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A B S T R A C T

Unsteady, high-fidelity aerodynamic load predictions around a three-dimensional configuration
will remain computationally expensive for the foreseeable future. Data-driven algorithms based
on deep-learning are an attractive option for reduced order modelling of complex, nonlinear
systems. However, a dedicated approach is needed for applicability to large and unstructured
domains that are typical in engineering. This work presents a geometric-deep-learning multi-
mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic
loads for a finite-span wing undergoing different types of motion. The novel framework
leverages on: (a) graph neural networks for aerodynamic surface grids embedded with a multi-
resolution algorithm for dimensionality reduction; and (b) a recurrent scheme for time-marching
the aerodynamic loads. The test case is for the BSCW wing in transonic flow undergoing a
combination of forced-motions in pitch and plunge. A comprehensive comparison between a
quasi-steady and a recurrent approach is provided. The model training requires four unsteady,
high-fidelity aerodynamic analyses which require each about two days of HPC computing
time. For any common engineering task that involves more than four cases, a clear benefit
in computing costs is achieved using the proposed framework as an alternative predictive tool:
new cases are computed in seconds on a standard GPU.

1. Introduction

The high resources required in high-fidelity computational fluid-dynamics (CFD) solutions are in contrast with the ever more
stringent timescales of an engineering design cycle, as common among other examples in the aerospace and motorsport environ-
ments. The disproportion between the required computing costs and the desired fast turnaround times of product development is
exacerbated when unsteady problems are considered, such as in buffet envelope search or gust response (Righi et al., 2021; Raveh,
2007).

Recent advances in machine learning (ML) algorithms result convenient as reduced order models (ROM) to accelerate simulation
turnarounds, given their ability to discover highly complex and nonlinear systems from data. In a previous contribution by Massegur
et al. (2022), a ML-based model to predict the aerodynamic loads of a wing section was coupled to a general-purpose structural
solver to predict the transonic flutter boundary.

Building upon our prior research involving a two-dimensional (2D) setup, we are herein interested in providing solutions to the
modelling challenges involved with unsteady and three-dimensional (3D) configurations, more applicable to real-world purposes but
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with added complexity. Nonlinear flow features and interactions in 3D systems are more abundant and richer in spatio-temporal
cales than in 2D (Anderson, 2016; Pope, 2000). Therefore, ROM approaches that work well in 2D tasks (Massegur et al., 2022) may

be inappropriate to solve 3D problems. As a result, to address spatio-temporal aerodynamic predictions on 3D wing surfaces, we
resort to deep learning (Goodfellow et al., 2016), the branch of ML that investigates neural networks (NN), as these are particularly
suited for inference of highly nonlinear systems.

Another central problem with reduced-order modelling for aerodynamic analyses entails dealing with large and irregular domains
esulting from the discretisation employed in CFD grids (Brunton and Kutz, 2019). In this case, common nonlinear ROM techniques,

including Volterra (Silva, 1993), Kriging (Glaz et al., 2010) or dense neural networks (DNN) (Mannarino and Mantegazza, 2014;
Wang et al., 2020) result ill-suited. To solve the issue of large spatial domains, a dimensionality reduction technique is sought.
Neural-network based dimensionality reduction techniques, known as autoencoders (AE), result more attractive than the classical
proper orthogonal decomposition (POD) (Park et al., 2013; Ribau et al., 2021) because of their ability to execute nonlinear
projections onto the compressed space.

Related to unstructured domains, renowned convolutional neural networks (CNN) (Sureshbabu et al., 2023; Morimoto et al.,
2021), regardless if embedded in an autoencoder approach (CNN-AE) (Rozov and Breitsamter, 2021), are problematic because they
require Euclidean domains (cartesian grids) that are generally incompatible with the unstructured meshes typical in CFD. Instead,
we resort to geometric deep learning, the umbrella of graph neural networks (GNN) which involve convolutional methods adapted
o non-Euclidean spaces (Bronstein et al., 2021, 2017). GNNs for steady-state predictions were proposed by Hines and Bekemeyer

(2023), Ogoke et al. (2021). Regarding unsteady investigations, while Pfaff et al. (2020) did not address the dimensionality issue, Han
et al. (2022) adopted a simplistic autoencoder scheme for 2D cases. To the best of our knowledge, spatio-temporal predictions for
dynamically moving aircraft components, using large and unstructured meshes, has not been addressed.

The present work builds upon a previous contribution by Massegur and Da Ronch (2024a), where a steady-state graph
convolutional network embedded in a multi-mesh autoencoder (GCN-MM-AE) was implemented. The scheme is particularly suited
o CFD meshes and is reminiscent of the multi-grid schemes for solution of partial differential equations (McCormick, 1987; Smith,

1990).
Since we are herein interested in dynamic simulations, embedding the GCN-MM-AE model in a time-dependent framework is

sought. To account for temporal predictions, recurrent neural networks (Graves, 2013) can be thought within a time-marching
approach. However, a critical issue with time-dependent methods is the error accumulation in long-term forecast (Font et al.,
2021; Beck and Kurz, 2020). A simplistic forward Euler scheme with input perturbation from random noise was proposed by Pfaff
et al. (2020), whereas a transformer model was adopted by Han et al. (2022). The transformer algorithm (Vaswani et al., 2017) is
renowned for faithful long-term forecasting but it results computationally expensive. Therefore, the challenges involved in temporal
predictions present several open questions and we addressed these devising our own recurrent scheme.

We present a recurrent graph-convolutional multi-mesh autoencoder for unsteady aerodynamics prediction on aircraft surfaces.
he unique contribution of this work is applicability to non-Euclidean domains, a multi-resolution embedding for model efficiency,

a time-marching scheme with long-term error considerations and a building-block implementation to easily adapt the framework to
different tasks: coarse-data reconstructions, quasi-steady or unsteady regimes. For the validation of the developed methodology we
used the benchmark supercritical wing (BSCW) from the Aeroelastic Prediction Workshop (AePW) (Heeg et al., 2015, 2016; Heeg
nd Chwalowski, 2017) at transonic regime as test case. The wing is subject to forced motion of two degrees of freedom. As a result,

the model predicts the unsteady pressure field on the surface of the moving wing.
The paper continues with a description of the test case and the complex physics to deal with in Section 2. Section 3 reports

the methodology developed in the present study. Results found with the different modelling approaches are reported in Section 4
followed by the concluding remarks of Section 5.

2. Test case: Benchmark supercritical wing

The BSCW test case has been investigated for aeroelastic studies across the various AePW sessions (Heeg et al., 2015). The
NASA SC(2)0414 aerofoil is used as wing section. The wing is rigid with two degrees of freedom in pitch 𝛼 and plunge 𝜉 =ℎ∕𝑏, as
illustrated in Fig. 1 Panel (a). The reference geometric chord is 𝑐 = 0.4064 m, with 𝑏 indicating the semichord, and the surface area
𝑆 = 0.3303 m2. The origin for moment calculations is at mid chord and the non-dimensional time is defined as 𝜏 = 𝑡 𝑈∞∕𝑏, with 𝑈∞
he freestream speed. The cross sections in Fig. 1 will be used for analysis of the results in Section 4.

The open-source SU2 7 solver was used for the reference aerodynamic analyses. We addressed the analyses on the coarse
tetrahedral mesh from the AePW.3 Details of the mesh are illustrated in the other three Panels of Fig. 1. The mesh consists of
.97 million grid nodes, of which 86k on the wing surface, shown in red. The mesh choice was based on a compromise between
dequate spatial resolution and computational efficiency. The one-equation Spalart–Allmaras (SA) turbulence model was used. To
chieve flow-solution convergence, we adopted the JST convective numerical method, the biconjugate gradient stabilisation as
inear solver, Green-Gauss method for the spatial gradients, Euler implicit as time discretisation with a time step of d𝑡= 2 ⋅ 10−4 s,
lu preconditioner and 𝐶 𝐹 𝐿= 5. Freestream flow conditions were set at three different Mach numbers 𝑀∞ = [0.74, 0.80, 0.84], with
ixed 𝑅𝑒= 4.49 ⋅ 106, 𝑞∞ = 8000 Pa and 𝛼∞ = 0 deg. The flow is first solved around the static wing and then the grid-movement solver
uilt in SU2 is enabled to address the rigid body motions.

3 https://nescacademy.nasa.gov/workshops/AePW2/public/BSCW/analystsInfo
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Fig. 1. Details of the geometry and the unstructured tetrahedral mesh for the BSCW model, elastically restrained in pitch and plunge. Symmetry-plane (green)
and wing (red) boundaries are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

2.1. Forced-motion simulations

Forced-motion CFD responses were used to generate our ROMs. To achieve an efficient implementation, we minimised the
number of necessary training signals. To this aim, proper consideration on the type of motion signal to adopt is sought. The aerofoil
flutter boundary study from Massegur et al. (2022) indicated that using free aeroelastic responses to some initial conditions as
training signals resulted adequate but was limited to a single structural configuration. By contrast, the widely used Schroeder-
phased multi-harmonic signals (Wojtczak and Oxenham, 2009; Lentz and Leek, 2001; Sahinkaya et al., 2002) failed to capture the
structural damping correctly. Herein, we are interested in a single aerodynamic ROM applicable to various motions than those used
to generate the model, e.g. for different reduced frequencies due to structural modifications. As a result, we propose a modification
of the common Schroeder signal by adding a linear decay of the amplitude over time, resembling simplified structural damping.
This adaptation enriches the dataset as it includes varying amplitudes for each Schroeder harmonic over time, therefore exciting a
wider range of dynamics, whereas with the original Schroeder formulation, the signal is simply periodic, i.e. repetitive.

The proposed modified Schroeder formulation is defined as:

𝑎̂(𝑡, 𝑎, 𝜔) =
𝑛𝑚
∑

𝑖= 1
𝑎(𝑡) sin(𝑖 𝜔 𝑡 + 𝜙𝑖) (1)

where 𝑎̂(𝑡) is the total instantaneous amplitude of the input signal, in our case pitch or plunge motions, 𝑛𝑚 the total number of
harmonics (or modes), and 𝜔 the first-harmonic frequency and 𝑎(𝑡) its amplitude. In the original Schroeder formulation, 𝑎(𝑡) is a
constant, while in our modified version, the harmonic amplitudes decay linearly over time:

𝑎(𝑡) = 𝑎(𝑡0)
𝑎(𝑡end) − 𝑎(𝑡0)

𝑡end − 𝑡0
(𝑡 − 𝑡0) (2)

with 𝑡0 and 𝑡end, respectively, the initial and final time instants. The initial signal amplitude 𝑎(𝑡0) were prescribed for each signal
and the total simulation time was set to 𝑡end = 2 s. The final amplitude was chosen as 𝑎(𝑡end) = 0.1 𝑎(𝑡0) to ensure significant decay of
the amplitudes by the end of the response.

Using the proposed modified Schroeder formulation in Eq. (1), we specify different signals for combined pitch and plunge
modes:

{

𝛼(𝑡) = 𝑎̂𝛼(𝑡, 𝑎𝛼 , 𝜔𝛼) (3)

𝜉(𝑡) = 𝑎̂𝜉 (𝑡, 𝑎𝜉 , 𝜔𝜉 )

3 
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Table 1
Phase for each harmonic mode of the Schroeder signal.

Mode 𝑖 1 2 3 4 5 6 7 8 9

𝜙𝑖 [deg] 0 −0.6981 −2.0944 −4.1888 −6.9813 −10.4720 −14.6608 −19.5477 −25.1328

Fig. 2. Aerodynamic response of the BSCW wing using modified Schroeder-phased signals for pitch and plunge motions, at the three different Mach numbers,
𝑅𝑒= 4.49 ⋅ 106, 𝑞∞ = 8000 Pa and static 𝛼∞ = 0 deg. 𝑀∞ = 0.74 in dash style, 𝑀∞ = 0.80 in dot style, 𝑀∞ = 0.84 in dash-dot style.

Therefore, the first-harmonic frequencies 𝜔𝛼 and 𝜔𝜉 were assigned for each motion mode and the first-harmonic amplitudes, 𝑎𝛼(𝑡)
and 𝑎𝜉 (𝑡), are defined by Eq. (2) given the user-defined initial amplitudes:

{

𝑎𝛼(𝑡) = 𝑎(𝑡, 𝑎𝛼(𝑡0))
𝑎𝜉 (𝑡) = 𝑎(𝑡, 𝑎𝜉 (𝑡0))

(4)

We adopted 𝑛𝑚 = 9 harmonics to define the response signals as it covered sufficient range of representative frequencies. The reason
for choosing combined frequencies is for the ROM to be able to learn the response from multiple frequency excitation with a single
training signal (Da Ronch et al., 2013). Table 1 reports the phase values for each mode. Refer to Table 8 in Appendix A.1 for the
definition of the various signals used to generate and validate the ROMs.

Fig. 2 showcases an example of CFD aerodynamic response at the three Mach numbers and given pitch-and-plunge motions
based on modified Schroeder-phased signals. The first-harmonic of this training signal has frequency and initial amplitude set to
𝜔𝛼 = 1.4 Hz, 𝑎𝛼(𝑡0) = 0.8deg and 𝜔𝜉 = − 1.6 Hz, 𝑎𝜉 (𝑡0) = − 0.098 for pitch and plunge, respectively. The instantaneous lift and pitching
moment coefficients, 𝐶𝐿 and 𝐶𝑀𝑦

, are reported for each Mach number to assess the variation of the aerodynamic response caused
by the dynamic input motion and across the various freestream regimes. We observe that the lift coefficient correlates with the
combination of pitch and plunge modes. However, a decay of the 𝐶𝐿 at the highest Mach number is visible, due to wing stall caused
by the shock-induced boundary layer separation. The 𝐶𝑀𝑦

also correlates with the motion inputs. At 𝑀∞ = 0.84, the loss of lift is
compensated by the centre of pressure shifting towards the leading edge, resulting in pitching moment magnitudes similar to the
other Mach conditions.

We are interested in predicting the time evolution of the pressure coefficient distribution. We extracted snapshots of the flow field
corresponding to the four time steps indicated by vertical lines in Fig. 2. The selected 𝐶𝑝 fields are shown in Fig. 3 with the Mach
number (𝑀∞ = 0.74, 0.80 and 0.84) column-wise and the time instants span-wise. This comparison evidences the impact of the Mach
number on the location and strength of the shock wave. At 𝑀∞ = 0.74, far left column, we observe an elliptic shock-wave structure
along the span, due to low wing aspect ratio. The time evolution presents large fluctuations of the shock wave location in chord.
On the contrary, at higher Mach numbers the shock wave remains on average at a fixed position. At 𝑀∞ = 0.80, middle column,
the shock wave line is trapezoidal and there is intermittent boundary-layer separation downstream and subsequent re-attachment,
as denoted by varying 𝐶𝑝 values downstream of the shock wave. At 𝑀∞ = 0.84, far right column, the shock-induced separation is
permanent, evidenced by a flat 𝐶𝑝 distribution aft the shock wave.

The observed nonlinear and localised phenomena reveal the complex physics involved with this use case that would not be
present on a 2D problem. From a computing standpoint, one unsteady CFD simulation requires over 10,000 CPU hours on a
high-performance cluster. These considerations motivate leveraging deep-learning for our spatio-temporal prediction model.

3. Methodology

In this section we describe the developed methodology for spatio-temporal aerodynamic predictions. The idea is the generation
of a neural-network function 𝑓 which maps specific user-defined inputs 𝒔, i.e. the motion signals in the BSCW case, to desired
NN

4 
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Fig. 3. Snapshots of the pressure coefficient at three different Mach numbers (columns) and time instants (rows), selected from the responses in Fig. 2. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

target 𝒀𝑖 fields on the surface mesh , such as the pressure distribution. We define the ROM to output the solution with respect to
the initial static condition:

𝒀𝑖(𝜏) = 𝒀𝑖(𝜏0) + 𝑓NN
(

𝒔(𝜏),𝒙𝑖,𝜣
)

∀ 𝑖∈ (5)

where the [𝑥, 𝑦, 𝑧] coordinates 𝒙𝑖∈R𝑛×3 of the mesh nodes 𝑖∈, with 𝑛𝑛 the input mesh node count, are also embedded to enhance
the spatial mapping. 𝜣 represents the set of trainable model parameters within the various layers. From here onward, we will omit
the static contribution 𝒀𝑖(𝜏0) in the expressions but it is understood that the developed aerodynamic models are always relative to
this condition.

Since we are dealing with wings subject to rigid body motion, the surface mesh remains unchanged. It implies that we can
operate on the same mesh throughout the whole time history. Therefore, as introduced in Section 1, it is possible to build this work
upon a previous contribution (Massegur and Da Ronch, 2024a) for the spatial modelling. That work presented a multi-mesh graph
convolutional autoencoder framework, which we named GCN-MM-AE, for the steady-state prediction of the pressure and shear-stress
distributions on an aircraft surface. The following section provides a brief description of the developed methodology. Refer to the
original paper for the complete formulation.

3.1. Graph convolutional multi-mesh autoencoder

The implemented method leverages geometric deep learning (Bronstein et al., 2021), i.e. GNNs, and dimensionality reduction
on the surface of the CFD mesh, which can be represented as a graph. Target spatial quantities 𝒚 and position coordinates 𝒙 are
𝑖 𝑖

5 
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Fig. 4. BSCW mesh represented as a graph with node features and edge weights.

assigned on the graph nodes ; and user-defined weights 𝑒𝑖𝑗 , on the edges of connected nodes. Fig. 4 illustrates a generic graph
representation, including node-based features, coordinates and edge weights.

From the family of GNNs, we chose the widely used graph convolutional network (GCN) layer (Kipf and Welling, 2017), defined
as:

GCN: 𝑔(𝒚) = ℎ
(

𝜽𝑇 𝑫̂− 1
2 𝑨̂ 𝑫̂− 1

2 𝒚 + 𝑏
)

(6)

with 𝜽 a layer-specific trainable weight vector, 𝑏 a constant weight term and 𝒚 the node-based input vector at each node of the
mesh . 𝑨̂=𝑨 + 𝑰 corresponds to the adjacency matrix, with 𝑨= 𝑒𝑖𝑗 , and 𝑫̂ = diag(∑𝑗≠𝑖 𝑒𝑖𝑗 + 1), the diagonal degree matrix, this is
the sum of the edge weights connected to target node 𝑖. The connectivity matrix is largely sparse. Consequently, its arrangement in
sparse form is convenient: for each edge, the indices of the connected node pairs 𝑖, 𝑗 and the respective weight value 𝑒𝑖𝑗 is included,
resulting in a more compact size 𝑨̂ ∈ R𝑛𝑒𝑛×3. Furthermore, we chose as nonlinear activation ℎ(𝑥) the PReLU function (He et al.,
2015):

PReLU: ℎ(𝑦) =
{

𝑦 if 𝑦 ≥ 0
𝛽 𝑦 if 𝑦 < 0

(7)

where 𝛽 is a learnable parameter independent for each channel of the input vector.
With the GCN operator, each node 𝑖 can receive influence from the connected nodes only, resulting useful to extract localised

features. By contrast, global flow features can be captured with GCNs via propagation of information across the mesh. To achieve
this, an impractically large network of GCN layers would be required. To circumvent the burden of a big network, especially in the
case of large meshes, an autoencoder approach for dimensionality reduction (Liu et al., 2023; Hinton and Salakhutdinov, 2006) was
developed. In brief, the GCN layers are embedded in a novel multi-mesh (MM) scheme, resembling the 2-level multi-grid V-cycle
method to solve partial differential equations (Smith, 1990; McCormick, 1987). A schematics of the implemented multi-mesh cycle
is illustrated in Fig. 5, with the original mesh represented as n and the coarsened mesh, as r . The MM autoencoder coarsens the
mesh while extracting crucial features with the GCNs, process known as encoder. In the decoder process, the compressed latent
states are embedded back onto the original mesh.

Table 2 reports the mesh sizes (number of nodes) adopted in the multi-resolution scheme for the BSCW test case. The nodes
carried over to the coarse mesh were selected via a probability function based on the mesh density distribution. The selection
probability distribution was assigned to reasonably keep the original mesh topology but without losing excessive resolution in the
originally coarse regions. With this procedure, a mesh compression ratio of 16 was achieved. To proceed with GCN operations
on the coarse mesh, the graph connectivity is reconstructed by executing a search loop of nearby remaining nodes around each
unremoved node. Last, to operate between mesh levels, the information must adequately be interpolated from one mesh to the
other. The interpolation consists of a matrix n→r ∶ R𝑛𝑛 → R𝑛𝑟 to map a spatial field 𝒚 from the source grid n to the target grid
r , with both grids discretising the same spatial domain:

Interpolation matrix: 𝒚𝑗 = n→r 𝒚𝑖 ∀𝑗∈r ,∀ 𝑖∈n (8)

The interpolation matrix is not invertible. Consequently, two independent interpolation matrices are required for the reduction and
recovery operations, respectively. We implemented a polynomial-based weighted moving least squares scheme to construct each
matrix (Quaranta et al., 2005; Joldes et al., 2015). The adoption of the MM scheme is advantageous for:

1. Limiting the model memory burden by operating in a compressed space.
6 
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Table 2
Surface mesh size (number of nodes and edges) of the two multi-mesh levels for the BSCW test case.
Original mesh Coarsened mesh Compression

nodes 𝑛𝑛 edges 𝑛𝑒𝑛 nodes 𝑛𝑟 edges 𝑛𝑒𝑟 ratio 𝑛𝑛
𝑛𝑟

86,840 520,665 5427 26,238 16.0

Fig. 5. Schematics of the 2-level multi-mesh cycle for the BSCW wing, involving one coarsening level and interpolation between meshes.

2. Enabling the GCN blocks to extract either local and global features, in analogy with the pooling operations in CNNs (Morimoto
et al., 2021).

3. Efficiently propagate influence between far-away nodes, avoiding the need for a deep network and its potential numerical
instabilities.

Note that the introduced GCN-MM-AE model solves the spatial modelling only. Since we are interested in dynamic responses,
adaption of this method in a time-dependent framework is sought. Different approaches can be thought to account for the temporal
modelling. Here we developed two distinct techniques: a quasi-steady and a recurrent scheme. We lay down a comprehensive
comparison analysis between the two and report the benefits and disadvantages for each approach.

3.2. Time-dependent prediction framework

First, we formalise the methodology for the recurrent model, involving a time-marching process. Subsequently, we derive the
quasi-steady implementation from a simplification of the recurrent scheme.

The idea for a time-marching process is to let the past flow condition influence the next-step solution. This is achieved by defining
the next-step prediction 𝒀𝑖(𝜏) as a function of the external inputs as well as the solution from the previous time step 𝜏 − d𝜏:

Recurrent functional: 𝒀𝑖(𝜏) = 𝑓NN
(

𝒔(𝜏),𝒙𝑖, 𝒀𝑖(𝜏 − d𝜏),𝜣)

(9)

In particular, the target prediction for the BSCW consists of the pressure coefficient field 𝒀𝑖 = [𝐶𝑝𝑖] ∈R𝑛×1 as a function of the pitch
and plunge motion inputs. Alternatively, one could be interested to predict the shear stresses or the wall temperature. For model
compactness, it is convenient to adopt the modal coordinates and time derivatives 𝒔= [𝛼 , 𝛼̇ , ̈𝛼 , 𝜉̇ , 𝜉] as input variables as opposed to the
grid-point displacements. As a result, since we are dealing with rigid-body motions, the graph can be kept fixed in its static position,
significantly reducing the computational complexity of having to update the graph coordinates and connectivity at each time instant.
Furthermore, the plunge state 𝜉 can be excluded since the instantaneous vertical position does not exert any aerodynamic effect.
Note that, although the modal coordinates are global quantities, these are recast as uniform fields into the nodes of the graph. As
a result, the dimensionality of the motion inputs becomes 𝒔∈R5→R𝑛×5.

The recurrent algorithm is sought to generate an embedding between the current motion inputs and the previous solutions to
execute the next-step prediction (Han et al., 2022). Deep learning provides a suite of recurrent neural networks (RNN) (Goodfellow
et al., 2016; Brunton et al., 2020) particularly designed for time-series forecasts. The idea here is to embed a RNN based algorithm
with the GCN-MM-AE model. With the choice of modal states, the question is:

- What is the most adequate combination between nodal-based (the previous-step pressure field) and global-based (wing motion
states) as input variables?
7 
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Direct concatenation of the two input classes as proposed by Rozov and Breitsamter (2021) can be problematic for potential
numerical divergence (Beck and Kurz, 2020). To mitigate the issue of long-term error accumulation, we adopted the gated recurrent
nit (GRU) (Cho et al., 2014) for the recurrent embedding. Formulation of the GRU operator is provided in Appendix A.2. The GRU

provides capability of carrying over long-term memory on subsequent predictions as other more common units, i.e. the long short-
term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the Transformer (Vaswani et al., 2017), but with the advantage
of being less memory burdensome. This feature makes the GRU more advantageous to limit the computing burden (Chung et al.,
2014). To limit model memory requirements, a plausible location for embedding the modal inputs is aft the MM reduction step,

herein the spatial size is the smallest.
The devised model architecture, featuring separate input branches, the MM autoencoder and the recurrent blocks, results rather

complex for the training. To alleviate the model generation process and to avoid potential instabilities or memory errors, a novel
two-module training sequence was adopted, building on the approach from Han et al. (2022). The architecture of the designed
recurrent GCN-MM-AE for spatio-temporal predictions is depicted in Fig. 6. The different modules represented by each Panel are
trained sequentially. The autoencoder in isolation is generated first, Panel (a). This model addresses compression and subsequent
reconstruction of the 𝐶𝑝 snapshots, this is:

Autoencoder functional: 𝒀𝑖(𝜏) = 𝑓NN
(

𝒀𝑖(𝜏),𝒙𝑖,𝜣
)

(10)

The autoencoder is adequate to encode the pressure field in the latent state. To perform new predictions, we subsequently
everage the same autoencoder, by means of transfer learning, in a second module which also incorporates the motion inputs to
xecute the time-marching stepping. This second model is illustrated in Panel (b) of Fig. 6. The 𝐶𝑝 field from the previous time step
𝜏 − d𝜏 is input to the encoder, previously trained and frozen. A second branch encodes the modal states 𝒔(𝜏). The two processed
latent states are input to the GRU core to execute the new-state update. This new state is subsequently recovered by the decoder,
lso pre-trained in the first module, to output the 𝐶𝑝 field at the current step 𝜏.

With this strategy, the second module involves only the training of the second encoder, related to the motion inputs, and the
recurrent unit. The choice of this two-module procedure is motivated by:

1. Reducing the computing burden in the training process by means of a sequential model optimisation.
2. A pre-trained autoencoder together with the building-block implementation facilitates verification of different external input

types and recurrent units, including adaptation to a quasi-static scheme.

3.2.1. Multi-step training sequence
As introduced in Section 1, a critical problem with time-marching simulations is the long-term error accumulation. Even if

prediction accuracy is high in a single time step, the error accumulation over successive iterations can lead to drastic solution
divergence (Thuerey et al., 2021). This phenomenon will unlikely be correctly addressed if the training loss execution involves
ingle time-marching step sequences. Therefore, to mitigate long-term error accumulation, a multi-step sequence was adopted for

the optimisation of the model parameters: the dataset is arranged in time sequences of a prescribed number of steps 𝑘. The model
is sequentially called to recurrently process the entire mini sequences, letting the prediction errors accumulate. Once each 𝑘-step
sequence is completed, the total loss is computed to execute the backpropagation and model parameter update steps. Fig. 7 illustrates
a diagram of this multi-step training sequence. In particular, we chose a sequence length of 𝑘= 3 steps because it was found a good
compromise between training burden and adequate prediction results throughout the time history.

In addition, we also adopted a solution recommended by Pfaff et al. (2020) which consists of perturbing each input signal with
 normally distributed random noise of standard deviation 10% the maximum magnitude of the signal.

3.3. Quasi-steady prediction framework

In a quasi-steady scheme the aerodynamic response is uniquely dependent on the wing motion, excluding the influence from the
previous flow condition in Eq. (9):

Quasi-steady functional: 𝒀𝑖(𝜏) = 𝑓NN
(

𝒔(𝜏),𝒙𝑖,𝜣
)

(11)

A quasi-steady approach assumes instantaneous reaction to body motion as it does not leverage the time history of the flow.
Consequently, response variability caused by unsteady effects cannot be captured. On the other hand, by disregarding the past
flow condition at each time-step prediction, the risk of long-term error accumulation is reduced.

The quasi-steady scheme can be easily derived with a modification of the recurrent framework just described. The encoder
used to embed the previous-step solution and the GRU core in the second module of the recurrent framework, Fig. 6 Panel (b),
are disregarded. As a result, the quasi-steady model architecture is formed by the second, input-signal encoder followed by the
pre-trained and frozen decoder. This approach is reminiscent of the POD reconstruction and the Galerkin method for interpolation
f the POD coefficients (Luchtenburg et al., 2009). For clarity, Table 3 summarises the input and output quantities adopted for
ach modelling approach. The dimensions of the tensors are also included. Note how each model considers as additional inputs
he coordinates of the fixed mesh 𝒙, aimed at inferring the spatial mapping, and the connectivity 𝑨̂, required by the GCN layers to
xecute the message passing through the edges. In this particular case, the global inputs 𝒔 involve the pitch and plunge motion states.
owever, with our implementation, the framework is able to accommodate other types of inputs, such as flow conditions (Mach
8 
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Fig. 6. Schematic of the two-phase recurrent GCN-MM-AE framework used for time-dependent responses.

Fig. 7. Schematic of the multi-step sequence for training the recurrent model.

number, Reynolds number, turbulence intensity or freestream temperature). Alternative inputs could involve design parameters
in the context of a parametric design optimisation. Hence, within the same framework, different aerodynamic scenarios are
addressed.
9 
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Table 3
Relation of inputs and outputs involved in each model approach, including the respective dimensionality. The
prediction quantity involves the pressure coefficient 𝒀 = [𝐶𝑝], global inputs are the pitch and plunge motions
𝒔= [𝛼 , 𝛼̇ , ̈𝛼 , 𝜉̇ , 𝜉] and 𝒙= [𝑥, 𝑦, 𝑧] the mesh coordinates.
Model Inputs Outputs

Autoencoder [𝒀 (𝜏),𝒙] ∈ R𝑛𝑛×(1+3), 𝑨̂ ∈ R𝑛𝑒𝑛 ×3 𝒀 (𝜏) ∈ R𝑛𝑛×1

Quasi-steady model [𝒔(𝜏),𝒙] ∈ R𝑛𝑛×(5+3), 𝑨̂ ∈ R𝑛𝑒𝑛 ×3 𝒀 (𝜏) ∈ R𝑛𝑛×1

Recurrent model [𝒀 (𝜏 − d𝜏), 𝒔(𝜏),𝒙] ∈ R𝑛𝑛×(1+5+3), 𝑨̂ ∈ R𝑛𝑒𝑛 ×3 𝒀 (𝜏) ∈ R𝑛𝑛×1

With the above considerations, to the best of our knowledge, our proposed framework for spatio-temporal simulations is novel
n these fronts:

1. Data-driven spatio-temporal predictions on unstructured domains.
2. A multi-resolution autoencoder scheme, comprising cross-domain conservative interpolation, for model memory efficiency

and information propagation across the mesh.
3. A time-marching scheme with long-term error considerations.
4. Building-block implementation to address different tasks: field reconstructions from sparse data, steady-state mappings and

dynamic simulations.

This framework was implemented in PyTorch 1.11,4 an optimised deep-learning library in Python, and PyTorch Geometric,5
a graph neural-network library built on PyTorch.

4. Results

The test case is for the BSCW wing. Results herein reported answer the following questions:

1. Is the multi-mesh autoencoder scheme suitable for field predictions on large, unstructured domains?
2. Is the recurrent framework adequate for spatio-temporal simulation of moving bodies, capable of handling error accumula-

tion?
3. How does the model behave to distinct response signals?

Before getting started with a comprehensive comparison between the two proposed modelling approaches, we assess the
dequacy of the autoencoder generated in the first sequence of the modular implementation. The complete analysis is presented

for 𝑀∞ = 0.74. Results for the independently generated recurrent models at 𝑀∞ = 0.80 and 0.84 are also provided. In this work, we
opted for generating independent models for each Mach number of interest, as opposed to a single large model with Mach number as
a flow-condition input. In that situation, the developed framework will be identical, with Mach number being an additional (global)
input. However, the model embedding the new variable would be larger. This motivated the choice of different models per each
Mach number. From here on, the results are at 𝑀∞ = 0.74 unless otherwise stated.

4.1. Autoencoder analysis

The results from the autoencoder, the first trained module in Fig. 6, are presented here. Details of the final architecture and
optimisation strategy are provided in Appendix A.3. We assess the adequacy of the pure autoencoder model to reduce and recover
back the 𝐶𝑝 maps across the time history without general loss of information.

Figs. 8 and 9 illustrate snapshots of 𝐶𝑝 encoded-decoded by the autoencoder from selected time instants of diverse response
signals. Fig. 8 corresponds to a reconstructed snapshot from the training signal introduced in Fig. 2, evidencing a strong shock wave.
Fig. 9, by contrast, compares a late instant from one of the validation responses. The 3D contour plots in Panels (a) present the 𝐶𝑝
solutions for the ground truth (CFD), the model reconstruction (ROM) and the error (difference). Panels (b) provide a comparison
f the 𝐶𝑝 profiles at the three different cross sections of the wing indicated in Fig. 1 Panel (a), showcasing the variation of the flow

field in span due to 3D effects. Panels (c) show the time evolution of the pitch and plunge input signals. The time instants where
the contour plots are extracted from are highlighted on the time–history plots. These two snapshots in time evidence how the flow
develops differently along the span (compare among the various cross sections) and among the various responses. This nonlinear
behaviour makes the reconstruction and prediction tasks more challenging. Nevertheless, the reconstruction is good everywhere on
the wing surface along the whole time period.

Panels (d) of the same Figures compare the resulting lift coefficient, between the ground truth (black line) and the prediction
red squares). Note that the forces are not directly predicted by the model but these are obtained by surface integration of the
redicted pressure field history. The mean absolute error of the 𝐶𝑝 distribution is also illustrated, defined as:

𝜀𝐶𝑝
(𝜏) =

𝑛𝑛
∑

𝑖
|𝐶𝑝𝑖,pred(𝜏) − 𝐶𝑝𝑖,ref(𝜏)| (12)

4 https://pytorch.org/
5 https://pytorch-geometric.readthedocs.io/en/latest/
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Fig. 8. Autoencoder reconstruction compared to CFD reference at 𝜏 = 165 of the BSCW training signal 1. Worst reconstructed time instant. Upper surface. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Autoencoder reconstruction compared to CFD reference at 𝜏 = 1540 of the BSCW validation signal 1. Upper surface. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
11 
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Table 4
Summary of the error analysis from the autoencoder reconstruction for the various signals for the BSCW test case.
Signal 𝜀𝐶𝑝

𝜀𝐶𝐿
[%]

mean std dev worst mean std dev worst

Training 1 3.9⋅10−3 1.7⋅10−3 1.6⋅10−2 0.4 0.2 1.5
Training 2 3.8⋅10−3 1.5⋅10−3 1.5⋅10−2 0.3 0.2 1.4

Validation 1 3.5⋅10−3 4.9⋅10−4 5.4⋅10−3 0.4 0.2 0.8
Validation 2 4.3⋅10−3 2.1⋅10−3 1.7⋅10−2 0.3 0.2 1.1
Validation 3 3.9⋅10−3 6.9⋅10−4 5.7⋅10−3 0.3 0.2 0.9
Validation 4 4.2⋅10−3 1.8⋅10−3 1.2⋅10−2 0.3 0.2 1.1
Validation 5 3.6⋅10−3 1.8⋅10−4 3.9⋅10−3 0.1 0.1 0.4
Validation 6 4.2⋅10−3 1.5⋅10−3 1.2⋅10−2 0.3 0.2 1.2

Table 5
Summary of the error analysis by the quasi-steady model prediction for the various signals for the BSCW test case.
Signal 𝜀𝐶𝑝

𝜀𝐶𝐿
[%]

mean std dev worst mean std dev worst

Training 1 9.9⋅10−3 3.4⋅10−3 3.5⋅10−2 1.7 1.4 9.0
Training 2 9.4⋅10−3 3.9⋅10−3 3.7⋅10−2 1.3 2.4 25.5

Validation 1 8.3⋅10−3 1.3⋅10−3 1.3⋅10−2 1.0 0.8 3.7
Validation 2 1.1⋅10−2 5.9⋅10−3 4.1⋅10−2 1.6 3.2 30.5
Validation 3 1.1⋅10−2 2.1⋅10−3 1.6⋅10−2 2.2 1.5 6.4
Validation 4 1.0⋅10−2 5.7⋅10−3 3.8⋅10−2 1.4 1.8 13.5
Validation 5 8.2⋅10−3 6.7⋅10−4 1.1⋅10−2 1.0 0.5 2.5
Validation 6 1.0⋅10−2 2.5⋅10−3 2.3⋅10−2 1.7 1.3 7.1

No normalisation was applied to avoid division by near-zero reference values. The loads are well predicted and the 𝜀𝐶𝑝
is consistently

ow throughout, confirming adequate data conversion onto a mesh 16 times coarser.
To complete the analysis, Table 4 reports a statistical summary of the 𝜀𝐶𝑝

Eq. (12) and the relative error on the 𝐶𝐿:

𝜀𝐶𝐿
(𝜏) [%] =

|𝐶𝐿pred(𝜏) − 𝐶𝐿ref(𝜏)|
|𝐶𝐿ref(0)|

⋅ 100 (13)

normalised by the initial value, i.e. the static condition, to avoid skewed errors due to division by near-zero value in instances when
the lift coefficient inverts. The mean and standard deviation of the prediction error are reported for each response, as well as the
worst instantaneous prediction. The average error is very low for either the 𝐶𝑝 maps and the integrated forces. Furthermore, the
low standard deviations and worst time steps denote consistent accuracy along the time period.

4.2. Quasi-steady modelling analysis

Upon demonstrating successful reconstruction performance by the autoencoder, we proceed with analysis of the quasi-steady
CN-MM-AE model results for the various forced-motion signals. Details of the quasi-steady encoder involved in the second module

described in Section 3.3, which predicts the latent state of the autoencoder from the motion inputs, are reported in the last part of
the Appendix.

Figs. 10 and 11 analyse the quasi-steady predictions for selected snapshots from two other validation signals. The 𝐶𝑝 predictions
losely match the reference CFD solution, with the shock wave location correctly captured. The accurate predictions obtained for
he undamped Schroeder response (validation 6) in Fig. 10 are noteworthy since the model learned from signals with decaying

amplitude. The quasi-steady model manages to capture the physics remarkably well, despite not accounting for the past flow solution.
Observing Fig. 11 for validation response 2, another complex phenomenon becomes apparent: translation of the shock wave towards
the leading edge and alternating across the upper and the bottom surfaces, known as shock-wave motion type C (Oswatitsch et al.,
1976). This phenomenon is observed in multiple instances and it was found effectively captured by the model. However, at this
snapshot, the model showcases a larger pressure gradient downstream of the shock wave. This discrepancy has minor implication
on the resulting 𝐶𝐿, as seen in Panel (d), and fades away after a certain period. In conclusion, the quasi-steady implementation was
found capable of capturing the complex flow features despite disregarding the past-state information.

The statistical summary of the error metrics for the various response signals are reported in Table 5. The errors are larger
ompared to simply the reconstructions by the autoencoder, Table 4. This is expected since actual aerodynamic predictions of the

moving wing are now addressed.

4.3. Recurrent modelling analysis

Details of the final recurrent GCN-MM-AE model architecture, corresponding to the second module in Fig. 6 Panel (b), as well
as training strategy are reported in Table 11 of the Appendix A.4.
12 
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Fig. 10. Quasi-steady prediction compared to CFD reference at 𝜏 = 210 of the BSCW validation signal 6. Upper surface. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Quasi-steady prediction compared to CFD reference at 𝜏 = 200 of BSCW validation signal 2. Worst predicted time instant. Lower surface. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
13 
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Table 6
Summary of the error analysis by the recurrent model prediction for the various signals for the BSCW test case.
Signal 𝜀𝐶𝑝

𝜀𝐶𝐿
[%]

mean std dev worst mean std dev worst

Training 1 9.0⋅10−3 3.9⋅10−3 5.1⋅10−2 1.5 1.9 25.2
Training 2 1.1⋅10−2 4.4⋅10−3 5.7⋅10−2 1.8 3.0 27.5

Validation 1 8.9⋅10−3 1.8⋅10−3 1.6⋅10−2 2.1 1.7 13.4
Validation 2 1.3⋅10−2 5.3⋅10−3 3.9⋅10−2 2.2 2.7 22.6
Validation 3 3.3⋅10−2 1.8⋅10−2 7.4⋅10−2 10.8 7.4 29.5
Validation 4 1.8⋅10−2 7.8⋅10−3 3.2⋅10−2 2.8 1.8 8.6
Validation 5 1.0⋅10−2 1.5⋅10−3 2.4⋅10−2 1.1 1.3 12.4
Validation 6 1.1⋅10−2 3.7⋅10−3 3.1⋅10−2 2.7 2.1 13.6

Analyses of the predictions with the recurrent model on the same time snapshots are shown in Figs. 12 and 13. The 𝐶𝑝 maps
matched well even in these distinct aerodynamic conditions. In the undamped Schroeder case, Fig. 12, we found that the error is
notably kept low along the whole time period even without decaying motion amplitudes. The integrated 𝐶𝐿 and 𝐶𝑀𝑦

were found
accurate in consequence. Therefore, the issue of long-term error accumulation, critical in time-marching schemes, appears adequately
handled by our model, proving suitability of the tailored training mechanisms adopted. Focusing on the second validation response
analysis of Fig. 13, the error on the pressure gradient downstream of the shock wave observed with the quasi-steady model, Fig. 11,
vanishes here. Nevertheless, both models manage to accurately predict the nonlinear variations and the 3D effects along the span
correctly.

The statistical analysis of the results obtained with the recurrent model is reported in Table 6 for all the responses. Prediction
accuracy is high in all cases, with the single-harmonic signal (validation 3) being worse than the others, as observed before.
Nevertheless, both recurrent and quasi-steady models present similar error statistics. Remarkably, with either modelling approach,
no significant performance degradation is observed between the validation and the training responses. This indicates that both
models are not susceptible of over-fitting, a desired aspect when resorting to data-driven modelling.

4.4. Analysis on distinct response signals

Adequately learning the physics of the system is critical for a data-driven model, so that prediction accuracy is maintained even
in distinct type of responses, property known as generalisation. This is essential to achieve a prediction model suitable for varying
nalyses. Figs. 14 and 15 report the response error by the quasi-steady (left) and the recurrent (right) models for two distinctive

motion signals: Fig. 14 corresponds to uncoupled single-harmonic input signals for pitch and plunge (validation signal 3), resembling
n undamped elastically suspended wing response; Fig. 15 is for a plunge only motion (signal 5), which is interesting because pitch

usually exerts predominance on the aerodynamic response. These new signals provided further evidence about the reliability of our
odels. Each Panel reports, in ascending order, the two mode inputs, the comparison of the integrated 𝐶𝐿 between prediction (red

quares) and reference (black line), the relative error for the lift 𝜀𝐶𝐿
and the mean absolute error for the pressure distribution 𝜀𝐶𝑝

.
The magnitude of the errors were in general found similar between the two models, albeit slightly better with the quasi-steady

case. However, two particularities are observed from the recurrent solutions:

1. For the single-harmonic response, from 𝜏 ∼ 250 to 𝜏 ∼ 600 a gradual degradation is observed with the recurrent predictions
(upper Panels). However, this transitory error accumulation is stabilised thereupon.

2. For the plunge-only response, the recurrent solution present an initially large error but this is adequately rectified within a
few time steps. The reason for this behaviour is unclear but this could be attributed to the GRU core managing to correct a
bad initial prediction.

These phenomena are not observed with the quasi-steady model (left Panels). With this approach the physics are still well predicted,
despite missing the recurrent feedback. Nonetheless, the performance by either approach is noteworthy considering that just four
high-fidelity responses were employed to generate the models.

4.5. Analysis at 𝑀∞ = 0.80

We are now interested in assessing the prediction performance of our framework for higher Mach numbers, where the shock-wave
and boundary-layer interactions become gradually more complex. This section is for results at 𝑀∞ = 0.80. Dedicated CFD responses at
this new freestream condition were used to generate new models, following the same procedure described in the previous sections.
For brevity, here we present the time-marching predictions obtained with the recurrent model Fig. 6 Panel (b). We selected the
worst time steps from the various responses, which are illustrated in Figs. 16 and 17. Panel (a) is for the same validation signal as
in the previous analyses while Panel (b) is for the uncoupled single harmonic signal. We observe how the physics have become more
challenging to predict, with a more trapezoidal shock-wave line (as opposed to elliptic before) and fixed at 60% of the chord for most
of the span. Nevertheless, the predictions are overall in good agreement and the forces are well predicted across the time history.
The recurrent model is again able to keep error accumulation under control along the time history. There are, however, more evident
14 
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Fig. 12. Recurrent prediction compared to CFD reference at 𝜏 = 210 of the BSCW validation signal 6. Upper surface. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Recurrent predictions compared to CFD reference at 𝜏 = 200 of the BSCW validation signal 2. Worst predicted time instant. Lower surface. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Error history from the two ROMs for the single harmonic signal on the BSCW case.

Fig. 15. Error history from the two ROMs for the plunge-only signal on the BSCW case.

local discrepancies. In Fig. 16, the shock wave is predicted further downstream around the centreline of the wing. Nonetheless, this
is a localised effect without repercussion on the overall loads and also, it is recovered subsequently. We know from Massegur et al.
(2022) that at 𝑀∞ = 0.80 a fluctuating shock-induced boundary layer separation and the successive re-attachment occur. At these
conditions, intermittent local discrepancies are expected. In the single-harmonic case, Fig. 17, the solution is visibly better matched.

4.6. Analysis at 𝑀∞ = 0.84

Finally, new models were generated at 𝑀∞ = 0.84, with results shown in Figs. 18 and 19 for the same time instants as above.
The physics are significantly more complex than at lower Mach numbers, featuring the most intense shock wave with an irregular
shape along the span at around 45% of the chord. The strong shock causes a large and fluctuating boundary-layer separation region
towards the trailing edge (Massegur et al., 2022). This phenomenon is evident from the CFD reference, left contour plot of Panels
(a), with a rather irregular shock line and a flat 𝐶𝑝 distribution downstream, indicating separated flow. We observe in the 𝛥𝐶𝑝 plots
of the same Panels that the recurrent model manages to capture these phenomena adequately. However, further local discrepancies
in the separation region downstream the shock wave are visible. This is more evident on the lower surface in Fig. 19. Note that CFD
responses were solved using the one-equation SA turbulence model. This more basic model is regarded inadequate for separated
flows, often causing poor solution convergence. As a result, seeing larger discrepancies in the separated regions of the wing are
not surprising, since the reference SA-based solution is already uncertain in that region, to begin with. Nevertheless, and with
16 
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Fig. 16. Recurrent prediction compared to CFD reference at 𝑀∞ = 0.80 and 𝜏 = 210 of the BSCW validation signal 6. Worst predicted time instant. Upper surface.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Recurrent predictions compared to CFD reference at 𝑀∞ = 0.80 and 𝜏 = 735 of the BSCW validation signal 3. Upper surface. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Recurrent prediction compared to CFD reference at 𝑀∞ = 0.84 and 𝜏 = 210 of the BSCW validation signal 6. Upper surface. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Recurrent predictions compared to CFD reference at 𝑀∞ = 0.84 and 𝜏 = 820 of the BSCW validation signal 3. Worst predicted time instant. Lower surface.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 7
Summary of the computing costs involved in forced-motion simulations. A multi-
core cluster was used for the CFD solutions, while a standard GPU sufficed for
the generation of the NN models.
Task Computing cost

1 unsteady CFD response: 10,920 CPU-h
Training dataset of 4 CFD responses: 43,680 CPU-h
Autoencoder (module 1) training execution: 7.8 GPU-h
Quasi-steady model (module 2) training execution: 8.7 GPU-h
1 quasi-steady ROM response: 0.040 GPU-h
Recurrent model (module 2) training execution: 23.3 GPU-h
1 time-marching ROM response: 0.045 GPU-h

this in mind, our recurrent framework proves adequate to capture the distinct physics in different conditions and robust to error
accumulation issues.

4.7. Computing cost analysis

Table 7 reports the computing costs required to generate each model and the significant savings compared to high-fidelity
responses. CFD solutions were computed in a 280-core HPC, whereas our developed ROMs were generated with a conventional 8 GB
NVIDIA GPU. Response signals were prescribed to 𝜏 = 1640, i.e. 2 s of physical time. Refer to Tables 10 and 12 in the Appendix
section for more details on the computing resources required by the various models. The saving in computational resources to
complete a time-dependent simulation is over 99.9% with either model against high-fidelity CFD. Therefore, our models result
increasingly more advantageous in any task requiring more than four simulations. Furthermore, the quasi-steady implementation
involves lower memory usage, leading to gains of about 62% in training cost and up to 11% in new simulations compared to the
recurrent counterpart, while maintaining similar performance accuracy.

4.8. Remarks

Two final remarks are made on the use of a classic technique such as Proper Orthogonal Decomposition (POD) and the
applicability of the framework to more complex configurations.

POD method with Galerkin interpolation (Luchtenburg et al., 2009) compares to our quasi-steady implementation, since POD
oes not account for temporal terms. On the contrary, the time-dependent adaptation of POD is the Dynamic Mode Decomposition
DMD) method (Fonzi et al., 2020), which is a linearised projection of a dynamic system expressed in first-order form. DMD compares
o the recurrent approach herein proposed. The well-known limitation with POD/DMD is that the linearised projection to the
ompressed state is performed via the eigenvector (or modes). In a previous contribution, we compared a convolutional autoencoder

against POD (Massegur et al., 2023). The neural-net approach was found to significantly outperform the classic methods. Despite the
OD being easier to implement, this did not compensate for the critically worse prediction accuracy. The same conclusions would

apply here, where both the GNN and MM schemes embed nonlinear representations and projections, as opposed to the linearised
treatment by the POD/DMD.

This work is centred around the BSCW wing, a common aeroelastic test case featuring a relatively simple wing geometry but
highly complex flow dominated by dynamic shock waves and separated flow (Heeg and Chwalowski, 2017; Heeg et al., 2016).
The proposed framework carries no limitations on the applicability to more complex geometry configurations and/or different flow
onditions. In a separate study (Massegur and Da Ronch, 2024b), the proposed framework is used to predict unsteady aerodynamic

loads around a next-generation fighter configuration (DLR-FFD) with highly swept delta wings. The flow is dominated by a system of
vortices that build-up and break-down during dynamic manoeuvres at high angles of attack. The reader is invited to refer to Massegur
and Da Ronch (2024b) for more details.

5. Conclusions

Reduced order modelling offers the ability to reduce the computational cost associated with unsteady, high-fidelity aerody-
namic analysis. The work herein presented details a novel geometric-deep-learning autoencoder framework to predict unsteady
aerodynamic loads around a three-dimensional wing geometry undergoing dynamic manoeuvres. The framework features:

1. Graph convolutional networks for unstructured meshes.
2. Multi-mesh autoencoder scheme to improve the computational efficiency and extract multi-scale features.
3. Time-marching scheme with long-term error considerations.
4. Building-block implementation to address different tasks, including coarse field reconstructions, quasi-steady and recurrent

schemes.
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The multi-resolution scheme is capable of operating on multiple mesh levels, up to 16 times coarser than the original domain. This
approach extracts information contained in different spatial scales and significantly contributes towards enhancing the computational
efficiency. On the time-dependent front, the critical challenges involved with time-marching schemes were addressed by embedding
the GRU core, the two-module procedure and the training mechanisms. Furthermore, we used interchangeable blocks to evaluate
and compare the performance between the quasi-steady and the recurrent frameworks. The model accuracy was found consistent
throughout the time history, successfully addressing the risk of long-term error accumulation. The models were found to adequately
capture the pressure fields in the presence of large gradients, e.g. from moving shock waves.

Related to the computational efficiency, the cost involved with the CFD generation of the training data must also be considered.
espite deep learning algorithms have reputation of requiring large amount of data, with our strategic choice of minimal data

equirements, we demonstrated the adequacy of our models generated with just four training signals.
With a reduction of computational time of about 99.9% for a time-domain response, our framework provides nearly cost-free

redictions compared with CFD when more than four responses are required. Hence, the more cases are analysed with the models, the
larger the overall computational savings. Between the two approaches, the quasi-steady model was found still capable of capturing
the unsteady nature of the physics with better computational efficiency, as it avoids the larger memory requirements by the GRU
core in the recurrent option.

In its current development, the large cost to train the GRU-based architecture is attributed to:

1. The more intensive processing involved with the multiple time-marching stepping sequences described in Section 3.2.1.
2. The size of dataset time steps required to represent the complete design space resulted long to process with a single GPU,

despite only four signals were used.

In tasks where the training data requirements must be further reduced due to computational resource limitations, a hybrid data-
riven and physics-based contribution could be thought, consisting of introducing aerodynamics knowledge into the current method.
owever, fluid-dynamics based terms applicable to the aircraft surfaces are not straightforward and require proper consideration.

The developed aerodynamic model can be coupled to a structural model in a complete aeroelastic system for fast and reliable
rediction of the flutter boundary. Note that our model architecture already leverages the mesh node coordinates as inputs and
onnectivity to embed a spatial mapping. As a result, the framework is already designed to deal with wing deformations to address
eroelastic analyses, and geometric changes to address design shape optimisation. In order for the model to execute prediction
n varying wing shapes, the training dataset should be expanded to include additional samples of different geometries or deflected
hapes. In this scenario, the graph (nodes and connectivity) embedded in our GNN-based framework would change for each different
hape. This topic will be explored in a future work.
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Appendix

A.1. Training and validation signals

Table 8 defines the first mode (frequency and amplitude) of the modified Schroeder signals used for the generation and validation
of the various ROMs to simulate the BSCW wing subject to pitch and plunge motion. In particular, we adopted four damped
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Table 8
Definition of the time-dependent signals used for training and validation. The starting first-mode amplitude and frequency for
the pitch 𝛼 and plunge 𝜉 forced motions are detailed. Signals correspond to damped Schroeder Eq. (1) unless otherwise stated.
<, > indicate, respectively, a negative or positive sign of the state along the signal history.
Signals 𝜔𝛼 [Hz] 𝑎𝛼 (𝑡0) [deg] 𝜔𝜉 [Hz] 𝑎𝜉 (𝑡0) [-] Description

Training 1 1.40 0.80 −1.60 −0.098 𝛼 > 0, 𝜉 < 0, high freq.
Training 2 1.40 −0.80 −1.60 0.098 𝛼 < 0, 𝜉 > 0, high freq.
Training 3 0.65 1.00 −0.85 −0.123 𝛼 > 0, 𝜉 < 0, low freq.
Training 4 0.65 −1.00 −0.85 0.123 𝛼 < 0, 𝜉 > 0, low freq.

Validation 1 −1.05 0.70 1.11 0.074 𝛼 > 0, 𝜉 > 0, mid freq.
Validation 2 1.10 −1.00 −1.25 0.049 𝛼 < 0, 𝜉 > 0, mid freq.
Validation 3 5.10 3.00 4.80 −0.246 single harmonics
Validation 4 1.10 −1.00 0.00 0.000 pitch only
Validation 5 0.00 0.00 −1.25 0.049 plunge only
Validation 6 1.10 0.75 −1.20 −0.059 undamped Schroeder

Table 9
Architecture for the autoencoder (GCN-MM-AE) adopted in the first module of the recurrent framework, which compresses and
reconstructs the 𝐶𝑝 field.

Layer Dimension Operation Kernel

Input: 𝐶𝑝𝑖, 𝒙𝑖, 𝑨̂0 𝑚 × 86840 × 4
Encoder:
GCN Enc0.1 𝑚 × 86840 × 72 Eq. (6) 4 × 72 + 72
PReLU Enc0.1 𝑚 × 86840 × 72 Eq. (7) 72
GCN Enc0.2 𝑚 × 86840 × 144 Eq. (6) 72 × 144 + 144
PReLU Enc0.2 𝑚 × 86840 × 144 Eq. (7) 144
MM 𝑨̂0 ← .2𝑐 𝑚 𝑨̂1 𝑚 × 5427 × 144 Eq. (8)
GCN Enc1.1 𝑚 × 5427 × 144 Eq. (6) 144 × 144 + 144
PReLU Enc1.1 𝑚 × 5427 × 144 Eq. (7) 144
GCN Enc1.2 𝑚 × 5427 × 288 Eq. (6) 144 × 288 + 288
PReLU Enc1.2 𝑚 × 5427 × 288 Eq. (7) 288

Decoder:
GCN Dec1.1 𝑚 × 5427 × 144 Eq. (6) 288 × 144 + 144
PReLU Dec1.1 𝑚 × 5427 × 144 Eq. (7) 144
GCN Dec1.2 𝑚 × 5427 × 144 Eq. (6) 144 × 144 + 144
PReLU Dec1.2 𝑚 × 5427 × 144 Eq. (7) 144
MM 𝑨̂1 ← .2𝑐 𝑚 𝑨̂0 𝑚 × 86840 × 144 Eq. (8)
GCN Dec0.1 𝑚 × 86840 × 72 Eq. (6) 144 × 72 + 72
PReLU Dec0.1 𝑚 × 86840 × 72 Eq. (7) 72
GCN Dec0.2 𝑚 × 86840 × 72 Eq. (6) 72 × 72 + 72
PReLU Dec0.2 𝑚 × 86840 × 72 Eq. (7) 72
Repeat: 𝐲𝑖 ← .2𝑐 𝑚 [𝐲𝑖] 𝑚 × 86840 × 72 × 1
GCN Dec0.3 𝑚 × 86840 × 72 × 1 Eq. (6) 72 × 72 × 1 + 72 × 1
PReLU Dec0.3 𝑚 × 86840 × 72 × 1 Eq. (7) 72 × 1
GCN Dec0.4 𝑚 × 86840 × 1 × 1 Eq. (6) 72 × 1 × 1 + 1 × 1
Output: 𝐶𝑝𝑖 𝑚 × 86840 × 1 Eq. (10)

Schroeder-based signals for the training, based on Eq. (1). The two extremes of representative structural main frequencies were
hosen for the frequency values of the training signals. Also, values were assigned different between the two modes to ensure
ncoupled aerodynamic response to pitch and plunge. Amplitudes were chosen to ensure sufficiently large displacements and
ubsequently capturing a representative amplitude value range given the prescribed damping of the modified Schroeder. Various
ignal types were prescribed for validation purposes, substantially different from those used for training to prove the capability of
ur aerodynamic models to various responses. The single-harmonic signal is defined by just the first mode in Eq. (1), whereas the

original (undamped) Schroeder is obtained by assigning 𝑎(𝑡end) = 𝑎(𝑡0) in Eq. (2). CFD responses were solved for three different Mach
conditions 𝑀∞ = [0.74, 0.80, 0.84], and fixed 𝑅𝑒= 4.49 ⋅ 106, 𝑞∞ = 8000 Pa and static 𝛼∞ = 0 deg.

A.2. Gated recurrent unit formulation

The gated recurrent unit (GRU) module was developed by Cho et al. (2014). RNNs are designed to embed past-history
states, i.e. carry memory over, towards the subsequent prediction steps. A well known issue with vanilla RNN is the numerical
instability from vanishing or exploding gradients in long-term forecasting sequences. To alleviate this issue, long short-term
(LSTM) and transformer networks have become the state of the art in time-series tasks. However, these units are subject to large
memory requirements due to disproportionate number of model parameters involved. In this context, the GRU option represents a
compromise by attempting to address the training gradient issues with a simpler architecture which requires less memory resources.
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Table 10
Training strategy adopted to generate the autoencoder (GCN-MM-AE)
model, first module of the sequential framework.
Parameter Value

Trainable parameters 158,185
Training signals 4
Time-step samples 1588
Training set (75%) 1191
Batch size 1
Training epochs 75
Loss function MSE
Optimiser Adam
Learning rate 0.003
Learning rate schedule 0.333/20 epochs
GPU machine NVIDIA GeForce RTX 2070
Training time 7.8 h

Fig. A.20. Diagram of the GRU operator.

GRU embeds a hidden state 𝒉𝑡−1 with the input 𝒙𝑡 to compute a new hidden state 𝒉𝑡. The idea is to introduce two gates: the
update gate 𝒛𝑡 and the reset gate 𝒓𝑡.6 The update gate deals with the long-term memory and the reset gate handles the short-term
one. In summary, the reset gate embeds the input and the previous hidden state to produce a hidden state candidate. Next, the
update gate combines the previous hidden state with the new candidate to generate the new hidden state. As a result, the GRU
operator is defined as:

𝒓𝑡 = 𝜎
(

𝑾 𝑖𝑟𝒙𝑡 + 𝒃𝑖𝑟 +𝑾 ℎ𝑟𝒉𝑡−1 + 𝒃ℎ𝑟
)

𝒛𝑡 = 𝜎
(

𝑾 𝑖𝑧𝒙𝑡 + 𝒃𝑖𝑧 +𝑾 ℎ𝑧𝒉𝑡−1 + 𝒃ℎ𝑧
)

𝒏𝑡 = tanh
(

𝑾 𝑖𝑛𝒙𝑡 + 𝒃𝑖𝑛 + 𝒓𝑡◦
(

𝑾 ℎ𝑛𝒙𝑡 + 𝒃ℎ𝑛
))

𝒉𝑡 =
(

1 − 𝒛𝑡
)

◦𝒏𝑡 + 𝒛𝑡◦𝒉𝑡−1

(A.1)

The six different pairs of 𝑾 and 𝒃 are the weights of the respective linear operators. The Hadamard (element-wise) product is
denoted by ◦ symbol and 𝜎(𝑥) = 1

1+𝑒−𝑥 is the sigmoid function. Subscripts 𝑡 and 𝑡− 1 correspond to the current and previous time
steps. Fig. A.20 illustrates the workflow of operations involved in the GRU unit.

A.3. Autoencoder architecture

Table 9 reports the final model architecture adopted for the pure autoencoder 4.1, i.e. the first module in Fig. 6. The various
GCN and MM blocks for the encoder and decoder branches are evidenced. The PReLU nonlinear activation function Eq. (7) was
applied at the output of each GCN layer, except for the last layer, which outputs the target prediction. The tensor dimension at each
layer output is also reported in the Table, arranged in 𝑚 × 𝑛mml × 𝑐𝑙, with 𝑚 the batch size, 𝑛mml the grid size of the corresponding
MM level and 𝑐𝑙 the state size (or channels). The operation involved in each layer and the resulting kernel size (number of learnable
parameters) are also included for clarity.

Table 10 provides further details regarding the training and optimisation strategies. We opted for the first-order gradient-based
algorithm Adam (Kingma and Ba, 2015) as optimisation algorithm and the mean squared error (MSE) as loss function (Bickel and
Doksum, 2015). As per recommended practice, the input data were standardised with the respective mean values and normalised
with the standard deviation for a more efficient training process.

6 https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-recurrent-unit-gru/
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Table 11
Architecture of the network branches added in the second module of the recurrent GCN-MM-AE model. This is combined with
the autoencoder of Table 9 to compute the time-marching solution.
Layer Dimension Operation Kernel

Input: [𝛼 , 𝛼̇ , ̈𝛼 , 𝜉̇ , 𝜉], 𝒙𝑖, 𝑨̂0 𝑚 × 86840 × 8
Encoder 2:
GCN Enc2.1 𝑚 × 86840 × 72 Eq. (6) 8 × 72 + 72
PReLU Enc2.1 𝑚 × 86840 × 72 Eq. (7) 72
GCN Enc2.2 𝑚 × 86840 × 144 Eq. (6) 72 × 144 + 144
PReLU Enc2.2 𝑚 × 86840 × 144 Eq. (7) 144
MM 𝑨̂0 ← .2𝑐 𝑚 𝑨̂1 𝑚 × 5427 × 144 Eq. (8)
GCN Enc3.1 𝑚 × 5427 × 144 Eq. (6) 144 × 144 + 144
PReLU Enc3.1 𝑚 × 5427 × 144 Eq. (7) 144
GCN Enc3.2 𝑚 × 5427 × 288 Eq. (6) 144 × 288 + 288
PReLU Enc3.2 𝑚 × 5427 × 288 Eq. (7) 288

GRU 𝑚 × 5427 × 288 Eq. (A.1) 288 × 288 × 6 + 288 × 6

Table 12
Training strategy to generate the recurrent GCN-MM-AE model, second
module of the sequential framework.
Parameter Value

Trainable parameters (158, 185) + 573, 840
Training signals 4
Simulation d𝑡 0.005 s
Training sequence length 𝑘 3 time steps
Time-step samples 788
Training set (75%) 591
Batch size 1
Training epochs 150
Loss function MSE
Optimiser Adam
Learning rate 0.003
Learning rate schedule 0.333/40 epochs
GPU machine NVIDIA GeForce RTX 2070
Training time 23.3 h

A.4. Recurrent model architecture

The autoencoder architecture detailed above was subsequently frozen and employed in both quasi-steady and the recurrent
models in the two-module training sequence, as described in Sections 3.2 and 3.3. Table 11 completes the recurrent GCN-MM-AE

odel architecture, this is the second encoder and the recurrent unit in Fig. 6. We observe that the single GRU core employs 78%
of the memory resource, with around half a million parameters.

The resulting model size for the recurrent implementation significantly impacts on the training cost, as evidenced in Table 12,
which provides the information on the strategy adopted for the second module of the sequential training process. By contrast,
the quasi-steady implementation adopted just a second encoder to embed the input motion, without the GRU core. As a result,
the number of additional parameters was reduced from 573,840 to 74,448, which was convenient as the optimisation could be
completed in just 33% of the time compared to the recurrent counterpart.

Data availability

Data will be made available on request.
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