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Abstract
Visual similarity is an essential concept in vision science, and the methods used to quantify similarity have recently expanded 
in the areas of human-derived ratings and computer vision methodologies. Researchers who want to manipulate similarity 
between images (e.g., in a visual search, categorization, or memory task) often use the aforementioned methods, which require 
substantial, additional data collection prior to the primary task of interest. To alleviate this problem, we have developed an 
openly available database that uses multidimensional scaling (MDS) to model the similarity among 1200 items spread across 
20 object categories, thereby allowing researchers to utilize similarity ratings within and between categories. In this article, 
we document the development of this database, including (1) collecting similarity ratings using the spatial arrangement 
method across two sites, (2) our computational approach with MDS, and (3) validation of the MDS space by comparing 
SpAM-derived distances to direct similarity ratings. The database and similarity data provided between items (and across 
categories) will be useful to researchers wanting to manipulate or control similarity in their studies.
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Introduction

Similarity plays an important role in many aspects of visual 
cognition, influencing the way that we find and recognize 
faces and objects (Biederman, 1987; Edelman, 1998; Hebart 
et al., 2023), how we learn and form categories (Goldstone, 
1994; Nosofsky, 1986), how we search for and remember 
objects (Hout & Goldinger, 2015; Guevara Pinto, Papesh, 
& Hout, 2020), and much more. The ability to quantify and 

manipulate similarity is essential for addressing research 
inquiries in visual cognition. For example, in visual search, 
researchers may want to investigate the influence of target/
distractor similarity on response time, and might do so by 
changing feature values along one or more dimensions of 
a target to develop a set of similar or dissimilar distractors 
(Duncan & Humphreys, 1989). In category learning experi-
ments, similarity can be manipulated by altering the feature 
space of the stimuli, such as changing the color or texture 
of objects, to assess how these variations impact learning 
and categorization (Bohil et al., 2023; Ercolino et al., 2020; 
Nosofsky, 1986). Additionally, researchers may control 
for (rather than manipulate) similarity in their stimuli. For 
instance, in studies exploring facial recognition, researchers 
often employ morphing techniques to systematically vary 
facial features while maintaining a degree of similarity, 
allowing for precise control over the level of resemblance 
between faces (Jenkins & Burton, 2011). In object recog-
nition tasks, researchers might use a standardized set of 
objects that are similar in size and color but differ in shape, 
ensuring that similarity in non-target dimensions is con-
trolled for (Brady et al., 2008).
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In response to the need to control for and manipulate sim-
ilarity, researchers have developed methodologies to quan-
tify or model similarity among (often visual) stimuli. These 
methods often include human similarity judgments obtained 
by using Likert scales or odd-one-out tasks (Hebart et al., 
2020, 2023), or computational methods like multidimen-
sional scaling (MDS) that utilize similarity ratings (obtained 
in a variety of different ways; see Daggett & Hout, 2025, 
for a tutorial review) to model the relationships among the 
items (Hout et al., 2013, 2016). The process of obtaining 
and validating measures of similarity has been a challenge 
for researchers, as this can be time-consuming and require 
many research participants. Thus, many researchers rely 
on established stimuli databases to save time and resources 
when investigating (or utilizing) similarity in their research.

In the vision sciences, researchers frequently employ 
image databases which provide a set of freely available 
images, often organized into categories, for use in such 
paradigms as visual search, categorization, object identifi-
cation, item memory, and more. In addition to the stimuli 
themselves, several of these databases provide similarity rat-
ings between images of objects for researchers to use (Frank 
et al., 2020; Hebart et al., 2023; Horst & Hout, 2016; Jiang 
et al., 2022; Nosofsky et al., 2018). For example, the MM-
MDS database (Hout et al., 2014) provides similarity ratings 
that have been scaled via MDS for 240 categories of objects, 
each with 16 or 17 exemplars sampled from the massive 
memory database (Brady et al., 2008).

To provide visual cognition researchers with the ability to 
quantify and manipulate visual similarity in stimuli, here, we 
build upon previous databases by developing and validating 
an image set of 1200 items spread across 20 categories. Our 
image database provides similarity ratings between objects, 
allowing researchers to examine both within-category and 
across-category similarity. With this set of stimuli, research-
ers can, for example, manipulate similarity compared to a 
prototype (or central exemplar) to see the effects of vary-
ing levels of typicality on categorization or visual search 
tasks, or they can examine within-category similarity (e.g., 
Robbins & Evdokimov, 2024) to examine how category 
heterogeneity influences attention or category verification 
decisions.

Modeling similarity using multidimensional scaling

One popular method for modeling image similarity is MDS 
(Hout, Papesh, & Goldinger, 2013), which offers distinct 
advantages over alternative methods employed to measure 
the perceptual relationships between images. While various 
techniques such as human-derived ratings (e.g., Likert rat-
ings of similarity without MDS) and computer vision algo-
rithms have been employed, MDS is particularly valuable 

because of its capacity to extract the latent structure of simi-
larity spaces.

Like any other modeling technique, MDS operates under 
certain mathematical assumptions, such as treating psycho-
logical similarity data as satisfying properties of a distance 
metric (e.g., symmetry) and modeling these distances within 
a Euclidean space. However, a key advantage of MDS, 
especially when compared to feature-driven algorithmic 
approaches, is that it does not require a priori assumptions 
about the psychological structure of the similarity space. 
Specifically, MDS does not impose predefined features (e.g., 
“color” or “shape”) or dimensions on the data. Instead, it 
allows the psychological organization of objects to emerge 
from participants’ similarity judgments themselves. By 
adopting this perspective, MDS transforms collected simi-
larity data into a reduced-dimensional space, preserving the 
relative distances between images as perceived by partici-
pants. By placing emphasis on the participants’ subjective 
judgments, MDS facilitates the emergence of similarity 
spaces that reflect the nuances of human cognition with-
out being confined by preconceived notions regarding the 
dimensions upon which similarity is judged or perceived. 
This property is particularly advantageous when dealing 
with complex visual stimuli that might elude direct math-
ematical representation.

Researchers across many psychological sub-disciplines 
have used MDS to quantify the similarity among groups of 
items (i.e., the item set; Jaworska & Chupetlovska-Anastas-
ova, 2009). There are different versions of MDS, but in gen-
eral, each type of MDS analysis that is used in psychologi-
cal research takes in similarity information (collected from 
human raters) between each item and all other items in the 
set and uses data-reduction procedures to reduce complex-
ity in the corresponding similarity matrix. The subsequent 
output of the analysis is a set of coordinates (in a multidi-
mensional space) for each item. The coordinates can then 
be used to obtain distances between each item and all other 
items for the purposes of examining similarity relationships. 
MDS allows for the extraction of multiple featural dimen-
sions and can often be used to provide a visual appreciation 
of the underlying relational structures that were used to gov-
ern the similarity ratings.

The first step in modeling similarity relationships is to 
acquire similarity ratings to be used as input in the MDS 
analysis. This information can come from many sources 
which include: subjective similarity ratings (e.g., Likert 
ratings) obtained using a pairwise method (i.e., participants 
view two images and rate them according to perceived simi-
larity) or multiple-item methods such as the Spatial Arrange-
ment Method (SpAM; Goldstone, 1994). During a SpAM 
task, many (or all) of the items from the set are presented 
simultaneously, and participants are instructed to arrange 
the items on the computer monitor so that items that they 
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perceive to be more similar are closer together in space (and 
vice versa). In other words, similar items are to be placed 
close to one another, and dissimilar items are placed propor-
tionately farther away. A proximity matrix is then obtained 
from the pairwise Euclidean distances (measured in pixels) 
between every pair of items. The benefit of using SpAM 
over other methods of collecting similarity data is that it is 
fast and efficient and produces output data of equal quality 
compared to popular (but much slower) methods like pair-
wise ratings (Hout et al., 2013, 2016; Richie et al., 2020).

The PiCS database

In response to the need for an easily accessible and com-
prehensive image similarity resource, we developed a novel 
image database that used MDS to model the similarity 
within and between all category exemplars for a collection of 
1200 items across 20 distinct object categories. We expand 
upon a related database, the MM-MDS, with more objects 
per category. We also provide users the ability to obtain both 
within- and between-category similarity estimates for each 
item, enabling comparisons across categories (e.g., “butter-
fly” vs. “bird”) as well as within-category (e.g., similarity 
among different “bird” exemplars).

The development of the database consisted of two experi-
ments that involved collecting similarity ratings and subse-
quently validating those ratings. In Experiment 1, we gath-
ered similarity ratings via SpAM tasks, acquiring data from 
participants at multiple sites. Our computational approach 
leveraged MDS to distill these ratings into a multidimen-
sional similarity space. In order to validate the robustness 
of the generated MDS space, we conducted Experiment 2 to 
correlate raw similarity ratings for a subset of pairs with the 
distances in MDS space from Experiment 1.

Experiment 1 Method

Participants

Three hundred and thirty-four participants from two institu-
tions (New Mexico State University and the University of 
Central Florida) participated in the study for course credit. 
Informed consent was obtained from all individual par-
ticipants included in the study. Institutional Review Board 
approval was granted for data collection from both institu-
tions. All had normal or corrected-to-normal vision.

Stimuli

Stimuli were selected from the Bank of Standardized Stimuli 
(BOSS; Brodeur et al., 2014), the Massive Memory Data-
base (Brady et al., 2008; Konkle et al., 2010; Hout et al., 

2014), Hemera Photo Objects collection, and the Teddy Bear 
Encyclopedia (Cokrill, 1993). Each was resized to an area of 
8000 pixels with aspect ratios free to vary. See Table 1 for 
an example from each category.

Apparatus

Data collection was conducted using EPrime vers. 2 (Psy-
chology Software Tools, Pittsburgh, PA, USA) at two sepa-
rate laboratories (one at New Mexico State University and 
one at the University of Central Florida). At each site, the 
stimuli were presented on an Asus PB287Q 4 k monitor with 
a refresh rate of 60 Hz and screen resolution of 3840 × 2160.

Design and procedure

We used the spatial arrangement method to collect similarity 
ratings as it has been shown to be a valid way of collecting 
similarity ratings where individual differences do not mark-
edly contribute to the overall MDS solution (Hout et al., 
2013). Participants were instructed to complete as many 
trials as they could in 50 min, and to focus on the accuracy 
rather than the speed of their similarity judgments. Dur-
ing a trial, participants viewed 36 objects on the computer 
screen. The objects appeared on the outside edges of the 
main gallery (see Fig. 1). Participants were instructed to 
drag and drop the images into the gallery using the cur-
sor and to arrange the images by visual similarity such that 
items closer together in space were those they perceived to 
be more visually similar. It is important to note that, as with 
other human-subject studies, not all participants may have 
strictly adhered to these instructions. Participants were pro-
vided the following instructions, which requested that they 
focus on visual similarity:

“When judging similarity, please try to focus on the 
VISUAL information that you can see rather than what 
the picture is; this includes the category and the func-
tion of the item. If the images look visually similar, 
place them close together; if they look visually dissimi-
lar, place them farther away from each other (ignoring 
all other information).”

The ordering of stimuli for the entire experiment was 
generated using the partial incomplete block design gen-
eration algorithm detailed in MacDonald, Hout, & Schmidt 
(2019). Given the number of stimuli (1200) and the number 
of stimuli per trial (36), the algorithm created an experi-
mental design that ensured that each of the 719,400 pairs 
of stimuli were presented together in at least 3 trials. Given 
these requirements, the algorithm produced a design of 4563 
trials, which was completed across 354 participants.
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Experiment 1 Results

MDS algorithm

We computed a dissimilarity matrix based on the average 
Euclidean distance between each item and every other 
item (i.e., pairwise distances). This matrix is a table that 
shows how different or dissimilar each pair of items is 
from one another, and each cell in the matrix represents 
the dissimilarity between two items: The smaller the 
distance, the more similar the pair was perceived to be. 

These distances were then subjected to classic multidi-
mensional scaling (MDS) using the cmdscale() function 
in MATLAB (MathWorks Inc., 2022). Classic MDS maps 
high-dimensional data onto a lower-dimensional space 
while linearly preserving pairwise distances. It distin-
guishes itself from other forms of MDS (e.g., nonmetric 
MDS) in that it doesn’t involve iterative stress reduction 
for dimensionality reduction. With a precursor to the 
PiCS database (the MM-MDS; Hout et al., 2014), the 
researchers used the INDSCAL procedure, which allowed 
for individual-specific multidimensional spaces. For the 

Table 1   Categories used in the PiCS Database

Categories
Number of 
Exemplars

Example 
Stimuli Categories

Number of 
Exemplars

Example 
Stimuli

Teddy Bears 120 Flowers 120

Birds 40 Footwear 40

Butterflies 120 Guitars 40

Cabinets 40 Guns 40

Candles 40 Hats 40

Candy 40 Kettles 40

Cars 120 Keys 40

Chairs 40 Mugs 40

Clocks 40 Pillows 40

Fish 120 Tables 40
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development of this database, we opted for classic MDS. 
This choice was guided by our desire to maintain a lin-
ear representation of the continuous pairwise distances 
measured in pixels, ensuring the scaled distances remain 
on a comparable scale to the original matrix, thereby 
simplifying interpretation. Additionally, the classic MDS 
approach was best for our design and a large number of 
stimuli, as INDSCAL would require each participant to 
provide a similarity rating for each stimulus pairing. 

The cmdscale function primarily requires two argu-
ments: d, which is the dissimilarity matrix representing 
pairwise dissimilarities between items, and k, which 
specifies the number of dimensions to which the data 
should be reduced. For our MDS analysis, we used the 
dissimilarity matrix derived from the SpAM data collec-
tion and set k to ten dimensions (see the Dimensional-
ity section below for our rationale behind selecting ten 
dimensions). The function outputs a set of coordinates in 
the reduced-dimensional space, where the Euclidean dis-
tances between these coordinates aim to closely match the 
original dissimilarities from the input matrix. Using these 
coordinates across the ten dimensions, we recalculated 
the distances between each item and all others.

Dimensionality

Across different forms of MDS (e.g., classic MDS, IND-
SCAL, non-metric MDS), the researcher must specify the 
number of dimensions, k, or explore different values of k to 
determine the most appropriate dimensionality. In all cases, 
the decision involves balancing model fit, model complex-
ity, and interpretability of the resulting dimensions. For 
instance, researchers may examine scree plots of eigenval-
ues (in classic MDS) or stress loss functions (in non-metric 
MDS) to guide this decision. In classic MDS, as imple-
mented with the cmdscale function in MATLAB, the solu-
tion is derived from the singular value decomposition of the 
double-centered dissimilarity matrix, and the researcher can 
inspect how much variance is accounted for across differ-
ent k values. For our analysis, we specified ten dimensions, 
which we felt would be a sufficient number of dimensions 
to capture the high dimensionality of photorealistic images 
and the nuances within each category without overfitting. 
The scree plot in Fig. 2 shows eigenvalues across dimen-
sions in the MDS solution. Higher eigenvalues in the initial 
dimensions indicate that these dimensions account for a sub-
stantial portion of the variance in similarity among items. 

Fig. 1   Layout of SpAM task. Note: During a trial, participants viewed 
36 objects on the computer screen. The objects appeared on the out-
side edges of the main gallery. Participants were instructed to drag 
and drop the images into the gallery (the center of the screen) using 
the cursor, and arrange the images by similarity so that items closer 

together in space were those they perceived to be more similar. Please 
note that the images in this figure are not to scale, and all items in the 
original experiment were resized to an area of 8000 pixels with aspect 
ratios free to vary
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Although the scree plot suggested an ‘elbow’ at four dimen-
sions, our choice of ten dimensions was further supported by 
our behavioral validation (see Fig. 2), and our prior work, 
which suggests that overestimating dimensionality is a more 
optimal approach than underestimating it (Hout et al., 2018).

Experiment 2

Validation of our similarity data is a critical step in ensuring 
its reliability and applicability to visual cognition research. 
By establishing a relationship between perceived similarities 
as measured through two different behavioral methods (i.e., 
spatial arrangement in Experiment 1 and pairwise similarity 
ratings in Experiment 2), we sought to assess the robustness 
of the derived MDS distances. Specifically, validation here 
refers to examining the extent to which distances obtained 
from participants’ spatial arrangements correspond to inde-
pendently collected direct similarity ratings. This cross-
method validation allows us to test whether the dimensions 
identified through MDS reflect meaningful perceptual dif-
ferences beyond the specific structure of the original task. 
This validation also establishes a basis for cross-study com-
parisons, enabling researchers to align their findings with 
a validated similarity space. For Experiment 2, we used a 
similarity rating task which aligns closely with the funda-
mental aspects of visual similarity assessment. In this exper-
iment, participants were presented with a subset of pairs of 
images from our dataset and were asked to rate the similarity 
between each pair using a Likert scale.

Method

Participants

Forty-nine participants from the University of Richmond 
participated in the study for course credit. All had normal or 
corrected-to-normal vision. Informed consent was obtained 
from all individual participants included in the study.

Stimuli and apparatus

Participants were tested in a well-lit testing room that 
contained four computers, allowing for up to four partici-
pants to be tested at a time. Each testing computer was a 
Lenovo Thinkcentre Tiny with a 22-inch LCD monitor with 
1920 × 1080 resolution and a refresh rate of 60 Hz. Partici-
pants were seated approximately 24 inches from the monitor. 
The study ran on Eprime 3.0 (Psychology Software Tools, 
2016).

Design and procedure

Our primary manipulation concerned the presentation of 
stimuli; that is, whether pairs of images to be rated were 
selected from the same category (within-category trials) or 
were from different categories (across-category trials). The 
selection of image pairs from the database was such that 
pairs would be selected equally from across various “tiers” 
of similarity. For the within-category pairs, there were 
29,000 possible pairs of stimuli, with 2900 pairs per tier. For 
the across-category pairs, there were 30,600 possible pairs 
of stimuli, with 1700 pairs per tier. This allowed us to select 
from across the range of highly similar to highly dissimilar 
pairs without oversampling from any part of the distribution 
(for either grouping of within- or across-category trials; see 
Fig. 3).

After providing consent, participants completed the Ishi-
hara test for colorblindness (Ishihara, 1987) and all partici-
pants had normal color vision. Once seated, participants 
began the study and completed trials at their own pace. Par-
ticipants were instructed to complete as many trials as they 
could during a block. There was a total of two blocks, each 
lasting 20 min, with a short break between blocks. One block 
contained all within-category trials, and the other block was 
all across-category trials. The blocks were counterbalanced 
so that half of the participants received the within-category 
trials first. During a trial, participants viewed two images and 
were asked to provide a rating of visual similarity on a scale 
of 1 (highly similar) to 7 (highly dissimilar; see Fig. 4). Par-
ticipants responded using the numbered row on a QWERTY 
keyboard. The average number of trials completed per 
across-category block was 663 trials (SD = 393.42) and 463 
trials (SD = 224.86) for within-category blocks.

Fig. 2   Scree plot with eigenvalues by dimensions. Note: Scree plot 
showing eigenvalues across dimensions in the PiCS database’s MDS 
solution. Higher eigenvalues in the initial dimensions indicate that 
these dimensions account for a substantial portion of the variance in 
perceptual similarity among items
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Results

One participant’s data was filtered from analyses because 
they only selected one number for all trials. We ran a 

confirmatory linear mixed model with MDS distance for 
each block type (across- or within-category), with the MDS 
distance as fixed effect, subject number as the clustering var-
iable, and subject intercept as a random effect. We entered 

Fig. 3   Histogram of MDS distance presentations across participants

Fig. 4   Example trial from the similarity rating task
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the rating for each trial as the dependent variable. For the 
across-category model, the R2 for fixed effects was 0.098 
and 0.328 for the overall model, and for the within-category 
model, the R2 for fixed effects was 0.05 and 0.307 for the 
overall model. All effects were significant (p < 0.001; See 
Table 2 for parameter estimates and Fig. 5). As can be seen 
in Table 2, as MDS distance increased, so did the ratings 
given by participants for both across- and within-category 
estimates. This is what would be expected, because increas-
ing the MDS distance was associated with participants rating 
the objects as more dissimilar. In sum, the results of these 
validation analyses indicate that the MDS distances in the 
PiCS database capture raw human similarity judgments and 
predict similarity estimates from human raters. The positive 
correlation here suggests that our MDS space and similarity 
ratings were well aligned with one another, such that objects 
further apart in MDS space were also rated as more dissimi-
lar by participants in our validation experiment.

In order to ensure the PiCS database adequately captures 
the nuanced patterns of similarity judgments within cate-
gories, we analyzed within-category correlations between 
MDS distances and similarity ratings separately. We found 
some variability in correlation strengths between categories. 

For example, the correlation for birds was r = 0.04, whereas 
candy yielded a stronger correlation of r = 0.40 (see Table 3 
for a complete list of correlations). By including these cor-
relations, we provide PiCS users the ability to identify cat-
egories aligned with their research goals, reinforcing the 
database’s flexibility and adaptability across studies.

General discussion

The primary objective of this project was to develop a com-
prehensive image database that also includes a model of 
perceptual similarity between a diverse collection of visual 
stimuli, including 1200 images of objects spanning 20 dis-
tinct categories. Our database serves as a resource avail-
able to researchers who wish to examine image similarity 
within the context of psychological and vision sciences. By 
merging human-derived similarity data, employing multi-
dimensional scaling (MDS), and validating the MDS dis-
tances by comparing them to direct pairwise similarity rat-
ings collected in an independent sample, we provide a robust 
framework that researchers can use to explore, investigate, 
or control for similarity in studies of visual perception and 
cognition. Each item within the database has coordinates 
for its position within a multidimensional space, allowing 
for MDS distance measurement to every other item. The 
MDS distances allow researchers to manipulate similarity 
both within and across distinct categories, enabling nuanced 
investigations into the perceptual dimensions that govern 
image relationships.

The results of our validation experiment, along with 
the MDS analysis, demonstrate PiCS database’s alignment 
with the demonstrated research findings. For example, Hout 
et al. (2016) have underscored that MDS databases charac-
terized by a substantial number of items maintain fidelity 

Table 2   Parameters and results from the linear mixed model analyses

*  p <.001

Across-category model Within-category model

Effect B SE B Effect B SE B

Intercept 5.48* .16 Intercept 4.41* .180
Distance .002* 4.31e-5 Distance .003* 1.03e-4
R2 =.098 R2 =.05

Fig. 5   Results of linear mixed model analyses
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in preserving the validity of similarity estimates. PiCS 
database’s large item count and the corroborative insights 
from prior research in developing MDS databases (Hout 
et al., 2014; Jiang et al., 2022) reinforces the PiCS data-
base’s robustness and reliability, positioning it as a tool for 
researchers examining similarity perception with precision 
and depth. Finally, another hallmark of our database is that 
we have validated the MDS space with subsequent simi-
larity data. This validation lends credibility, reliability, and 
broader applicability to the derived similarity estimates, 
enhancing the robustness of conclusions drawn from the 
database’s utilization.

Limitations and future directions

Although the PiCS database provides a comprehensive 
resource for examining visual similarity, it is important to 
acknowledge the limitations, particularly regarding the fidel-
ity of within-category MDS distances. First, while our vali-
dation study (Experiment 2) showed a positive relationship 
between MDS-derived distances and independent similarity 
ratings, the strength of the correlations, especially within 
individual categories, was modest (median r ≈ 0.20). We 
recognize that this level of correspondence is lower than 
ideal for researchers seeking highly precise predictions of 
psychological similarity within a category.

There are several possible reasons for this modest fidel-
ity. First, while the SpAM task and direct rating tasks both 
involve similarity judgments, they differ in structure (simul-
taneous spatial arrangement vs. sequential pairwise rating), 
which may introduce noise when comparing across meth-
ods. Second, contextual differences between the two data 
collection methods may affect the fidelity. In Experiment 
1, participants judged similarity across both within- and 
between-category items simultaneously. It is possible that 
the broader context influenced how participants perceived 
and arranged items, reducing the precision of within-cate-
gory similarity measurements. Another explanation lies in 
the categories themselves. Some categories may naturally 
exhibit low perceptual variability, making it difficult for any 
model that includes human judgments to reliably distinguish 
fine-grained within-category similarities.

Given these considerations, we recommend that research-
ers interpret within-category MDS distances with caution, 
especially if their work depends on fine-grained similarity 
differences within a single category. The current database 
may be best suited for manipulations involving across-
category similarity (where distances are larger and more 
reliable). Alternatively, it may be particularly useful when 
researchers are interested in general investigations of coarse-
level similarity patterns rather than detailed, item-by-item 
precision within categories. We view these limitations as 
intrinsic to any similarity database built using a wide and 
varied stimulus set. Psychological similarity judgments are 
context-dependent (e.g., Goldstone et al., 1997), and percep-
tual spaces are likely constructed dynamically based on the 
stimuli presented. As such, the PiCS database is designed 
for researchers to either use directly or adapt to their specific 
experimental contexts.

There is, however, notable potential to further explore the 
dimensional structure of the PiCS database. Future research 
could further refine the within-category similarity measures, 
for instance, by gathering more focused within-category 
SpAM data or combining SpAM with additional targeted 
rating tasks. Additionally, while this initial project focused 
on estimating broad similarities across a set of categories, 
future research could examine interpretable psychological 
dimensions within the MDS solution. For instance, collect-
ing additional data in which participants provide ratings 
specific to individual dimensions – such as rating image 
similarity based on color – would enable researchers to 
select stimuli based on specific dimensions of similarity, 
rather than the current cross-dimensional approach used in 
the database. In addition, analyses of smaller, homogene-
ous subsets of categories could be conducted to identify 
shared perceptual dimensions, potentially correlating these 
dimensions with external visual or semantic attributes such 
as color, texture, shape, etc. By identifying dimensions 
that reflect consistent perceptual or cognitive constructs, 

Table 3   Correlations between SpAM-derived distances and within-
category ratings for each category

Category Correlation (r)

Bird .04
Guitar .08
Shoes .10
Gun .13
Hat .15
Kettle .16
Fish .16
Mug .17
Pillow .17
Car .19
Key .21
Butterfly .22
Chair .23
Table .24
Teddy bear .26
Candle .27
Flower .27
Clock .31
Cabinet .32
Candy .40
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researchers could gain additional insights into the charac-
teristics driving similarity judgments, enhancing both the 
interpretability and utility of the database for targeted exper-
imental applications.

Furthermore, given the variability in correlation strength 
observed across categories, future research could also 
explore whether different levels of dimensionality yield 
stronger alignment between MDS-derived distances and 
human similarity ratings within certain categories. For 
instance, collecting additional similarity data using alterna-
tive dimensional structures (e.g., fewer or greater than the 
ten we identified) may reveal dimensionalities better suited 
to particular categories, thereby addressing variability and 
improving alignment in within-category similarity judg-
ments. This line of inquiry could offer researchers the flex-
ibility to select optimal dimensional models that cater to 
specific categories or experimental needs, providing even 
greater precision in investigating perceptual or conceptual 
dimensions within PiCS.

Conclusion

In conclusion, our database represents a significant contri-
bution to the field of psychological and vision sciences by 
offering a resource that captures the complexity of image 
similarity. By combining human-derived ratings, MDS, and 
subsequent validation, our database can facilitate research in 
visual cognition and other domains where image similarity 
plays a pivotal role.
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