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Abstract

Traditional audiometry often fails to fully characterize the functional impact
of hearing loss on speech understanding, particularly supra-threshold deficits and
frequency-specific perception challenges in conditions like presbycusis. This paper
presents the development and simulated evaluation of a novel Automatic Speech
Recognition (ASR)-based frequency-specific speech test designed to provide granu-
lar diagnostic insights. Our approach leverages ASR to simulate the perceptual ef-
fects of moderate sloping hearing loss by processing speech stimuli under controlled
acoustic degradation and subsequently analyzing phoneme-level confusion patterns.
Key findings indicate that simulated hearing loss introduces specific phoneme con-
fusions, predominantly affecting high-frequency consonants (e.g., alveolar/palatal to
labiodental substitutions) and leading to significant phoneme deletions, consistent
with the acoustic cues degraded in presbycusis. A test battery curated from these
ASR-derived confusions demonstrated diagnostic value, effectively differentiating be-
tween simulated normal-hearing and hearing-impaired listeners in a comprehensive
simulation. This ASR-driven methodology offers a promising avenue for developing
objective, granular, and frequency-specific hearing assessment tools that comple-
ment traditional audiometry. Future work will focus on validating these findings
with human participants and exploring the integration of advanced AI models for
enhanced diagnostic precision.

1 Introduction
Traditional audiometry, while fundamental for quantifying hearing loss, often provides
an incomplete picture of an individual’s ability to understand speech, especially in chal-
lenging environments. A significant limitation is the poor correlation between pure-tone
audiogram (PTA) results and self-reported hearing difficulties or performance on speech
perception tests. This discrepancy is particularly evident in supra-threshold deficits, which
involve distortions in sound processing above the hearing threshold, such as reduced fre-
quency resolution, impaired temporal processing, and loudness recruitment. These issues
are not captured by simple audibility measures.

It is crucial to recognise that for mild-to-moderate hearing loss, a substantial part of the
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experienced difficulty, particularly in quiet or low-noise conditions, can often be attributed
primarily to audibility. This refers to the simple inability to detect certain speech sounds,
especially low-intensity, high-frequency consonants (e.g., /s/, /f/, /t/) which are critical
for speech clarity [1,2]. This ’attenuation’ aspect, as described by Plomp, frequently repre-
sents the initial barrier to communication [1]. However, supra-threshold distortions—such
as reduced frequency selectivity, impaired temporal processing, and altered neural cod-
ing—are also inherent consequences of sensorineural hearing loss and play a significant
role [3,4]. While audibility may be the dominant factor in quiet and for mild losses, the im-
pact of supra-threshold deficits becomes increasingly critical as background noise increases
and as hearing loss progresses into the moderate range. In these challenging conditions,
even when speech is amplified to be technically audible, these distortions can become the
primary limiting factor preventing clear speech understanding [4]. Nonetheless, a strong,
predictable link exists between specific patterns of frequency-specific audibility loss and
the resulting phonetic confusions [5]. This provides a compelling rationale for developing
tests that can map these audibility-driven confusions, complementing traditional audiom-
etry by offering valuable insights into an individual’s specific perceptual challenges.

Recent advancements in Automatic Speech Recognition (ASR) systems, particularly those
built on deep neural networks, offer a promising avenue to overcome these limitations.
ASR can automate speech audiometry with accuracy and reliability comparable to hu-
man manual scoring, significantly reducing clinician time [6,7]. Crucially, ASR facilitates
phoneme-level scoring, providing more detailed data on perception errors by identifying
specific phoneme confusions rather than just whole-word misses [8, 12]. This capability
allows for a more fine-grained, frequency-specific diagnostic insight into speech percep-
tion deficits. This paper details the development of a novel ASR-based frequency-specific
speech test designed to provide such insights, particularly for conditions like presbycu-
sis. Our approach leverages ASR to simulate human listeners under controlled acoustic
degradation, mimicking typical hearing loss conditions. By meticulously simulating typ-
ical hearing loss conditions and analyzing the resulting ASR confusion patterns at the
phonetic level, we aim to create a test capable of highlighting specific frequency regions
impacted by perceptual degradation, offering a "confusion profile" that complements tra-
ditional audiometric data.

Research Questions

• How can ASR be effectively utilized to simulate the perceptual effects of hearing
loss and generate comprehensive phoneme confusion profiles?

• What specific phoneme-level confusion patterns emerge under simulated moderate
sloping hearing loss, and how do these patterns correlate with the acoustic properties
of speech sounds and known effects of presbycusis?

• Can a test battery curated from these ASR-derived confusions effectively differenti-
ate between normal-hearing and hearing-impaired listeners in a simulated environ-
ment?

• What are the critical considerations for translating such an ASR-based diagnostic
test into a practical and diagnostically valuable tool for human participants?
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2 Methodology
The development of the ASR-based frequency-specific speech test followed a modular and
iterative methodology, primarily implemented through custom software modules devel-
oped in a scientific computing environment. This encompassed speech material prepara-
tion, ASR processing, hearing loss simulation, phoneme analysis, test item curation, and
diagnostic simulation.

2.1 Speech Material and ASR Baseline

The TIMIT Acoustic-Phonetic Continuous Speech Corpus was selected for its high audio
quality, diverse speaker set, and rich phonetic and word-level transcriptions. Individual
word audio files were extracted from TIMIT sentences. To establish a robust baseline, a
pre-trained ASR model (e.g., based on wav2vec 2.0 architecture) was applied to all ex-
tracted clean (unfiltered) words. Raw ASR outputs were lexically normalized using Lev-
enshtein distance against a comprehensive vocabulary to identify the closest valid English
word. A phonetic lexicon (e.g., derived from CMUdict) served as the primary phonetic
reference for the project, used for obtaining phonetic transcriptions of ASR outputs and
for cleaning raw ASR transcriptions. A reverse lookup mechanism was also constructed
from this lexicon to facilitate the generation of phonetically plausible distractor words.

2.2 Hearing Loss Simulation and Phoneme Confusion Analysis

Sensorineural hearing loss, particularly presbycusis, was simulated using digital filtering.
A custom function was developed to apply frequency-dependent attenuation via a Finite
Impulse Response (FIR) filter based on user-defined audiogram profiles. Representative
audiogram profiles were defined: Normal Hearing (0 dB HL), Mild Hearing Loss (5 dB HL
at 250 Hz to 50 dB HL at 8000 Hz), and Moderate Hearing Loss (10 dB HL at 250 Hz to 70
dB HL at 8000 Hz). Pink noise was added to the speech stimuli at a configurable Signal-to-
Noise Ratio (SNR), typically 10 dB, with appropriate lead-in and ramp-up/down phases.
The ASR system then processed the degraded speech, and its outputs were lexically
normalized. For phoneme analysis, ground truth phonetic transcriptions for each original
word were extracted. For the cleaned ASR transcription, phonetic transcriptions were ob-
tained by querying the phonetic lexicon. A phoneme-level analysis script combined these
to calculate Phoneme Error Rate (PER) using a custom Levenshtein distance algorithm
for phoneme sequences, quantifying substitutions, insertions, and deletions. A phoneme-
level confusion matrix was generated, counting the frequency of original-to-transcribed
phoneme mappings. This analysis involved a backtracing mechanism to identify the spe-
cific sequence of operations (Match, Substitution, Deletion, Insertion), with a focus on
identifying targeted confusions in high-frequency and mid-to-high frequency ranges.

2.3 Test Item Curation

The objective was to curate a set of 200 diagnostically targeted word pairs based on de-
tailed phoneme confusion data. Input data sources included detailed phoneme confusion
examples (comparing phoneme sequences recognized by ASR under clean and simulated
HL conditions) and the reverse phonetic lexicon. A two-phase test item selection strategy
was employed: Phase 1 prioritized the top 10 most frequent non-match confusion types,
selecting distinct word pairs exemplifying these errors. Phase 2 proportionally filled the
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remaining slots, aiming for an overall error distribution mirroring observed ASR errors
(approx. 52.7% Substitution, 34.9% Deletion, 12.4% Insertion). General filtering crite-
ria for candidate pairs included a word Levenshtein distance of ≤2 between target and
distractor, exact syllable count matching, phoneme validity in the lexicon, and a maxi-
mum phoneme Levenshtein distance of 8. Distractor words were prioritized from actual
ASR outputs under HL or generated phonetically. Each item was categorized by the fre-
quency relevance of the involved clean phoneme (e.g., ’High’, ’Mid-High’) to align with
characteristics of presbycusis.

2.4 Test Administration and Diagnostic Simulation

A modular test script was designed for two primary modes: a human test mode (playing
degraded audio with a graphical user interface for user input) and an ASR simulation
mode (simulating a listener’s response using the ASR model, with probabilistic choice de-
termined by Levenshtein distance to the two options). All audio stimuli underwent RMS
normalization to a consistent level, optional pink noise addition, and optional listener
hearing loss simulation. A comprehensive simulation framework was developed to evalu-
ate the diagnostic capability of the ASR-based test. The primary objective was to quantify
its ability to differentiate between simulated normal-hearing (NH) and hearing-impaired
(HI) listeners by analyzing Receiver Operating Characteristic (ROC) curves, sensitivity,
and specificity. A configurable number of NH and HI participants were simulated, with
each participant’s performance being independent. HI participants received unique au-
diogram profiles representing moderate sloping hearing loss, consistent with presbycusis,
with random perturbations of ±10 dB around a base audiogram. Diagnostic performance
was assessed across varying test lengths (50, 100, and 200 word pairs), with each simulated
participant receiving a unique, random subset. The ASR’s "choice" was determined by
the smaller phonetic Levenshtein distance between its output and the original/distractor
words. The overall percent correct score was calculated for each participant.

2.5 Performance Evaluation and Diagnostic Item Selection

Mean and standard deviation of scores were calculated for NH and HI groups. ROC anal-
ysis was performed using standard statistical functions. NH participants were designated
as the ’positive’ class, and HI participants as the ’negative’ class, with higher scores indi-
cating normal hearing. Area Under the Curve (AUC) was calculated as a scalar measure
of discriminative power (0.5 to 1.0). Youden’s J statistic (max(Sensitivity+Specificity-1))
identified an optimal operating threshold. Sensitivity and specificity were calculated at
this optimal threshold from the perspective of detecting hearing impairment. To refine the
speech test for optimal diagnostic capability, an ASR-based diagnostic value assessment
was performed. This involved comparing ASR performance under two distinct conditions:
Normal Hearing (NH) Simulation (ASR processing speech stimuli with noise but with-
out simulated hearing loss) and Hearing Loss (HL) Simulation (ASR processing the same
speech stimuli with noise and simulated moderate sloping sensorineural hearing loss).
For each word pair, across multiple Signal-to-Noise Ratio (SNR) levels (e.g., 5 dB, 10
dB, 20 dB), the ASR’s correct recognition percentage was recorded for both NH and HL
simulations. A "Diagnostic Difference" was calculated as:

Diagnostic Difference = NH Correct Percentage − HL Correct Percentage

4



A higher positive Diagnostic Difference indicated greater diagnostic value. The SNR
level maximizing this difference was identified as optimal for differentiation. Only word
pairs exceeding a predefined diagnostic difference threshold (e.g., 5%) were included in
the final test battery. Finally, a human speech test implementation was configured to
load these diagnostic word pairs and randomize their presentation. It generated acoustic
stimuli by mixing original words with noise and optionally filtering for simulated hearing
loss. A compact, centered graphical user interface presented two interactive buttons
for user input. Post-test, human participant scores were compared to the mean correct
percentages of the NH and HL ASR models at the same SNR. The user was then assessed
as being in the "Normal Hearing" or "Hearing Loss" category based on which ASR model’s
performance their score was closer to, providing a preliminary, model-based indication of
their hearing status.

3 Results
This section presents the key findings from the ASR-based phoneme confusion analysis,
test item curation, and diagnostic simulation.

3.1 Phoneme Confusion Analysis

The comprehensive phoneme-level analysis revealed significant degradation patterns in
ASR performance under simulated hearing loss, with a total of 29,997 phoneme-level
discrepancies observed. The distribution of error types was as follows:

• Substitutions: 15,814 occurrences (approx. 52.7%)

• Deletions: 10,459 occurrences (approx. 34.9%)

• Insertions: 3,724 occurrences (approx. 12.4%)

This distribution indicates that substitutions were the most common error, followed
closely by deletions, suggesting that the simulated hearing loss frequently caused phonemes
to be misidentified or entirely missed by the ASR. Figure 1 illustrates the distribution
of these error types (Substitution, Deletion, Insertion) in the final curated test item set
(N=200). The figure compares the actual number of items selected for each error type
against target counts derived from the overall error type percentages observed in the
comprehensive ASR confusion dataset, demonstrating the effectiveness of the curation
strategy in achieving a representative balance of error mechanisms.
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Figure 1: Distribution of Error Types in Curated Test Items. This bar chart illustrates
the distribution of error types (Substitution, Deletion, Insertion) in the final curated test
item set (N=200). Blue bars represent the actual number of items selected for each error
type, while dashed red lines indicate target counts derived from the overall error type
percentages observed in the comprehensive ASR confusion dataset (Substitution: 52.7%,
Deletion: 34.9%, Insertion: 12.4%). This figure demonstrates the effectiveness of the
two-phase curation strategy in achieving a representative balance of error mechanisms.

The top 20 specific phoneme confusions observed are detailed in Table 1.
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Table 1: The top 20 specific phoneme confusions observed.

Original → Confused Occurrences

S → F 251
IY1 → EY1 212
S → T 201
IH1 → EH1 200
W → B 186
T → D 172
AE1 → EH1 163
N → L 155
IY1 → IH1 147
T → K 142
R → B 140
IH1 → IY1 136
M → L 134
S → K 134
N → T 131
R → T 129
OW1 → AA1 123
R → K 122
AA1 → AH1 121
AO1 → AA1 114

Figure 2 presents the top N (e.g., N=20) most frequently selected specific phoneme con-
fusion types from the curated test item set. This highlights the individual phoneme-level
errors prioritized by the Phase 1 selection, such as common deletions of sibilants or specific
vowel substitutions, which are particularly relevant to presbycusis.
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Figure 2: Top N Selected Phoneme Confusion Types. This bar chart presents the
top N (e.g., N=20) most frequently selected specific phoneme confusion types from
the curated test item set. Each bar represents a unique confusion key, formatted as
’ErrorType_CleanPhonemeInvolved_HLPhonemeInvolved’ (e.g., ’Substitution_S_F’ or
’Deletion_Z_’). The height of each bar indicates the number of times that specific con-
fusion type is represented. This figure highlights the individual phoneme-level errors
prioritized by the Phase 1 selection, such as common deletions of sibilants or specific
vowel substitutions, which are particularly relevant to presbycusis.

Further analysis of substitution errors based on the place of articulation provided strong
support for the hypothesis that high-frequency attenuation caused the observed confu-
sions. The top 10 place of articulation confusions observed from the 15,814 substitution
errors are detailed in Table 2.
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Table 2: Top 10 Place of Articulation Confusions (Substitution Errors).

Rank Clean ASR Place → HL
ASR Place

Count

1 Alveolar/Palatal →
Labiodental

251

2 Alveolar/Palatal →
Alveolar/Palatal

201

3 Alveolar/Palatal →
Bilabial

186

4 Alveolar/Palatal →
Velar/Palatal

142

5 Bilabial →
Alveolar/Palatal

140

6 Alveolar/Palatal → Dental 131
7 Velar/Palatal →

Alveolar/Palatal
122

8 Vowel → Vowel 114
9 Bilabial → Vowel 104

10 Dental → Alveolar/Palatal 98
The high frequency of confusions originating from Alveolar/Palatal phonemes (e.g., /S/,
/Z/, /SH/, /ZH/, /T/, /D/) directly relates to their reliance on high-frequency spectral
energy (4-8 kHz and above), which is most vulnerable to presbycusis. The most frequent
substitution, Alveolar/Palatal → Labiodental (e.g., /S/ → /F/), exemplifies a shift to-
wards lower-frequency fricatives when higher frequencies are attenuated. Intra-category
confusions (Alveolar/Palatal → Alveolar/Palatal) likely reflect voicing or manner errors
within high-frequency sounds, consistent with high-frequency cue degradation. Vowel-to-
Vowel confusions (e.g., /IY1/ → /EY1/) indicate degradation of higher formants (F2, F3)
crucial for vowel discrimination. The significant proportion of deletions further highlights
the complete loss of information for high-frequency phonemes, often at word endings or
in clusters, consistent with sounds falling below threshold.

The high frequency of confusions originating from Alveolar/Palatal phonemes (e.g., /S/,
/Z/, /SH/, /ZH/, /T/, /D/) directly relates to their reliance on high-frequency spectral
energy (4-8 kHz and above), which is most vulnerable to presbycusis. The most frequent
substitution, Alveolar/Palatal → Labiodental (e.g., /S/ → /F/), exemplifies a shift to-
wards lower-frequency fricatives when higher frequencies are attenuated. Intra-category
confusions (Alveolar/Palatal → Alveolar/Palatal) likely reflect voicing or manner errors
within high-frequency sounds, consistent with high-frequency cue degradation. Vowel-to-
Vowel confusions (e.g., /IY1/ → /EY1/) indicate degradation of higher formants (F2, F3)
crucial for vowel discrimination. The significant proportion of deletions further highlights
the complete loss of information for high-frequency phonemes, often at word endings or
in clusters, consistent with sounds falling below threshold. This is further visualized in
Figure 3, which depicts the distribution of place of articulation confusions within the cu-
rated test item set for substitution errors, confirming that curated items predominantly
reflect confusions among phonemes with high-frequency acoustic cues.
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Figure 3: Place of Articulation Confusion Matrix (Curated Items). This heatmap de-
picts the distribution of place of articulation confusions within the curated test item set,
specifically for substitution errors. The rows represent the place of articulation of the
phoneme in the Clean ASR output, and the columns represent the place of articulation of
the confused phoneme in the HL ASR output. The color intensity within each cell indi-
cates the normalized count of observed substitutions. This visualization confirms whether
the curated items predominantly reflect confusions among phonemes with high-frequency
acoustic cues (e.g., Alveolar/Palatal fricatives) and specific patterns of misidentification
(e.g., shifts to Labiodental place), consistent with the effects of high-frequency hearing
loss.

3.2 Curated Test Item Characteristics

The curation process resulted in 200 diagnostically targeted word pairs, demonstrating the
successful application of the filtering criteria. Figure 4 illustrates characteristics of these
curated items, including histograms of target and distractor word syllable counts, and
phoneme and word Levenshtein distances, confirming that criteria like matching syllable
counts and limiting word Levenshtein distance were successfully applied.
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Figure 4: Distributions of Curated Item Characteristics (Syllable and Levenshtein Dis-
tances). This panel of histograms illustrates: (a) target word syllable count, (b) distractor
word syllable count, (c) phoneme Levenshtein distance (target vs. distractor), and (d)
word Levenshtein distance (target vs. distractor). These figures confirm that criteria
like matching syllable counts and limiting word Levenshtein distance were successfully
applied, ensuring perceptual and lexical similarity.

The distribution of curated items based on the "Frequency Relevance" of the Clean-
PhonemeInvolved (e.g., ’High’, ’Mid-High’, ’Mid’, ’General’) is shown in Figure 5. This
quantifies the extent to which the test battery targets speech sounds whose perception is
critically dependent on mid-to-high frequency information, aligning with the diagnostic
objectives for presbycusis.
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Figure 5: Frequency Relevance of Curated Test Items. This bar chart shows the distribu-
tion of curated items based on the "Frequency Relevance" of the CleanPhonemeInvolved
(e.g., ’High’, ’Mid-High’, ’Mid’, ’General’). This quantifies the extent to which the test
battery targets speech sounds whose perception is critically dependent on mid-to-high
frequency information, aligning with the diagnostic objectives for presbycusis.

Figure 6 indicates the proportion of distractor words derived directly from ASR output
under simulated HL versus those phonetically generated, providing insight into the re-
liance on real-world ASR errors versus synthetically created plausible confusions in the
final test battery.
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Figure 6: Source of Distractor Words. This bar chart indicates the proportion of distractor
words derived directly from ASR output under simulated HL versus those phonetically
generated. This figure provides insight into the reliance on real-world ASR errors versus
synthetically created plausible confusions in the final test battery.

The final selected word pairs for the test, along with their diagnostic performance metrics
(NH Correct Percentage, HL Correct Percentage, and Diagnostic Difference), are provided
in Table 3. These exemplify the highest diagnostic differences between NH and HL ASR
performance, crucial for the test’s discriminative power.

Table 3: Selected Test Items with Diagnostic Performance Metrics.

OriginalWord Distractor NH_Perc_corr HL_Perc_corr Difference

object eject 100 8 92
girls girl 88 4 84
challenged challenge 80 4 76
repainting recanting 98 34 64
around ’round 96 36 60
musical musica 84 34 50
boys boyce 98 54 44
even given 100 60 40
effects effect 58 18 40
few feel 80 42 38
lost ast 98 62 36
shall chalk 82 46 36
wash wat 92 58 34
even aven 98 64 34
keep kip 94 62 32

Continued on next page
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Table 3 – continued from previous page
OriginalWord Distractor NH_Perc_corr HL_Perc_corr Difference

break bray 56 26 30
morning earning 100 70 30
suit said 60 30 30
ability debility 46 20 26
substances subspaces 34 8 26
why whit 100 74 26
this the 58 32 26
employees employers 56 32 24
cost aust 36 12 24
dog god 60 36 24
made mad 86 64 22
every never 64 44 20
hot pot 64 44 20
makes mak 80 60 20
nectar ector 92 72 20
talked balke 84 66 18
miles filed 100 84 16
rag bagg 34 18 16
year dear 66 50 16
carry capri 68 54 14
gone bode 94 80 14
lunch blanch 98 86 12
ahead behead 70 60 10
dark barg 100 90 10
his ein 100 90 10
most move 46 36 10
often bolten 94 84 10
brother bother 48 40 8
conviction convictions 100 92 8
hands hand 98 90 8
please cleave 100 92 8
shredded threaded 76 68 8
water beater 92 84 8
beans bains 32 26 6
dark duck 16 10 6
wire ire 98 92 6

3.3 Simulated Test Administration Results

The simulation of test administration with 50 Normal Hearing and 50 Hearing Impaired
participants, each assessed on a random subset of 50 items, yielded preliminary diagnostic
performance metrics. The simulation parameters included a base moderate sloping HL
audiogram for impaired participants with ±10 dB variability, and a psychometric function
incorporating phoneme Levenshtein distance with a sigmoid slope (k=0.8) and a HL
impact factor (0.05 per dB HL). A test failure threshold of 80% correct was used.
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The distribution of simulated percent correct scores for both Normal Hearing (NH) and
Hearing Impaired (HI) participant groups is shown in Figure 7, providing insight into the
spread and central tendency of performance within each group.

Figure 7: Simulated Percent Correct Histograms by Participant Group. This figure dis-
plays two histograms, showing the distribution of simulated percent correct scores for
both Normal Hearing (NH) and Hearing Impaired (HI) participant groups. This figure
provides insight into the spread and central tendency of performance within each group.

Figure 8 further visualizes this distribution using a box plot.
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Figure 8: Box Plot of Simulated Percent Correct Scores by Group. This box plot visually
represents the distribution of simulated percent correct scores for Normal Hearing and
Hearing Impaired participant groups. The central mark indicates the median, the box
edges represent the 25th and 75th percentiles, and the whiskers extend to the most extreme
data points not considered outliers.

The Receiver Operating Characteristic (ROC) curve, illustrating the trade-off between
Sensitivity and (1 - Specificity) across various potential test failure thresholds, is presented
in Figure 9. The Area Under the Curve (AUC) indicates the overall discriminative power
of the test.
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Figure 9: Receiver Operating Characteristic (ROC) Curve. This figure presents the ROC
curve, illustrating the trade-off between Sensitivity and (1 - Specificity) across various
potential test failure thresholds. The dashed black line represents the performance of a
random classifier. A marker indicates the performance at the chosen fixed test failure
threshold of 80% correct. The Area Under the Curve (AUC) indicates the overall dis-
criminative power of the test.

Finally, Figure 10 shows an example of the interface designed for the human speech test.

Figure 10: Interface for the speech test so that a human can do it. This figure shows the
user interface designed for the speech perception test, allowing a human participant to
interact with the test by selecting one of two presented word options. It typically displays
two buttons with the word choices and a trial counter.
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4 Discussion
This study aimed to develop a novel ASR-based frequency-specific speech test to over-
come the limitations of traditional audiometry in characterizing the functional impact
of hearing loss, particularly presbycusis. By simulating hearing loss effects on ASR per-
formance, the goal was to derive granular, phoneme-level insights into speech perception
deficits. The findings demonstrate the feasibility of this approach and lay a foundation
for a more diagnostically informative hearing assessment tool. In response to our first
research question, the methodology successfully utilized an ASR system to simulate the
perceptual effects of hearing loss and generate comprehensive phoneme confusion profiles.
By processing speech stimuli under controlled acoustic degradation, mimicking typical
hearing loss conditions, the ASR system provided detailed error patterns. This approach
inherently leverages the ASR’s capacity for phoneme-level scoring, offering a more granu-
lar understanding of perception errors than traditional whole-word or sentence scoring [8].
The observed shifts in ASR outputs under simulated hearing loss serve as a quantitative
proxy for how specific speech sound cues might be distorted or lost to a human listener.
Addressing the second research question, the specific phoneme-level confusion patterns ob-
served strongly correlate with the acoustic properties of speech sounds and known effects
of presbycusis. The high prevalence of substitutions and deletions, particularly involving
high-frequency phonemes like sibilants and alveolar/palatal stops, is consistent with the
spectral shaping characteristic of sloping high-frequency hearing loss. For instance, the
most frequent substitution of alveolar/palatal phonemes for labiodental ones (e.g., /S/ to
/F/, see Table 1 and Figure 3) directly reflects the attenuation of high-frequency energy
essential for discriminating sibilants, which pushes recognition towards sounds with lower
peak frequencies. Similarly, vowel-to-vowel confusions (e.g., /IY1/ to /EY1/) suggest
the degradation of higher formants (F2, F3) crucial for vowel distinctiveness, a known
challenge in presbycusis. The significant proportion of deletions further indicates a com-
plete loss of information for certain phonemes, often high-frequency consonants that fall
below threshold (see Figure 1). These patterns align with psychoacoustic understanding
of how hearing loss impacts the perception of speech cues. Importantly, because our sim-
ulation primarily models frequency-dependent attenuation, its findings are particularly
pertinent to mild-to-moderate hearing loss, where *audibility* is considered a dominant
factor limiting speech perception, especially in quiet [1]. Our ASR-derived confusions (e.g.,
/S/→/F/, high-frequency deletions) directly reflect this loss of audible cues [5]. Regard-
ing the third research question, the simulation demonstrated that a test battery curated
from these ASR-derived confusions can effectively differentiate between normal-hearing
and hearing-impaired listeners in a simulated environment. The diagnostic difference cal-
culated for curated word pairs indicated their discriminative power (see Table 3). The
simulated test administration, as shown by distinct distributions of percent correct scores
(Figure 7 and Figure 8) and a quantifiable ROC curve (Figure 9), confirmed the test’s
potential to distinguish between the two groups. This provides a strong preliminary in-
dication of the test’s diagnostic utility in a controlled setting. Finally, addressing the
critical considerations for translating this ASR-based diagnostic test into a practical tool
for human participants (RQ4), several factors are paramount. Firstly, while ASR serves
as an effective proxy for large-scale simulation and identifying robust confusion patterns,
it does not perfectly replicate the complex, non-linear auditory processing of human lis-
teners, especially supra-threshold deficits like reduced frequency resolution or impaired
temporal processing that are often central to human hearing loss [3, 4, 6]. The current
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simulation relies on acoustic filtering, which is a simplification of the multi-faceted nature
of sensorineural hearing loss. Therefore, direct validation with human participants is an
indispensable next step. The diversity of speech patterns (accents, disordered speech) and
environmental noise conditions in real-world clinical settings also necessitates robust ASR
performance beyond controlled laboratory conditions [14]. A key aspect for real-world ap-
plication is the calibration of a free parameter: the level of added noise. It is generally
understood that ASR systems often perform worse than human listeners (both normal
hearing and those with hearing loss) in noisy conditions, particularly when dealing with
unpredictable noise types or lower signal-to-noise ratios [15]. By strategically adding a
certain level of noise to the stimuli presented to the ASR, we can potentially degrade its
performance to a level that more closely mirrors that of human listeners under similar
conditions. This calibration is crucial for ensuring the ASR-based test provides a realistic
and comparable assessment. However, the optimal level of this added noise is currently
unknown and will require careful calibration with data from human participants with
varying hearing abilities, across a range of SNRs, to establish a reliable mapping between
ASR and human performance. Despite these considerations, the ASR-based approach of-
fers several advantages. It enables the rapid development and objective scoring of speech
tests, potentially reducing clinician time and standardizing assessment procedures [6, 9].
The granular phoneme-level insights gained could lead to more personalized diagnostic
reports that go beyond a simple audibility measure, offering a "confusion profile" that
maps specific perceptual difficulties to affected frequency regions.

Limitations

The primary limitation is the reliance on ASR as a proxy for human listeners. While
ASR models are increasingly sophisticated, their internal processing mechanisms may
not fully align with human auditory perception, particularly regarding specific forms of
auditory distortion inherent to hearing loss. The current simulation of hearing loss is
purely acoustic (filtering and noise) and does not encompass more complex physiological
aspects of cochlear damage or central auditory processing deficits. While this aligns with
the *audibility*-centric view of mild-to-moderate loss [1, 2], future work should consider
incorporating models of supra-threshold deficits [3,4] for broader applicability, especially
in noise. The TIMIT corpus, while phonetically rich, consists of read speech and may not
fully represent the variability of natural conversational speech.

Future Work

The immediate next step involves pilot testing the curated test battery with human par-
ticipants, including normal-hearing individuals and those with presbycusis, to validate the
ASR-derived confusions and diagnostic predictions in a real-world setting. Future refine-
ments to the methodology should include exploring more sophisticated phonetic alignment
algorithms for a more complete analysis of insertions and deletions in confusion matrices.
Further research into adaptive or personalized distractor selection strategies, potentially
involving phonetically motivated minimal pairs beyond direct ASR confusions, could en-
hance test specificity. Development of an automated diagnostic report generation tool
that visualizes the "Confusion Profile" or an "Audiogram of Confusion" would greatly
enhance clinical utility. Finally, investigating the integration of this framework with
advanced AI models such as Speech Foundation Models and Large Audio-Language Mod-
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els may offer even more nuanced speech intelligibility prediction and dynamic stimulus
generation capabilities, potentially leading to more personalized and precise hearing as-
sessments [10,11]. Addressing the practical challenges of clinical workflow integration and
ensuring cost-effectiveness will be crucial for the widespread adoption of such innovative
diagnostic tools [13].

5 References

References
[1] Plomp, R. (1978). Auditory handicap of hearing impairment and the limited benefit

of hearing aids. The Journal of the Acoustical Society of America, 63(2), 533-549.

[2] Humes, L. E. (2007). The Importance of Speech Audibility. The ASHA Leader, 12(6),
12-15.

[3] Oxenham, A. J. (2008). Cochlear compression: implications for hearing aids and
listeners with hearing impairment. Trends in Amplification, 12(4), 289-301.

[4] Henry, K. S., & Heinz, M. G. (2022). Distorted Tonotopy Severely Degrades Neural
Representations of Connected Speech in Noise following Acoustic Trauma. Journal of
Neuroscience, 42(12), 2548-2565.

[5] Giguère, C., & Braida, L. D. (1995). Using phonetic confusions to estimate the shape
of the audiogram. The Journal of the Acoustical Society of America, 98(2), 738-751.

[6] Jean et al. (2025). Automating Speech Audiometry in Quiet and in Noise Using a
Deep Neural Network. MDPI Biology

[7] Meyer, B., et al. (2015). Autonomous Measurement of Speech Intelligibility: Potential
and Limitations of Automatic Speech Recognition. Interspeech.

[8] Billings, C., (2016). Phoneme and Word Scoring in Speech-in-Noise Audiometry.
American Journal of Audiology.

[9] Polspoel, D., et al. (2025). Automatic development of speech-in-noise hearing tests
using machine learning. Nature

[10] Zhou, H., et al. (2025). Unveiling the Best Practices for Applying Speech Founda-
tion Models to Speech Intelligibility Prediction for Hearing-Impaired People [cs.AI].
arXiv.org.

[11] Yang, C.-K., et al. (2025). Towards Holistic Evaluation of Large Audio-Language
Models: A Comprehensive Survey. arXiv.org.

[12] Fontan, L., et al. (2022). Using Automatic Speech Recognition and Hearing-Loss
Simulation to Optimize Hearing-Aid Fittings for Speech Identification by Older Lis-
teners. Frontiers in Neuroscience.

[13] Borre, E. D., et al. (2022). Model-Projected Cost-Effectiveness of Adult Hearing
Screening in the USA. J Gen Intern Med.

20



[14] Tonin, J., et al. (2024).Automatic Speech Recognition of Conversational Speech in
Individuals With Disordered Speech. Journal of Speech, Language, and Hearing Re-
search.

[15] Cooke, M., Barker, J., Cunningham, S., & Shao, X. (2006). An audio-visual corpus for
speech perception and automatic speech recognition. The Journal of the Acoustical
Society of America, 120 (5), 2421-2424.

21


	Introduction
	Methodology
	Speech Material and ASR Baseline
	Hearing Loss Simulation and Phoneme Confusion Analysis
	Test Item Curation
	Test Administration and Diagnostic Simulation
	Performance Evaluation and Diagnostic Item Selection

	Results
	Phoneme Confusion Analysis
	Curated Test Item Characteristics
	Simulated Test Administration Results

	Discussion
	References

