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1 Introduction and summary

The primary fields of two-dimensional rational conformal field theories (RCFTs) assemble
themselves into finitely many blocks of a symmetry algebra. For two-dimensional minimal
model conformal field theories (CFTs) this symmetry algebra is the Virasoro algebra and
these minimal models consist of finitely many primary fields. More general RCFTs possess
infinitely many primary fields that assemble themselves into a finite number of blocks with
respect to the extended chiral algebra of the CFT.1

For a given continuous family of two-dimensional CFTs each member corresponds to
a point in the moduli space M of that family of theories. A natural question to ask is
which members of this family furnish RCFTs or more generally what is the set R of RCFTs
and its properties in the moduli space M? An important property for a given family of
two-dimensional conformal fields theories is whether the set R is dense in M [5–12], because
the denseness of the set R would imply that any CFT in M can be approximated arbitrarily
well in terms of a RCFT from the set R.

Determining the set R of RCFTs for a given family M of two-dimensional CFTs is in
general a difficult question to answer [5, 8, 10–12]. For families M of toroidal CFTs, which
are free two-dimensional CFTs of scalar fields that parametrize a toroidal target space T N ,
rationality can be checked explicitly and therefore the set R of RCFTs is known [6, 7, 13].
Furthermore, the set R is dense in the moduli space M of toroidal CFTs [5–7].

1For a review on RCFTs and their properties, see for instance refs. [1–4].
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For families M of two-dimensional CFTs that are more general than toroidal CFTs —
such as families of infrared fixed-points of two-dimensional non-linear sigma models with
Ricci-flat target spaces and supersymmetric extensions thereof — not much is known about
the set R of RCFTs [8, 10–12]. For instance, the question about the denseness of RCFTs in
the moduli spaces M is not answered in general. Nevertheless, some of the two-dimensional
CFTs have submoduli spaces that are described by orbifolds or orientifolds of two-dimensional
toroidal CFTs [6, 14–20]. Along such subfamilies the rationality is readily determined from
the unorbifolded family of toroidal CFTs. From such subfamiles one can hope to infer
properties of RCFTs even in the large family M of CFTs, for instance by applying methods
of conformal perturbation theory [10, 21, 22].

Prominent examples of families of two-dimensional CFTs with subfamilies of orbifolds of
toroidal CFTs arise from (supersymmetric extensions of) two-dimensional non-linear sigma
models with polarized K3 surfaces or higher dimensional Calabi-Yau manifolds as their
target spaces [16, 17, 19, 20]. Due to the even-dimensionality of Calabi-Yau manifolds,
the orbifold toroidal subfamilies also arise from even-dimensional target space tori. Less
studied examples are families of non-linear sigma models with seven-dimensional G2-target
spaces [23, 24]. As moduli spaces of G2-manifolds are less understood than moduli spaces of
Calabi-Yau manifolds, families of two-dimensional CFTs based on non-linear sigma models
with G2-target space manifolds are even more challenging to explore. Nevertheless, there
are also examples of families of G2-manifolds with orbifolds of seven-dimensional tori T 7 as
submoduli spaces [25–27]. In the associated family M of two-dimensional CFTs along the
sublocus of orbifolds of T 7, rationality can again be deduced from the rationality of toroidal
CFTs with seven-dimensional toroidal target spaces.

The aim of this note is to describe rational toroidal CFTs explicitly by decomposing their
partition functions into finite sums of products of characters of certain minimal extensions
of the û(1) current algebras. For rational toroidal CFTs with target space tori T D, D > 1,
such a decomposition is finer than the decomposition into characters with respect to their
whole extended chiral algebra, but it is not unique. As explained in the main text, the
decomposition depends on a choice of sublattice of the even self-dual lattice ΓD,D of signature
(D, D) of the CFT. While the decomposition of rational toroidal partition functions into
characters of their whole extended chiral algebra is well-studied (in particular in the context of
even-dimensional target space tori), the systematic decomposition into characters of minimal
extensions of û(1) current algebras is less explored in the literature.2 Our motivation for
considering such decompositions into blocks of extended û(1) current algebras is two-fold. On
the one hand, such minimal decompositions are universally applicable for target space tori of
any dimension, as long as the target space torus is related to a rational toroidal CFT. On
the other hand, as these decompositions do not rely on the symmetry of the entire extended
chiral algebra, such finer decompositions can be useful to explicitly describe specific orbifolds
or orientifold of such rational toroidal CFTs. We hope that the technical result of this short
note proves useful in testing some of the deeper questions about RCFTs.

The characters of the extension of the û(1) current algebras relevant for this work already
appear for the two-dimensional CFTs of a real free boson ϕ on a circle and are discussed in

2See ref. [28], where similar decompositions are considered in a different context.
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detail, for instance in refs. [1, 3, 4]. The partition function for this CFT reads3

ZS1(τ ;R) = 1
|η(τ)|2

∑
m,n∈Z

q
1
2 (

m
R
+Rn

2 )2
q̄

1
2 (

m
R
−Rn

2 )2
, q = e2πiτ , (1.1)

in terms of the modular parameter τ in the Siegel upper half plane, the Dedekind eta function
η(τ), and the radius R of the circle S1. It is well known that for the radius R =

√
2p′

p with
positive co-prime integers p and p′ the CFT is rational, because the û(1) current algebra of
the free boson generated by the chiral primary field ∂ϕ is extended by the primary fields
e±i

√
2pp′ϕ, see for instance refs. [1, 3]. Following ref. [1], we denote this extension of the

û(1) current algebra by û(1)pp′ , and we often refer to them as minimal extensions of the
û(1) current algebra. Then the partition function (1.1) simplifies to [1]

Zrat
S1 (τ ; p, p′) =

∑
λ∈{0,1,...,2pp′−1}

Kωλ,pp′(τ) Kλ,pp′(τ) , (1.2)

where ω = pr + p′s for a Bézout pair (r, s) obeying pr − p′s = 1. Furthermore, Kλ,α(τ) are
the irreducible characters of û(1)α defined for any positive integer α as

Kλ,α(τ) =
1

η(τ)
∑
n∈Z

q
(2αn+λ)2

4α , λ ∈ Z , (1.3)

with the symmetry properties

Kλ,α(τ) = Kλ+2α,α(τ) , Kλ,α(τ) = K−λ,α(τ) . (1.4)

The main result of this note concerns the decomposition of the partition function of
rational toroidal CFTs with a target space T D into the characters (1.3)

Zrat
T D(τ) =

∑
λ∈I

Kλ1,α1(τ) . . .KλD,αD
(τ) Kλ̃1,α̃1

(τ) . . .Kλ̃D,α̃D
(τ) , (1.5)

for suitable positive integers α1, . . . , αD, α̃1, . . . , α̃D and for a finite set I of 2D-tuples
(λ1, . . . , λD, λ̃1, . . . , λ̃D).

This decomposition (1.5) is based on the existence of an orthogonal (not necessarily
primitive) sublattice OL ⊕ OR of the even self-dual charge lattice ΓD,D of signature (D, D)
of the rational toroidal CFT with target space T D. We show that the summands in the
decomposition (1.5) are in one-to-one corresponds with the cosets of ΓD,D/OL ⊕ OR. As a
consequence there is always a universal summand in each expansion (1.5) that is attributed
to the sublattice OL ⊕ OR itself. We present a construction that explicitly determines such
expansions for any dimension D. As explained in the main text our construction amounts to
identifying a 2D-tuple of positive integers (α1, . . . , αD, α̃1, . . . , α̃D) and a 2D×2D-dimensional
integral matrix H from the partition function of the rational toroidal CFT with target space
T D. After determining the Hermite normal form of the matrix H — for which well-developed
algorithms are implemented in most computer algebra packages — we can unambiguously
read off the expansion (1.5). We illustrate our findings with explicit examples, which for

3In this note we use the convention α′ = 2.

– 3 –



J
H
E
P
0
7
(
2
0
2
4
)
1
8
7

ease of presentation we limit to rational toroidal CFTs with two- and three-dimensional
toroidal target spaces.

The structure of this work is as follows: in section 2 we introduce the partition functions
for toroidal CFTs with a D-dimensional target space T D, and we review the known criteria
for such theories to be rational. We show that the partition function of any rational toroidal
CFT can be decomposed into the form (1.5), and we compare this decomposition to the
decomposition into characters of the whole extended chiral algebra of rational toroidal CFTs.
In section 3 we present our construction to explicitly calculate the decomposition (1.5). For
ease of presentation we first focus on rational toroidal CFTs with target space T 2. We explain
that the derived construction for two-dimensional toroidal target spaces carries over — without
any further modification — to rational toroidal CFTs with target space T D for any dimension
D. In section 4 we present explicit examples of decompositions of rational toroidal partition
functions into the form (1.5) for two-dimensional and three-dimensional toroidal target spaces.

2 Rational toroidal conformal field theories

In this section we first review the partition functions of CFTs with toroidal target spaces T D

and the well-known conditions for them to be rational. In subsection 2.1 we show that the
rationality property allows us to rewrite the partition functions of these theories in a form
which admits an expansion into characters of û(1)α introduced in the introduction — see
eq. (1.3). In subsection 2.2 we compare the expansion into such characters with the more
conventional expansion into characters of the whole extended algebra of rational toroidal CFTs.

2.1 Rational toroidal conformal field theory partition functions

To set the stage let us introduce the partition function of toroidal CFT. Let us realize the
target space torus T D of such toroidal CFTs in terms of the quotient

T D ≃ RD/Λ , (2.1)

where Λ is a D-dimensional lattice in RD, which induces its pairing from the standard scalar
product of RD. The lattice Λ is referred to as the torus lattice, and we explicitly represent
it in terms of a D × D-matrix Λ, whose columns are the lattice generators. The partition
function of toroidal CFT with target space T D takes the well-known general form [4, 6, 29, 30]

ZT D(τ) =
1

|η(τ)|2D

∑
p=pL+pR∈ΓD,D

q
1
2 p2

L q̄
1
2 p2

R , q = e2πiτ . (2.2)

Here ΓD,D is the even self-dual lattice of signature (D, D) for the momenta p ∈ ΓD,D, which
decompose into left- and right-moving momenta as p = pL + pR. The toroidal CFT has an
infinite number of Virasoro primary fields, because each point in the lattice ΓD,D gives rise
to a Virasoro primary of conformal weight (hL, hR) = (p2

L
2 ,

p2
R
2 ). In addition to the target

space T D described in terms of the lattice Λ — encoding the metric G of the torus T D as
G = ΛT Λ — the toroidal CFT is entirely determined by a choice of anti-symmetric B-field
B̃. Following ref. [6], this data parametrizes the left-moving and right-moving momenta as

pL = 1√
2

(
µ − B̃λ + λ

)
, pR = 1√

2

(
µ − B̃λ − λ

)
, (2.3)
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with (µ, λ) ∈ Λ∗ ⊕ Λ in terms of the D-dimensional lattice Λ∗ dual to the D-dimensional
torus lattice Λ.

The toroidal CFT with target space T D and anti-symmetric tensor field B̃ is rational if
and only if all conformal weights (hL, hR) of the primary fields are rational [2, 6, 8, 13]. This
condition is equivalent to the requirement that the metric and the anti-symmetric B-field
represented in terms of the matrices G = ΛT Λ and B = ΛT B̃Λ are rational as well, namely

G ∈ SymD(Q) , B ∈ SkewD(Q) , (2.4)

where SymD(Q) and SkewD(Q) denote the spaces of symmetric and skew-symmetric D ×
D matrices with values in the rational numbers Q. As a result any partition function (2.2)
of a rational toroidal CFT has the general form

Zrat
T D(τ) =

1
|η(τ)|2D

∑
m,n∈ZD

D∏
i=1

q
1

4ai
(aT

i m+bT
i n)2 D∏

j=1
q̄

1
4ãj

(ãT
i m+b̃T

i n)2
, (2.5)

with integers ai, ãj ∈ Z>0 and integral vectors ai, ãj , bi, b̃j ∈ ZD for i, j = 1, . . . , D.
Another consequence of the rationality of the toroidal CFT is that the there is a sublattice

ΓL,0⊕Γ0,R of the even self-dual ΓD,D, where the summands ΓL,0 and Γ0,R are D-dimensional
even mutually orthogonal lattices of left- and right-moving momenta pL and pR, see for
instances refs. [6, 8]. Moreover, the lattices ΓL,0 and Γ0,R have sublattice OL and OR of
finite index respectively, which both have mutually orthogonal generators. We denote the
generators of OL and OR by o1, . . . , oD and õ1, . . . , õD, respectively. They all have an even
norm (length squared) due to the evenness of ΓD,D. We then arrive at the following hierarchy
of finite index sublattices

OL ⊕ OR ⊂ ΓL,0 ⊕ Γ0,R ⊂ ΓD,D . (2.6)

Restricting the summation in the partition function (2.5) to the sublattice OL ⊕ OR

yields the contribution

ZOL⊕OR

T D (τ) = 1
|η(τ)|2D

D∏
i=1

∑
k∈Z

qαik
2

∑
k∈Z

q̄α̃ik
2

 =
D∏

i=1
K0,αi(τ)K0,α̃i(τ) , (2.7)

where Kλ,α are the û(1)α characters (1.3) and αi := 1
2o2

i and α̃i := −1
2 õ2

i , i = 1, . . . , D,
are positive integers.

The remaining contributions to the partition function (2.5) arise from the lattice points
ΓD,D that do not reside in the sublattice OL ⊕ OR. Let n + 1 be the index of the sublattice
OL ⊕ OR embedded in ΓD,D, and let ρ1, . . . , ρn ∈ ΓD,D be n lattice vectors that represent,
together with a vector ρ0 ∈ OL ⊕ OR, the cosets of the quotient ΓD,D/OL ⊕ OR. Then any
lattice point p ∈ ΓD,D, p /∈ OL ⊕ OR, obeys p − ρa ∈ OL ⊕ OR for some a ∈ {1, . . . n}.
Furthermore, ρa has the following expansion in terms of the generators oi and õi

ρa = ρa,1o1 + . . . + ρa,non + ρ̃a,1õ1 + . . . + ρ̃a,nõn , a = 0, . . . , n , (2.8)

where the coefficients ρa,i and ρ̃a,i are rational numbers. Without loss of generality, we
can always assume that these coefficients reside in the interval [0, 1), because adding an
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integer to any of these coefficients does not change the equivalence class of ρa in the quotient
ΓD,D/OL ⊕ OR. Moreover, since ρa ∈ ΓD,D, the product of ρa with generators oi and õj

must be an integer. Thus, using o2
i = 2αi and õ2

i = −2α̃i, we obtain

ρaoi = 2ρa,iαi ∈ Z , ρ̃aoi = −2ρ̃a,iα̃i ∈ Z , (2.9)

which implies

ρa,i =
λa,i

2αi
with λa,i ∈ {0, . . . , 2αi − 1} ,

ρ̃a,i =
λ̃a,i

2α̃i
with λ̃a,i ∈ {0, . . . , 2α̃i − 1} .

(2.10)

As such, the D-dimensional vector (ρa,1, · · · , ρa,D) in the basis of oi is an element of O∗
L, and

likewise (ρ̃a,1, · · · , ρ̃a,D) ∈ O∗
R, where O∗

L and O∗
R are the dual lattices.

We now have all the ingredients at hand to rewrite the lattice sum in the partition
function (2.5). In addition to the contribution from the sublattice OL ⊕ OR (2.7), the
contribution from remaining lattice points in ΓD,D is obtained by summing over ρa+(OL⊕OR)
for all a = 1, . . . , n. All in all, we obtain

Zrat
T D(τ) = ZOL⊕OR

T D (τ) + 1
|η(τ)|2D

n∑
a=1

D∏
i=1

∑
k∈Z

q
αi

(
k+

λa,i
2αi

)2∑
k∈Z

q̄
α̃i

(
k+

λ̃a,i
2α̃i

)2
=

n∑
a=0

D∏
i=1

Kλa,i,αi
(τ)Kλ̃a,i,α̃i

(τ) .

(2.11)

This is indeed of the general form (1.5).
To summarize, in order to arrive at the expansion (2.11), we need to first determine the

generators oi and õi, i = 1, . . . , D, of the sublattice OL⊕OR. In the second step we determine
the lattice vectors ρa, a = 1, . . . , n. This data readily determines the expansion (2.11).
Note that the expression (2.11) is not unique because it depends on the choice of the
sublattice OL ⊕ OR, according to eq. (2.6). Different choices for OL ⊕ OR give rise to
different expansion (1.5) into distinct products of the characters (1.3) of extensions of û(1)
current algebra.

2.2 Comparison of extended chiral algebras of toroidal CFTs

As discussed in the previous subsection, a criterium for a toroidal CFT to be rational is
the existence of even D-dimensional lattices ΓL,0 and Γ0,R that are mutually orthogonal
such that the orthogonal sum ΓL,0 ⊕ Γ0,R is a sublattice of the even self-dual lattice ΓD,D.
Conversely, starting from the lattices ΓL,0 and Γ0,R, there is a procedure to reconstruct
the embedding self-dual lattice ΓD,D. This process is called gluing, and it is a well-known
lattice construction [31, 32].

In fact, the construction of ΓD,D may also be done through gluing primitive sublattices
ΓL,0 and Γ0,R = (ΓL,0)⊥ ∩ ΓD,D. On the level of the partition function this amounts to

Zrat
T D(τ) =

1
|η(τ)|2D

∑
vL+vR∈ΓG

∑
wL∈ΓL,0
wR∈Γ0,R

q
1
2 (wL+vL)2

q̄
1
2 (wR+vR)2

, (2.12)

– 6 –
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where the first sum is over a finite set ΓG ⊂ ΓD,D of glue vectors vL+vR that are decomposed
into the vectors vL ∈ Γ∗

L,0 and vR ∈ Γ∗
0,R.

We define the holomorphic and anti-holomorphic lattice theta functions for ΓL,0 and
Γ0,R as

ΘΓL,0
v (τ) = 1

η(τ)D

∑
wL∈ΓL,0

q
1
2 (wL+v)2

, ΘΓ0,R

v (τ̄) = 1
η(τ̄)D

∑
wR∈Γ0,R

q̄
1
2 (wR+v)2

. (2.13)

The partition function (2.12) then takes the form

Zrat
T D(τ) =

∑
vL+vR∈ΓG

ΘΓL,0
vL (τ)ΘΓ0,R

vR
(τ̄) . (2.14)

The lattice theta functions ΘΓL,0
vL and ΘΓ0,R

vR
are the characters of the extended chiral and

anti-chiral algebra of the rational toroidal CFT, respectively. The lattices ΓL,0 and Γ0,R are
the root lattices with respect to the extended chiral and anti-chiral algebras. The chiral
algebra associated to the lattice ΓL,0 is a W -algebra W(2, |κ1|2, . . . , |κD|2) labelled in terms
of the squares of the generators

√
2κi, i = 1, . . . , D, of the lattice ΓL,0, see for instance ref. [4].

Analogously, the characters of the anti-chiral W -algebra W(2, |κ̃1|2, . . . , |κ̃D|2) are associated
to the generators

√
2κ̃i, i = 1, . . . , D, of the Γ0,R lattice.

If the sublattice OL is isometric to ΓL,0, then the lattice generators
√
2κi can be identified

with the generators oi — see above eq. (2.6). In this case, the holomorphic characters of the
extended chiral algebra defined in eq. (2.13) factorize into the characters (1.3) of extensions
of the û(1) current algebra, namely

ΘOL
wL

(τ) =
D∏

i=1
Kλi,|κ2

i |
(τ) , (2.15)

where the labels λi are obtained from the expansion wL = 1
κ2

i
(λ1oi + . . . + λDoD). If in

addition the sublattice OR is isometric to Γ0,R, then our construction coincides with the
gluing construction [31, 32].

On the other hand, if the lattice OL is not isometric to the lattice ΓL,0, then the
holomorphic characters ΘΓL,0

wL (τ) do not decompose further into products of characters
Kλ,α(τ) of extended current algebras û(1)α, but instead become a sum of such products. In
this case the more general construction described in section 2.1 must be applied in order to
arrive at the decomposition (1.5) for the holomorhic part of the partition function. Similar
considerations apply to the anti-holomorhic sector.

From a geometric perspective, factorizations of the form (2.15) of the extended chiral
characters occur if the metric G of the target space torus T D is both rational and diagonal,
and if the B-field B vanishes. The torus T D is then a product S1 × . . . × S1 of D circles as
a Riemannian manifold, and Kλi,|κ2

i |
(τ) are the characters of the extended current algebra

û(1)|κ2
i |

associated to each rational circle S1. However, factorizations (2.15) can also accur
for more general target space tori and choices of the B-field.

– 7 –
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3 The decomposition construction

In this section we present an explicit construction to calculate the decomposition (2.11) of
the partition function of rational toroidal CFTs. After reviewing rational toroidal CFTs
with target space T 2 and their partition functions, we explicitly derive our construction
for rational toroidal CFTs with two-dimensional target space tori. However, the described
procedure works for any dimensions, and we show that the decomposition construction for
two-dimensional target space tori — without any further modification — carries over to
rational toroidal CFTs with target space tori of arbitrary dimension.

3.1 Rational conformal field theories with target space T 2

A toroidal CFT with target space T 2 is unambiguously determined by its complex structure
modulus u and complexified Kähler modulus t, which both take values in the Siegel upper
half space H = {z ∈ C | Im z > 0}, i.e.,

u, t ∈ H . (3.1)

In terms of these moduli the metric G and the skew-symmetric B-field B of the target
space torus T 2 read

G = 2t2
u2

(
1 u1
u1 |u|2

)
, B = 2

(
0 t1

−t1 0

)
, (3.2)

where u1 = Reu, u2 = Im u, t1 = Re t, and t2 = Im t. Furthermore, the squares of the right-
and left-moving momenta pL and pR are given by (e.g., ref. [30])

p2
L = 1

2t2u2
|m2 − um1 + t̄(n1 + un2)|2 , p2

R = 1
2t2u2

|m2 − um1 + t(n1 + un2)|2 . (3.3)

Here the lattice quantum numbers m = (m1, m2) ∈ Z2 and n = (n1, n2) ∈ Z2 entering
p2

L and p2
R determine the partition function ZT 2(τ ;u, t), which with eq. (2.2) becomes a

function of u and t.
The toroidal CFT with target space T 2 is rational, if the metric G and the B-field B

are rational, cf., eq. (2.4). From eq. (3.2) it is straight forward to see that this implies that
both complex structure modulus u and the complexified Kähler modulus t take values in a
quadratic algebraic number field Q(

√
−D) for some positive square-free integer D [2, 6, 7].

That is to say, altogether with eq. (3.1) we have

u = a + b
√
−D , t = c + d

√
−D ,

a, c ∈ Q, b, d ∈ Q>0, D ∈ Z>0 and D square-free ,
(3.4)

which geometrically implies that both the complex structure modulus u and the complexified
Kähler modulus ρ describe a torus of complex multiplication.

Inserting the expression (3.4) into eq. (3.3), we find

p2
L = (−am1 + m2 + cn1 + (ac + Dbd)n2)2

2bdD
+ (bm1 + dn1 + (ad − bc)n2)2

2bd
,

p2
R = (−am1 + m2 + cn1 + (ac − Dbd)n2)2

2bdD
+ (−bm1 + dn1 + (bc + ad)n2)2

2bd
,

(3.5)
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which — by multiplying the numerators and denominators of the summands of these rational
expressions with the smallest common denominators — can be rewritten into

p2
L =

(
aT
1 m + bT

1 n
)2

2a1
+

(
aT
2 m + bT

2 n
)2

2a2
, ai ∈ Z>0 , ai, bi ∈ Z2 ,

p2
R =

(
ãT
1 m + b̃T

1 n
)2

2ã1
+

(
ãT
2 m + b̃T

2 n
)2

2ã2
, ãi ∈ Z>0 , ãi, b̃i ∈ Z2 .

(3.6)

The positive integral constants ai, ãi, i = 1, 2, and the integral constant vectors ai, bi, ãi, b̃i,
i = 1, 2, are functions of the rational numbers a, b, c, d, which define the moduli u and t

in eq. (3.4). Inserting the above equations into the general expression (2.2), we explicitly
see that the partition function Zrat

T 2 (τ ;u, t) is of the form (2.5). Eq. (3.6) holds for target
spaces T d in any dimension.

3.2 Minimally extended û(1) current algebra decomposition

Our starting point to work out the decomposition of the toroidal partition with target space
T 2 are the squares of the left- and right-moving momenta as stated in eq. (3.6). We collect
the defining vectors and denominators in these equations in the 4× 4-matrices H and D

H =


aT
1 bT

1
aT
2 bT

2
ãT
1 b̃T

1
ãT
2 b̃T

2

 , D =


2a1

2a2
−2ã1

−2ã2

 . (3.7)

By construction both matrices have only integral entries and their determinants are non-
vanishing.

As the integral intersection pairing Σ : Z4 × Z4 → Z of the even self-dual lattice Γ2,2
is induced by the norm ||(m, n)||2 = p2

L(m, n) − p2
R(m, n) for (m, n) ∈ Z4 in terms of

the momenta squares (3.6), we find that the pairing Σ is explicitly given by the integral
symmetric 4 × 4-matrix

Σ = HT D−1H ∈ Mat4(Z) . (3.8)

The partition function (2.5) for rational toroidal CFT with target space T 2 reads

Zrat
T 2 (τ ;u, t) = 1

|η(τ)|2
∑

m,n∈Z2

e

(
m, n

)
HT T (τ)H

(
m

n

)
, (3.9)

with the diagonal matrix

T (τ) =


iπτ
2a1

iπτ
2a2

− iπτ̄
2ã1

− iπτ̄
2ã2

 . (3.10)
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Since the lattice Γ2,2 is unimodular, the inverse matrix Σ−1 is integral as well. Thus,
from eq. (3.8) we get

Σ−1 = H−1D
(
H−1

)T
∈ Mat4(Z) , (3.11)

which implies

D = H
(
Σ−1HT

)
. (3.12)

Due to the integral entries of the matrices H and Σ−1, we observe that the columns of the
diagonal matrix D are integral linear combinations of the columns of the matrix H in terms
of the columns of the integral matrix

(
Σ−1HT

)
.

We can now interpret the columns of the matrix H as generators of the lattice Γ2,2 together
with the intersection paring given by the inverse matrix D−1. Furthermore, as a consequence
of the integral linear relation (3.12) the columns of the matrix D realize a sublattice OL ⊕OR

of Γ2,2 because it has mutually orthogonal generators. This sublattice OL ⊕ OR also respects
the chain of inclusions (2.6) that are required for the decomposition of the partition function
into the characters Kλ,α of the form (2.11). Evaluating the sum in the partition function (3.9)
only on the sublattice OL ⊕ OR yields the contribution (2.7), which reads

ZOL⊕OR

T 2 (τ ;u, t) = 1
|η(τ)|2

∑
m,n∈Z2

e

(
m, n

)
DT (τ)D

(
m

n

)
=

2∏
i=1

K0,ai(τ)K0,ãi(τ) . (3.13)

We now construct the remaining terms of the partition function. Let the index of the
sublattice generated by the columns of D within the lattice generated by the columns of H

be n+1. Then — as discussed in section 2.1 — we need to construct n+1 vectors ρ0, . . . , ρn

representing the n + 1 distinct cosets of the quotient of the lattice of H by the sublattice
of D. Note that the index of this sublattice is given by

n + 1 = detD

detH
= 24a1a2ã1ã2

detH
= detH . (3.14)

Here the last equality is a consequence of detΣ = 1 together with eq. (3.8).
Without loss of generality let us assume that the integral matrix H is in (column)

Hermite normal form4

H =


h11 0 0 0
h21 h22 0 0
h31 h32 h33 0
h41 h42 h43 h44

 ∈ Mat4(Z) , (3.15)

4If the matrix H is not in this form, it can always be brought into Hermite normal form because for any
integral matrix M there exists a uni-modular matrix U such that the matrix product MU = H is in Hermite
normal form. Moreover, since the multiplication with a uni-modular matrix realizes a lattice automorphism,
any lattice generated by the column vectors of M can be represented by a matrix H in Hermite normal
form. To transform a matrices M into Hermite normal form H, there are standard algorithms, which are
implemented in most modern computer algebra software packages.
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and the diagonal entries of the inverse matrix H−1 read

H−1 =


1

h11
· · · · · · · · ·

0 1
h22

· · · · · ·
0 0 1

h33
· · ·

0 0 0 1
h44

 . (3.16)

Due to eq. (3.12) the matrix product H−1D is integral with the diagonal entries

H−1D =


2a1
h11

· · · · · · · · ·
0 2a2

h22
· · · · · ·

0 0 −2ã1
h33

· · ·
0 0 0 −2ã2

h44

 ∈ Mat4(Z) , (3.17)

which in particular establishes the important result

s1 =
2a1
h11

, s2 =
2a2
h22

, s̃1 =
2ã1
h33

, s̃2 =
2ã2
h44

∈ Z . (3.18)

Next we determine the lattice vectors ρ0, ρ1, . . . , ρn representing the cosets associated
to the sublattice of the diagonal matrix D. Based on the Hermite normal form (3.15) of
the matrix H, we construct the set of lattice vectors

C =

H


r1
r2
r̃1
r̃2


∣∣∣∣∣∣∣∣∣∣
ri ∈ {0, . . . , si − 1}, r̃i ∈ {0, . . . , s̃i − 1} for i = 1, 2

 . (3.19)

Now we proof that all elements of the set C mutually represent distinct cosets. To
show this, let us pick two lattice vectors ρ, σ ∈ C, which are obtained from the integers
r1, r′1 ∈ {0, . . . , si − 1}, . . . , r̃1, r̃′1 ∈ {0, . . . , si − 1}, respectively. These two lattice vectors
represent the same coset if and only if their difference ρ − σ is a point on the sublattice
generated by the columns of the matrix D. This difference explicitly reads

ρ − σ = H


∆r1
∆r2
∆r̃1
∆r̃2

 =


h11∆r1
h21∆r1 + h22∆r2
h31∆r1 + h32∆r2 + h33∆r3
h41∆r1 + h42∆r2 + h43∆r3 + h44∆r4

 , (3.20)

where ∆r1 = r1 − r′1, . . . ,∆r̃2 = r̃2 − r̃′2. Note that — due to the relations (3.18) —
|∆r1| < s1 = 2a1

h11
, and therefore we have that the absolute value of the first entry of the

vector ρ − σ is smaller than 2a1. Hence, looking at the difference entry, the vector ρ − σ

can only be on the sublattice of D, i.e., can only be an integral multiple of the first column
vector of D, if ∆r1 = 0. If ∆r1 = 0 then we look at the second entry of the vector ρ − σ.
For ∆r1 = 0 the term proportional to h21 vanishes, and we can repeat the same argument as
for the first entry. Namely, in this case the second entry is smaller in absolute value than
a2. Thus, by considering the first and the second entry, we find that ρ − σ can only be on
the sublattice if both ∆r1 = 0 and ∆r2 = 0. Repeating this argument again inductively for
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the remaining entries of ρ − σ, we conclude that ρ − σ is only a point on the sublattice, if
and only if ∆r1 = ∆r2 = ∆r̃1 = ∆r̃2 = 0, which is equivalent to ρ = σ. Thus, altogether
we conclude that all the lattice vector in the set C defined in eq. (3.19), describe distinct
cosets with respect to the sublattice of D.

According to eqs. (3.14) and (3.18), the cardinality of the set C is given by∣∣∣C∣∣∣ = s1s2s̃1s̃2 = 24 a1a2ã1ã2
h11h22h33h44

= n + 1 , (3.21)

which shows that the vectors in the set C represent all the cosets with respect to the sublattice
D. We denote the n + 1 elements of C in the following by the lattice vectors ρ0, . . . , ρn

(where ρ0 is the zero vector of the set C).
With the vectors ρa, a = 0, . . . , n, at hand, we can now express the decomposition of the

entire partition function Zrat
T 2 (τ ;u, t) explicitly in terms of the characters Kλ,α as

Zrat
T 2 (τ ;u, t) =

n∑
a=0

2∏
i=1

Kρa,i,ai(τ)Kρa,i+2,ãi(τ) , (3.22)

where ρa,i are the entries of the column vectors ρa, a = 0, . . . , n. Note that the contribu-
tion (3.13) of the sublattice corresponds to the trivial coset given by the null vector ρ0.

Let us stress that the presented construction for the decomposition (3.22) of rational
toroidal CFTs with target space T 2 applies without any further modification to any rational
toroidal CFTs with target space T D for any dimension D. Namely, starting with the partition
function Zrat

T D(τ) in the form (2.5), we can read off a 2D × 2D-dimensional matrix H and
the 2D × 2D-dimensional diagonal matrix D = Diag (2a1, . . . , 2aD,−2ã1, . . . ,−2ãD). As
illustrated for the target space T 2, the columns of D also generate a sublattice of the lattice
generated by the columns of H for general target space dimension D. By calculating the
Hermite normal form of H, we read off (analogously as for D = 2) the character expansion
of the form (2.11). We illustrate this construction explicitly with an example of a rational
toroidal CFT with target space T 3 in the following section.

4 Examples

In this section we illustrate the general decomposition construction described in the previous
section with concrete representative examples. We focus on rational toroidal CFTs with
two- and three-dimensional target space tori.

4.1 Target space T 2: extended ŝu(3)1 chiral algebra

Consider the ŝu(3)1 diagonal partition function with the affine Lie algebra ŝu(3)1 at level
one as its extended chiral algebra. The lattices ΓL,0 and Γ0,R are both the root lattice of
su(3). This can be realized by setting both the complex structure and the complexified
Kähler modulus of target space torus T 2 to u = t = −1

2 +
√
−3
2 . The associated partition

function explicitly reads

Z
ŝu(3)1
T 2 (τ) = 1

|η(τ)|4
∑

m,n∈Z2

q
1

12 (m1+2m2−n1+2n2)2
q

1
4 (m1+n1)2

· q̄
1

12 (m1+2m2−n1−n2)2
q̄

1
4 (m1−n1+n2)2

. (4.1)
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From eq. (2.5) we read off the constants

a1 = ã1 = 3 , a2 = ã2 = 1 , a1 = ã1 =
(
1
2

)
, a2 = ã2 =

(
1
0

)
,

b1 =
(
−1
2

)
, b2 =

(
1
0

)
, b̃1 =

(
−1
−1

)
, b̃2 =

(
−1
1

)
,

(4.2)

which determine the diagonal 4 × 4-matrix D and an integral 4 × 4-matrix according to
eq. (3.7). The latter matrix has the Hermite normal form

H =


1 0 0 0
1 2 0 0
1 0 3 0
1 0 1 2

 . (4.3)

Note that the integers a1, a2, ã1, ã2 fulfill the relation (3.14), and with eq. (3.18) give rise
to the integers

s1 = 6 , s2 = 1 , s̃1 = 2 , s̃2 = 1 , (4.4)

such that the partition function decomposes into

Z
ŝu(3)1
T 2 (τ) =

5∑
r1=0

1∑
r̃1=0

Kr1,3(τ)Kr1,1(τ)Kr1+3r̃1,3(τ)Kr1+r̃1,1(τ) . (4.5)

Using the symmetries (1.4) of the characters Kλ,α — which for instance imply K2,1 ≡ K0,1,
K5,3 ≡ K1,3, K4,3 ≡ K2,3, we arrive at the explicit expansion

Z
ŝu(3)1
T 2 (τ) = K0,1K0,3K̄0,1K̄0,3 +K1,1K3,3K̄0,1K̄0,3 + 2K1,1K1,3K̄1,1K̄1,3

+ 2K0,1K2,3K̄1,1K̄1,3 + 2K1,1K1,3K̄0,1K̄2,3 + 2K0,1K2,3K̄0,1K̄2,3

+K0,1K0,3K̄1,1K̄3,3 +K1,1K3,3K̄1,1K̄3,3

= |χ100(τ)|2 + |χ010(τ)|2 + |χ001(τ)|2 ,

(4.6)

with
χ100(τ) = K0,1(τ)K0,3(τ) +K1,1(τ)K3,3(τ) ,

χ010(τ) = K1,1(τ)K1,3(τ) +K0,1(τ)K2,3(τ) ,

χ001(τ) = K1,1(τ)K1,3(τ) +K0,1(τ)K2,3(τ) .

(4.7)

Here χ100(τ), χ010(τ), χ001(τ) are the irreducible specialized characters of the affine Lie
algebra ŝu(3)1 at level one. These characters are obtained from the Kac-Weyl character for
ŝu(3)1 upon taking a certain limit as for instance introduced in ref. [1].

The Gram matrices GL and GR for the chiral and anti-chiral lattices ΓL,0 and Γ0,R are
calculated to be the Cartan matrix of the simple Lie algebra su(3), i.e.,

GL = GR =
(

2 −1
−1 2

)
. (4.8)
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Therefore, generators of the lattices ΓL,0 and Γ0,R cannot be mutually orthogonal, which
implies that the specialized characters of ŝu(3)1 do not factor into characters of the extended
current algebras û(1)α. Instead they can only be a sum of such characters, as given in
eq. (4.7). These particular expansions arise from the maximally diagonal sublattices OL and
OR of ΓL,0 and Γ0,R with mutually orthogonal generators with the Gram matrices

GOL
= GOR

=
(
2 0
0 6

)
. (4.9)

Note that the decompositions (4.7) can easily be calculated. For instance, the vacuum
character χ100(τ) enjoys the expansion

χ100(τ) =
1

η(τ)2
∑

m1,m2∈Z
q

1
4 m2

1q
3
4 (m1+2m2)2

, (4.10)

which by substituting the summation index m1 by 2m′
1 + α for α ∈ {0, 1} and by replacing

m2 by m′
1 + m′

2 yields

χ100(τ) =
1

η(τ)2
∑

m′
1,m′

2∈Z
α∈{ 0,1 }

q(m′
1+

α
2 )

2
q3(m′

2+
3α
6 )3

= K0,1(τ)K0,3(τ) +K1,1(τ)K3,3(τ) . (4.11)

This is in agreement with eq. (4.7).

4.2 Target space T 2: moduli u = t = 1
2 +

√
−5
2

In this example we consider the target space torus T 2 with complex structure modulus and
complexified Kähler modulus both set to u = t = 1

2 +
√
−5
2 . This example is generic in the

sense that the maximally extended chiral algebra is not given by an affine semi-simple Lie
algebra, but instead by a more general W-algebra. The partition function of this rational
toroidal CFT is determined by the data

a1 = ã1 = 5 , a2 = ã2 = 1 , a1 = ã1 =
(

1
−2

)
, a2 = ã2 =

(
1
0

)
,

b1 =
(
−1
−3

)
, b2 =

(
1
0

)
, b̃1 =

(
−1
2

)
, b̃2 =

(
−1
−1

)
,

(4.12)

which gives rise to the 4 × 4-matrix H in Hermite normal form

H =


1 0 0 0
0 1 0 0
6 5 10 0
1 0 0 2

 . (4.13)

Applying the described decomposition construction we find

Zrat
T 2 (τ ;u, t) = K0,1K0,5K̄0,1K̄0,5 +K0,1K5,5K̄0,5K̄1,1 + 2K1,1K4,5K̄0,1K̄1,5

+ 2K1,1K1,5K̄1,1K̄1,5 + 2K0,1K2,5K̄0,1K̄2,5 + 2K0,1K3,5K̄1,1K̄2,5

+ 2K1,1K2,5K̄0,1K̄3,5 + 2K1,1K3,5K̄1,1K̄3,5 + 2K0,1K4,5K̄0,1K̄4,5

+ 2K0,1K1,5K̄1,1K̄4,5 +K1,1K0,5K̄0,1K̄5,5 +K1,1K5,5K̄1,1K̄5,5 .

(4.14)
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4.3 Target space T 2: moduli u = t = 1
4 +

√
−3
4

In this example we consider the target space torus T 2 with complex structure modulus and
complexified Kähler modulus both set to u = t = 1

4 +
√
−3
4 . This example illustrates that

generically the summands in the decompositions factor into characters Kλ,α with distinct
indices α. For these moduli the partition function of the rational toroidal CFT is given by

a1 = 3 , a2 = 1 , ã1 = 12 , ã2 = 4 ,

a1 =
(

1
−4

)
, ã1 =

(
2
−8

)
, a2 =

(
1
0

)
, ã2 =

(
2
0

)
,

b1 =
(
−1
−1

)
, b̃1 =

(
−2
1

)
, b2 =

(
1
0

)
, b̃2 =

(
−2
−1

)
.

(4.15)

The associated 4 × 4-matrix H in Hermite normal form reads

H =


1 0 0 0
0 1 0 0
5 3 6 0
3 1 2 8

 , (4.16)

which determines the decomposition

Zrat
T 2 (τ ;u, t) = K0,1K0,3K̄0,4K̄0,12 + 2K0,1K1,3K̄1,4K̄1,12 + 2K1,1K1,3K̄2,4K̄2,12

+ 2K0,1K2,3K̄2,4K̄2,12 + 2K1,1K2,3K̄3,4K̄1,12 + 2K1,1K0,3K̄1,4K̄3,12

+ 2K0,1K3,3K̄3,4K̄3,12 +K1,1K3,3K̄4,4K̄0,12 + 2K1,1K1,3K̄0,4K̄4,12

+ 2K0,1K2,3K̄4,4K̄4,12 + 2K1,1K2,3K̄1,4K̄5,12 + 2K0,1K1,3K̄3,4K̄5,12

+ 2K0,1K0,3K̄2,4K̄6,12 + 2K1,1K3,3K̄2,4K̄6,12 + 2K0,1K1,3K̄1,4K̄7,12

+ 2K1,1K2,3K̄3,4K̄7,12 + 2K0,1K2,3K̄0,4K̄8,12 + 2K1,1K1,3K̄4,4K̄8,12

+ 2K0,1K3,3K̄1,4K̄9,12 + 2K1,1K0,3K̄3,4K̄9,12 + 2K1,1K1,3K̄2,4K̄10,12

+ 2K0,1K2,3K̄2,4K̄10,12 + 2K1,1K2,3K̄1,4K̄11,12 + 2K0,1K1,3K̄3,4K̄11,12

+K1,1K3,3K̄0,4K̄12,12 +K0,1K0,3K̄4,4K̄12,12 .

(4.17)

Note that the modular PSL(2,Z)-transformation z 7→ z−1
z maps both moduli u = t =

1
4 +

√
−3
4 to u = t =

√
−3, which realizes the target space T 2 as a product of circles S1 × S1

with radii
√
2 and

√
6 and vanishing B-field. Thus, due to this duality relation the discussed

partition function also enjoys the expansion

Zrat
T 2 (τ ;u,t)=Zrat

T 2 (τ ;
√
−3,

√
−3)

=
(
K0,1K̄0,1+K1,1K̄1,1

)(
K0,3K̄0,3+2K1,3K̄1,3+2K2,3K̄2,3+K3,3K̄3,3

)
, (4.18)

where the individual factors are the decompositions (1.2) of the rational circular CFTs with
radii

√
2 and

√
6, respectively.
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4.4 Target space T 2: moduli u = 1
2 +

√
−1 and t =

√
−1

In this example we consider the target space torus T 2 and B-field for which the complex
structure modulus u = 1

2 +
√
−1 and the complexified Kähler modulus t =

√
−1 are distinct.

These moduli yield a rational toroidal CFT with a non-factorizable target space torus T 2.
Such CFTs possess a non-generic Z2 symmetry, as for instance recently studied in ref. [33].
For these moduli the CFT is determined by

a1 = ã1 = 4 , a2 = ã2 = 4 , a1 = ã1 =
(

1
−2

)
, a2 = ã2 =

(
2
0

)
,

b1 =
(

0
−2

)
, b2 =

(
2
1

)
, b̃1 =

(
0
2

)
, b̃2 =

(
−2
−1

)
,

(4.19)

which gives rise to the 4 × 4-matrix H in Hermite normal form

H =


1 0 0 0
0 1 0 0
1 4 8 0
4 7 0 8

 . (4.20)

From this data we extract that the integers (3.18) become

s1 = s2 = 8 , s̃1 = s̃2 = 1 , (4.21)

such that there are 64 cosets (3.19). The resulting decomposition reads

Zrat
T 2 (τ ;u, t) = K0,4K0,4K̄0,4K̄0,4 + 4K1,4K4,4K̄0,4K̄1,4 + 4K3,4K3,4K̄1,4K̄1,4

+ 4K0,4K2,4K̄0,4K̄2,4 + 8K1,4K2,4K̄1,4K̄2,4 + 4K2,4K2,4K̄2,4K̄2,4

+ 4K3,4K4,4K̄0,4K̄3,4 + 8K1,4K3,4K̄1,4K̄3,4 + 8K2,4K3,4K̄2,4K̄3,4

+ 4K1,4K1,4K̄3,4K̄3,4 + 2K0,4K4,4K̄0,4K̄4,4 + 4K0,4K1,4K̄1,4K̄4,4

+ 4K2,4K4,4K̄2,4K̄4,4 + 4K0,4K3,4K̄3,4K̄4,4 +K4,4K4,4K̄4,4K̄4,4 .

(4.22)

4.5 Target space T 3: extended ŝu(4)1 chiral algebra

The rational toroidal CFT with the ŝu(4)1 diagonal partition function arises from a three-
dimensional target space torus T 3, for which the three-dimensional lattices ΓL,0 and Γ0,R

are the root lattices of the simple Lie algebra su(4). This CFT is associated to the target
space metric G and the B-field B with the rational entries

G =

 1 −1
2 0

−1
2 1 −1

2
0 −1

2 1

 , B =

 0 3
2 1

−3
2 0 1

2
−1 −1

2 0

 , (4.23)
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from which — following ref. [6] — we determine the defining data

a1 = ã1 = 1 , a2 = ã2 = 3 , a3 = ã3 = 6 ,

a1 =

10
0

 , a2 =

12
0

 , a3 =

12
3

 ,

b1 =

 1
−2
−1

 , b2 =

 3
0

−3

 , b3 =

60
0

 ,

ã1 =

10
0

 , ã2 =

12
0

 , ã3 =

12
3

 ,

b̃1 =

−1
−1
−1

 , b̃2 =

 3
−3
−1

 , b̃3 =

 6
0

−4

 .

(4.24)

The resulting integral 6 × 6-matrix H in Hermite normal form becomes

H =



1 0 0 0 0 0
1 2 0 0 0 0
1 2 3 0 0 0
0 0 0 1 0 0
0 0 0 1 2 0
9 6 3 4 8 12


. (4.25)

The integers a1, a2, a3, ã1, ã2, ã3 fulfill the relation (3.14), and with eq. (3.18) give rise to
the integers

s1 = 2 , s2 = 3 , s3 = 4 , s̃1 = 2 , s̃2 = 3 , s̃3 = 1 (4.26)

such that the partition function decomposes into

Z
ŝu(4)1
T 3 (τ) =

1∑
r1,r̃1=0

2∑
r2,r̃2=0

3∑
r3=0

Kr1,1(τ)Kr1+2r2,3(τ)Kr1+2r2+3r3,6(τ)

· Kr̃1,1(τ)Kr̃1+2r̃2,3(τ)K9r1+6r2+3r3+4r̃1+8r̃2,6(τ) , (4.27)

which can be written in the specialized characters of the affine Lie algebra ŝu(4)1 as

ZT 3, ŝu(4)1
(τ) = |χ1000(τ)|2 + |χ0100(τ)|2 + |χ0010(τ)|2 + |χ0001(τ)|2 (4.28)

with

χ1000(τ) = K0,1K0,3K0,6 +K1,1K3,3K0,6 + 2K1,1K1,3K4,6 + 2K0,1K2,3K4,6 ,

χ0100(τ) = K1,1K1,3K1,6 +K0,1K2,3K1,6 +K0,1K0,3K3,6

+K1,1K3,3K3,6 +K1,1K1,3K5,6 +K0,1K2,3K5,6 ,

χ0010(τ) = χ0100(τ) ,

χ0001(τ) = 2K1,1K1,3K2,6 + 2K0,1K2,3K2,6 +K0,1K0,3K6,6 +K1,1K3,3K6,6 .

(4.29)
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These specialized characters of ŝu(4)1 arise from the Kac-Weyl character for ŝu(4)1 upon
taking a certain limit as for instance detailed in ref. [1]. As the lattices ΓL,0 and Γ0,R are
the root lattices of su(4), their intersection form becomes the Cartan martix of the simple
Lie algebra su(4), namely

GL = GR =

 2 −1 0
−1 2 −1
0 −1 2

 . (4.30)

The maximally diagonal sublattices OL and OR of ΓL,0 and Γ0,R with mutually orthogonal
generators have the 3 × 3 Gram matrices

GOL
= GOR

=

2 0 0
0 6 0
0 0 12

 . (4.31)
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