remains unaffected by the atmospheric shadowing. Since the
shadowed-Rician model represents a full-scattering scenario
(isotropic reflection environment) for the nLoS components
on the ground, the atmospheric shadowing effect has been
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considered by adjusting m. For by the Rician channel, we
characterize the ratio of the LoS component and of the
scattering components due to the shadowing effect and the
ground scattering by the Rician factor, formulated as:

Keff =
s2

2b0 + 2σ2
a

, (10)

where s2 is the received power of the pure LoS component,
2b0 is the received power of ground scattering, and 2σ2

a is
the received power of atmospheric shadowing effect.

Subsequently, we define a Rician factor to evaluate the
atmospheric shadowing effect, presented as KSR = s2/2σ2

a

subject to the constraint of s2 + 2σ2
a = Ω. Consequently,

we express s2 and 2σ2
a by Ω, formulated as s2 = KSRΩ

KSR+1

and 2σ2
a = Ω

KSR+1 , respectively. Note that the relation-
ship between the Nakagami parameter m and Rician factor
KSR [30] may be expressed as:

m =
(KSR + 1)2

(2KSR + 1)
, (11a)

KSR =(m− 1) +
√
m2 −m. (11b)

Additionally, Table 2 presents the parameters of all Rician
factors, the components, and their physical meaning.

TABLE 2. Rician parameters and their physical meaning.

Parameter Physical meaning

KR = Ω
2b0

The ratio between the LoS component plus
the atmospheric shadowing component and
the ground scattering component

KSR = s2/2σ2
a

The ratio between the pure LoS component
and the atmospheric shadowing component

Keff = s2

2b0+2σ2
a

The ratio between the pure LoS component
and all nLoS components

s2
The received power of the pure LoS com-
ponent

2σ2
a

The received power of the atmospheric
shadowing component

s2 + 2σ2
a = Ω

The received power of pure LoS component
as well as the atmospheric shadowing com-
ponent

2b0
The received power of the ground scattering
component

Remark 3. The effective Rician factor Keff for the
Shadowed-Rician channel is formulated as:

Keff =

[
(m− 1) +

√
m2 −m

]
Ω

2b0 + Ω + 2b0
[
(m− 1) +

√
m2 −m

] . (12)

Remark 4. As for the shadowed LoS link, when m = 1,
the channel conditions are extremely hostile. As m increases,
the LoS link becomes more dominant, representing scenarios
associated with weak atmospheric turbulence, clear skies
without rain, fog, or clouds, and minimal terrestrial block-
ages. To echo the conclusion in Remark 1 by exploiting

Keff , this remark is expressed as:

Keff |m=1 =0, (13a)
Keff |m→∞ =Ω/(2b0) = KR, (13b)

where we define KR = Ω/(2b0) is the Rician factor when
there is no atmospheric fading.

B. LARGE-SCALE FADING FOR BENDING RAYS
The operational satellite communications exploit the L-

band (typically 1 GHz to 2 GHz), while higher-frequency
carriers, such as millimetre-wave (mm-wave) carriers, are
anticipated to dominate 6G communications due to the
impending spectrum crunch. Consequently, the path loss may
become significant. Atmospheric refraction, which results in
longer distances compared to direct LoS links, may further
exacerbate this situation. This subsection aims to investigate
the impact of atmospheric refraction on the path loss in 6G
SAGINs.
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FIGURE 3. Three models of bending rays for Theorem 3.

In Fig. 3, three models are depicted. (1) In Fig. 3.(a),
a constant refractive index is assumed for both space and
atmosphere, resulting in electromagnetic wave propagation
mimicked by segmented broken lines. This scenario can be
extended to multiple broken-line segments. (2) In Fig. 3.(b),
wave propagation is straight in space but follows a curved
trajectory in the atmosphere. (3) In Fig. 3.(c), the entire
propagation path forms a continuous curve both in space
and in the atmosphere.

Since the deviation of electromagnetic wave propagation is
negligible in space above the atmosphere, the model in sub-
figure (b) fits practical scenarios well. Hence, it is chosen for
evaluating the path loss in terms of the atmospheric refractive
index formulated as n = 1+N×10−6 [11], where N denotes
the radio refractivity. The radio refractivity is influenced by
atmospheric pressure, water vapour pressure, absolute tem-
perature, and a number of other factors [31]. Since horizontal
variations in radio refractivity across adjacent regions are
minimal, the refractive index may be modelled as a function
of the vertical altitude above the Earth’s surface. Based on
the ITU-R recommendation sectors [31], the refractive index
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as a function of the altitude is expressed as:

n (h) =1 +N0 × 10−6 × exp

(
− h

h0

)
=1 +N

′

0 exp

(
− h

h0

)
, (14)

where N0 is the average value of the atmospheric refractivity
extrapolated to sea level and h0 is the altitude within the
atmosphere (km).

1) THE LENGTH OF THE BENDING PROPAGATION
TRAJECTORY

Three theorems are formulated in this subsection, namely
Theorem 3 to Theorem 5. Theorem 3 characterizes the
bending trajectory of electromagnetic waves in the face of
atmospheric refractivity by a ray-tracing method. Subse-
quently, Theorem 4 extends Theorem 3 with the objective
of having higher accuracy. Finally, Theorem 5 quantifies the
straight length of the link spanning from the user to the
satellite used as a benchmark.

O

Horizontal Line

rfd
std

H

R

G

0
q eq

Orbit

t
sq

f

FIGURE 4. The notation of angles and distances from the satellite to the
ground user for Theorem 3, Theorem 4, Theorem 5, and Theorem 6.

Before we present the following theorems, this paragraph
defines parameters seen in Fig. 4 for the convenience of read-
ing. In Fig. 4 explicitly, the blue semi-circular arc represents
the Earth’s surface along with its radius R represented by
the black solid line. The satellite orbits around the Earth
along the green dashed line, where the orbit’s altitude H
is indicated by the yellow solid line. The length drf of the
curved trajectory from the satellite to the ground is the red
curve, whose tangent at the user side forms the angle θ0 with
the horizontal line. The direct distance from the satellite to
the user is dst, which forms the true elevation angle θe with
the horizontal line. The angle constituted by the tangent of
the bending wave at the satellite side and that of the orbit
is θs. The two tangents of the bending wave (the red curve)
both at the user side and at the satellite side intersect, forming
an angle τ . The length of the purple curve, presented as G,
represents the distance along the Earth’s surface, which is
defined as the ground range.

Theorem 3. As shown in Fig. 3.(b), given the Earth’s
radius R, the altitude of the satellite’s orbit H , and the initial
(detected) elevation angle θ0, the length of the bending path
is calculated as:

drf (h) =

Q∑
i=1

Hωin (κi)

2

(
1− cos2

(
2i− 1

2Q
π

)) 1
2

×

1−

(
n0 cos (θ0)

n (κi)
(
1 + κi

R

))2
− 1

2

, (15)

where we have κi =
H(cos( 2i−1

2Q π)+1)
2 , ωi = π

Q , Q = 100
for computing Chebyshev-Gauss quadrature. Recall that n(·)
is shown as (14).

Proof:
This theorem is proved in Appendix D.

Theorem 4. Based on the model shown in Fig. 4, the
specific computational method given in [12] enhances the
accuracy of Theorem 3, particularly in the region around the
vicinity of h = 0 with a small θ0. The length of the bending
trajectory of electromagnetic waves may be formulated as:

drf =

∫ H

0

n2 (h)
(
1 + h

R

)√
µ+ υ (h) + ω (h) + υ (h)ω (h)

dh

=

Q∑
i=1

ωiHn
2 (κi)

(
1 + κi

R

)√
1− cos2

(
2i−1
2Q π

)
2
√
µ+ υ (κi) + ω (κi) + υ (κi)ω (κi)

,

(16)

and the ground range G is estimated by setting h
R , yielding:

G =

∫ H

0

(1 + ρ0) cos (θ0) dh(
1 + h

R

)√
µ+ υ (h) + ω (h) + υ (h)ω (h)

=

Q∑
i=1

Hωi (1 + ρ0) cos (θ0)
√

1− cos2
(

2i−1
2M π

)
2
(
1 + κi

R

)√
µ+ υ (κi) + ω (κi) + υ (κi)ω (κi)

,

(17)

where the parameters and functions exploited are defined as:

n(x) = 1 + ρ0 exp (−kx) , (18a)

µ = (1 + ρ0)
2
sin2θ0 − 2ρ0 − ρ2

0, (18b)

υ (x) = 2ρ0 exp (−kx) + ρ2
0 exp (−2kx) , (18c)

ω (x) =
2x

R
+
x2

R2
, (18d)

κi =
H
(

cos
(

2i−1
2Q π

)
+ 1
)

2
, (18e)

ωi =
π

Q
, (18f)

with Q = 100 for computing Chebyshev-Gauss quadrature.

Proof:
The proof is in the first part of Appendix E.
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Remark 5. Note that Theorem 4 necessitates θ0 ≥ 1.5◦.
If we have θ0 < 1.5◦, negative values are obtained. This
condition is satisfied in practical scenarios since LEO satel-
lites generally work with higher elevation angles than 1.5◦

for the sake of better QoS (generally above 10◦).
Remark 6. Theorem 4 provides an adjustable refractivity

function in (18a). To match the settings of the refractivity
function in ITU-R and (14), we opt for fixing the value of
two parameters expressed as ρ0 = N

′

0 and k = 1/h0.
Theorem 5. We harness the same parameters and geomet-

ric relationships as in Theorem 4, which are shown in Fig.
4. By extending the results in Theorem 4 [11], the direct
distance (the straight line dst) from the satellite to the user
is derived as:

dst=
(R+H) sinφ

cos θe
=

√
H2+4R (R+H) sin2

(
G

2R

)
,

(19)

where we have φ = G
R with the expression of G as (17).

Proof:
See the second part of Appendix E.

Remark 7. The extra length of the wave’s propagation due
to the atmospheric refraction is expressed as:

ddif = drf − dst. (20)

Remark 8. The path loss is expressed as:

PPL =

(
c

4πfc

)2

d
−αp
rf , (21)

where c is the speed of light, fc is the frequency of carrier,
and αp is the path loss exponent. To obtain the final path
loss, we may exploit the results of drf in Theorem 3 and
Theorem 4.

Remark 9. The length of the bending signal propagation
trajectory (given the drf derived in Theorem 3 and Theorem
4) might be further exploited for satellite-aided integrated
sensing and communications (ISaC) as well as for satellite-
based cooperative localization and navigation networks.

2) THE TRUE ELEVATION ANGLE
Upon extending the results in Theorem 4 and Theorem

5 [12], we arrive at a computational convenient technique
by calculating the true elevation angle, that is, the geometric
angle of arrival (AOA), which is formulated in Theorem 6.

Theorem 6. Upon harnessing the result of G in Theorem
4 and that of dst in Theorem 5, the true elevation angle is
expressed as:

θe = arcsin

(
H

dst
+

H2

2Rdst
− dst

2R

)(
θ0 ≤

π

4

)
, (22a)

θe =
π

2
− arcsin

(
(R+H) sin

(
G
R

)
dst

)(
θ0 >

π

4

)
. (22b)

Proof:
This theorem is validated by Appendix F.

Remark 10. The results of the true elevation angle might
be exploited for investigating the effect of the polarization
of antenna arrays and the LEO-aided sensing networks,
including localization and navigation.

Remark 11. The elevation angle is modified by θm =
(θ0 − θe) radians due to the atmospheric refraction.

C. MOLECULAR ABSORPTION
When the energy of electromagnetic waves at specific

frequencies matches the energy required by free electrons
in molecules to be transitioned from lower to higher energy
states, substantial absorption occurs. In the atmosphere, key
absorbing molecules include water vapour, oxygen, nitro-
gen, and their isotopes. Notably, the exploitation of high-
frequency bands will result in numerous molecular absorp-
tion peaks, significantly degrading wireless communication
performance [18].

By combining both tractability and generality, the Beer-
Lambert-law-based model has been formulated as [16], [17]:

Pabs (fabs, rabs) = exp
(
−
∑

i
κiabs (fabs) rabs

)
, (23)

where the parameters include: 1) rabs is the thickness of the
medium, and 2) κiabs (fabs) is the absorption coefficient of
the ith absorbing species (molecules or their isotopologue) at
the frequency of fabs. We also defined τi = κiabs (fabs) rabs
as the optical thickness shown in numerical results (Fig. 7).
We would have a fixed rabs for a homogeneous medium and
a variable rabs for a non-homogeneous medium [16]. The
summation indicates the number of significantly impactful
gases. Indicated in the simulation results, under 270 GHz,
we generally only consider the effect of water vapour and
oxygen.

D. THE DOPPLER EFFECT
We assume that the Earth is a perfect sphere and the

orbit of the LEO is a circle concentric with the Earth.
Consequently, the angular velocities of both the Earth and
of the LEO remain constant over time 1. Based on these
assumptions, the relative velocity between the LEO and the
terrestrial or non-terrestrial user is derived.

1) RELATIVE VELOCITY & EARTH’S ROTATION
Two categories of users are considered: airborne users

(e.g., aircraft and unmanned aerial vehicles [32]) plus ground
users (e.g., BSs and gateways), as illustrated in Fig. 1. (b)
and Fig. 1. (c).

As for the non-terrestrial user, the Earth’s rotation influ-
ences atmospheric turbulence, leading to time-varying ve-
locities for different eastward/westward travelling directions.
We define the non-terrestrial user’s velocity as −→vA, which

1We ignore the gravitation of both the moon and of other bodies in space.
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inherently incorporates the effects of the Earth’s rotation.
Consequently, the relative velocity between the LEO and the
aircraft is given by:

|−−→vR,a|= |−→vS −−→vA|=
√
|−→vS |

2
+ |−→vA|

2 − 2|−→vS | |−→vA| cos (ϕS),

(24)

where −→vS is the velocity of the LEO satellite and ϕS is the
angle between the direction of −→vA and that of −→vS .

As for the terrestrial user, the effects of the Earth’s rotation
must be considered. The angular velocity of the Earth is
presented by ωE , and its radius is represented by R. Let us
define the angle between the user and the equatorial plane
as ϕE . Furthermore, we denote the angle between the orbit
and the equatorial plane as θi. The relative velocity between
the satellite and the terrestrial user is derived as:

|−−→vR,t| = |−→vS −−→vE (ϕE)|

=

√
|−→vS |

2
+R2ω2

Ecos2 (ϕE)−2 |−→vS |RωE cos (ϕE) cos (θi).

(25)

Given the LEO’s altitude H , the relative angular velocity
is given by

ωR,u =
|−−→vR,u|
R+H

, (26)

where we have u ∈ {a, b} (u = a for the non-terrestrial users
and u = b for the terrestrial users). The formula (26) is an
instantaneous relative angular velocity, which is exploited
for calculating the normalized Doppler frequency, shown as
(29) in the following.

2) THE DOPPLER EFFECT V.S. THE RELATIVE ANGULAR
VELOCITY

Due to the Doppler effect, the observed frequency and the
change of frequency are generally calculated as a function
of the relative velocity, expressed as:

fob =
c± vo
c± vs

fs ≈
(

1 +
∆v

c

)
fc, (27)

∆f =fob − fs ≈
∆v

c
fs, (28)

where again, c is the speed of light. Furthermore, fob and
vo are the frequency and the velocity of the observer,
respectively. Additionally, the frequency and the velocity of
the source are respectively expressed as fs and vs. We have
∆v as the relative velocity between the source and the target,
formulated as |vo − vs|. Note that the source frequency is
approximately equal to that of the carrier wave, i.e., fc = fs.

Theorem 7. When we consider both the geographic lo-
cations of users, the orbits of LEOs, and the rotation of the

Earth, the Doppler effect is also influenced by the relative
position between the users and the satellites [19]. Naturally, it
is impossible for each user to have a satellite passing directly
overhead. Explicitly, considering a maximum elevation angle
between the user and the satellite is more practical. The
derivation of the normalized Doppler frequency is expressed
as (29), where ωR,u is the relative angular velocity for the
satellite, derived as (26), and θmax is the maximum elevation
angle. The distance from the origin of the Earth to the LEO
is formulated as Hos = R + H . Additionally, we have
ψ̇(t) = dψ(t)

dt = ωR,u(t) and ψ (t, t0) = ψ(t)− ψ (t0).

Proof:
Proved in Appendix G.

E. WEATHER CONDITIONS
Based on the recommendations of the ITU, the attenuation

due to rain, fog, and clouds has been evaluated by consider-
ing practical data sets [26], [28]. As for the rain model, the
frequencies are in the range spanning from 1 to 1000 GHz.
Additionally, the attenuation model for fog and clouds is
valid for frequencies below 200 GHz based on the Rayleigh
scattering. The attenuation in dB is expressed in Lemma
2 and the attenuation harnessed in our SNR expressions is
presented in Theorem 8.

Lemma 2. The attenuation model for rain with the unit
of dB/km is expressed as:

γR = KRR
αR
rate, (30)

where KR and αR are determined as functions of the carrier
frequency, which are found in [26], while Rrate is the rain
intensity (mm/h).

Additionally, the attenuation model for fog with the unit
of dB/km is expressed as:

γF = KLMden, (31)

where KL is the specific attenuation coefficient in terms of
liquid water density in the cloud or fog, expressed as Mden

[28].
Moreover, the attenuation model for clouds with the unit

of dB is expressed as:

γC =
LWKL

sin θe
, (32)

where LW is the statistics of the total columnar content of
liquid water and θe is the true elevation angle [28].

Theorem 8. Instead of considering the accumulated at-
tenuation v.s. the distance instead of in dB, we consider the
attenuation as a multiplicative factor in the SNR expression.

fD,max =
∆f

fc
= −1

c

RHos sin (ψ (t, t0)) cos
(

cos−1
(
R cos θmax

Hos

)
− θmax

)
ωR,u(t)√

R2 +H2
os − 2RHos cos (ψ (t, t0)) cos

(
cos−1

(
R cos θmax

Hos

)
− θmax

) . (29)
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Hence, the specific attenuation formulas for rain, fog, and
clouds are expressed as follows.

As for the rain, the attenuation model is expressed as:

PRain = 10−
γRdRain

10 , (33)

with dRain as the length of the path that the electromagnetic
waves go through in the rainfall area.

As for the fog, the attenuation model is expressed as:

PFog = 10−
γF dFog

10 , (34)

with dFog as the length of the path that the electromagnetic
waves propagate through in the foggy area.

As for the clouds, the attenuation model is expressed as:

PClouds =

(
I∏
i=1

10
γC,i
10

)−1

, (35)

with γC,i as the attenuation for each cloud and the number
of clouds is I .

Proof:
As for the rain, we have a total attenuation due to rain, ex-
pressed as (γRdRain) dB. We have γR = 10×log10 (P1/P2),
where P1 and P2 are the powers of waves before and after
the effect of rain (per km), respectively. Hence, we have

Preceiv = 10

(
γRdRain

10

)
Ptrans = PRainPtrans. Consequent-

ly, the attenuation of rain, expressed as PRain, is obtained.
The attenuation expressions of other weather conditions may
be similarly derived.

III. PERFORMANCE ANALYSIS: THE GOODPUT
Based on the practical channel model presented in the

above section, in this section, the GP performance of SA-
GINs is investigated. As we consider the long-term perfor-
mance, we assume that the Doppler effect is averaged out.
The impact of attenuation will be further evaluated by the
SNR expression formulated in (2).

A. BIT-ERROR-RATE
We first provide the BER bound under QAM modulation

schemes, where the Doppler effect has been well mitigated
(Theorem 9). To evaluate the impact of the Doppler, we
provide a simulation-based method to evaluate the BER
under Gray coding 16-QAM by exploiting single-symbol
pilot estimation to detect the signal symbols (Theorem 10).

1) BER BOUND
A BER bound has been evaluated in references [33]–

[35] for an AWGN channel relying on M-QAM and perfect
coherent phase detection:

BERb ≤ 2 exp

(
−3E [γSNR]

2 (M − 1)

)
, (36)

where E [·] is the expectation.

Under the assumption of M ≥ 4 and 0 ≤ E [γSNR] ≤ 30
dB, we have a tighter upper bound expressed as:

BERb ≤
1

5
exp

(
−3E [γSNR]

2 (M − 1)

)
. (37)

In the following, we derive the E [γSNR] to obtain final BER
bound.

Lemma 3. Recall that we normalize the expectation of
E
[
|hST |2

]
as 2b0 + Ω = 1. Given the SNR expression in

(2), we now formulate the expectation of the SNR as:

E [γSNR] = E
[
λt|hST |2

]
= λtE

[
|hST |2

]
= λt, (38)

where we have λt =
PsPPLPabsPRainPFogPClouds

σ2 .
Theorem 9. With the aid of Lemma 3 and (37), the upper

bound of the average long-term BER under the M-QAM is
expressed as:

BERb ≤
1

5
exp

(
−3λt

2 (M − 1)

)
. (39)

2) BER WITH DOPPLER EFFECTS
Since the BER bound has an assumption that the Doppler

effect has been perfectly eliminated (or without the Doppler
effect). Hence, the BER bound does not reflect the impact of
Doppler effects. To evaluate the Doppler effect, we analyze
the BER under 16-QAM, where the channel information is
estimated by a pilot symbol at time t. We then detect the
signal information at the later time of t+ τ .

Recall that the received signal is formulated as:

hST (t) =A(t) exp [jζ(t)] + Z(t) exp(jξ)

=AI(t) + jAQ(t) + Z(t) sin ξ + jZ(t) cos ξ

= (AI(t) + Z(t) sin ξ) + j (AQ(t) + Z(t) cos ξ) ,
(40)

where AI(t) and AQ(t) are Gaussian random processes with
zero mean and variance of b0. Additionally, Z(t) is presented
as a Nakagami-m process with its parameters m and Ω.

Given a known pilot symbol sp, the estimated channel is
formulated as:

ĥST (t) =
sp
ap

= hST (t) +
n(t)

ap
, (41)

where the average power of a symbol is denoted as a2
p = Ps.

We then exploit the estimated channel information ĥST (t)
to detect the data symbol after time τ . Hence, the detected
data symbol is expressed as:

x̂ =
y

ĥST (t)
=
hST (t+ τ)

ĥST (t)
x+

n(t)

ĥST (t)
. (42)

Let us now define a pair of parameters, formulated as:

αc =
√
γ̄ |hST (t+ τ)| , (43a)

α̂c =
√
γ̄
∣∣∣ĥST (t)

∣∣∣ . (43b)
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Since αc and α̂c are correlated within a small time slot τ , the
related analytical formula may not have a closed-form ex-
pression. Hence, a simulation-based method of the correlated
Shadowed-Rician random process is provided to evaluate the
impact of the Doppler effect. A Shadowed-Rician random
process within the time duration τ is constituted by the
nLoS component (modeled by the Jakes’ model) and the
LoS component (a Nakagami-m random process). Lemma
4 provides the correlated nLoS component. The correlated
Nakagami-m process is evaluated by Lemma 5.

Lemma 4. Based on Jakes’ model [21], [36], the isotropic
Doppler distribution is presented as

pfD (fD) =


1

πfD,max

√
1−
(

fD
fD,max

)2
, |fD| < fD,max

0, else
,

(44)

with the aid of the Wiener-Khinchin theorem. Then, the
autocorrelation of the Gaussian random processes (AI(t) and
AQ(t)) is expressed as:

RAI (τ) = RAQ(τ) = b0J0(2πfD,maxτ) = b0ρJ(τ), (45)

where the parameter, formulated as ρJ(τ) =
J0(2πfD,maxτ), is the correlation coefficient of Gaussian
random processes.

Lemma 5. It has been proved and widely exploited that
a Nakagami-m distribution with its shape parameter m and
its scale parameter Ω can be mimicked by 2m Gaussian
variables, formulated as:

Z (t) =

√√√√ 2m∑
p=1

X2
p(t), (46)

where we have Xp(t) ∼ N
(
0, Ω

2m

)
[30]. Consequently,

the Nakagami-m process is analyzed by the root of the
summation of 2m Gaussian processes. As for each Gaussian
random process, namely Xp, they have their autocorrelation,
formulated as:

RXp(τ) =

√
Ω

2m
ρJ(τ). (47)

Then, we derive the autocorrelation of Z(t), formulated
as [37]–[39]:

RZ (τ) =
Ω

m

(
Γ
(
m+ 1

2

)
Γ(m)

)2

2F1

(
−1

2
,−1

2
;m; ρ2

J (τ)

)
= ΩρZ (τ) , (48)

where 2F1(·, ·; ·; ·) is the hypergeometric function.

Proof:
The proof is omitted. Please see [37] for detailed deriva-
tions of the hypergeometric function. The exact formula is
presented as Eq. (2) in [38]. The autocorrelation has been
characterized by simulation results in Fig. 13.

By exploiting the conclusions in Lemma 4 and Lemma
5, Theorem 10 provides a simulation-based method for the
correlated Shadowed-Rician random process.

Theorem 10. The mathematical notations in this theorem
are defined as follows. Real-valued and complex-valued ma-
trices are represented as Rx×y and Ck×q with k rows and q
columns, respectively. NN×1(0, q) represents N independent
and identically distributed (i.i.d.) random Gaussian variables
with a zero mean and variance q. A binary uniform distribu-
tion with N i.i.d. elements is represented as UN×1({0, 1})
for generating Gray-coded symbols. Algorithm 1 is provided
to generate the correlated Shadowed-Rician random process
within a time slot τ . Then, the BER under 16-QAM is
computed based on the probability function, formulated as
follows:

BERd=P {x̂MSB > 0 ∪ −2d < x̂LSB < 2d |b1=1&b2=1} ,
(49)

where P{·} represents the probability. Additionally, x̂MSB

is the most significant bit (MSB) and x̂LSB is the least
significant bit (LSB) formulated as (42).
Verification:

Since this is a simulation-based method, it is proved by
numerical results in Fig. 13 and in Fig. 14 in Section IV.

�

B. OUTAGE PROBABILITY
This subsection calculates the outage probability (OP),

which is a popular performance metric also required for
calculating the ergodic rates (ER). We first derive the CDF
of γSNR by Lemma 6, followed by the derivation of the OP.

Lemma 6. With the aid of the Rician distribution in
Theorem 2, the CDF expression of γSNR is derived as:

FγSNR(x) =1−
m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1
(KLoS)

k

(KSct +KLoS)
m−1

×
k∑
p=0

1

p!

(
x

λt (KSct +KLoS)

)p
× exp

(
− x

λt (KSct +KLoS)

)
. (50)

Proof:
This lemma is proved by substituting the SNR expression
into (8), leading to the following result:

FγSNR(x) =P
{
λt|hST |2 < x

}
= F|hST |2

(
x

λt

)
. (51)

Theorem 11. Given the outage threshold, expressed as
γth, and the derivations in Lemma 6, the OP of this SAGIN
is expressed as:

Pout =FγSNR (γth) = 1−
m−1∑
k=0

(KSct)
m−k−1

(KLoS)
k

(KSct +KLoS)
m−1
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Algorithm 1: BER simulation-based method under the
correlated Shadowed-Rician fading

Input: Maximum Doppler frequency fD,max in (29), time delay τ ,
correlation coefficient ρ = ρJ (τ) in (47), nLoS component’s
power 2b0, Nakagami-m parameters m and Ω, numerical
number N with the index idx ∈ [1,N], normalized unit bound
d = 1 in 16-QAM constellation, and the average received
SNR γ̄ = PsPLoss

σ2 in (2).
Output: BER.

1 Construct nLoS component:

AI(t) ∼ NN×1(0, b0) ∈ RN×1,

AQ(t) ∼ NN×1(0, b0) ∈ RN×1,

AI(τ) = ρAI(t) +
√

1− ρ2NN×1(0, b0) ∈ RN×1,

AQ(τ) = ρAQ(t) +
√

1− ρ2NN×1(0, b0) ∈ RN×1.

2 Construct 2m Gaussian random processes:

Xp(t) ∼ NN×2m

(
0,

Ω

2m

)
∈ RN×2m,

Xp(τ) = ρXp(t) +
√

1− ρ2NN×2m

(
0,

Ω

2m

)
∈ RN×2m.

3 for p ∈ [1, 2m] do
4 Construct the Nakagami-m random process: Z(t) ∈ RN×1 and

Z(τ) ∈ RN×1 based on (46).
5 end
6 Construct the Shadowed-Rician random process: hST(t) ∈ CN×1

and hST(τ) ∈ CN×1 based on (40).
7 Construct the amplitude of the Shadowed-Rician random process:
αc =

√
γ̄ |hST(t+ τ)|2 ∈ RN×1 and

α̂c =
√
γ̄
∣∣∣ĥST(t)

∣∣∣2 ∈ RN×1 based on (41), (43a), (43b).

8 Construct Gray-coded symbols:

b1 ∼ UN×1({0, 1}) ∈ RN×1, for xLSB

b2 ∼ UN×1({0, 1}) ∈ RN×1, for xMSB

for idx ∈ [1,N] do
9 Construct Gray-coded symbols:

x(idx) =


d, if b1(idx) = 0,b2(idx) = 0

3d, if b1(idx) = 0, b2(idx) = 1

−3d, if b1(idx) = 1, b2(idx) = 1

−d, if b1(idx) = 1, b2(idx) = 0

.

10 Construct BER based on (49).
11 end

×
(
m− 1

k

) k∑
p=0

1

p!

(
γth

λt (KSct +KLoS)

)p
× exp

(
− γth
λt (KSct +KLoS)

)
. (52)

C. ERGODIC RATES
There is a transformation from the OP expression to that

of the ER [40], [41]. We denote the ER expression as Rer

and express it as:

Rer = E [log2{1 + γSNR}] =
1

ln 2

∫ ∞
0

1− Pout (γth)

1 + γth
dγth.

(53)

Then, the following theorem derives the closed-form ex-
pression of the ER.

Theorem 12. By substituting the results of Theorem 11
into (53), the ER expression for our SAGIN is derived as:

Rer =
1

ln 2

m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1
(KLoS)

k

(KSct +KLoS)
m−1

×

(
I3 +

k∑
p=1

(KSct +KLoS)
p

p!(λt)
p I4

)
, (54)

where we have:

Rer |p=0 =
1

ln 2

m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1
(KLoS)

k

(KSct +KLoS)
m−1 I3,

(55a)

Rer |p≥1 =
1

ln 2

m−1∑
k=0

(
m− 1

k

)

×
k∑
p=0

(KSct)
m−k−1

(KLoS)
k
I4

p!(λt)
p
(KSct +KLoS)

m−1−p , (55b)

with I3 and I4 formulated as:

I3 =− exp

(
1

λt (KSct+KLoS)

)
Ei

(
− 1

λt (KSct+KLoS)

)
,

(56a)

I4 =Γ (p+ 1) Ψ

(
p+ 1, p+ 1;

1

λt (KSct +KLoS)

)
,

(56b)

where the exponential integral is formulated as Ei (x) =∫ x
−∞

exp(t)
t dt, Ψ (·, ·; ·) is the Tricomis confluent hyperge-

ometric function [42], and Γ(·) is the complete Gamma
function.

Proof:
This proof is provided in Appendix H.

D. GOODPUT
Finally, we present the GP expression with the Doppler

effect, defined as:

RGP = (1− BERd)×Rer, (57)

and if the Doppler effect is well subtracted, we have a lower
bound of GP, formulated as:

RGP ≥ (1− BERb)×Rer. (58)

Theorem 13. Based on the results of Theorem 9 and
Theorem 12, we arrive at the final expression of the lower
bound of GP, formulated as:

RGP ≥
1

ln 2

(
1− 1

5
exp

(
−3λt

2 (M − 1)

))
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×
m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1
(KLoS)

k

(KSct +KLoS)
m−1

×

(
I3 +

k∑
p=1

(KSct +KLoS)
p

p!(λt)
p I4

)
. (59)

Proof:
This theorem is proved by substituting (39) and (54) into
(58).

IV. NUMERICAL RESULTS
Our numerical results validate the accuracy of the ana-

lytical derivations in terms of the following settings. The
radius of the Earth R is 6371.393 km. The altitude of the
LEO H is 300 km. The transmit power Ps of the satellite
is chosen from the range of [30, 50] dBm. As for the noise,
we calculate it by σ2 = −170 + 10 × log10(BW ) = −90
dBm with BW = 106 Hz. As for the refractive index,
we have N0 = 315 and h0 = 7.5 km based on the ITU-
R standard. The satellite transmits at a detected elevation
angle of θ0 = 60◦ using a 2 GHz carrier. As for the space
transmission, we set the path loss component as αp = 2.
Under a normalized channel with Ω + 2b0 = 1, we set the
Shadowed-Rician distribution parameter to m = 4 and the
Rician parameter to KR = Ω/(2b0) = 5 dB. Thus, we have
KSct = 1

KR+1 = 2b0 = 0.2403, Ω = 1 − 2b0 = 0.7597,
and KLoS = Ω

m = KR
m(KR+1) = 0.1899. Hence, the effective

Rician parameter is calculated as Keff = 2.8412 dB. The
outage threshold γth is 0.1 and the number of samples is
106 (Monte Carlo simulation samples) used for calculating
the average performance. Note that the units of ER and GP
are bits per cell per second per Hertz.

A. THE CHANNEL MODEL
Since the derivations in Section III are based on the

small-scale fading model formulated in Theorem 2, we first
validate the PDF and CDF in Fig. 5. We conclude that the
analytical results of Theorem 2 closely match the simulation
results well under the condition of m ∈ Z. Then, we
glean further insights based on simulation results and on
the formulas derived.

In Fig. 6, the relationship between the Nakagami param-
eter m and the effective Rician factor K is indicated. The
effective Rician factor K has an upper bound at Keff = Ω

2b0
.

This is because the atmospheric shadowing effect influences
the Nakagami parameter m, while the ground scattering is
fixed with its average power as 2b0. This results in a bound
for m → ∞. Additionally, when we have the Nakagami
parameter of m = 1, the shadowing effect corresponding to
the full scattering case, contributing to the Rician factor K
going to zero.

Fig. 7 indicates the molecular absorption of impactful
gases in terms of wave frequencies. The data for this figure
is obtained from the website of the Earth Observation Data
Group at the University of Oxford [43]. The metric of molec-

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

PDF Simulation

PDF Analysis

CDF Simulation

CDF Analysis

Theorem 2, Eq. (7)

Theorem 2, Eq. (8)

FIGURE 5. The validation of the PDF and CDF of the small-scale fading
|hST |2. (Theorem 2)
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FIGURE 6. The relationship between the effective Rician factor Keff and
the Nakagami-m parameter m. (Remark 3 and Remark 4)

ular absorption is the optical thickness at the zenith, denoted
by τ = −ln(1−A), where A ∈ [0, 1] is the zenith absorption,
representing the fraction of incident electromagnetic energy
which is absorbed by the atmosphere at a given wavelength
on a vertical path directly from the Earth’s surface to space.
Generally, there is significant absorption for τ > 1, while the
absorption is ignored for τ < 0.1. In the range of τ ∈ [0.1, 1],
it depends on the sensitivity of the system evaluated whether
to consider or ignore the molecular absorption. In Fig. 7, the
main gases at a frequency lower than 270 GHz are water
vapour (H2O), oxygen (O2), ozone (O3), and nitrous oxide
(N2O). We observed significant oxygen absorption within
the frequency ranges of 53-66 GHz and at 119 GHz, while
water exhibits substantial absorption between 180-187 GHz.
Since water absorption (within 0-270 GHz) is generally in
the range of τ ∈ [0.1, 1], it is desirable to carry out a

VOLUME 00, 2024 13



C. ZHANG et al.: To be published on IEEE OPEN JOURNAL of VEHICULAR TECHNOLOGY

FIGURE 7. The molecular absorption in terms of frequencies for the
impactful gases. (Guidance for Eq. (23))
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FIGURE 8. The difference between direct rays and bending rays: Distance
in meters and angle in arc. (Remark 7 and Remark 11)

sensitivity test for water vapour in practical experiments in
the future.

In Fig. 8, we compared the error on distance and the
angle of arrival between with and without the atmospheric
refractivity. The initial elevation angle range is from 10o to
80o to meet the maximum practical elevation angle range.
The simulation results show that there would be an error
within 2-14 meters if we do not consider the bending rays.
As calculated in Remark 11, the difference of the angle of
arrival is very limited, within [0.1, 1.8]×10−3 arc. However,
when exploiting the ray-tracing method to track the satellite,
there would be a significant distance error (in meters),
formulated as:

dLEOdiff = 1000× 2H sin (θm/2). (60)
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FIGURE 9. The Doppler frequency in the satellite’s visible window.
(Theorem 7)

With the simulation results, given θm ∈ [0.1, 1.8]×10−3 and
H = 300 km, the calculated distance error is in the range
of dLEOdiff ∈ [30, 540] meters.

Fig. 9 presents the unnormalized Doppler frequency v.s.
time. We define the lowest elevation angle as θin = 10◦. To
evaluate the effect of the Earth rotation, the maximum time
duration T is presented as [19]:

T (θmax) ≈ 2

ωR,u cos θi

× cos−1

 cos
(

cos−1
(

R
Hos

cos θin

)
− θin

)
cos
(

cos−1
(

R
Hos

cos θmax

)
− θmax

)
 , (61)

where we have T = 317 s as the satellite’s realistic visible
window, while the time window is calculated as T = 297
s without the impact of the Earth rotation, which disrupted
the time synchronization. In Fig. 9, it is also indicated that
the Doppler frequency is zero at the largest elevation angle,
where the direction of relative velocity is perpendicular
to the line connecting the terrestrial user and the LEO.
Additionally, in the time window from around 125 s to 175
s, the Doppler frequency varies remarkably fast. The average
Doppler variation is approximately ∆ḟ = ∆f

∆t ≈
2×4×104

175−125 =
1.6 × 103 Hz/s. During this period, sophisticated detection
methods suitable for both high Doppler and large Doppler
variation may be required. As for the region where Doppler
varies slowly with an average variation ∆ḟ ≈ 1×104

325−175 =
66.7 Hz/s, although the Doppler itself is high, the variation of
the Doppler is slow. Hence, we need robust Delay-Doppler-
based modulation methods to detect the signals, such as
OTFS [44].

B. PERFORMANCE ANALYSIS
As for the performance metrics, including the OP, the ER,

and the GP bound, we assume that the Doppler effect has
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been well subtracted. We also provide simulation results of
BER with the impact of the Doppler effect. Additionally,
since we use a 2 GHz carrier, there is only slight molecular
absorption in the L band, therefore, we ignore it. However,
we would like to clarify that this model is also available to
be exploited for higher-frequency bands compared to the L
band, while the molecular absorption would be significant.
Finally, to consider the best performance, the following sim-
ulation results are acquired under good weather conditions.
The effects of rain, fog, and clouds are considered as a
parameter affecting the following results.

In Fig. 10, the accuracy of the OP expression is validated
versus the received SNR. Since the parameter m in the
Shadowed-Rician fading channels represents the influence
of the shadowing effect on the LoS component, we compare
the OP as expected for different values of m. The simulation
results indicate that a higher m has a lower OP. This
is because increasing the parameter m leads to reduced
shadowing effects according to our model.

We evaluate the path loss for the different geometric
models in Fig. 11, including bending rays considering the
Earth’s curvature, direct line considering the Earth’s cur-
vature, and the benchmark d = H

sin θ0
. In some papers, to

reduce the complexity of the derivation, the Earth’s surface
is considered to be a horizontal plane, which deviates from
reality. Thus, according to our model, the distance used for
path loss calculation is d = H/ sin(θ0). As shown in the
simulation results, the “horizontal” assumption is acceptable
for large elevation angles, while inaccuracies are inevitable
when we omit the Earth’s curvature to calculate the path
loss for low elevation angles. In terms of the path loss, the
refractivity effect is limited when we exploit the refractive
index function in ITU-R for dry air and good weather
conditions. However, this does not mean that the effect of
refractivity remains low for other scenarios, especially for
humid climates. Additionally, as for the ray-tracing-based
localization, there might be an error due to atmospheric
refractivity up to 2-14 meters indicated in Fig. 8.

Fig. 12 verifies the accuracy of the ER derivation (with the
unit as “bit per cell use”). We set the Rician factor between
the shadowed LoS component and the ground scattering
component to KR = 5 & 10 dB, which contributes to the
calculated effective Rician factor Keff = 2.84 & 5.68 dB,
respectively. The simulation results show that, as expected,
a higher value of Keff maps to improved ER performance.
This is because a higher Keff represents stronger LoS
components, resulting in improved ER performance. We also
conclude that high frequency carriers tend to degrade the
performance of SAGINs. This is because the propagation
paths in SAGINs are quite long, causing severe path loss.
The path loss exponent is also higher when we have a higher
carrier frequency, which further degrades the ER.

The simulation curves of the power-domain autocorrela-
tions of fading channels, including the Rayleigh fading, the
Nakagami-m fading, and the Shadowed-Rician fading, are
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FIGURE 10. The OP versus received SNR with different m = [2, 3, 4, 5] in
the Shadowed-Rician fading channel (Theorem 2 and Theorem 11).
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FIGURE 11. The OP versus received SNR with different elevation angles:
Bending rays, direct lines, and H

sin θ0
(Theorem 3, Theorem 4, Theorem 5

and Theorem 11).

indicated in Fig. 13. In terms of the time delay τ , the channel
correlation of the Shadowed-Rician fading is in the middle
between those of the Nakagami-m fading and the Rayleigh
fading. Then, we reset the parameter KR as 10 dB. By
exploiting the channel’s correlation properties, we compare
the BER performance under 16-QAM between the high-SNR
BER bound and the BER under correlated channels in Fig.
14. This shows that the BER performance is unsatisfactory
under severe Doppler effect. Given the indicated highest
Doppler frequency, fD,max ≈ 4.5 × 104 Hz, it would be
a disaster for signal detection if the Doppler effect is not
well mitigated as seen in Fig. 9.

Given KR as 10 dB, in Fig. 15, we analyze the relationship
among the ER, the GP bound, and the GP under 16-QAM.
The numerical results indicate that there is a gap between
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FIGURE 12. The ER versus received SNR: the effective Rician factor
Keff and carrier frequency fc (Theorem 12).
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domain. (Lemma 4, Lemma 5, and Theorem 10)

the ER and GP. This is because GP has only considered
the error-free throughput. Hence, the GP has the potential
to evaluate the performance when we consider different
coding, modulation, and channel-estimation-induced errors.
For instance, when we have channel estimation errors due
to the Doppler effect, the GP performance cannot even meet
the lowest GP bound without estimation errors.

V. CONCLUSIONS
A practical channel model has been proposed for SAGINs,

followed by an investigation of its long-term performance.
The statistics of small-scale fading have been analyzed to
indicate the effect of the LoS and nLoS components. The
path loss along the bending rays has been calculated, and
the true geometry-based elevation angle has been acquired.

0 5 10 15 20 25 30 35 40

Received SNR (dB)

10
-4

10
-3

10
-2

10
-1

B
it
 E

rr
o
r 

R
a
te

 (
B

E
R

)

Without the

Doppler effect

FIGURE 14. The BER versus received SNR: The impact of Doppler effect.
(Theorem 9 and Theorem 10).

0 2 4 6 8 10 12 14 16 18 20

Received SNR (dB)

0

1

2

3

4

5

6

7

G
o
o
d
p
u
t 
(G

P
)

Ergodic Rate

Goodput

Goodput with

the Doppler

effect

FIGURE 15. A comparison between the ER and GP with different Doppler
frequency (Theorem 12, and Theorem 13).

Furthermore, by considering the Earth’s rotation, the nor-
malized Doppler frequencies of both terrestrial and non-
terrestrial users have been characterized. Also, this model has
considered the effects of molecular absorption and weather
conditions, like rain, fog, and clouds. By deriving the BER,
OP, and ER, the upper bound of GP has been calculated
for SAGINs. The impact of the Doppler effect has been
investigated by the Shadowed-Rician random process. The
simulation results indicate that the bending rays slightly
aggravate the path loss, but influence the localization of
LEO as well as the AOA. As for small elevation angles,
the geometric relationship, such as the Earth’s curvature,
cannot be ignored. Given a large relative velocity between
the LEO and a terrestrial user, the Doppler effect aggravates
the BER and GP significantly. To fit the practical scenario,
the GP metric conveniently lends itself to evaluating different
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modulation methods, channel estimation errors, and Doppler
effects.

APPENDIX A: PROOF OF LEMMA 1 and REMARK 1

1. PROOF OF LEMMA 1
Given the PDF of nagakami-m parameter Z as pZ(z) =

2mm

Γ(m)Ωm z
2m−1 exp

(
−mz2

Ω

)
, we exploit the Rician distribu-

tion to mimic the statistic properties of the channel. Hence,
the PDF of the amplitude of |S(t)| is expressed as:

p|S(t)|(r) =EZ
[
r

b0
exp

(
−r

2 + Z2

2b0

)
I0

(
Zr

b0

)]
=

∫ ∞
0

r

b0
exp

(
−r

2 + Z2

2b0

)
I0

(
Zr

b0

)
× 2mm

Γ(m)Ωm
Z2m−1 exp

(
−mZ2

Ω

)
dZ

=
2mm

Γ(m)Ωm
r

b0
exp

(
− r2

2b0

)∫ ∞
0

Z2m−1

× exp

(
−Z2

(
1

2b0
+
m

Ω

))
I0

(
r

b0
Z

)
dZ.

(A.1)

Based on Eq.[6.631.1] in [45], we have the integral,
expressed as:∫ ∞

0

xν−1e−λx
2

I0(bx)dx =
Γ(v/2)

2λv/2
1F1

(
v

2
; 1;

b2

4λ

)
.

(A.2)

With the aid of the relationship of the Besell functions,
expressed as I0(x) = J0(ix), the PDF of the amplitude of
the received signal is expressed as:

p|S(t)|(r) =

(
2b0m

Ω + 2b0m

)m
r

b0
exp

(
− r2

2b0

)
× 1F1

(
m; 1;

Ωr2

2b0 (Ω + 2b0m)

)
. (A.3)

In terms of the power domain, the PDF of the power of
the received signal is formulated as:

P|S(t)|2(r) =P|S(t)|
(√
r
) d√r
dr

=

(
2 b0m

Ω + 2 b0m

)m
1

2
√
r b0

exp
(
− r

2 b0

)
× 1F1

(
m; 1;

Ω r

2 b0
(
Ω + 2 b0m

)) . (A.4)

2. PROOF OF REMARK 1
By substituting m = 1 and 1F1(a, a; z) = exp (z) into

(A.3), we formulate a Rayleigh distribution as:

p|S(t)|(r)
∣∣∣
m=1

=
2r

Ω + 2b0
exp

(
− r2

2b0

)
× exp

(
Ωr2

2b0(Ω + 2b0)

)
=

(
2b0

Ω + 2b0

)
r

b0
exp

(
r2

Ω + 2b0

)
. (A.5)

Given m → ∞, we have the asymptotic expression
of the confluent hypergeometric function of the first kind,
formulated as:

1F1(a, b, x)|m→∞ =Γ(b)e
1
2x

((
1

2
b− a

)
x

) 1
2−

1
2 b

(
Jb−1(

√
2x(b− 2a)) + · · ·

· · · Jb−1(
√

2x(b− 2a))O
(
|a|− 1

2

))
,

(A.6)

and the formula with fixed values is expressed as:

1F1(m, 1,Kr2)
∣∣∣
m→∞

≈eKr
2

2 J0

(√
2Kr2(1− 2m)

)
=e

Kr2

2 I0

(
i
√

2Kr2(1− 2m)
)

=e
Kr2

2 I0

(√
2Kr2(2m− 1)

)
.

(A.7)

By substituting (A.7) into (A.3), we obtain the formula
as:

p|S(t|(r) ≈
(

2b0m

Ω + 2b0m

)m
︸ ︷︷ ︸
≈exp

(
− Ω

2b0

)
r

b0
exp

(
− r2

2b0

)

× exp

(
Ωr2

4b0 (Ω + 2b0m)

)
︸ ︷︷ ︸

≈exp(0)=1

I0

(√
Ωr

b0

)

≈ r

b0
exp

(
−r

2 + Ω

2b0

)
I0

(√
Ωr

b0

)
, (A.8)

where we exploit the following derivation:(
2b0m

Ω + 2b0m

)m
=

(
1− 1

m

mΩ

Ω + 2b0m

)m
≈ exp

(
− mΩ

Ω + 2b0m

)
≈ exp

(
− Ω

2b0

)
, (A.9)

where Jx(·) represents the Bessel function of the first kind.

APPENDIX B: PROOF OF THEOREM 2
The confluent hypergeometric function of the first kind

has a special form, which is expressed as:

1F1 (m; 1; cSTx) = L−m (cSTx)︸ ︷︷ ︸
Laguerre polynomials

= exp (cSTx)Lm−1(−cST ), (B.1)

based on the definition of Laguerre polynomials associated
with negative values, formulated as L−n(x) = exLn−1(−x).

By further substituting the series expression of Laguerre

polynomials, given by Ln(x) =
n∑
k=0

(
n
k

) (−1)k

k! xk, into the

PDF of the Shadowed-Rician channel, we arrive at the final
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expression of the PDF:

f|hST |2(x) = aST

m−1∑
k=0

(
m− 1

k

)
(cST )

k

k!
xk exp (−eSTx),

(B.2)

where we have the parameters: aST = 1
2b0

(
2b0m

2b0m+Ω

)m
,

bST = 1
2b0

, cST = Ω
2b0(2b0m+Ω) , and eST = bST − cST =

m
2b0m+Ω .

By exploiting the definition of the lower incomplete Gam-
ma function, we obtain the associated CDF expression as:

F|hST |2(y)

= aST

m−1∑
k=0

(
m− 1

k

)
(cST )

k

k!

∫ y

0

xk exp (−eSTx) dx

= aST

m−1∑
k=0

(
m− 1

k

)
(cST )

k

k!ek+1
ST

∫ eST y

0

t(k+1)−1 exp (−t) dt︸ ︷︷ ︸
Incomplete Gamma Function

= aST

m−1∑
k=0

(
m− 1

k

)
(cST )

k

k!ek+1
ST

γ (k + 1, eST y). (B.3)

Note that Γ(·) is the complete Gamma function. Given
a positive integer a, the lower incomplete Gamma function
can be expressed by the summation of multiple exponential
functions [46]–[48], formulated as:

γ(a, b) = Γ(a)− Γ(a, b) = Γ(a)−
a−1∑
p=0

(a− 1)!

p!
exp(−b)bp.

(B.4)

With the aid of the above series expansion of the complete
Gamma function, the CDF expression is further expressed as:

F|hST |2(y) =

m−1∑
k=0

(
m− 1

k

)
ς(k)︸ ︷︷ ︸

I1

−
m−1∑
k=0

(
m− 1

k

)
ς(k)

×
k∑
p=0

(eST y)
p

p!
exp (−eST y) , (B.5)

where we have ς(k) = aST
(cST )k

(eST )k+1 = (2b0m)m−k−1Ωk

(2b0m+Ω)m−1 .
By exploiting the binomial expansion, the expression I1

in (B.5) is proved to be equal to one, which is shown as
follows:

I1 = aST

m−1∑
k=0

(
m− 1

k

)
(cST )

k

ek+1
ST

=

m−1∑
k=0

(
m−1
k

)
(2b0m)

m−k−1
Ωk

(2b0m+ Ω)
m−1

=
(2b0m+ Ω)

m−1

(2b0m+ Ω)
m−1 = 1. (B.6)

Consequently, the final CDF expression is derived as:

F|hST |2(x)=1−
m−1∑
k=0

(
m−1

k

) k∑
p=0

ς(k)

p!(eSTx)
−p e

(−eST x).

(B.7)

Given KLoS = Ω
m and KSct = 2b0, we have the following

parameters:

aST =
1

KSct

(
KSct

KSct +KLOS

)m
, (B.8a)

bST =
1

KSct
, (B.8b)

cST =
KLOS

KSct(KSct +KLOS)
, (B.8c)

eST =
m

2b0m+ Ω
=

1

2b0 + Ω
m

=
2b0

2b0 + Ω
+

Ω

(2b0 + Ω)m

=
1

KSct +KLoS
, (B.8d)

ζ(k)(eST )p =
(1−K)m−k−1

(
K
m

)k
(1−K) + K

m

m−1−p

=
(KSct)

m−k−1(KLoS)k

(KSct +KLoS)m−1−p . (B.8e)

After substituting the parameters above into (B.2) and
(B.7), the CDF and PDF are formulated as the results in
Theorem 2.

APPENDIX C: PROOF OF COROLLARY 1
The expectation of |hST |2 is expressed as:

E
[
|hST |2

]
=

∫ ∞
0

xf|hST |2(x)dx. (C.1)

By substituting (B.2) into (C.1) and exploiting Eq.
[2.3.4.1] of [42], we have:

E
[
|hST |2

]
=aST

m−1∑
k=0

(
m−1

k

)
(cST )

k

k!

∫ ∞
0

exp (−eSTx)

x−k+1
dx

=aST

m−1∑
k=0

(
m− 1

k

)
(k + 1)

(cST )
k

(eST )
(k+2)

. (C.2)

By substituting the parameters aST , cST , and eST into
(C.2), the targeted expectation is further derived as:

E
[
|hST |2

]
=

2b0

m−1∑
k=0

(
m− 1

k

)(
Ω

2mb0

)k
(k + 1)︸ ︷︷ ︸

I2(
1 + Ω

2b0m

)m−2 .

(C.3)

We then arrive at a specific form, which is expressed as
the powers of a binomial, formulated as 1 + Ω

2b0m
, by the

Binomial theorem. In the following, we express I2 of (C.3)
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as:

I2=

(
1+

Ω

2mb0

)m−1

+ (m−1)

(
Ω

2mb0

)(
1+

Ω

2mb0

)m−2

.

(C.4)

Finally, we substitute (C.4) into (C.3) to obtain the final
expectation expression.

APPENDIX D: PROOF OF THEOREM 3
The differential equation of the curved trajectory’s length

is expressed as [12]:

dh/ddst = sin [θβ,n (h)] , (D.1)
ddrf = n(h)ddst. (D.2)

Based on Snell’s law for spherically symmetric medium
[12], [49], [50], we can formulate an equation in terms
of the local elevation angle, the satellite’s altitude, and the
refractive index, expressed as:

n (h) cos [θβ,n (h)] (R+ h) = n0 cos [θβ,n (0)]R, (D.3)

where θβ,n (h) is the elevation angle at the location above
the Earth’s surface with an altitude of h.

We arrive at n0 = n (0) = 1+N0×10−6 upon calculating
the initial atmospheric refractivity on the ground based on
(14). By substituting (14) and (D.3) into (D.1), the integral
expression of drf (h) may be expressed as:

drf (h) =

∫ H

0

n (h) dh

sin [θβ,n(h)]

=

∫ H

0

n (h) dh√
1− cos2 [θβ,n (h)]

=

∫ H

0

n (h)√
1−

(
n0 cos(θ0)

n(h)(1+ h
R )

)2
dh. (D.4)

With the aid of the Chebyshev-Gauss quadrature shown as
Eq. [25.4.38] of [51], the final expression (15) of the bending
path’s length is derived2.

APPENDIX E: PROOF OF THEOREM 4 AND THEOREM 5

1. PROOF OF THEOREM 4
Based on the ray-tracing method, the terrestrial range is

given by the following integral:

G =

∫ H

0

1(
1 + h

R

)√[ n(1+ h
R )

n0 cos(θ0)

]2

− 1

dh. (E.1)

Let us define the refractivity by a general exponential
function as n = 1 +ρ0 exp (−kh). Upon replacing cos2 (θ0)
by the equivalent formula of 1− sin2 (θ0), the expression of

2The definition of the Chebyshev-Gauss quadrature is expressed as∫+1
−1

f(x)√
1−x2

dx ≈
∑n
i=1 wif (xi) where we have xi = cos

(
2i−1
2n

π
)

and the weight wi = π
n

.

the ground range is further expressed as:

G =

∫ H

0

(1 + ρ0) cos (θ0) dh(
1 + h

R

)√
µ+ υ (h) + ω (h) + υ (h)ω (h)

,

(E.2)

where the parameters in (E.2) are reformulated as:

µ = (1 + ρ0)
2
sin2θ0 − 2ρ0 − ρ2

0, (E.3a)

υ (h) = 2ρ0 exp (−kh) + ρ2
0 exp (−2kh) , (E.3b)

ω (h) =
2h

R
+
h2

R2
. (E.3c)

Subsequently, the length of the bending rays is further
expressed as:

drf (h) =

∫ H

0

n2(h)
(
1 + h

R

)
dh√

µ+ υ(h) + ω(h) + υ(h)ω(h)
, (E.4)

where the detailed derivation is formulated in (E.5) and (E.6).
With the aid of the Chebyshev-Gauss quadrature, the

closed-form expression in (E.2) is expressed as (17). Fol-
lowing the same derivation processes, the closed-form ex-
pression of (E.4) is formulated in (16).

2. PROOF OF THEOREM 5
This result is calculated by exploiting the law of cosines

in the triangle constituted by the satellite, the user, and the
centre of the Earth O. Given the triangle generated by the
LEO, the user, and the earth centre O, we have the law of
cosines equation, formulated as:

d2
st = R2 + (R+H)2 − 2R(R+H) cosφ. (E.7)

With the aid of the tangent half-angle formula and φ = G
R ,

we have:

d2
st = R2 + (R+H)2 − 2R(R+H)

[
1− 2 sin2

(
G

2R

)]
.

(E.8)

By exploiting that sin
(
π
2 + θe

)
= cos θe and substituting

(17) into (19), we obtain the final result.

APPENDIX F: PROOF OF THEOREM 6

FIGURE 16. The geometric figure for calculating elevation angles.

The elevation angle evaluated under the condition of
θ0 ≤ π/4 is based on the small-angle approximation. Given
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Fig.16.(a) relying on the small-angle approximation, we
have:

sin θt = sin(θ − θ′) = θ − θ′ = sin θ − sin θ′. (F.1)

Conditioned on H � R, we have a very small φ resulting
in a assumption that the chord length l and arc length G
corresponding to φ are approximately equal. Given G = φ/R
and G ≈

√
d2
st −H2, we have the following formula as:

φ =
G

R
≈
√
d2
st −H2

R

H�R
≈ dst

R

φ=
dst
R=

(φR)2

Rdst
G= φ

R=
G2

Rdst

G≈l
≈ l2

Rdst
=
d2
st −H2

Rdst
=
dst
R
− H2

Rdst
.

(F.2)

Based on the tangent chord angle theorem in a circle, we
have θ′ = φ/2. Then, the value of sin θ′ is approximately
formulated:

sin θ′ ≈ θ′ =
φ

2
=
dst
2R
− H2

2Rdst
, (F.3)

and the value of sin θt is formulated as:

sin θt = sin θ − sin θ′ =
H

dst
− dst

2R
+

H2

2Rdst
. (F.4)

Finally, we have arcsin sinθt as the elevation angle for
small angles.

As for the case of large elevation angles, based on the
triangle seen in Fig.16.(b), it is expressed by the law of sines
as:

dst
sinφ

=
R+H

sin(π − θ′′)
. (F.5)

Given H � R, the elevation angle is formulated as:

θt =
π

2
− θ′′ =

π

2
− arcsin

[
(R+H) sinφ

dst

]
=
π

2
− arcsin

[
(R+H) sin

(
G
R

)
dst

]
. (F.6)

APPENDIX G: PROOF OF THEOREM 7
The geometric relationship between the position of the

satellite and that of the user is given in Fig. 17. Given the
maximum elevation angle θmax, the slant range s(t) is given
by the law of cosines, formulated as:

s(t) =
√
R2 +H2

os − 2RHos cos γ (t), (G.1)

where γ (t) is the angle at time t generated by the origin of
the Earth, the position of the satellite at time instant t0, and
that at time t.

The spherical law of cosines is exploited, which is ex-
pressed as cos c = cos a cos b + sin a sin b cosC. Since the
angle ∠PMN equals π/2, we have an angular relationship
expressed as:

cos γ (t) = cos (ψ (t)− ψ (t0)) cos γ (t0) , (G.2)

where ψ (t)− ψ (t0), γ (t0), and γ (t) are the angles consti-
tuted by the origin of the Earth and the related arc along the
surface of the Earth, which is shown in Fig. 17. (c).

By substituting (G.2) into (G.1) and differentiating (G.1)
with respect to time t, we have:

ṡ(t) =
ds(t)

dt

drf (h) =

∫ H

0

n(h) dh√
1− cos2 [θβ,n(h)]

=

∫ H

0

n(h)√
1−

(
n0 cos(θ0)

n(h)(1+ h
R )

)2
=

∫ H

0

[n(h)]
2 (

1 + h
R

)√
[1 + ρ0 exp(−kx)]

2 (
1 + h

R

)2 − (1 + ρ0)2 cos2(θ0)
dh

=

∫ H

0

[n(h)]
2 (

1 + h
R

)√{
1 + 2ρ0 exp(−kx) + [ρ0 exp(−kx)]

2
}[

1 + 2h
R +

(
h
R

)2]− (1 + ρ0)2 cos2(θ0)

dh

=

∫ H

0

[n(h)]2
(
1 + h

R

)
√
Xterm

dh, (E.5)

Xterm =
{

2ρ0 exp(−kx) + [ρ0 exp(−kx)]
2
}

︸ ︷︷ ︸
ν(x)

[
2h

R
+

(
h

R

)2
]

︸ ︷︷ ︸
ω(x)

+
{

2ρ0 exp(−kx) + [ρ0 exp(−kx)]
2
}

︸ ︷︷ ︸
ν(x)

+

[
2h

R
+

(
h

R

)2
]

︸ ︷︷ ︸
ω(x)

+ (1 + ρ0) sin2(θ0)− 2ρ0 − (ρ0)2︸ ︷︷ ︸
µ

. (E.6)
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=
RHos cos γ (t0) sin (ψ (t)− ψ (t0)) dψ(t)

dt√
R2 +H2

os − 2RHos cos (ψ (t)− ψ (t0)) cos γ (t0)

=
RHos cos γ (t0) sin (ψ (t)− ψ (t0)) ψ̇ (t)√

R2 +H2
os − 2RHos cos (ψ (t)− ψ (t0)) cos γ (t0)

,

(G.3)

where we define the differential equation versus time as
ḟ(t) = df(t)/dt.

x

y

z

O

P

S

SM

N

With 

Maximum 

Evaluation 

Angle

(Time t0)

(Time t)

(a) Angle Relationship for Doppler Effects

( )tg

( )tq

( )tq

( )tq

N

S

O

( )tg

R

H

R

( )cosR tq

(b) Maximum Evaluation Angle

P

M
N

( )tg
( )0tg

( ) ( )0t ty y-

(c) Spherical Law of Cosines

FIGURE 17. The notation of angles from the satellite to the ground user
for Theorem 7.

We assume that at the time instant t0, the position of the
satellite is at the point of the maximum elevation angle θmax,
expressed as θ0 = θmax. Hence, based on the associated
triangle seen in Fig. 17. (b), the angle relationship satisfies:

cos (θmax + γ (t0)) =
R cos θmax

Hos
, (G.4)

where Hos = R + H represents the straight distance from
the origin of the Earth to the satellite.

By substituting (G.4) into (G.3), we arrive at the normal-
ized Doppler frequency in terms of the maximum elevation

and time t as seen in (G.5), where we have ψ (t, t0) =
ψ(t)− ψ (t0).

By considering the relative angular velocity shown as (26)
in Section II, we have the final expression in this theorem.

APPENDIX H: PROOF OF THEOREM 12
Based on (53), the ergodic rate is formulated as:

Rer =
1

ln 2

∫ ∞
0

1− Pout (γth)

1 + γth
dγth

=
1

ln 2

m−1∑
k=0

(
m− 1

k

) k∑
p=0

(KSct)
m−k−1(KLoS)k

p!(λt)p(KSct +KLoS)m−1−p

×
∫ ∞

0

γpth
1 + γth

exp

(
− γth
λt(KSct +KLoS)

)
dγth.

(H.1)

Since the value of p varies in the above equation, the
integral formula is split into two types of integrals based on
reference [42]. As for p = 0, we exploit Eq. [2.3.4.3] of [42]
to derive I3, as follows:

Rer

∣∣∣
p=0

=

1

ln 2

m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1(KLoS)k

(KSct +KLoS)m−1

×
∫ ∞

0

exp
(
− x
λt(KSct+KLoS)

)
1 + x

dx

=
1

ln 2

m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1(KLoS)k

(KSct +KLoS)m−1

×
∫ ∞

0

exp
(
− x
λt(KSct+KLoS)

)
1 + x

dx

=
1

ln 2

m−1∑
k=0

(
m− 1

k

)
(−1)(KSct)

m−k−1(KLoS)k

(KSct +KLoS)m−1

× exp

(
1

λt(KSct +KLoS)

)
Ei

(
− 1

λt(KSct +KLoS)

)
=

1

ln 2

m−1∑
k=0

(
m− 1

k

)
(KSct)

m−k−1(KLoS)k

(KSct +KLoS)m−1
I3. (H.2)

As for p ≥ 1, Eq. [2.3.6.9] of [42] is harnessed to calculate
I4, expressed as:

Rer

∣∣∣
p≥1

=

∆f

fc
=− ṡ(t)

c
= −1

c

RHos cos γ (t0) sin (ψ (t)− ψ (t0)) ψ̇ (t)√
R2 +H2

os − 2RHos cos (ψ (t)− ψ (t0)) cos γ (t0)

=− 1

c

RHos sin (ψ (t, t0)) cos
(

cos−1
(
R cos θmax

Hos

)
− θmax

)
ψ̇ (t)√

R2 +H2
os − 2RHos cos (ψ (t, t0)) cos

(
cos−1

(
R cos θmax

Hos

)
− θmax

) . (G.5)
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1

ln 2

m−1∑
k=0

(
m− 1

k

) k∑
p=0

(KSct)
m−k−1(KLoS)k

p!(λt)p(KSct +KLoS)m−1−p

×
∫ ∞

0

xp

1 + x
exp

(
− 1

λt(KSct +KLoS)
x

)
dx

=
1

ln 2

m−1∑
k=0

(
m− 1

k

) k∑
p=1

(KSct)
m−k−1(KLoS)k

p!(λt)p(KSct +KLoS)m−1−p I4,

(H.3)

where I4 is formulated as:

I4 =

∫ ∞
0

x(p+1)−1

1 + x
exp

(
− x

λt(KSct +KLoS)

)
dx

=Γ(p+ 1)Ψ

(
p+ 1, p+ 1;

1

λt(KSct +KLoS)

)
. (H.4)

Finally, we combine the above results to obtain the final
form as (54).
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