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ABSTRACT 

Background. Current observational or instrumental records of past fires are historically limited, and 
information on fire characteristics tends to be confined to the recent past. Aims and methods. 
Here, we reconstruct a record of high-intensity fire events that extends beyond the historical record 
using carbon (C) and nitrogen (N) content and Fourier Transform Infrared (FTIR) spectroscopy applied 
to swamp sediment deposits in the Blue Mountains of south-eastern Australia. Each site has a 
different fire history over the past 50 years, and the known fire record was used to corroborate fire 
signatures before extending the record. Key results. FTIR spectra show an increase in the aromatic/ 
aliphatic ratio for sediments corresponding to known fire events. Higher aromatic/aliphatic ratios 
suggest exposure to higher-intensity fire conditions. Conversely, the C and N content and C/N ratio 
show no association with known historic fire events. Conclusions. Sediment deposition at one site 
recorded three major fire events during the past ~500 years. Sediments recording the most recent 
fire event show a more significant increase in the aromatic/aliphatic ratio, suggesting that this event 
burnt at a higher intensity than the previous two. Implications. All sites show a promising extension 
of the existing fire record by decades to centuries.  

Keywords: bushfires, carbon, fire history, fire intensity, FTIR spectroscopy, nitrogen, 
Southeastern Australia, swamp sediments. 

Introduction 

The Australian landscape is particularly susceptible to large bushfires, or wildfires, due to 
a combination of hot, dry weather conditions and volatile compounds in native vegeta
tion species (Leigh et al. 2015). As climate change continues to alter the fire regime, it is 
expected that extreme fire weather and megafires will become more prominent in the 
landscape; however, the magnitude of this change remains a point of contention (Keeley 
and Syphard 2016). Retrospective measurements of fire characteristics, such as severity 
and intensity, can improve the predictive capabilities of models of future events (Whight 
and Bradstock 1999). Fire severity is characterised based on canopy consumption and 
ranges from low where the flames are confined to the understorey, to extreme where the 
canopy is completely consumed (Hammill and Bradstock 2006). Conversely, fire intensity 
is defined as the energy released by the fire front (Byram 1959). 

Existing records of past fire and its characteristics currently span short periods of 30–60 
years, particularly high-quality instrumental records (e.g. satellite data) (Chuvieco and 
Congalton 1989; Nedkov et al. 2018). Whilst tree rings can document the relationship 
between fire and climatic conditions, they remain challenging in the context of south- 
eastern Australia. This is due to the lack of old-growth species outside of Tasmania, and 
many native species do not put down annual rings (Heinrich and Banks 2005). Analysis of 
charcoal accumulation and characteristics has long been used as a proxy for reconstructing 
past fire events due to its resistance to decomposition, allowing its preservation over long 
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timescales (Clark 1988; Blarquez et al. 2013). However, 
charcoal is highly susceptible to aeolian transportation 
through the convective processes associated with fire and 
could represent fires from outside of the catchment area. 
Without accurate, long-term (>100 years) records of past 
fire events and their characteristics, benchmarks cannot be 
established, and fire management practices remain limited in 
their capabilities (Williams et al. 2009). 

Previous studies have used C and N content and the C/N 
ratio as proxies for past fire occurrence in sediment archives 
(e.g. Fernández et al. 1997; Krull et al. 2004; Santín et al. 
2008; Silva-Sánchez et al. 2016). The C/N ratio typically 
decreases with increasing depth from the surface as a func
tion of decomposition (Baldock and Skjemstad 2000). The 
relationship between the C/N ratio and fire is complex, with 
some studies finding an increase in the C/N ratio, suggested 
to arise from increased mobilisation of N to sediment deposits 
and reduced microbial respiration in sediments composed of 
fire products (Schmidt and Noack 2000; Krull et al. 2004;  
Barr et al. 2017), while others have identified a decreased 
C/N ratio, perhaps related to immobilisation of N or 
decreased organic matter content (Santín et al. 2008; Kaal 
et al. 2014; Abakumov et al. 2018). A severity dependence or 
no response has also been demonstrated (Martín et al. 2012;  
Araya et al. 2017). The C/N ratio is also highly influenced by 
vegetation (Forbes et al. 2021), which can be altered during a 
fire event. In contrast, C content has shown promising but 
varied results within fire-affected sediments. Fires typically 
result in an initial loss of C stores to the atmosphere through 
volatilisation as CO2 or soot through the convective processes 
associated with the fire. However, a fraction of the biomass is 
converted to charcoal through a number of processes includ
ing pyrolysis, charring, charcoalification, and eventually 
forms ash (Conedera et al. 2009). This creates a continuum 
of products sometimes referred to as ‘pyrogenic organic mat
ter’ or ‘black carbon’ (Conedera et al. 2009; Belcher et al. 
2018), which may be highly recalcitrant due to the aromatic
ity of its chemical structure (Alexis et al. 2007; Kolka et al. 
2014; Santín et al. 2016; Constantine et al. 2023). 
Additionally, net primary production increases during post- 
fire regeneration, increasing carbon sequestration (Kuhry and 
Vitt 1996; van der Werf et al. 2017). Some studies have 
shown that reduced C content post-fire could take up to 2 
years to recover to pre-fire stores (Martín et al. 2012). Other 
studies have reported no change in C content following a fire 
(Nave et al. 2011). This can result from the replenishment of 
C stores through litter-fall post-fire. 

Fourier Transform Infrared (FTIR) spectroscopy of bulk 
sediments lends itself as a suitable proxy for extending fire 
records. Fires create a significant disturbance to peat swamps 
through increased temperature and pH, changed oxygen 
availability during combustion and the input of various com
bustion residues, significantly altering the chemical composi
tion of the soil (Zaccone et al. 2014; Lupascu et al. 2020), 
which can be observed in the FTIR spectra. Organic 

compounds are typically more vulnerable to transformation 
during a fire event, while mineral bonds require moderate to 
severe fires with higher temperatures (Zanelli et al. 2006;  
Araya et al. 2017). Aliphatic compounds are the first to be 
thermally decomposed during a fire event (Abakumov et al. 
2018). These are replaced by aromatic compounds, which are 
more resistant to temperature and decomposition (Abakumov 
et al. 2018). Fire characteristics such as the temperature at 
ground level and the type of combustion (flaming or smoul
dering) can be inferred from the types of bonds present. 

During a bushfire, the surface temperature of fine fuel 
loads can increase rapidly, and available oxygen for disper
sion can be limited, forcing reactions to occur under a 
nitrogen atmosphere (Fang et al. 2006). This results in the 
removal of oxygen-containing functional groups and the 
conversion of amide-N into heterocyclic-N compounds 
(Almendros et al. 2003; Knicker et al. 2005). The heat of a 
fire typically does not infiltrate more than the top 5 cm of 
soil (Bradstock et al. 1992); therefore, the temperature of 
the fire at ground level can be estimated using the decom
position of various plant compounds such as cellulose, hemi
cellulose and lignin (Yang et al. 2007; Dorez et al. 2014). 

Existing studies have used FTIR spectroscopy to explore 
changes in soil (e.g. Simkovic et al. 2008; Mastrolonardo 
et al. 2015b; Araya et al. 2017; Lu et al. 2022) and charcoal 
(e.g. Gosling et al. 2019; Constantine et al. 2021; Maezumi 
et al. 2021) following a fire event. Analysis of the peak area 
ratio of aromatic/aliphatic peak absorbance has also been 
shown to create a signature in alluvial sediment deposits 
following high-severity fires (Ryan et al. 2023), but the 
timescale at which this signature can be observed and the 
resolution at which individual fire events can be identified 
have not yet been explored. 

This study aimed to produce a record of past fire events in 
mire sediment deposits using C and N content, the C/N ratio, 
and FTIR spectroscopy. Fire history was determined using 
remote sensing data, which outlines the burnt area of fires 
from 1957 to 2020 (Hammill et al. 2013; National Parks and 
Wildlife Service unpubl. data). Recent known fires 
(1993–2020) are accompanied by fire severity data (Hammill 
et al. 2013). Sediment samples were collected from Temperate 
Highland Peat Swamps on Sandstone (THPSS) in the Greater 
Blue Mountains World Heritage Area of New South Wales 
(NSW), Australia, a known fire hotspot. Well-dated sediment 
cores from mires can act as a suitable archive for past fire 
events due to their sensitivity to changes in regional climate, 
vegetation and nutrient supply (Dodson 1987). 

Materials and methods 

Study area 

The Blue Mountains are located 50–100 km west of Sydney 
in New South Wales (NSW), Australia, accounting for 
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approximately 25% of the Greater Blue Mountains World 
Heritage Area (Fig. 1) (Cunningham 1984; Chapple et al. 
2011; Tasker and Hammill 2011). The underlying geology is 
predominantly composed of sandstones with some shale 
lenses (Cunningham 1984; Dragovich and Morris 2002). 
Temperate Highland Peat Swamps on Sandstone (THPSS), 
or upland swamps, are a unique feature of the Blue 
Mountains and are typically situated at the headwaters of 

low-order streams (Chalson and Martin 2009; Cowley et al. 
2016; Fryirs et al. 2021). These upland swamps are gener
ally low-energy environments but are highly erodible in the 
event of a disturbance, such as a bushfire (Chalson and 
Martin 2009; Fryirs et al. 2021). Dry sclerophyll forests 
dominated by Eucalyptus species are prevalent throughout 
much of the Blue Mountains; these vegetation communities 
are both fire-prone and fire-promoting due to the volatility 
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Fig. 1. Average fire return interval map for the Blue Mountains, New South Wales, Australia, identifying the sites analysed as 
Corral Swamp (CS-01, blue circle), Long Swamp (LS-02, blue square), Timmy’s Swamp (TS-01, blue triangle), and Urella Brook 
Swamp (UBS-01, blue pentagon). Unshaded areas have not been burnt during the period from 1957 to 2020. Data adapted from 
NPWS (unpubl. data) and State Government of NSW and Department of Planning and Environment 2010. Satellite Image 
derived from: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User 
Community Esri, HERE, Garmin, OpenStreetMap contributors, and the GIS User Community.   
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of the oils within their leaves, increasing the susceptibility 
of the area to bushfires (Cunningham 1984; Bradstock 
et al. 2010; Aryal et al. 2018). The fire regime of the 
Blue Mountains traditionally consisted of frequent, low- 
intensity fires in the form of cultural burning by 
Aboriginal communities, or ignition from lightning strikes 
(Cunningham 1984). However, since British colonisation, 
this has shifted to high-intensity fire events with occa
sional prescribed burns (Dragovich and Morris 2002;  
Black et al. 2006). The topography of the Blue 
Mountains reduces accessibility to bushland and restricts 
control efforts of major bushfire events (Cunningham 
1984), increasing the importance of more accurate pre
dictive models for fire management. 

This study analyses sediments collected from four upland 
swamps in the Upper Blue Mountains: (1) Corral Swamp 
(CS-01); (2) Long Swamp (LS-02); (3) Timmy’s Swamp 
(TS-01); and (4) Urella Brook Swamp (UBS-01) (Fig. 1). 
Each site has experienced a different recent fire history 
and fire return interval (Table 1), and were selected to 
determine how fire characteristics have changed from 
1957 to 2020. Fire history was determined using remote 
sensing data and digitised fire line maps (Hammill et al. 
2013; National Parks and Wildlife Service, unpubl. data). 

Sample collection 

In the field, sampling sites were selected to avoid creek lines 
and channels, which ensured that a more continuous record 
was collected. While the surface of the swamps is largely 
treeless, dominated by heath vegetation, the dry sclerophyll 
forest on the hillslope is likely the predominant source of 

bushfire-derived sediment. Based on this, the distance from 
the sampling site to the tree line was also determined. An 
approximately 25 cm deep monolith was collected at each 
site. Half of the bulk monolith was subsampled at 1-cm 
intervals for analysis. 

Elemental analysis 

Elemental analysis of carbon (C) and nitrogen (N) was 
conducted at the Wollongong Isotope Geochronology 
Laboratory (WIGL) using an Elementar Vario Macro Cube 
Element Analyser. A total of 50 mg of each sample was 
ground to a fine, even powder for analysis. Three phenyl
alanine standards of different masses were analysed at the 
start of the sequence to formulate a calibration curve. Two 
blanks were also analysed prior to the phenylalanine stan
dards and one blank before the samples. A repeat was 
analysed every four samples (n = 14), and a phenylalanine 
standard every 10–15 samples to account for drift. Carbon 
and N concentrations are reported in weight percent (wt%). 

Potassium bromide pressed disc (KBr) – FTIR 
spectroscopy 

All samples were analysed for FTIR spectroscopy by KBr 
pressed discs at Comenius University using a Nicolet 6700 
FTIR spectrometer and OMNIC 8 software (Thermo Fisher 
Scientific). Approximately 1 g of the bulk sediment of each 
sample was ground to a fine, homogeneous powder using a 
zirconium oxide mill and then dried at 60°C for 24 h. A total 
of 2 mg of each sample was combined with 200 mg of KBr 
and pressed into a pellet. Measurements were conducted in 
transmission mode across the 4000–400 cm−1 range. 
Spectral bands form at specific wavenumbers when exposed 
to infrared light that can be reliably attributed to particular 
functional groups (Smidt et al. 2005; Beć et al. 2020). A total 
of 128 scans were averaged for each sample at a resolution 
of 2 cm−1, and the results were reported in absorbance 
values. The averaged spectra were baseline corrected in 
Python 3.8 using the ‘arPLS’ method (Baek et al. 2015) in 
the ‘RamPy’ package (Le Losq 2018). The baseline-corrected 
spectra were analysed for changes in peak height and peak 
area ratios, determined by taking the area under the curve 
for the bands of interest. A peak was considered as a ratio 
value >10, which is more than two standard deviations 
(s.d.) from the mean. 

Age–depth model determination 

Three charcoal samples were selected from the top, middle, 
and bottom of the LS-02, TS-01 and UBS-01 sites for radio
carbon dating, with additional samples collected for the 
CS-01 site over a 100-cm D-section core. In addition, plant 
macrofossils, typically seeds isolated during wet sieving, 
were dated for CS-01 (12–13 and 23–24 cm), LS-02 (2–3 

Table 1. Fire histories of the four study sites adapted from  Hammill 
et al. (2013) and National Parks and Wildlife Services (NPWS) 
(unpubl. data).    

Site Fire season and type    

Corral Swamp (CS-01)  
33.7539°S, 150.2685°E     

2019–2020, wildfire  

Long Swamp (LS-02)  
33.6951°S, 150.4439°E     

1977–1978, wildfire  
1982–1983, wildfire  
1993–1994, wildfire  
2002–2003, wildfire  

Timmy’s Swamp (TS-01)  
33.6690°S, 150.3468°E     

1957–1958, wildfire  
1982–1983, wildfire  
1993–1994, wildfire  
2002–2003, wildfire  
2019–2020, wildfire  

Urella Brook Swamp (UBS-01)  
33.6503°S, 150.3920°E     

1982–1983, wildfire  
1993–1994, wildfire  
2002–2003, wildfire  
2015–2016, prescribed burn  
2019–2020, wildfire 

Geodetic datum: WGS84.  
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and 10–11 cm), TS-01 (10–11 cm), and UBS-01 (2–3 cm). 
Accelerator Mass Spectrometry (AMS) was performed at the 
Chronos 14Carbon-Cycle facility, University of New South 
Wales (UNSW). Charcoal samples were prepared using an 
acid-base-acid treatment at 80°C with 1 M HCl and 0.2 M 
NaOH, as described by Turney et al. (2021). No pre- 
treatment was applied to the seed samples due to their 
small size and fragility; therefore, each sample was rinsed 
with Milli-Q water and graphitised for analysis. Due to the 
absence of a chemical pre-treatment, the ages for these seed 
samples likely represent a minimum age. A Bayesian model 
employing Markov Chain Monte Carlo (MCMC) simulations 
was then formulated using OxCal ver. 4.4 with the 
P_sequence deposition model and charcoal outlier model 
(Bronk Ramsey 2009). The charcoal outlier model was 
also applied to seed ages to account for their minimum 
age. The combine function was used when a seed and char
coal date were determined for the same depth (Bronk 
Ramsey 2009). The year of sampling at 0 cm was input 
into the model as an additional upper constraint. The 
‘SHCal 20’ and ‘Bomb 21 SH12’ calibration curves were 
used to generate a calendar age–depth model (Hogg et al. 
2020; Hua et al. 2021). 

Results 

Radiocarbon age–depth models 

Seven radiocarbon ages between 0 and 100 cm were used in 
the final age–depth model for CS-01 (see Supplementary 
Table S1), giving a sedimentation rate that is in line with 
that observed in swamps in the Blue Mountains previously 
(e.g. Fryirs et al. 2014; Freidman and Fryirs 2015). The 
known fire history for this site identifies only the 
2019–2020 bushfires. The LS-02 site uses a calendar year 
determined by individually calibrating the 2–3 cm seed date 
(Fig. S1b). Two ages were used in the final model for TS-01 
(Table S1), and these ages are constrained by the bomb peak 
(Fig. S1c). Finally, four radiocarbon ages were determined 
for the UBS-01 site, with the combine function applied to the 
2–3 cm charcoal and seed ages. The UBS-01 site has the 
oldest ages at the base of the monolith compared to any of 
the other sites and therefore has the slowest sedimentation 
rate. The age uncertainties for each sampling interval at this 
site are also the largest (Fig. S2g, h). For further details on 
the age–depth models see the Supplementary material. 

Corral swamp 

In the top 25 cm of the CS-01 sediment profile, the C content 
decreases slightly with increasing depth, ranging from 6.6 
wt% (14–15 cm) to 25.8 wt% (4–5 cm). There are no obvi
ous peaks (Fig. 2c). Nitrogen content shows no apparent 
trend with increasing depth and is consistently low, ranging 

from 0.55 (14–15 cm) to 1.1 wt% (4–5 cm). No clear peaks 
are present in N content (Fig. 2d). The C/N ratio shows a 
general decreasing trend with increasing depth. Peaks are 
evident at 0–1 and 2–3 cm, and the C/N ratio ranges from 
11.9 (14–15 cm) to 33.3 (2–3 cm) (Fig. 2e). 

Various bands within the FTIR spectra highlight changes 
with depth. The CS-01 site shows the highest kaolinite O–H 
stretching absorbance at 3620–3695 cm−1 (Zanelli et al. 
2006; Yusiharni and Gilkes 2012) than any of the other 
sites (Fig. 2f). This is with the exception of the sample at 
0–1 cm, where the absorbance is at baseline. Peak absorp
tion in the bands associated with inorganic bonds at 
600–950 cm−1 (metal O–H bending) (Schroeder 2002) is 
lower than for the other sites. The quartz doublet at 797 and 
779 cm−1 (Dlapa et al. 2013; Aldeias et al. 2016) shows 
slight variation between samples and relatively low absorb
ance. All samples show high peak absorption in the band at 
1200–1000 cm−1, which can be ascribed to both Si–O 
stretching of silicates, including clays, or C–O stretching 
predominantly from polysaccharides (Schroeder 2002;  
Krull et al. 2004; Nguyen et al. 2008; Hong et al. 2019) 
and absorbance is highly variable between samples. 
Generally, samples in the CS-01 site have the highest 
absorbance in the band associated with lignin products at 
~1440 cm−1 (aromatic C=C stretching, C–H bending of 
methyl and methylene groups) and 1375 cm−1 (O–H bend
ing of phenols, C–H bending of methyl group) (Artz et al. 
2008; Keiluweit et al. 2010) than any of the other sites. Only 
the sample at 0–1 cm is at baseline, and the 14–15 cm 
sample shows a small reduction in peak height compared 
with the remaining samples. A small variation between 
samples is apparent in the broad band of aromatic C=C 
stretching at 1750–1500 cm−1 accompanied by a shoulder 
at 1715–1740 cm−1 due to C=O stretching of carbonyl 
groups in carboxylic acids, aldehydes, ketones, and esters 
(Mecozzi and Pietrantonio 2006). At 0–1 cm, aromatic C=C 
absorbance is higher than the remaining samples in this band. 
Aliphatic C–H stretching absorbance band at 3000–2800 
cm−1 (Dlapa et al. 2013; Mastrolonardo et al. 2015a;  
Cortizas et al. 2021) is also comparable between samples. 
The aromatic/aliphatic (A(1750–1500 cm−1)/(A(3000–2800 cm−1)) 
ratio displays peaks at 0–1 cm and 14–15 cm depth 
(Fig. 2a). Conversely, the aromatic/inorganic (A(1750–1500 

cm−1)/A(750–600 cm−1)) peak area ratio shows peaks at 0–1 
and 12–13 cm depth (Fig. 2b). 

Long Swamp 

Carbon content of the LS-02 profile ranges from 10.8 wt% 
(18–19 cm) to 39.4 wt% (10–11 cm). The C content shows 
minimal variation until ~14–15 cm depth, where there is a 
decrease (Fig. 3c). Nitrogen content ranges from 0.45 wt% 
(18–19 cm) to 1.7 wt% (12–13 cm). Nitrogen content shows 
minimal variation above 14–15 cm, below which there is a 
decrease, with negative excursions evident at 14–15 and 
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18–19 cm depth (Fig. 3d). The C/N ratio displays no obvious 
trends with depth and varies over a range of 17.2 (19–20 
cm) to 28.5 (7–8 cm). Peaks are evident at 4–5, 7–8 and 
18–19 cm depth (Fig. 3e). 

The LS-02 profile shows a high variability between sam
ples in the bands associated with organic and inorganic 
bonds (Fig. 3f). Low peak absorbance is evident across all 
samples in the band at 3620–3695 cm−1 associated with 
O–H stretching of kaolinite. Samples at 14–21 cm have a 
higher absorbance in the bands at 600–950 cm−1 (associ
ated with metal O–H bending) and within the quartz doublet 
at 797 and 779 cm−1. These samples show much lower peak 

height in bands associated with aromatic C=C absorbance at 
1750–1500 cm−1, aliphatic C–H stretching at 3000–2800 
cm−1, and lignin products. Conversely, samples at 0–13 cm 
show a lower peak height for inorganic bonds and for the 
quartz doublet (797 and 779 cm−1). However, absorbance 
associated with aromatic C=C absorbance at 1750–1500 
cm−1, aliphatic C–H stretching at 3000–2800 cm−1, and 
bands ascribed to lignin products at 1440 and 1375 cm−1 

are higher for these depths. Aliphatic C–H stretching shows 
the highest peak height of any other site. All samples display 
varying peak shapes and heights in the band from 1200 to 
1000 cm−1, ascribed to both Si–O bonds of clay and C–O 

Corral Swamp Monolith 1 (CS-01)
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Fig. 2. Peak area ratios for (a) aromatic/aliphatic (A(1750–1500 cm−1)/(A(3000–2800 cm−1)) and (b) aromatic/inorganic (A(1750–1500 cm−1)/ 
A(750–600 cm−1)) peak intensities with relation to depth. (c) and (d) are the C and N content, respectively (reported in wt%), and 
(e) the C/N ratio (unitless). (f) The complete FTIR spectra from 4000 to 400 cm−1 for the CS-01 site. Labelled ranges denote key 
bands referenced in the text.   
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bonds of polysaccharides. The aromatic/aliphatic ratio 
shows only one prominent peak at 17–18 cm (Fig. 3a). 
The aromatic/inorganic ratio, however, displays peaks at 
1–2, 5–6, 9–10 and 11–12 cm (Fig. 3b) 

Timmy’s Swamp 

The C content ranges from 2.8 wt% (11–12 cm) to 17 wt% 
(0–1 cm), displaying a general decreasing trend with 
increasing depth. Peaks are apparent at 0–1 and 3–4 cm 
depth (Fig. 4c). N content shows minimal variation between 
samples, ranging from 0.15 wt% (13–14 cm) to 0.55 wt% 
(0–1 cm) and a decreasing trend with increasing depth. 

(Fig. 4d). The C/N ratio decreases slightly with increasing 
depth, with values ranging from 13.9 (18–19 cm) to 29.9 cm 
(0–1 cm). Possible peaks are observed at 0–1, 2–4, 8–9, and 
13–14 cm (Fig. 4e). 

Various organic and inorganic bands show changes in 
peak height with depth at the TS-01 site (Fig. 4f). All 
samples show minimal absorption at 3620–3695 cm−1. 
Inorganic bonds in the bands from 600 to 950 cm−1 

(metal O–H bending) and from 700 to 1200 cm−1 (Si–O 
and Al–O stretching) show high peak absorption for most 
samples; however, it is highly variable. The quartz doublet 
at 797 and 779 cm−1 varies between samples but is partic
ularly high between 3–4 and 18–22 cm. The peak shape and 

Long Swamp Monolith 2 (LS-02)
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height in the band between 1200 and 1000 cm−1 (C–O 
groups of polysaccharides and Si–O bonds of clays) varies 
between samples. Few depths show higher than background 
in the band at ~1440 and 1375 cm−1, associated with the 
lignin products. The top 3 cm have the highest absorbance 
in the band at 3000–2800 cm−1 associated with aliphatic 
C–H stretching bonds, but all samples have low peak heights 
within this band, suggesting lower organic matter content. 
Aromatic C=C absorbance at 1750–1500 cm−1 is also low 
compared with the other sites analysed. The aromatic/ali
phatic peak area ratio shows a general decreasing trend with 
increasing depth and only two peaks at 17–18 and 19–20 cm 
(Fig. 4a). The aromatic/inorganic peak area ratio shows a 

general decreasing trend with increasing depth. Whilst the 
peak area is highest at the surface, this does not constitute a 
peak compared to the other sites analysed (Fig. 4b). 

Urella Brook Swamp 

The C content ranges from 5.85 wt% (14–15 cm) to 40.65 wt% 
(1–2 cm), following a general decreasing trend with 
increasing depth. Peaks are evident at 1–2, 8–9 and 
19–20 cm (Fig. 5c). The N content has a much smaller 
range over much of the profile, ranging from 0.4 wt% 
(12–13 cm) to 1.25 wt% (2–3 cm) (Fig. 5d). The C/N 
ratio ranges from 14.6 (16–17 cm) to 35.5 (1–2 cm) and 

Timmy’s Swamp Monolith 1 (TS-01)
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is relatively constant with depth, highlighting peaks at 1–2, 
3–4, 8–9, 12–13, and 18–19 cm (Fig. 5e). 

Bands associated with organic and inorganic bonds show 
changes in peak height across the spectra for each sample 
(Fig. 5f). All samples show low peak height at 3620–3695 
cm−1 associated with O–H stretching of kaolinite. The top 
10 cm have the lowest peak absorbance at the doublet at 
797 and 779 cm−1 associated with quartz. The band at 
1200–1000 cm−1 shows a range of peak heights and shapes. 
The 1–2 cm depth sample has the lowest peak height within 
this region. Peak absorption in the region from 600 to 950 
cm−1, highlights large variation between samples. At 1–2 

cm, absorption is particularly low. The band at 700–1200 
cm−1 also shows large variation between samples. The 
bands at ~1440 cm−1 and 1375 cm−1 show an increase 
in absorbance for some samples, whilst others remain close 
to background. Aliphatic C–H stretching bonds at 
3000–2800 cm−1 are relatively low and comparable across 
all samples. Aromatic C=C bonds at 1750–1500 cm−1 show 
a larger range, with 1–2 cm depth having the highest peak 
height and 14–15 cm depth with the lowest. The peak area 
ratio of aromatic/aliphatic shows peaks at 0–2, 9–10 and 
16–17 cm (Fig. 5a), whilst the aromatic/inorganic ratio 
displays peaks at 1–2 and 8–9 cm (Fig. 5b). 

Urella Brook Swamp Monolith 1 (UBS-01)
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Discussion 

Sedimentation rate 

The sedimentation rate over the four sites varies from 0.05 
cm/year (Urella Brook Swamp) to 0.341 cm/year (Timmy’s 
Swamp) (Fig. S2). Existing studies have also shown variable 
sedimentation rates for similar environments (Fryirs et al. 
2014; Freidman and Fryirs 2015; Mooney et al. 2021). It has 
been hypothesised that this variation in sedimentation rate 
reflects catchment stability, whereby a slower sedimenta
tion rate is associated with greater stability and faster sedi
mentation with instability (Fryirs et al. 2014). Vegetation 
cover, air temperature, rainfall, and fire frequency and 
intensity affect erosion rates and subsequent catchment sta
bility (Fryirs et al. 2014; Mooney et al. 2021). Additionally, 
the sedimentation rate tends to decrease exponentially with 
increasing depth from the surface due to compression. 
Previous studies have typically dated samples below 20 
cm depth; therefore, the ages determined across all four 
sites are relatively young, and although further comparison 
is challenging, these results demonstrate that over the past 
century, sediments have accumulated in THPSS at a rate 
varying between ~5 and 34 cm/100 years. 

Fire occurrence in the sediment record 

Based on the radiocarbon-based chronology of the sediment 
deposits studied and assuming no lag between a fire event 
and its record in the sediment deposits, we expect fire events 
to be recorded at the depths in Table 2. After a fire event, 
organic and inorganic material is transported to the swamp, 
possibly during a post-fire rainfall event. This may create 
layers associated with the fire event represented by a change 
in the chemical composition compared to the sediments that 
have not been affected by fires. 

Carbon and nitrogen abundance 

Despite previous studies suggesting an increase in N content 
in fire-affected sediments due to increased erosion of soils, 
combusted leaf litter and ash enriched in nutrients, includ
ing N post-fire (Thomas et al. 1999; Lane et al. 2008), there 
appears to be no significant increase in N content in layers 
hypothesised to record fires (Fig. S3b, e, h, k). 

Whilst there is a small increase in C content for the 
uppermost fire layer in the CS-01 and UBS-01 sites, no 
significant correlation exists between C content and fire 
occurrence at the other sites (Fig. S3a, d, g, j). This agrees 
with the results reported by Alexis et al. (2007) and Martín 
et al. (2012), who found a similar, limited response to fire 
events. Fire in nutrient-limited landscapes, such as the Blue 
Mountains, is believed to release nutrients (Raison et al. 
1985; Orians and Milewski 2007). Therefore, it is surprising 
that there is no consistent change in C content with fire. 

The C/N ratio typically decreases within increasing depth 
due to increased decomposition (Krull et al. 2004); however, 
many studies have shown a variable response to fire (e.g.  
Fernández et al. 1997; Santín et al. 2008; Martín et al. 2012;  
Sazawa et al. 2018). In this study, there are no consistent 
trends with layers hypothesised to record known fire events 
and the C/N ratio for any of the four sites (Fig. S3c, f, i, l). 
For additional discussion of the C and N abundances, see the 
Supplementary material. 

FTIR spectra 

Aliphatic C–H bonds occur at 2920 cm−1 (asymmetric 
stretching vibrations) and 2860 cm−1 (symmetric stretching 
vibrations). Previous studies have combined these two 
bands, allocating the range from 3000 to 2800 cm−1 to 
aliphatic bonds (Guo and Bustin 1998; Ellerbrock et al. 
2005; Lammers et al. 2009). Aliphatic bonds are typically 
attributed to fats, plant waxes, lignin, etc. (Guénon et al. 
2013; Wu et al. 2020) and have been shown to decrease with 
depth due to increasing humification (Artz et al. 2008). 
Aliphatic compounds are the first to be decomposed at 
elevated temperatures during a fire event (Abakumov 
et al. 2018). Decomposition of aliphatic bonds typically 
occurs at temperatures >250°C or with prolonged heating 
duration, resulting in a relative increase in aromatic peak 
contributions through Diels–Alder type reactions, which are 
more resistant to higher temperatures and decomposition 
(Guo and Bustin 1998; Rausa et al. 1999; Araya et al. 2017). 
The aromatic/aliphatic peak area ratio of sediment deposits 
could thus identify past events where organic compounds 

Table 2. Expected depths of fire events based on the radiocarbon- 
based age–depth model at each site.     

Site Depth (cm) Fire event   

Corral Swamp (CS-01) 0.5 2019–2020, wildfire 

Long Swamp (LS-02) 4 2002–2003, wildfire 

5 1993–1994, wildfire 

6.5 1982–1983, wildfire 

7.5 1977–1978, wildfire 

Timmy's Swamp (TS-01) 0.5 2019–2020, wildfire 

3.5–4 2002–2003, wildfire 

7 1993–1994, wildfire 

11–11.5 1982–1983, wildfire 

20.5–21 1957–1958, wildfire 

Urella Brook Swamp 
(UBS-01) 

0 2019–2020, wildfire 

0.5 2015–2016, pescribed burn 

2.5 2002–2003, wildfire 

3 1993–1994, wildfire 

3.5–4 1982–1983, wildfire   
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experienced higher intensity fire conditions, including 
higher temperatures and/or longer heating duration. There 
can be some contributions from O–H bending vibrations of 
water between phyllosilicate layers (Madejová 2003). 
However, there is a strong positive correlation between C 
content and the peak area of aromatic absorption, suggest
ing aromatic C is more dominant in this band (Fig. S4). 
Therefore, we assume that sediments with higher aro
matic/aliphatic ratio values record past fire events.  
Bradstock et al (2010) and Collins 2014 have correlated 
fire severity with estimated fire fire intensity in the broader 
Sydney Basin with underlying sandstone geology, therefore, 
the high intensity fires recorded by the FTIR spectra are 
likely canopy consuming events. Applying the radiocarbon- 
based age–depth model to the CS-01 site identifies peaks in 
the aromatic/aliphatic ratio at the surface and at 14–15 cm 
(1887 (+66/−170) CE) (Fig. 6a). Both peaks show a simi
lar value. The 2019–2020 bushfire is the only known fire 
recorded for this site and likely corresponds with the peak at 
the surface. The Blue Mountains experienced bushfires in 
1888–1889, 1895–1896, 1904–1905, 1908–1909, 
1911–1912, and 1915–1916 CE (Cunningham 1984) that 
are within the age-model error. Therefore, the deeper peak 
in the aromatic/aliphatic ratio could correspond to one of 
these events. 

For the LS-02 site, there is one peak at 17–18 cm (1955 
(+5/–2) CE), which is older than the extent of the known 
fire history for this site (Fig. 6b). The known fire history 
identifies four more recent fires in 1977–1978, 1982–1983, 
1993–1994, and 2002–2003, which are not associated with 
aromatic/aliphatic ratios >10 in the sediment deposit. Ryan 
et al. (2023) found that charcoal layers in sediments of 
small-order creek beds were ~700 years old at approxi
mately 20 cm depth and hypothesised that the charcoal 
was being stored on the hillslope for many years before 
deposition. Therefore, it is possible that this peak represents 
a high-intensity fire in the 1950s, and fire products from 
more recent events have not yet been mobilised by rainfall 
from the hillslope to the swamp sequence yet. Since the 
1950s, the Blue Mountains have experienced the 
Millennium drought (1997–2009), which recorded the low
est 13-year rainfall total in the instrumental record (Timbal 
and Fawcett 2013) and was followed by consecutive positive 
Indian Ocean Dipoles (IOD) and El Niño events in 2018 and 
2019 (Wang and Cai 2020). If the sediments were stabilised 
by vegetation regrowth before a major rainfall event, this 
could have caused a lag between the fire and the fire-related 
sediments reaching the swamp deposit. 

Only one peak was identified in the TS-01 profile corre
sponding with 1960 ± 7 CE in the age–depth model 
(Fig. 6c). This peak is within error of the 1957–1958 fire. 
Similar to LS-02, this suggests that sediments corresponding 
to the 1982–1983, 1993–1994, 2002–2003, and 2019–2020 
fires have not yet been deposited in the sediment record at 
this site. The UBS-01 site has the longest record of the four 

sites and displays peaks in the aromatic/aliphatic ratio asso
ciated with dates of 2017 (+2/−10) CE, 2011 (+3/−31) 
CE, 1882 (+84/−101) CE and 1737 (+157/−121) CE 
from the model (Fig. 6d). Since this site has the longest 
record over similar depths to the remaining three sites, the 
resolution is coarser, and peaks are therefore attributed to 
major fire events. The peaks at 2017 (+2/−10) CE and 
2011 (+3/−31) CE have ratios of ~50 and ~55, respec
tively, which are more than three times greater than the 
peaks at 1882 (+84/−101) CE and 1737 (+157/−121) 
CE. These increases in aromatic/aliphatic ratio, possibly 
associated with the 2017 (+2/−10) CE and 2011 
(+3/−31) CE fires, suggest that their intensity could 
have been greater than the fires hypothesised to have 
occurred in the 18th and 19th centuries. The age range 
for this peak at 0–2 cm is between 1980 and 2019 CE. 
Owing to this uncertainty, it is not possible to confidently 
attribute this peak to a known fire event. 

The aromatic/inorganic peak area ratio can provide 
information on the organic matter content of samples 
(A(1750–1500cm−1)/A(750–600cm−1)). The band at 750–600 
cm−1 is ascribed to Si–O bending vibrations (Farmer 
1974; Hahn et al. 2018) and does not undergo dehydroxyla
tion at the temperatures reached during a bushfire. Whilst 
the CS-01 site shows peaks of similar magnitude relating to 
the 2019–2020 and 1887 (+66/−170) CE fire events, this 
is not replicated in the aromatic/inorganic ratio (Fig. 6e), 
with only the peak at the surface correlating with the 
2019–2020 fire present. Similarly, the peak at the surface 
of the UBS-01 site is prominent and in agreement with the 
aromatic/aliphatic ratio, whilst the second peak is slightly 
offset to 1907 (+47/−94) CE (1887 (+66/−170) CE for 
the aromatic/aliphatic ratio); however, this is still within 
the uncertainty of the age–depth model (Fig. 6h). Unlike the 
aromatic/aliphatic ratio, there are no peaks in the aromatic/ 
inorganic ratio at 14–15 cm depth. This suggests that 
inorganic material is more dominant in this sediment. 

Unlike the other sites, the TS-01 site has a much lower 
aromatic/inorganic peak area ratio across all samples 
(Fig. 6g). The peak intensity for all organic bands in the 
TS-01 site is also lower than that of any other sites, indicat
ing an overall lower organic matter content. The aromatic/ 
inorganic peak area ratio is the highest at the surface and 
decreases with increasing depth, which is expected consid
ering it is hypothesised to represent the organic matter 
content. Peat-dominated environments typically have a 
high water-holding capacity due to the low bulk density 
and high pore volume of organic matter (Huat et al. 
2011). The TS-01 site has the lowest moisture content of 
the four sites, possibly explaining this reduction in organic 
matter content. 

At the LS-02 site, the aromatic/inorganic ratio does not 
show peaks at the same depths as the aromatic/aliphatic 
ratio (Fig. 6b, f). Peaks are found at depths not ascribed to a 
known fire event, possibly due to the higher organic content 

www.publish.csiro.au/wf                                                                           International Journal of Wildland Fire 34 (2025) WF23175 

11 

https://www.publish.csiro.au/wf


of the majority of this monolith. There is a greater than 
tenfold increase in inorganic peak intensity at 14–19 cm 
depth, meaning that any change in aromatic peak absorb
ance has little effect on the aromatic/inorganic ratio. This 
peak in inorganic intensity is also accompanied by an 
increase in the sedimentation rate (Fig. S1c). Catchment 
instability can cause a significant increase in the accumula
tion rate of swamps, specifically inorganic compounds 

(Fryirs et al. 2014; Mooney et al. 2021). This instability 
can result from various disturbances, particularly fire and 
large-scale rainfall events (Fryirs et al. 2014; Mooney et al. 
2021). Peaks in the aromatic/inorganic ratio are ascribed to 
2016 (+4/−3) CE, 1984 (+7/−3) CE, and 1962 (+8/−2) 
CE. There is a significant decrease in the aromatic/inorganic 
ratio at 17–18 cm (1955 (+5/−2) CE), which was associ
ated with a peak in the aromatic/aliphatic ratio. During this 

(a) CS-01 (b) LS-02 (c) TS-01 (d) UBS-01

(e) CS-01 (f) LS-02 (g) TS-01 (h) UBS-01
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period, the World War II drought (1939–45) (Freund et al. 
2017) could have increased the instability of the catchment 
and the subsequent increase in inorganic materials in the 
sediment. 

Kaolinite can be attributed to peaks at 3700–3600 cm−1 

assigned to O–H stretching vibrations (Berna et al. 2007;  
Yusiharni and Gilkes 2012; Cortizas et al. 2021). Samples 
from the TS-01, LS-02 and UBS-01 sites all have very low 
peak absorption in this band (Figs. 3f, 4f, 5f). Samples from 
CS-01 show a higher peak absorption (Fig. 2f); however, the 
sample at 0–1 cm, attributed to the 2019–2020 bushfire, 
displays no peak at 3700–3600 cm−1. One hypothesis for 
this is the transformation of kaolinite at high temperatures. 
Dehydroxylation weakens the O–H stretching band at 400°C 
and destroys it at 530°C (de Santana et al. 2006; Berna et al. 
2007). Whilst the destruction of the structure of other clay 
minerals, such as smectite and illite, occurs gradually, the 
loss of structural water from kaolinite is more abrupt (Berna 
et al. 2007). This tends to form a broad band centred at 
~3450 cm−1, typical of metakaolinite, suggesting that tem
peratures could have been greater than 530°C during this 
fire. There is no obvious decrease in peak height for identi
fied fire layers at any other site. Alternatively, there may be 
a delay in kaolinite deposition at the surface of the profile. 
Organic matter may be lost by the volatilisation and con
vective processes of the fire, whilst inorganic matter is more 
commonly transported by channel erosion and increased 
runoff (Shakesby and Doerr 2006). However, this seems 
less likely given that major rainfall events occurred in 
short succession following the 2019–2020 bushfires, provid
ing an opportunity for the erosion of kaolinite. 

Clay content can also be reflected in the peaks at 
1100–1000 cm−1. Si–O stretching vibrations create peaks 
in this range (Haberhauer et al. 1998; Krull et al. 2004). 
However, it is important to note that polysaccharides are 
also visible in this region, with C–O groups attributed to the 
band at 1036 cm−1 (Haberhauer et al. 1998; Krull et al. 
2004; Nguyen et al. 2008). This band represents a range of 
peak absorption between the four sites. Given that organic 
matter predominates within these swamps, absorption relat
ing to polysaccharides is likely to contribute more to this 
band; however, Si–O absorption of clays cannot be 
ruled out. 

The Si–O peaks attributed to quartz are absorbed across 
several bands. The most prominent is the doublet at 778 and 
798 cm−1 associated with SiO4 symmetric stretching; how
ever, Si–O–Si bending transitions are also absorbed at 698 
cm−1 and antisymmetric SiO4 stretching to 1084 cm−1 

(Dlapa et al. 2013; Aldeias et al. 2016; Hahn et al. 2018). 
There is a large variation in quartz absorption across all sites. 
CS-01 has the lowest peak absorption across all samples. 
TS-01 and UBS-01 show no significant trend with depth. 
However, LS-02 highlights a significant increase in quartz 
absorption at 14–21 cm. This suggests a possible in-wash 
event, depositing coarser-grained material at these depths. 

Peaks attributed to organic materials can also reflect the 
temperature and characteristics of the fire. The structural 
units of lignin may be responsible for the observed bands at 
1440 cm−1 (aromatic C=C stretching) and 1375 cm−1 

(O–H bending of phenols) (Keiluweit et al. 2010). Lignin 
begins to break down at temperatures of 160–300°C 
(Keiluweit et al. 2010; Dorez et al. 2014; Mastrolonardo 
et al. 2015b; El Atfy et al. 2017). Heating to these relatively 
low temperatures alters the distribution of phenols, but the 
majority of the structure will remain unaltered 
(Mastrolonardo et al. 2015b). Above 500°C, the degree of 
condensation is increased, and lignin is destroyed at around 
900°C (Keiluweit et al. 2010; El Atfy et al. 2017). While the 
TS-01 and UBS-01 sites show no significant trend, the LS-02 
site shows a lower peak height in the band ascribed to lignin 
for samples with higher inorganic absorption. CS-01 shows 
relatively similar peak height across all samples, except 
those affected by fire. There is a slight decrease in peak 
height associated with the 1887 (+66/–170) CE fire layer, 
but the sediments associated with the 2019–2020 fire 
show no absorption in this band at all, suggesting that the 
temperature of the 2019–20 fires could have been in excess 
of 900°C in the catchment area of the sediment core. 
Alternatively, this reduction in peak height may have resulted 
from a longer heating duration during the 2019–2020 
bushfire. Longer heating durations increase the tempera
ture of the surface soils and bark, allowing increased heat 
transfer compared to a faster-moving fire (Aldeias et al. 
2016), thus resulting in a similar change observed in the 
FTIR spectra. 

Conclusions 

We aimed to assess how the C and N content, C/N ratio, and 
FTIR spectra of sediment deposits record past fire in the 
Upper Blue Mountains of New South Wales, Australia. All 
sites recovered sediments spanning the known fire history, 
and two sites (Corral Swamp and Urella Brook Swamp) 
extended several decades to centuries beyond. Peak area 
ratios of aromatic/aliphatic compounds were used as a 
proxy to identify sediments exposed to higher-intensity 
fire conditions. At least one high-intensity fire was identified 
in all four of the sites. The UBS-01 site showed a significant 
increase in the aromatic/aliphatic ratio at the surface com
pared with the two remaining fires identified at the site. An 
increased temperature or heating duration during the 
2019–20 bushfire compared with the fire event dated to 
1887 (+66/−170) CE was also shown by the elimination 
of the band ascribed to lignin at the CS-01 site. The C and N 
content and C/N ratio showed no consistent trend between 
sites, suggesting that these parameters are less effective at 
identifying fire events in this landscape. The resolution of 
the record was found to be a limitation at some sites, and 
some of the known fires had not yet been deposited within 
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the record, suggesting possible storage on the hillslope. 
While more data are needed to more confidently discern 
trends in past fire intensity, these results show a promising 
extension of the existing fire record. 

Supplementary material 

Supplementary material is available online. 
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