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Abstract 11 

Accurate classification of Movement Impairment (MI) and Motor Control Impairment (MCI) in non-specific low back pain 12 
(NSLBP) is essential for targeted rehabilitation but remains challenging due to subjective assessments and subtle movement 13 
differences. We present MOVEXor, a lightweight and explainable multi-modal framework that integrates spinal curvature images 14 
and motion-derived features through a modality-aware attention gating mechanism. MOVEXor achieves high classification 15 
performance (up to 97.5% accuracy) while offering transparent decision-making via Grad-CAM and Integrated Gradients (IG). 16 
Our analysis shows that the model focuses on physiologically meaningful movement phases, particularly minimal flexion angle, 17 
and relies heavily on motion stability for classification. The fused attention-based design outperforms static fusion methods, 18 
especially when handling noisy inputs. With minimal hardware requirements and real-time explainability, MOVEXor holds strong 19 
potential as a clinical decision-support tool for both in-clinic and remote settings, enabling objective, interpretable, and personalised 20 
rehabilitation exercise of LBP subgroups. 21 
Keywords: Non-specific Low Back Pain (NSLBP); LBP Subgroups Classification; Explainable Artificial Intelligence (XAI); Multi-Modal 22 
Fusion; Motion Features Analysis. 23 

1. Introduction 24 

Low back pain (LBP) is the leading cause of disability worldwide, affecting up to 80% of individuals at some point 25 

in their lives and posing a major socioeconomic and healthcare burden globally [1]. Nearly 90% of LBP cases are 26 

categorised as non-specific low back pain (NSLBP), in which no clear anatomical or pathological cause can be 27 

identified [1]. Of all chronic pain conditions, it affects 37% of males and 44% of females in the UK. Within the 28 

National Health Service (NHS), more than £1000 million per year was spent in 1998 [5]. 29 

According to NICE guidelines [5], treatment for NSLBP emphasises exercise programmes tailored to patients' 30 

specific needs and abilities. To facilitate individualised care, a widely recognised Multidimensional Classification 31 

System (MDCS) categorises NSLBP into functional subgroups, notably including Movement Impairment (MI) and 32 

Motor Control Impairment (MCI). MI is typically characterised by reduced range of motion due to pain and avoidance 33 

behaviour, while MCI is characterised by unrestricted yet painful movement and pain-provoking behaviour [2].  34 

However, the complexity and heterogeneity of NSLBP, coupled with subtle differences between MI and MCI, and 35 

the subjectivity of clinical assessment, make accurate classification challenging. 36 

To improve objectivity and accuracy in LBP classification, recent research has explored the use of machine learning 37 

(ML) and computer vision techniques to automate assessment based on motion capture, video recordings, and patient-38 
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reported outcomes. Some research have employed kinematic features such as bending angles, angular velocity, and 39 

acceleration to classify LBP subtypes using feedforward neural networks [3]. Others have leveraged convolutional 40 

neural networks (CNNs) to analyse video frames of patients performing standard movement tasks [4]. While 41 

promising, these approaches often treat modalities independently or naively combine them, which may lead to 42 

suboptimal performance and poor model transparency. 43 

In this paper, to address the clinical challenge of distinguishing Movement Impairment (MI) from Motor Control 44 

Impairment (MCI) in NSLBP, we propose MOVEXor, a novel and lightweight Multi-modal Attention Gating (MAG) 45 

network. Our goal is to develop a model that not only improves classification accuracy but also maintains a lightweight 46 

architecture suitable for clinical deployment, while providing clinically meaningful explanations through 47 

explainability-enhancing mechanisms. 48 

Accurate classification between MI and MCI is crucial for guiding personalised rehabilitation strategies. However, 49 

existing approaches either rely on handcrafted features such as bending angles and patient-reported outcomes (PROMs) 50 

[7,8], or deep learning methods applied to video data [3,4], without effectively integrating multimodal cues. More 51 

critically, many models lack explainability, a key requirement in clinical contexts. 52 

We present a lightweight and accurate framework, MOXVEor, a novel multi-modal attention-gating network for 53 

classifying NSLBP subgroups. It distinguishes MI and MCI with up to 97.5% accuracy, while also delivering strong 54 

clinical explainability. Through integrated multiple explainability analysis approaches, our model offers clear and 55 

actionable explanations aligned with expert reasoning. 56 

2. Related Work 57 

Early computational methods focused on kinematic parameters such as flexion angles and posture transitions 58 

extracted via motion capture. Sheeran et al. [6] utilised 3D repositioning posture data with a Dempster–Shafer 59 

classifier to separate NSLBP subgroups. Others explored wearable sensors: Laird et al. [8] showed that lumbar-pelvic 60 

kinematics exhibit distinguishable subgroups in both healthy and LBP populations, while Bacon et al. [18] developed 61 

an LBP classifier using inertial measurement units (IMUs). 62 

In recent years, researchers used machine learning to classify MI/MCI using features such as lumbar acceleration, 63 

bending angle, and PROMs. For example, Hartley et al. [3] employed feedforward neural networks on PROMs with 64 

some success. However, these models are often limited by unimodal inputs and lack explainability, making clinical 65 

trust difficult to establish. 66 

Video-based deep learning has emerged as a promising approach to assess functional movement. Liu et al. [4] 67 

proposed SpineSighter, a CNN model classifying spinal function from video. Hartley et al. [3] demonstrated that 68 

combining video data with PROMs can significantly improve MI/MCI classification performance. Nonetheless, this 69 

research still treated modalities independently or via simple concatenation, without a learnable fusion mechanism or 70 

detailed explainability framework. 71 

Multi-modal learning integrates heterogeneous information—such as vision, kinematics, and clinical scores—72 

allowing models to leverage their complementary strengths. While prior works have used naive concatenation or early 73 

fusion, adaptive fusion mechanisms that dynamically weigh each modality based on its relevance to the task are still 74 

underexplored in LBP research. Attention-based fusion, in particular, has shown strong potential to dynamically 75 

weight informative modalities [19]. For medical explainability, Grad-CAM [9] and Integrated Gradients (IG) [10] are 76 

widely adopted for visualising CNN activations and feature contributions, respectively. 77 

However, previous studies either used unimodal data or simple fusion techniques and often lacked interpretability, 78 

and few studies fuse visual and feature-based interpretations into a unified visualisation space, whereas our work 79 

introduces a dynamically weighted multi-modal fusion with built-in explainability, which has not been explored in 80 

NSLBP classification before. 81 

To this end, our study introduces MOVEXor, a lightweight, dynamically gated multimodal architecture that fuses 82 

CNN-based visual features (spinal curvature features) with motion features and PROMs. Unlike static methods, 83 

MOVEXor learns modality relevance on the fly, improving robustness to noisy or less informative inputs. 84 

Compared with prior works, our framework emphasises not only classification accuracy but also explainability, 85 

clinical relevance, and efficiency, making it more suitable for deployment in real-world healthcare environments. 86 
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3. Dataset 87 

This study used a previously described dataset of 83 patients with NSLBP (42 MI, 41 MCI, 47 females, mean age 88 

44.7 years [SD=11.8, Range 22-76 years old]; height 170 cm [SD=9.9cm, Range 153cm-188cm]; mass 81.3kg 89 

[SD=16.7kg, Range 46kg-123kg]) [6], including motion data from a range of spinal functional assessment tasks that 90 

were classified according to consensus between two clinical experts [3]. These assessments included spine flexion, 91 

extension, side flexion, along with functional tasks like sit-to-stand, squat and both upright and slouched sitting 92 

postures, and were recorded using ViconTM (Vicon, Oxford Metrics, UK), inertial measurement units (Xsens MVN, 93 

Xsens Technologies B.V., Netherlands), and videos (GoPro HERO, GoPro Inc., USA). Details of the specific exercise 94 

procedures, monitoring device parameters, participant demographics, and pain duration, as well as pretreatment steps, 95 

can be found in a previous publication [6]. 96 

The dataset also includes patient-reported outcomes (PROMs) that quantify LBP-related measures such as pain 97 

intensity, disability, and fear of movement, all of which have been fully described previously [3]. 98 

Because spinal flexion had the highest expert consensus (98%) for the classification of MI/MCI [3], this study 99 

focused on automatically classifying NSLBP patients by analysing their performance in spinal flexion. Two examples 100 

of MI and MCI patients are shown in Fig. 1. 101 

        102 
(a)                                          (b)  103 

Fig. 1. Patients with NSLBP. (a) MCI and (b) MI. 104 

4. Method 105 

4.1. Overview 106 

Our framework classifies NSLBP patients into Movement Impairment (MI) and Motor Control Impairment (MCI) 107 

using multi-modal features derived from spinal curvature images, flexion movement, and patient-reported outcomes 108 

(PROMs). The overall approach consists of three main stages: (1) feature extraction from flexion videos and PROMs; 109 

(2) representation learning using a lightweight ResNet-18 for image encoding and feedforward layers for 110 

motion/PROM features; and (3) multi-modal attention gating, which adaptively fuses modalities based on their per-111 

sample importance. To enhance transparency, we integrate Grad-CAM and Integrated Gradients (IG) for spatial and 112 

feature-level explanation. The following subsections detail each component. 113 

4.2. Feature Extraction 114 

We first performed feature extraction on the patient's spinal flexion video, including spinal curvature and motion 115 

feature. These features are used for MI/MCI classification, which have been shown to be effective for NSLBP-related 116 

classification [3, 4]. 117 

Individuals were side facing the camera while performing a forward flexion test, as shown in Fig. 2. We extracted 118 

these features from the video through human pose estimation (HPE) and represented them as mathematical features 119 

related to the spinal curvature angle (‘𝜃’ in Fig. 2), which was calculated using the formula below: 120 

  𝜃 =  
 cos−1(ℎ𝑛2 +𝑎ℎ2 −𝑎𝑛2)

2 ⋅ (ℎ𝑛 ⋅𝑎ℎ)
                                                (1) 121 
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where cos−1 is Inverse function of cosine function, ℎ𝑛 is the line from hip to neck, 𝑎ℎ is the line from ankle to hip, 122 

𝑎𝑛 is the line from hip to neck. 123 

 124 
Fig. 2. Patients marked by Human Pose Estimation (HPE) model. 125 

After obtaining the values of angle 𝜃 throughout the video, we calculated velocity and acceleration by taking the 126 

first and second derivatives, respectively. Then the motion features such as the mean, range, minimum, maximum, 127 

variance, standard deviation, stability time, depth variance, and repetition time variance of the angle θ, velocity and 128 

acceleration were calculated following the method described in detail in previous research [4]. 129 

Spinal curvature features are often used by physiotherapists when classifying NSLBP patients into different 130 

subgroups [2]. In this work, HPE and human instance segmentation (HIS) were used together to track and segment 131 

the human figure in the video. Once the patient reached a certain angle (from 100° to 180°, with an interval of 5°), a 132 

large number of masks that only reflect the back curvature were obtained by automatic cropping the human figure to 133 

represent the spinal curvature features. The bending masks of MI and MCI are shown in Fig. 3. 134 

 135 
Fig. 3. The extracted masks of the back curve of all patients for the forward bending angle is 135°. The left group is MCI, another is MI. 136 

4.3. MOVEXor Design 137 

The MOVEXor framework shown in Fig. 4 is proposed to classify NSLBP patients into MI and MCI subgroups 138 

and perform explainability analysis. MOVEXor integrates multimodal features, namely spinal curvature features, 139 

motion features, and patient-reported outcome measures (PROMs). MOVEXor consists of three parallel data streams, 140 

namely the visual backbone for spinal curvature features, the motion feature encoder, and the PROM encoder. The 141 

visual backbone is used for spinal curvature features, while the motion and PROMs features are processed by their 142 

respective encoders and finally fused through a multi-modal attention gating (MAG) module.  143 

For motion and PROMs features, each type of feature (e.g., angle) are passed through a BatchNorm layer, a linear 144 

layer, a LeakyReLU activation layer, and a dropout layer to normalize and project it into a shared embedding space. 145 

The purpose is to enhance feature stability, mitigate overfitting, and facilitate effective integration with visual features 146 

in later fusion stages. 147 

The visual backbone is based on a ResNet-18 [11] pretrained on ImageNet to extract high-level back curvature 148 

features from each back mask to extract deep spatial features that capture curvature and postural pattern. The final 149 

classification layer is removed and global average pooling is applied to each mask. Each input mask is passed through 150 

the convolutional layers, and the resulting frame-level feature vectors are aggregated via a temporal average pooling 151 

operation. This enables the model to focus on back-related shape patterns, while keeping the visual representation 152 

compact and informative. ResNet-18 was selected due to its favorable balance between representational power and 153 

computational efficiency, which is particularly suitable for our limited dataset size. Deeper networks such as ResNet-154 
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50 did not show significant performance improvement in preliminary tests and risk overfitting in small-sample clinical 155 

data 156 

The above three streams yield compact representations of the entire movement. To support flexible multi-modal 157 

integration, we introduce a multi-modal attention gating (MAG) mechanism that dynamically assigns weights to the 158 

spinal curvature and motion representations before concatenation and final prediction: 159 

𝛼image , 𝛼motion, 𝛼PROMs = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊[𝑓
image

||𝑓
motion

||𝑓
PROMs

])                                       (2) 160 

where fimage, fmotion and fPROMs are intermediate features from image and handcrafted streams.  161 

The fused representation is then computed as: 162 

𝑓
fused

= 𝛼image · 𝑓
image

+ 𝛼motion · 𝑓
motion

 + 𝛼PROMs · 𝑓
PROMs

                                         (3) 163 

The MAG module allows the network to learn the relative importance of visual versus motion inputs on a per-164 

patient basis, effectively focusing on the more informative modality. This dynamic weighting improves robustness to 165 

noise (e.g., inconsistent motion capture or video quality) and was found to boost classification accuracy (see Table 2, 166 

Table 3 and Fig. 5) compared to static fusion (e.g., simple concatenation of features). 167 

This fusion strategy allowed MOVEXor to adaptively focus on the most informative modality per sample. 168 

 169 

 170 
Fig. 4. MOVEXor framework 171 

4.4. Evaluation 172 

The proposed strategy is aimed at evaluation of the effectiveness of the MOVEXor in distinguishing MI/MCI 173 

subgroups in NSLBP patients using multi-modal features. The importance of combining spinal curvature features with 174 

other different types of features was also evaluated.  175 

The model’s generalisability was evaluated using 5-fold cross validation, which was a technique that maximises 176 

the use of model training data while ensuring model reliability and generalisation ability [12]. The data was divided 177 

into five equal parts, four of which were used for training and one for testing, and so on until each part was used as a 178 

test set. Finally, we took the average of the five tests. The averaged evaluation metrics included accuracy, sensitivity, 179 

specificity, and the F1 score. The detailed calculation methods of these indicators refer to previous study [4]. 180 

4.5. Explainability 181 

To improve transparency and trust, we adopted Grad-CAM [9] to identify spatially salient regions in video frames 182 

(including top-ranked informative frames) and IG [10] to quantify feature-wise importance within the input from 183 

feedforward stream (e.g., ranking top-k features). 184 

4.6. Implementation details 185 

The proposed model was trained for classifying MI/MCI based on multi-modal features using a NVIDIA 4090 186 

GPU. Binary cross-entropy loss was used as the loss function. Key training hyperparameters are shown in Table 1. 187 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5263461

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 

   

 

Table 1 – Hyperparameters 188 

Optimizer Adam 

Learning Rate: 1e-4 

Batch Size 16 

Epoch 200 

Number of Mask per patient 640 
Key: Optimizer means the optimization algorithm; Learning Rate means the step size for updating model parameters. Batch Size: The number of 189 
samples processed before the model is updated. Epoch: One full pass through the entire training dataset. Number of Masks per Patient: The total 190 
number of masks selected for each patient during training and evaluation. 191 

5. Results 192 

5.1. Classification Performance 193 

In this section, Table 2 shows the classification performance results obtained by the MOVEXor classification 194 

framework using different feature combinations. 195 

Table 2 – Classification performance with multi-modal attention gating attention. 196 

Feature Accuracy Sensitivity (LF) Specificity 
(HF) 

F1 Score 

640 Images + Angle 97.50% 97.50% 98.00% 0.9777 

640 Images + Velocity 94.12% 100.0% 90.00% 0.9474 

640 Images + Acceleration 

640 Images + PROMs 

93.75% 

93.75% 

100.0% 

87.50% 

87.50% 

100.0% 

0.9412 

0.9333 

The classification performance of the proposed MOVEXor model under various feature combinations is presented 197 

in Table 2. Overall, the combination of spinal curvature features (640 back mask images achieved the best results in 198 

the pre-experiment) with the bending angle achieved the best results, with an accuracy of 97.5%, sensitivity of 97.5%, 199 

specificity of 98.0%, and an F1 score of 0.978. This suggests that the bending angle is a highly discriminative feature 200 

for classifying movement impairment (MI) from motor control impairment (MCI). 201 

In contrast, other speed-related features, such as combining “Images” with “Velocity” or “Acceleration”, performed 202 

relatively poorly in accurately identifying MI/MCI, resulting in lower overall accuracy and F1 scores. This suggests 203 

that “speed” may have limited impact on classification, or even have a negative effect as the features become higher-204 

order as shown in Table 2. 205 

Table 3 – Classification Performance without multi-modal attention gating network. 206 

Feature Accuracy Sensitivity (LF) Specificity 
(HF) 

F1 Score 

640 Images + Angle 86.77% 83.62% 91.50% 0.8717 

640 Images + Velocity 82.06% 76.20% 89.50% 0.8299 

640 Images + Acceleration 

640 Images + PROMs 

84.34% 

81.91% 

83.59% 

81.67% 

85.33% 

80.83% 

0.8351 

0.8180 

To further assess the effect of the multi-modal attention gating (MAG) mechanism, we conducted an ablation study 207 

by disabling attention and fusing features via static concatenation. In this case, classification performance dropped 208 

across all settings. For example, the image + angle fusion without MAG achieved only 86.8% accuracy (F1 0.872), 209 

indicating that MAG plays a critical role in adaptively prioritising the most informative modality. The drop was more 210 

pronounced in configurations involving noisier features like velocity or acceleration, further reinforcing that static 211 

fusion is insufficient for NSLBP classification. The results of a direct comparison on “640 Images + Angle” between 212 

the two are shown in Table 3 and Fig. 5. 213 
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 214 
Fig. 5. Radar chart comparing classification performance across feature combinations, showing consistent improvements with MAG, 215 

especially for image + angle fusion. 216 

These findings demonstrate two key insights: (1) among motion-derived metrics, bending angle consistently 217 

contributes the most reliable information for MI/MCI classification; and (2) the multi-modal attention gating (MAG) 218 

mechanism substantially improves model performance by dynamically weighting features on a per-case basis. 219 

5.2. Explainability Results 220 

A major strength of MOVEXor lies in its explainable design, combining Grad-CAM and IG. These provide 221 

comprehensive, multi-level insight into the model’s decision process. 222 

(1) Local Explainability 223 

                                 224 

                                                             (a)                                                               (b) 225 

Fig. 6. (a) max Grad-CAM, (b) min Grad-CAM 226 

As shown in Fig. 6, the Grad-CAM heatmap consistently highlights the thoraco-lumbar spine region during key 227 

motion phases. Attention usually peaks at the frames at the extremes of flexion (Fig. 6-a), and is lowest at the bottom 228 

of stance (Fig. 6-b).  229 

IG further complements local explainability on one LBP individual by ranking the motion features for each case. 230 

This confirms that MOVEXor is still heavily influenced by a single dominant feature even when all features are in 231 

effect. As shown in Fig. 7-a, in this case, F2 (Minimal full spine flexion angle) ends to decrease the probability of 232 

predicting the positive class, whereas F5 (Repetition Time) is the most influential feature that enhances classification 233 

accuracy. 234 

(2) Global Explainability 235 

We conducted a global explainability analysis on our dataset using Integrated Gradients (IG) to identify which 236 

motion features contributed most to classification decisions. As shown in Fig. 7-b, F2 (Minimal flexion angle) 237 

exhibited the strongest and most consistent positive attribution, indicating that patients with more limited flexion were 238 

more likely to be classified as MI. Red points on the right side of F2 reflect high feature values driving MI predictions, 239 

consistent with clinical reasoning. 240 

In Fig. 7-c, the average IG attribution across all samples again highlights F2 as the most dominant feature, with F8 241 

(Motion Stability) also showing moderate contributions. These results suggest that while range of motion is the 242 
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primary factor, temporal and control-related features also influence decisions—especially in identifying MCI patterns. 243 

Overall, MOVEXor’s behaviour aligns well with clinical expectations in NSLBP subgroup classification. 244 

As shown in Fig. 8 and Fig. 9, global Grad-CAM analysis shows that Max CAM activations frequently occurred 245 

at bending angles between 100°–145° and during mid-to-late frames of the flexion task (frame indices 200–800). In 246 

contrast, Min CAM activations were often found at full flexion angles (170°–185°) and later frames. These results 247 

indicate that the model consistently focuses on key movement phases that differentiate MI and MCI, particularly 248 

limited or excessive bending patterns. 249 

 250 

 251 

   252 
(a)                                                                                                           (b) 253 

 254 
 255 

(c) 256 
Fig. 7. Integrated Gradients (IG) analysis. (a) Integrated Gradients analysis, (b)Global IG Summary Scatter, (c)Global IG Importance bar chart. 257 

Key: F0 – Variance, F1 – Standard Deviation (SD), F2 – Minimal (full spine flexion angle), F3 – Range, F4 – Maximal (spine standing angle), F5 258 
– Repetition Time Mean (RTM), F6 – Repetition Time Variance (RTV), F7 – Depth Variance (DV), F8 – Motion Stability (MS) 259 

 260 
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 261 
Fig. 8. Statistical analysis for max/min CAM angle 262 

 263 
Fig. 9. Statistical analysis for max/min CAM frame 264 

6. Discussion 265 

6.1. Classification Performance 266 

The results indicate that MOVEXor achieved high accuracy in classifying MI and MCI subgroups of NSLBP 267 

patients, with especially strong performance when combining image features with bending angle. This reinforces the 268 

clinical understanding that range of motion is a fundamental differentiator between these subtypes [2]. 269 

Importantly, the ablation results show that removing the attention mechanism (MAG) significantly impairs 270 

performance. This highlights that adaptive fusion is essential for handling patient variability. For example, some MI 271 

patients may exhibit clear visual stiffness, while others present more ambiguous patterns. A fixed fusion strategy 272 

treats all inputs equally, potentially diluting salient signals. In contrast, our MAG allows the model to dynamically 273 

prioritise modalities per individual—enhancing both robustness and explainability. 274 

Our findings are consistent with, and extend upon, recent work [4], which demonstrated that motion-based features, 275 

particularly sagittal range of motion, were among the most informative for differentiating MI/MCI. Our MOVEXor, 276 

combines spinal curvature and motion features and achieves a higher performance (97.5% accuracy) with greater 277 

clinical feasibility. 278 

Interestingly, adding velocity or acceleration features did not improve classification. This might be due to their 279 

greater variability and susceptibility to noise from pose estimation, especially in videos without marker-based tracking 280 

[13]. Moreover, high-order motion features may not consistently reflect subgroup-defining impairments. Velocity 281 

fluctuations may occur in both MI (due to hesitancy) and MCI (due to poor control), making them less discriminative. 282 

This observation is aligned with earlier findings that qualitative movement quality—rather than just kinematic 283 

quantity—is critical in NSLBP classification [2,14]. 284 
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6.2. Explainability 285 

A major strength of MOVEXor lies in the inclusion of the attention mechanism, which introduces flexibility in 286 

choosing feature importance. Additionally, combining Grad-CAM and provide comprehensive, multi-level insights 287 

into the model’s decision-making process, opening up the black box and having great significance in actual clinical 288 

applications. 289 

As shown in Fig. 6, Grad-CAM heatmaps consistently highlight the thoraco-lumbar region indicating that the model 290 

systematically attends to those anatomically relevant areas during the spinal flexion movement for classification. This 291 

is in line with previous research demonstrating distinct differences in lower thoracic and upper lumbar region across 292 

NSLBP subgroups [15]. The model’s consistent focus on the thoraco-lumbar spine suggests that MOVEXor identifies 293 

motion-relevant regions in a physiologically meaningful way, aligning with prior findings that NSLBP patients exhibit 294 

altered movement coordination and segmental spinal control in the lumbar region [14,15].  295 

In contrast, Fig. 6-b shows the same patient in a standing position, where Grad-CAM activations are markedly 296 

reduced. This reflects the model's ability to suppress attention when motion-related visual cues are minimal, aligning 297 

with clinical logic that neutral postures provide little discriminative information. The sharp contrast between activation 298 

levels in dynamic versus static phases reinforces that MOVEXor focuses on functional movement behaviour, rather 299 

than irrelevant static features, further enhancing its clinical explainability. 300 

For global feature importance, as illustrated in Fig. 7, we analysed IG attributions across all patients. The minimal 301 

value exhibited the highest average IG value and largest variance, suggesting that it consistently played a significant 302 

role in the classification decision. Other angle-related features (e.g., motion stability, repetition time mean) also 303 

showed moderate contributions. This observation supports the view that the range of motion is the main discriminant 304 

factor, while supplementary features such as angular change or timing can also influence the decision process [2,3,14]. 305 

Further, we analysed the angle and frame index distributions where Grad-CAM activations reached their maximum 306 

and minimum, as shown in Fig. 8 and Fig. 9. Max-CAM activation occurred most frequently at maximum and mid-307 

flexion angles (100°-145°) and mid-to-late frame indices (200-800), consistent with clinical times when the end range 308 

is reached or close to it. In contrast, Min-CAM activation clustered around full flexion angles (170°-185°) and late 309 

frames, suggesting that the model is finding less discriminative visual information when the patient is already fully 310 

upright. These distributions verify that the model’s attention is not random but rather aligns with clinically meaningful 311 

stages of movement [16]. 312 

6.3. Clinical Implications 313 

MOVEXor offers practical value as a decision-support tool in clinical practice, where MI/MCI classification is 314 

often subjective and its accuracy is dependent on physiotherapists’ level of training and experience [20]. By providing 315 

objective, reproducible predictions from a simple side-view video, the system can assist both less experienced 316 

clinicians and telehealth scenarios [20]. 317 

In addition, the explainability outputs (IG table and Grad-CAM heatmap) also enhance patient and clinician trust—318 

for example, showing the frame where motion stops early can help understanding patients’ limitations and track 319 

improvement over time. Furthermore, modality-specific attributions can guide personalised exercise. Its lightweight 320 

architecture supports seamless integration into clinical workflows or even phone-based assessments. 321 

6.4. Limitations 322 

This study has several limitations. First, the sample size (n = 83) limits its generalisability; future studies should 323 

include larger and more diverse cohorts (potentially several hundred) to robustly balidate the model’s performance. 324 

Second, although the forward bending task was the most recognised task in classifying MI/MCI, the role of other 325 

functional tasks may have been overlooked. 326 

6.5. Future Work 327 

Future research will extend MOVEXor in multiple directions. Our goal is to develop a multi-task model that 328 

supports classification across multiple NSLBP subgroups (e.g., flexion vs. extension patterns MCI). In addition, there 329 

is potential in using time-series-based modeling of input frames to enhance the impact of time and improve sensitivity 330 

to motion coordination. Beyond low back pain, there is also potential to explore MOVEXor in other musculoskeletal 331 
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health conditions affecting the spine (e.g., scoliosis, spinal stenosis) and the hip (e.g., femoroacetabular impingement, 332 

hip osteoarthritis), broadening its clinical applicability. On the clinical side, MOVEXor could be integrated into 333 

deployable device and evaluated for its impact on treatment planning and patient outcomes.  334 

7. Conclusion 335 

In this study, we proposed MOVEXor, a lightweight and explainable multi-modal framework for classifying 336 

NSLBP patients into movement impairment (MI) and motor control impairment (MCI). By integrating visual features 337 

from video with motion features through a modality-aware attention gating mechanism, MOVEXor achieved high 338 

classification accuracy while offering clinically meaningful explanations via Grad-CAM and Integrated Gradients 339 

(IG). Our analysis demonstrates that the model focuses on physiologically relevant phases and features, particularly 340 

range of motion, and adapted its modality reliance per patient. With minimal input requirements and strong 341 

explainability, MOVEXor holds promise as a practical, trustworthy tool for supporting clinical decision-making, 342 

personalised rehabilitation planning, and patient engagement in both in-clinic and remote care contexts. 343 
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