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ABSTRACT: We report the development and application of a
novel spectral barcoding approach that exploits our multiexcitation
(MX) Raman spectroscopy-based methodology for improved
label-free detection and classification of complex biological ‘
samples. To develop our improved MX-Raman methodology, we

utilized post-mortem brain tissue from several neurodegenerative
diseases (NDDs) that have considerable clinical overlap. For
improving our methodology we used three sources of spectral
information arising from distinct physical phenomena to assess
which was most important for NDD classification. Spectral
measurements utilized combinations of data from multiple, distinct
excitation laser wavelengths and polarization states to differentially probe molecular vibrations and autofluorescence signals. We
demonstrate that the more informative MX-Raman (532 nm—785 nm) spectra are classified with 96.7% accuracy on average,
compared to conventional single-excitation Raman spectroscopy that resulted in 78.5% accuracy (532 nm) or 85.6% accuracy (785
nm) using linear discriminant analysis (LDA) on S NDD classes. By combining information from distinct laser polarizations we
observed a nonsignificant increase in classification accuracy without the need of a second laser (785 nm—785 nm polarized), whereas
combining Raman spectra with autofluorescence signals did not increase classification accuracy. Finally, by filtering out spectral
features that were redundant for classification or not descriptive of disease class, we engineered spectral barcodes consisting of a
minimal subset of highly disease-specific MX-Raman features that improved the unsupervised and cross-validated clustering of MX-
Raman spectra. The results demonstrate that increasing spectral information content using our optical MX-Raman methodology
enables enhanced identification and distinction of complex biological samples but only when that information is independent and
descriptive of class. The future translation of such technology to biofluids could support diagnosis and stratification of patients living
with dementia and potentially other clinical conditions such as cancer and infectious disease.
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B INTRODUCTION

The amount of information required to accurately classify a
sample scales with complexity for a given data set size.
Maximizing information content and using different and
independent features is essential to maximize the performance

detection of subtle changes, but at the expense of simplicity,
speed and cost.”

A potential simple and elegant solution is Raman spectros-
copy, which is an optical chemical characterization technique
that can be carried out without any sample preparation and can
provide readouts rapidly in a highly scalable and affordable

of classification models for multicomponent samples. Bio- manner.~> Raman spectroscopy probes the vibrational modes

logical samples are complex by nature and contain multiple
biomolecules including many different proteins, metabolites,
lipids, nucleotides and sugars. This presents a huge challenge
for a complete analysis to distinguish between diseases that are
closely related or the subtypes of a given condition, as the
compositional changes are likely to be minimal. For clinically
overlapping diseases, single biomarkers are often not enough to
achieve adequate and sensitive diagnoses." Omics-based
technologies are being used to identify biomarkers, but they
are often targeted and rely on known information obtained
using sophisticated instrumentation. Using meta-omics (meta-
genomics, proteomics, metabolomics) allows the unbiased

© 2025 The Authors. Published by
American Chemical Society

7 ACS Publications

of molecules within a sample to provide a unique and label-free
spectrum or “chemical ﬁngerprint”.6 Raman active vibrational
modes manifest as peaks in a spectrum wherein different peaks
correspond to bonds and structural moieties within a molecule,
as well as from different molecules within the sample.” The
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Figure 1. Schematic of workflow. (A) Post-mortem brain samples used in this study. (B) Sample preparation for Raman spectroscopy. (C) Raman
spectroscopy configurations. (D) Data Preprocessing for MX-Raman and classification. (E) Feature engineering for spectral barcode development.

(F) Data analysis including clustering and classification.

rich information contained in a Raman spectrum represents
the collective characteristics of a sample, making the technique
holistic as opposed to reporting only specific analytes. Being
label-free, it is also unbiased since all Raman active vibrations
in molecules will be detected based on their strength of
interaction, that is, their Raman cross-section.® The measure-
ment itself and the analysis can be performed within seconds
or minutes, and the technique is amenable to automation and
portability making it very attractive for in-field clinical
applications.”

However, the holistic nature of Raman spectra also means
that the inherent variation between individual complex
biological samples may be subtle given that the constituent
biomolecules such as proteins, lipids, DNA, sugars and
metabolites are essentially made of similar bonds with
overlapping vibrational frequencies. Hence, chemometric
(multivariate) methods are often necessary to extract spectral
differences between complex biosamples and often their
stratification through unsupervised statistical methods, such
as simple clustering, is difficult.

We investigate two ways to increase the differential analysis
capability of the technique especially for complex and closely
related samples. We first increase the information content by
measuring the Raman spectra of samples by two different
lasers. While Raman peak shifts are independent of laser
excitation, the Raman cross-section is wavelength dependent,
which is evident through the observation of preresonance and
resonance Raman spectra.” The wavelength dependence of the
Raman cross-section is in addition to the A™* dependence
characteristic of scattering processes.lo Moreover, Raman
signals are polarized based on the symmetry of the vibrations."'
Thus, by using well separated distinct laser excitations and by
using polarized detection we can get a much more character-
istic fingerprint and, critically, more information than in a
conventional Raman spectrum. We call this novel method
multiexcitation Raman spectroscopy (MX-Raman). We have

12190

previously validated the utilization of distinct laser wavelengths
enabling the differential enhancement of resonant molecular
components to facilitate enhanced supervised classification of
bacteria by the combination of chemical information.® Apart
from demonstrating the MX-Raman barcoding and intelligent
feature engineering approach, here we develop the multi-
excitation concept further additionally using polarized
excitation for Raman and autofluorescence signals.

In addition to obtaining independent multivariate informa-
tion such as with the MX-Raman technique, accurate
classification of closely related samples requires appropriate
data sets as well as computational methods that can deal with
the subtle
prominent in Raman spectra of biological samples.12 Thus,
traditional multivariate methods such as principal component
analysis and linear discriminant analysis (PCA-LDA) have
been used for classification of biological® and clinical*
samples. Increasingly, machine learning is being applied to
Raman spectroscopy data for classification of disease from
clinical samples including cancer,"® bacterial infection'® and
neurodegenerative disease.’’ While reported classification
accuracies are typically good (~90%), they often rely on
small sample numbers may decrease in larger, less defined
cohorts, such as real-world populations where similar diseases
and subtypes with overlapping clinical features are prevalent.'®
It is therefore important to maximize discriminatory
information in the Raman spectrum while minimizing noise
and redundant information, which can decrease machine-
learning (ML) classification performance and generalizabil-
ity."” Often, “black box” ML algorithms are applied to the
whole Raman spectrum without any understanding of which
spectral regions are responsible for classification, resulting in
issues including overfitting and poor spectral assignment,
raising doubts about the clinical translation of such models.”’
We use intelligent feature engineering to overcomes the above

differences and correlated features that are
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Figure 2. Wavelength-dependent MX-Raman improves classification accuracy. (A—C) Vector normalized, average Raman fingerprints for each
class from 785 nm (A), 532 nm (B), and concatenated 532 nm—785 nm MX-Raman (C). Each of the fingerprints depicted is an average of 90
spectra, 30 from each sample (N = 15, n = 3 per disease class). (D) Scatter plot of all 450 532 nm-785 nm MX-Raman fingerprints reduced to 3
dimensions using PCA. (E—F) Box plots representing LDA classification of Raman and MX-Raman fingerprints with 5-fold cross validation. The
LDA model was trained and optimized on 3 sets of training data (E) and evaluated on the 3 equiv sets of testing data (F). Each point represents the

classification accuracy for each disease class (N = 15), * = p < 0.0S.

issues including the finite number of clinical samples that are
available for developing diagnostic methods.

In this work, we develop a novel MX-Raman spectral
barcoding approach and provide the first validation of MX-
Raman barcodes for the classification of complex biological
samples (Figure 1). Specifically, we analyze the insoluble tissue
fraction isolated from the post-mortem brains of patients with
several neurodegenerative diseases (NDDs) that have consid-
erable clinical overlap (Alzheimer’s disease, AD; Pick’s disease,
PiD; progressive supranuclear palsy, PSP; and corticobasal
degeneration, CBD) and non-neurodegenerative controls (n =
3 per each group). We show that MX-Raman spectra from
each of these samples can be classified with less error than
conventional (single-excitation) Raman spectroscopy, while
identifying the spectral frequencies that are responsible for
classification enabling the assignment of spectral biomarkers or
“barcodes”. Our proof-of-concept study highlights the potential
utility of Raman spectroscopy-based methods such as MX-
Raman barcoding to the diagnosis and stratification of NDDs.

B RESULTS

Increasing Information Content Using MX-Raman.
Increasing Information Content Using Multiple Lasers.
Classification accuracy was assessed for preprocessed Raman
fingerprints from 532 and 785 nm excitations individually and
in combination for MX-Raman. The average 532 nm
fingerprint for each class is shown in Figure 2A. The 532 nm
fingerprints are notably different from the 785 nm fingerprints
shown in Figure 2B. While the Raman cross-section of
vibrational modes has a wavelength dependence, the observed
difference is caused by the resonant and preresonant
enhancements of specific vibrational modes whose electronic
absorptions align with 532 nm excitation.® A potential source
of this resonant enhancement are metal-binding proteins or
metalloproteins, which can be excited by visible light ~532
nm’' and have been widely implicated in NDDs including
AD** In comparison to 785 nm fingerprints, the 532 nm

spectra show enhanced signals for aromatic amino acids such
as histidine and tryptophan and vibrations associated with the
formation of metalloporphyrin (MP) structure. These include
747 cm™" (Trp, indole ring), 880 cm™' (Trp, H-bonding), 971
ecm™ (Trp), 1126 cm™ (C—N), 1308 cm™" (Trp), 1367 cm™
(MP, C—N), 1587 cm™ (MP, C—C), 1620 cm™" (vinyl C=
C).>*™% These vibrations are present but comparatively weak
in the 785 nm fingerprint, which is dominated by protein
backbone vibrations including peaks in the skeletal region (e.g,,
C—C, C—N, ~880—1180 cm™), the extended amide III region
(predominantly N—H, C—N, ~1200—1350 cm™'), CH,
deformation (~1440 cm™') and the amide I region
(predominantly C=0, ~1600—1700 cm™"), as well as some
sharp side chain vibrations such as Phenylalanine (Phe, 1003
cm™').**> We hypothesized that by combining 532 and 785 nm
spectra into an MX-Raman fingerprint, we could maximize
information content and increase the accuracy of NDD sample
classification. We tested this with a simple abstraction process
to integrate information using end-on-end concatenation of
spectra.

The concatenated MX-Raman (532 nm—785 nm) finger-
prints are shown in Figure 2C. PCA was applied to the MX-
Raman (532 nm—785 nm) data set to transform the spectra
into a set of orthogonal scores based on variance. The
transformed spectra were projected onto a scatterplot
consisting of the first 3 principal components (those which
contain the majority of variance), representing ~50% of the
variance within the data set (Figure 2D). This resulted in
clustering of the transformed spectra from the healthy control
samples (red squares) away from the spectra of the NDD
samples (AD, PiD, PSP and CBD). Some cluster overlap was
seen for AD spectra (blue circles), while the spectra for the
other diseases were not resolved into well-defined clusters,
including PiD (green triangles), PSP (purple diamonds), and
CBD (orange inverted triangles). As the intraclass variance was
larger than the interclass variance (particularly for PiD, PSP
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and CBD) a supervised method was required to better classify
the data.

We wanted to determine whether increased information
content from MX-Raman improved the classification accuracy
of the spectra from NDD tissue. We were limited by sample
size (N = 15, n = 3) and could not build a reliable predictive
model. Instead, we utilized LDA with 5-fold cross-validation as
a classifier to systematically assess and compare MX-Raman
configurations in the context of this sample set. To do this, we
partitioned each spectral data set into 3 independent training
and testing data sets at a 9:1 ratio. For each configuration, the
data set contained 30 spectra for each of the 15 patients,
resulting in 450 spectra, of which 405 were used for training
and 45 for testing. Due to a limited number of samples, the
first, middle and final 3 spectra from each sample were used as
testing sets 1, 2 and 3, respectively, while the remaining spectra
were retained for training data. While using correlated data in
this way is not appropriate for constructing a predictive model
for classification due to an overestimation of accuracy, it
allowed us to directly compare Raman configurations and
investigate whether additional spectral information was useful
to better distinguish the classes in our spectral data set.

The average classification accuracies for the training and
testing data sets are displayed for each wavelength config-
uration in Figure 2EJF, respectively. Using cross-validated
LDA, 532 nm fingerprints were classified into S groups with an
overall accuracy of 78.5% =+ 12.2%, while a higher classification
accuracy of 85.6% =+ 13.2% was observed for 785 nm
fingerprints. MX-Raman (532 nm—785 nm) significantly
outperformed each of the wavelengths alone, with an average
classification accuracy of 96.7% =+ 7.2%. To control for the
increased number of x-variables (or features) in the MX-
Raman spectrum, we concatenated each of the 785 and 532
nm fingerprints to themselves, resulting in MX-Raman (532
nm-532 nm) and MX-Raman (785 nm-785 nm) fingerprints,
each with 2016 variables. This did not result in improved
classification in comparison to the 1013 variable individual
spectral fingerprints, with average classification accuracies of
78.5% + 12.2% and 79.3% + 17.2% respectively (Table S1).
Together, this demonstrates that improved classification
accuracy from MX-Raman (532 nm-785 nm) is not reliant
on increasing the absolute number of variables, but instead the
addition of independent but descriptive variables. Spectra from
each of the single-wavelength configurations used for Raman
spectroscopy were classified with acceptable to high accuracies
including for control (532 nm = 88.9%, 785 nm = 81.5%) and
AD fingerprints (532 nm = 85.2%, 785 nm = 100%), with 785
nm PiD fingerprints also being well classified (96.3%). Raman
spectra from PSP and CBD were classified with lower accuracy
(532 nm; (PSP = 66.7%, CBD = 74.1%), 785 nm; (PSP =
72.2%, CBD = 77.8%)]. It is known that PSP and CBD have a
high degree of clinical and pathological overlap’® and may
therefore be difficult to distinguish, yet MX-Raman (532 nm—
785 nm) spectra were classified with high accuracy in all cases
[control = 100%, AD = 100%, PiD = 100%, PSP = 96.3%, CBD
= 87.0%] unlike conventional (single-excitation) Raman
spectroscopy (Table S1).

Increasing Information Content by Polarization Detec-
tion. Molecular symmetry affects the polarization of Raman
scattered light and the depolarization ratio p = ILpendicular/
ILaraney Where a vibration that is totally symmetric is equal to p
< 0.75. This means that the depolarization (p) spectrum can
provide additional structural information about a molecule or

mixture including the molecular orientation of functional
groups, as demonstrated for insulin fibrils.'"' Therefore, we
hypothesized that samples from each of the different NDD
tissues could have a distinct depolarization profile due in part
to variations in the tau protein fibrils within each disease.”’
Raman (p) fingerprints using 785 nm excitation are shown in
Figure S1. Despite an increase in information content,
combining conventional and polarized Raman (p) fingerprints
did not significantly improve overall classification accuracy of
NDD brain samples.

Increasing Information Content by Autofluorescence
Detection. We hypothesized that different NDD samples
could have different fluorescent profiles due to different
molecular compositions. Autofluorescence was captured at the
same time as Raman scattered light, and Raman information
was removed by subtraction. Therefore, the autofluorescence
spectrum contains the same number of variables as the Raman
spectrum, albeit with less discernible features, specifically
consisting of one broad peak in comparison to tens of sharper
peaks in the Raman spectrum (Figure S2). Autofluorescence
spectra alone could not be used to classify the NDD samples.

Despite increased information content, MX (Raman-fluor)
did not improve classification accuracy in comparison to
Raman alone, again demonstrating that the addition of
independent but descriptive variables is essential for improved
spectral classification. MX-Raman (532 nm-785 nm), was the
standout choice to improve NDD sample classification.

Spectral Barcoding. We have shown that increasing
spectral information content using MX-Raman spectroscopy
improves classification of NDD brain samples. Importantly,
this effect is not caused by additional content alone, but by
increased independent and complementary information, that
is, more descriptive variables or features for classification. We
next wanted to identify these variables for spectral and
chemical assignment, and to engineer features for improved
unsupervised clustering and classification of MX-Raman
spectra.

Raman spectra have high dimensionality (in this case
containing 1013 variables after preprocessing), with MX-
Raman spectra containing twice that number (2016 variables).
Much of this information may be noise or nondescriptive
intraclass/intrasample variance, as well as correlated and
redundant. The reduction of spectral dimensionality to include
only those features that are descriptive of class can improve the
accuracy of unsupervised clustering methods that are
inherently unable to identify descriptive features. Supervised
classification models also benefit from dimensionality reduc-
tion due to a decreased chance of overfitting to noise and a
lower computational cost that together improve general-
izability and therefore real-world application.”® Data reduction
methods that rely on transformation such as PCA are unbiased
and can be simply implemented but utilize the whole spectrum
and can therefore retain intraclass variance that is unrelated to
class, ie. nondescriptive. This may be a problem for
interpretability of classification from holistic measurement
methods such as label-free spectroscopies that capture a lot of
information.

To screen for descriptive features specific to each class, we
performed a series of nonparametric statistical tests on the
MX-Raman (532 nm—785 nm) fingerprints for the control
class versus each disease class (see Materials and Methods).
From each resulting test, we selected the 3 independent
regions of the spectrum that ranked highest for significance.

https://doi.org/10.1021/acs.analchem.5c00776
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Figure 3. Intelligent Feature engineering for MX-Raman spectral barcodes. (A) Features representing spectral regions selected from MX-Raman
fingerprints to generate disease-specific barcodes. A significant increase in signal for disease classes is indicated by black bars and a significant
decrease in signal for disease cases is indicated by gray bars. (B) Bar chart showing Mahalanobis distance analysis of PCA transformed spectra for
each disease cluster using the whole MX-Raman spectrum (gray) and the disease-specific MX-Raman spectral barcodes (black). (C) MX-Raman
spectral barcodes were engineered with 1013 features (light gray), 100 features (dark gray), 30 features (black), and ten features (blue). (D) Bar
chart showing average Bhattacharyya distance analysis for clusters from PCA (gray) and PCA-LDA (black) transformed MX-Raman barcodes. The
first 3 PCs were retained for LDA. (E,F) Box plots representing LDA classification of MX-Raman fingerprints with S-fold cross validation. The LDA
model was trained and optimized on 3 sets of training data (E) and evaluated on the 3 equiv sets of testing data (F). Each point represents the

classification accuracy for each disease class (N = 15), * = p < 0.0S.

These regions were then combined to form an average MX-
Raman “spectral barcode” for each disease, with black bars
depicting a significant increase in signal intensity in disease
spectra compared to control spectra, and gray depicting a
significant decrease (Figure 3A). Increases and decreases in
spectral barcode signal were consistent for each of the 3
patients in each class. Unsupervised statistical analysis (PCA)
was used to drive clustering of the barcodes showing that class
distinction is retained (Figure S3). To determine the impact
on intraclass variance we utilized Mahalanobis distance analysis
to quantify the spread of spectra within each cluster across the
PC1 and PC2 space (Figure 3B). This measure acknowledges
that clusters are not necessarily spherical and instead measures
the distance from each point to the center of mass of the
cluster, divided by the cluster ellipsoid width in that
direction.”” The Mahalanobis distance for each cluster is
decreased when using the disease-specific spectral barcode as
opposed to the whole MX-Raman spectrum for PCA analysis.
As each cluster is in a PC space, this means that there is less
intraclass variance for each spectral barcode in comparison to
the whole MX-Raman spectrum, while class distinction is
retained. Therefore, spectral barcodes contain the descriptive
variables that are specific to each class while variables
corresponding to intraclass noise are removed.

The key spectral differences between the non-NDD control
samples and each disease class is captured by the disease-
specific spectral barcodes. Importantly, the whole range of the
MX-Raman spectrum is represented in these spectral barcodes
with comparable contribution from each of the 532 and 785
nm components. Features in the AD spectral barcode are
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comprised entirely from variables in the 532 nm region, while
features in the PiD spectral barcode are made up only of
variables from the 785 nm region. Features in the PSP and
CBD spectral barcodes are a combination of variables from
across the complete MX-Raman spectral range. This confirms
that the tissue fraction from each disease consists of a unique
multicomponent mixture with a distinct Raman cross-section
arising from differential sensitivity to each of the excitation
wavelengths.

We next wanted to create a single MX-Raman spectral
barcode that could be used for unsupervised clustering and
classification of all the MX-Raman spectra. We also wanted to
determine the optimal number of variables to include in this
spectral barcode. We constructed 4 spectral barcodes of
decreasing variable size (Figure 3C); retaining 1013 variables
(light gray), 100 variables (dark gray), 30 variables (black) and
10 variables (blue). Of the 10 variables in the minimal MX-
Raman spectral barcode, 6 arise from the 532 nm fingerprint
and 4 from the 785 nm fingerprint (Table S2). Vibrations from
nonregular/f-sheet conformations best explain the difference
between control and AD spectra, as well as control and CBD
spectra, possibly arising from aggregated protein fibrils in the
insoluble tissue fractions of disease cases. Tau variably makes
up ~20% of the total protein in the insoluble fraction for AD
brain tissue and is therefore likely to make a large contribution
to the Raman spectrum.30 To validate this, we performed SDS-
PAGE to separate the proteins in the insoluble fraction of each
brain sample followed by antitau Western Blot analysis to
visualize the aggregated tau protein specifically. Qualitatively,
we identified higher levels of tau protein in the insoluble
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fraction of AD and CBD brains in comparison to those of PiD
and PSP (Figure S4). Tryptophan (Trp) and histidine (His)
side chain vibrations corresponding to metalloporphyrin (MP)
structure were also well represented in the minimal spectral
barcode, with histidine being most associated with heme group
formation, with contributions also observed from aromatic
amino acids.”" Vibrations from the protein-backbone and RNA
are also important to distinguish MX-Raman spectra from PiD,
PSP and CBD. RNA-binding proteins have been identified in
insoluble brain fractions from AD cases so may also be found
in other NDDs.*?

MX-Raman Spectral Barcode Classification. To assess the
optimal number of features for unsupervised clustering of MX-
Raman spectra, we used PCA followed by Bhattacharyya
distance analysis to determine the overlap between the
ellipsoids of each class.”> The average Bhattacharyya distance
for the PCA clusters from each of the MX-Raman spectral
barcodes is shown in Figure 3D (gray bars). Bhattacharyya
distance for the PCA clusters from the whole MX-Raman
spectrum (2016 variables = 0.84) is lower than that for each of
the spectral barcodes (1013 variables = 1.14, 100 variables =
1.82, 30 variables = 1.75, 10 variables = 1.22), meaning cluster
overlap is reduced after feature engineering. PCA scatter plots
depicting the clusters are shown in Figure S5. Of the 4 spectral
barcodes tested, the optimal number of variables for PCA
clustering was 100, as the transformed spectral barcode had the
largest average Bhattacharyya distance measurement and
therefore the lowest amount of cluster overlap. As a negative
control, we selected the 10 lowest ranking features using
analysis of variance (ANOVA) and repeated the Bhattacharyya
distance analysis. We observed a reduction in Bhattacharyya
distance (10 lowest ranked variables = 0.11) and therefore an
increase in cluster overlap. This further confirms that the
independence and complementarity of the information
provided by each feature is more important than the absolute
number of variables.

Classification of MX-Raman spectral barcodes in each
cluster was achieved using cross-validated LDA of the 3 PCs
and the Bhattacharyya distance was calculated for the resulting
clusters (Figure 3D, black bars). A similar pattern was
observed for the measurements of Bhattacharyya distance for
each MX-Raman spectral barcode transformed using PCA and
cross-validated PCA-LDA, with the PCA transformation alone
leading to less cluster overlap than LDA which is optimized to
maximize the separation of means as opposed to individual
data points. Importantly, each of the spectral barcodes were
classified with higher Bhattacharyya distance and therefore less
cluster overlap by PCA-LDA (1013 variables = 0.82, 100
variables = 1.69, 30 variables = 0.73, 10 variables = 1.07) than
the whole MX-Raman spectrum (2016 variables = 0.25).
Clustering of classes was not observed for the 10 lowest ranked
variables identified using ANOVA (10 variables = 0.06). PCA-
LDA scatter plots depicting the clusters are shown in Figure
SS. In all cases, clustering was lost when class labels were
randomly shuffled, ruling out overfitting of the cross-validated
PCA-LDA model. This confirms that intraclass variance is
reduced through feature engineering of MX-Raman spectral
barcodes while interclass variance is retained, and now the
major source of variance.

We next wanted to compare the accuracy of classification
using each MX-Raman spectral barcode. To do this, we utilized
the original training and testing data sets analyzed by direct
LDA in Figure 2. MX-Raman Spectra were reduced from 2016

variables to 1013, 100, 30, 10 highest ranked and 10 lowest
ranked variables, and for each case the LDA model was
retrained. We compared the overall classification accuracy
using each MX-Raman spectral barcode to that using the
complete MX-Raman spectral range. A significant decrease in
classification accuracy was observed for the MX-Raman
barcode consisting of the 10 lowest ranked variables for the
training data (33.2% =+ 10.2%, Figure 3E) and testing data
(31.1% + 17.4%, Figure 3F), underlining the importance of
feature specificity. For the training data, we also observed a
significant decrease in classification accuracy for the 10 highest
ranked variable barcode resulting in 86.1% =+ 5.6%
classification accuracy (Figure 3E). We did not observe any
significant reduction in classification accuracy for the MX-
Raman barcodes consisting of 30, 100, or 1013 variables
(Table S3). Together, this shows that spectral features from
each wavelength provide uniquely descriptive information, and
that the 10 features in the minimal spectral barcode encode a
majority of the disease-specific information in the MX-Raman
spectrum that is necessary for classification of NDD brain
samples. Based on the analyses presented, retaining 100
variables enables MX-Raman spectra of NDD brain samples to
be clustered and classified most accurately.

B DISCUSSION

In this study we observed that increasing information content
through MX-Raman improved the classification of NDD
samples, but only when that extra information was
independent and descriptive. While we observed that
combining different polarization configurations enhanced the
overall classification accuracy of spectra from NDD samples by
~5%, this difference was not significant while the combination
of two distinct laser wavelengths, specifically 532 and 785 nm,
significantly increased classification accuracy by >10%. This
effect results from the differential resonant and preresonant
enhancement of vibrational modes in each of the multi-
component samples.® A limitation of this proof-of-concept
study was sample size (N = 1S, n = 3), so any conclusions
related to NDD classification are thus caveated accordingly as
we could not robustly develop a predictive model and our
analyses were implemented for the comparison of Raman and
MX-Raman methodologies. Larger cross-sectional studies are
required to further validate NDD classification using MX-
Raman. Despite this, our analyses have demonstrated that
increasing spectral information content using MX-Raman
fundamentally improves the discrimination of Raman finger-
prints derived from different complex mixtures. Importantly,
discrimination was only improved when complementary
Raman information was added using distinct wavelengths
and not when variables were duplicated computationally, or
through collecting non-Raman (autofluorescence) information
with an equal number of variables.

Raman spectroscopy is routinely performed using a range of
laser wavelengths typically in the visible spectrum. Matching at
least one of these laser wavelengths with preresonance/
resonance of components in the sample can maximize the
content of spectral information for MX-Raman. Here, we
observed the preresonant/resonant enhancement of metal-
loproteins using 532 nm excitation, while a 785 nm excitation
did not cause any observable enhancement. The role of metal
imbalance in NDD progression has been substantially
reviewed,”" particularly for AD,”* with metal ions including
iron, copper, zinc, magnesium and manganese implicated.
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Metal ions, and metalloproteins in particular, may be useful
biomarkers for NDD onset and progression.’ Ferritin is a
major store for brain iron and is also a major component of the
insoluble proteome of the brain.*® The absorption window for
ferritin (~550 nm) that enables the resonant enhancement of
Raman bands,”" is shared with hemoglobin and cytochrome
C,”” and metal complex fragments of tau® and amyloid-3,*
suggesting that the 532 nm Raman fingerprint represents
multiple insoluble brain metalloproteins.

While distinct wavelengths could be combined into MX-
Raman fingerprints to improve NDD classification accuracy,
different polarization states and the autofluorescence signatures
that are normally removed during Raman preprocessing
encoded less disease-specific information. While autofluor-
escence is measured together on the same detector as Raman
scattered photons, it must also be noted that the
instrumentation requirements for polarized Raman (filters)
are relatively simpler and inexpensive compared to the
incorporation of a second laser source into a Raman
spectrometer system. This may be a particularly important
trade-oft when considering clinical translation of MX-Raman
methodologies for different applications.

The insoluble fraction from NDD brain samples investigated
in this study has also been analyzed using mass spectrometry
(MS) to identify AD-associated proteins that corelate with
disease onset and progression,*’ and to identify proteins that
are not present in other NDDs such as frontotemporal lobar
degeneration (FTLD).*' It has also been shown that MS
signatures of the insoluble proteome from AD brain and other
NDDs are distinct from that of control patients and from each
other.*” Translational research has also been performed to
demonstrate that MS is an effective tool for biomarker
discovery in CSF from heterogeneous AD cohorts,** as well as
from blood plasma at early stages of AD."* While MS excels at
molecular identification and sample classification, MX-Raman
has the edge in terms of simplicity, and potential for
miniaturization and portability and thus affordability and
scalability. This gives Raman-based approaches an advantage in
real-world clinical deployment, but they are yet to be robustly
validated in patient biofluids beyond promising proof-of-
concept studies.'”*

Our present work provides proof-of-concept that MX-
Raman spectroscopy can be used to detect and distinguish
complex biological samples, specifically pathological brain
fractions from a range of clinically overlapping NDDs. These
samples are taken from defined regions of the brain, known to
be especially affected, and further processed to enhance any
detectable differences between each disease. It is important to
note that the concentrations of pathological protein present in
patient biofluid are orders of magnitude lower by comparison.
Nevertheless, Raman spectra are not reliant on only a specific
analyte such as tau or ferritin but instead capture the overall
composition of a sample and can therefore detect global
molecular changes. Descriptive information content can be
increased by combining holistic Raman spectroscopy with
more specific preresonance/resonance or polarized Raman
spectroscopy, and redundant features can be removed using
our spectral barcoding approach, which together can be
translated and applied to any classification problem in a broad
range of disciplines including NDD diagnostics and beyond.

B MATERIALS AND METHODS

Brain Samples. 300 mg of tissue from the cerebral cortex
was used for experiments. Control and AD brain tissues were
sourced from the South West Dementia Brain Bank (Bristol,
UK) and primary Tauopathy brain tissues (PiD, PSP and
CBD) were sourced from the Brains for Dementia Research,
London Neurodegenerative Disease Brain Bank (London,
UK). Details about tissue donors are shown in Table S4.

Tissue Homogenization and Preparation. All reagents
were purchased from Merck unless otherwise stated. 300 mg
brain tissue was added to a 5 mL borosilicate homogenizer
(Fisherbrand) and 5x (1.5 mL) ice cold A68 buffer (10 mM
Tris—HCI pH7.4, 800 mM NaCl, 1 mM EGTA, 10% sucrose,
1X cOmplete, EDTA-free Protease Inhibitor Cocktail) was
added and tissue was homogenized by 30 up—down mortar
strokes on ice. Tissue was centrifuged at 20,000g for 20 min at
4 °C and the pellet was discarded. Remaining supernatant was
combined at a 1:4 ratio with insoluble preparation buffer (10
mM Tris—HCI pH7.4, 800 mM NaCl, 1 mM EGTA and 10%
sucrose, 4% N-Lauryl sarcosine sodium salt, 1X cOmplete,
EDTA-free Protease Inhibitor Cocktail) and incubated for 1 h
with rotation at RT. Samples were centrifuged at 150,000g for
1 h at 4 °C and supernatant was removed. Pellets were then
washed three times in H,O and finally resuspended in 2 yL
H,O. After mixing well with a pipet, 0.25 L of this sample was
deposited by drop-deposition onto a hydrophobic surface
treated 0.5 mm fused quartz coverslip (UQG Optics) and
dried in a vacuum chamber before same-day Raman analysis as
described previously.® Three samples were measured each day
in a blinded fashion, with each of the 3 samples from a
different class to avoid experimenter and instrument bias,
respectively.

Raman Spectroscopy. A Renishaw inViaTM Qontor
microscope system was used for Raman spectroscopy. Data
was collected and parameters were determined using Renishaw
WIRES.S software. The Raman system was calibrated to the
520—521 cm ™" reference peak of the internal silicon substrate
prior to each experiment. The charge-coupled device (CCD)
detector and spectrometer slit areas were aligned using the
auto align function and the laser spot was manually aligned to
the center of the crosshairs using the camera. Dried droplets
were located and brought into focus using a Leica DM 2500 M
bright field microscope and an automated 100 nm-encoded
XYZ stage. For Raman spectroscopy, 30 spectra were collected
from roughly evenly spaced locations around the center of the
outer “coffee ring”. The samples were excited using a 532 nm
laser at 10% power (0.17 mW at sample) or a 785 nm laser at
100% power (11.66 mW at sample) focused through a Leica
100X short working distance objective (numerical aperture =
0.85). Background quartz spectra were measured in 3 roughly
evenly spaced locations around the dried droplet using
equivalent Z distances as for each sample measurement. As
multiple acquisitions were acquired per spectrum, cosmic rays
were removed manually after each spectral measurement.

Raman Spectral Preprocessing and Feature Selec-
tion. Preprocessing and feature selection was performed using
the TRootLab plugin (0.15.07.09-v) for MATLAB R2023a.*
All spectra were background-subtracted using blank quartz
spectra and high-frequency noise was removed using the Haar-
wavelet denoising function with 6 decomposition levels. A
fifth-order polynomial was used to remove fluorescence, and
the ends of each spectrum were anchored to the axis using the
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rubberband-like function. Spectral intensity normalization was
applied using vector normalization and spectra were stand-
ardized for PCA.

For feature selection, nonparametric U-tests were run per
wavenumber in a pairwise manner for each class. For disease
barcodes, 4 U-tests were performed, one for each class against
the control class. The 3 highest ranking variables in
independent spectral regions were selected and the entirety
of each of these 3 spectral regions were retained. In this case, a
spectral region corresponded to an unbroken sequence of
variables that was independent of the overall number of
variables in that region. For the universal NDD barcode, 10 U-
tests were performed, one between each of the S classes. The
10 highest ranking variables were selected, independent of
region, and reduced to 3 variables using a minimum
redundancy maximum relevance (mRMR) algorithm (MAT-
LAB; fscmrmr). These 3 variables from each U-test were used
to make the 30-variable NDD barcode, while the highest
mRMR ranking variable from each U-test was used to make the
10-variable mRMR barcode.

Statistical and Multivariate Analysis. Principal compo-
nent analysis (PCA) was performed using the IRootLab plugin
(0.15.07.09-v) for MATLAB R2023a* and three PCs were
retained for depiction of transformed data in scatter plots. For
PCA-linear discriminant analysis (LDA), The first 3 PCs were
retained before LDA which resulted in 4 LDs. The first 3 LDs
were retained for depiction of the transformed spectra in
scatter plots.

LDA classification and spectral prediction was performed
using the MATLAB Classification Learner application. Data
was first split into training (90%) and testing (10%) sets at the
level of spectrum. LDA was trained on the training data sets
using S-fold cross validation before testing for classification of
the data into S distinct groups (control, AD, PiD, PSP and
CBD). Training and testing was repeated 3 times using the
first, middle, and final spectra from the spectral data set of each
sample. Results are displayed as an average and the standard
deviation of the mean across the resulting 15 values. The
nonparametric Kruskal—Wallis test with Bonferroni correction
was used to compare the classification accuracies obtained for
each laser configuration, with two-sided P < 0.05 considered
statistically significant.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.5c00776.

Additional experimental details, materials, and methods,
tables and figures, including polarized Raman and
autofluorescence measurements, and Western blot
analysis (PDF)

B AUTHOR INFORMATION

Corresponding Authors

George Devitt — School of Biological Sciences, University of
Southampton, SO17 1B] Southampton, U.K,; School of
Chemistry and Chemical Engineering and Institute for Life
Sciences, University of Southampton, SO17 1B]
Southampton, UK,; © orcid.org/0000-0001-7179-4459;
Email: g.t.devitt@soton.ac.uk

Sumeet Mahajan — School of Chemistry and Chemical
Engineering and Institute for Life Sciences, University of

Southampton, SO17 1B] Southampton, UK,; ® orcid.org/
0000-0001-8923-6666; Email: s.mahajan@soton.ac.uk

Authors

Niall Hanrahan — School of Chemistry and Chemical
Engineering and Institute for Life Sciences, University of
Southampton, SO17 1B] Southampton, UK,; ® orcid.org/
0000-0002-3596-7049

Miguel Ramirez Moreno — School of Biological Sciences,
University of Southampton, SO17 1B] Southampton, UK,;
Institute for Life Sciences, University of Southampton, SO17
1BJ Southampton, UK,; ® orcid.org/0000-0003-1559-
8976

Amrit Mudher — School of Biological Sciences, University of
Southampton, SO17 1B] Southampton, UK; Institute for
Life Sciences, University of Southampton, SO17 1BJ
Southampton, UK.

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.5c00776

Author Contributions

Conceptualization: GD, AM, SM. Data curation: GD, MRM.
Formal analysis: GD. Funding acquisition: AM, SM.
Investigation: GD. Methodology: GD, NH, SM. Project
administration: AM, SM. Resources: AM, SM. Validation:
GD, AM, SM. Visualization: GD, NH, MRM, SM. Writing-
original draft: GD, SM. Writing—review and editing: GD, NH,
MRM, AM, SM.

Notes

This work was carried out under generic ethical approval from
South West Dementia Brain Bank (REC ref 18/SW/0029) and
London Neurodegenerative Disease Brain Bank (REC ref 18/
WA/0206).

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

Funding for this project is acknowledged from the Alzheimer’s
Research UK (ARUK-RF2022B-010) and the EPSRC (EP/
T020997/1 and EP/V038036/1). AM., S.M.,, and G.D. further
acknowledge philanthropic support from John and Elizabeth
Bouldin.

B REFERENCES

(1) Plastini, M. J.; Abdelnour, C.; Young, C. B.; Wilson, E. N,;
Shahid-Besanti, M.; Lamoureux, J.; et al. Ann. Clin. Transl. Neurol.
2024, 11 (5), 1197.

(2) Mangul, S.; Martin, L. S.; Hill, B. L; Lam, A. K. M.; Distler, M.
G.; Zelikovsky, A.; Eskin, E.; Flint, J. Nat. Commun. 2019, 10, 1393.

(3) Devitt, G; Howard, K;; Mudher, A.; Mahajan, S. ACS Chem.
Neurosci. 2018, 9 (3), 404—420.

(4) Hanna, K; Krzoska, E.; Shaaban, A. M.; Muirhead, D.; Abu-Eid,
R.; Speirs, V. Br. J. Cancer 2022, 126 (8), 1125—1139.

(5) Shipp, D. W.; Sinjab, F.; Notingher, I. Adv. Opt. Photonics 2017,
9 (2), 315—428.

(6) Devitt, G.; Rice, W.; Crisford, A.; Nandhakumar, I.; Mudher, A.;
Mahajan, S. ACS Chem. Neurosci. 2019, 10 (11), 4593—4611.

(7) Devitt, G.; Crisford, A.; Rice, W.; Weismiller, H. A.; Fan, Z. Y.;
Commins, C.; et al. RSC Adv. 2021, 11 (15), 8899—8915.

(8) Lister, A. P.; Highmore, C. J.; Hanrahan, N.; Read, J.; Munro, A.
P. S.; Tan, S; et al. Anal. Chem. 2022, 94 (2), 669—677.

(9) Hubbard, T. J. E.; Shore, A.; Stone, N. Analyst 2019, 144 (22),
6479—6496.

(10) Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical
Approach; John Wiley and Sons Ltd: Chichester, 2005.

https://doi.org/10.1021/acs.analchem.5c00776
Anal. Chem. 2025, 97, 12189-12197


https://pubs.acs.org/doi/10.1021/acs.analchem.5c00776?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5c00776/suppl_file/ac5c00776_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="George+Devitt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7179-4459
mailto:g.t.devitt@soton.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sumeet+Mahajan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8923-6666
https://orcid.org/0000-0001-8923-6666
mailto:s.mahajan@soton.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Niall+Hanrahan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3596-7049
https://orcid.org/0000-0002-3596-7049
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Miguel+Rami%CC%81rez+Moreno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1559-8976
https://orcid.org/0000-0003-1559-8976
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amrit+Mudher"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.5c00776?ref=pdf
https://doi.org/10.1002/acn3.52034
https://doi.org/10.1002/acn3.52034
https://doi.org/10.1038/s41467-019-09406-4
https://doi.org/10.1021/acschemneuro.7b00413?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acschemneuro.7b00413?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41416-021-01659-5
https://doi.org/10.1364/AOP.9.000315
https://doi.org/10.1364/AOP.9.000315
https://doi.org/10.1021/acschemneuro.9b00451?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1RA00870F
https://doi.org/10.1021/acs.analchem.1c02501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C9AN01163C
https://doi.org/10.1039/C9AN01163C
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Analytical Chemistry

pubs.acs.org/ac

(11) Sereda, V.; Lednev, L. K. J. Raman Spectrosc. 2014, 45 (8), 665—
671.

(12) Luo, R.; Popp, J.; Bocklitz, T. Analytica 2022, 3 (3), 287—301.

(13) Notingher, L.; Jell, G.; Notingher, P. L.; Bisson, L; Tsigkou, O.;
Polak, J. M.; et al. J. Mol. Struct. 2005, 744, 179—18S5.

(14) Cao, Y; Xiong, J. R;; Du, Y,; Tang, Y. S.; Yin, L. F. Laser Med.
Sci. 2024, 39 (1), 68.

(15) Conti, F.; D’Acunto, M.; Caudai, C.; Colantonio, S.; Gaeta, R.;
Moroni, D.; Pascali, M. A. Sci. Rep. 2023, 13 (1), 7282.

(16) Ho, C. S.; Jean, N; Hogan, C. A.; Blackmon, L.; Jeffrey, S. S.;
Holodniy, M.; Banaei, N.; Saleh, A. A. E.; Ermon, S.; Dionne, J. Nat.
Commun. 2019, 10, 4927.

(17) Ryzhikova, E.; Ralbovsky, N. M.; Sikirzhytski, V.; Kazakov, O.;
Halamkova, L.; Quinn, J.; et al. Spectrochim. Acta, Part A 2021, 248,
119188.

(18) Ellis, R. J.; Sander, R. M.; Limon, A. Intell. Med. 2022, 6,
100068.

(19) Ying, X. J. Phys.: Conf. Ser. 2019, 1168, 022022.

(20) Zuvela, P; Lin, K.; Shu, C.; Zheng, W.; Lim, C. M.; Huang, Z.
W. Anal. Chem. 2019, 91 (13), 8101—8108.

(21) Waldo, G. S; Ling, J. S.; Sandersloehr, J.; Theil, E. C. Science
1993, 259 (5096), 796—798.

(22) Levi, S.; Ripamonti, M.; Moro, A. S.; Cozzi, A. Mol. Psychiatry
2024, 29 (4), 1139—1152.

(23) Rygula, A.; Majzner, K,; Marzec, K. M.; Kaczor, A.; Pilarczyk,
M.; Baranska, M. J. Raman Spectrosc. 2013, 44 (8), 1061—1076.

(24) Choi, S.; Spiro, T. G.; Langry, K. C.; Smith, K. M.; Budd, D. L;
Lamar, G. N. J. Am. Chem. Soc. 1982, 104 (16), 4345—4351.

(25) Sato, H.; Chiba, H.; Tashiro, H.; Ozaki, Y. J. Biomed. Opt. 2001,
6 (3), 366—370.

(26) Parmera, J. B, Oliveira, M. C. B. d; Rodrigues, R. D,;
Coutinho, A. M. Arq. Neuro-Psiquiatr. 2022, 80 (S suppl 1), 126—136.

(27) Shi, Y,; Zhang, W. J; Yang, Y.; Murzin, A. G; Falcon, B;
Kotecha, A.; et al. Nature 2021, 598 (7880), 359.

(28) Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A. W.; O’Sullivan,
J. M. Front. Bioinform. 2022, 2, 927312.

(29) Mahalanobis, P. C. Proc. Natl. Acad. Sci,, India 1936, 2 (1), 49.

(30) Xu, H,; O'Reilly, M.; Gibbons, G. S.; Changolkar, L.; McBride,
J. D,; Riddle, D. M,; et al. Acta Neuropathol. 2021, 141 (2), 193—215.

(31) Li, T.; Bonkovsky, H. L.; Guo, J. T. BMC Struct. Biol. 2011, 11,
13.

(32) Guo, Q; Dammer, E. B; Zhou, M. T.; Kundinger, S. R;
Gearing, M.; Lah, J. J; Levey, A. I; Shulman, ]J. M.; Seyfried, N. T.
Front. Mol. Neurosci. 2021, 14, 623659.

(33) Fukunaga, K. Chapter 3—Hypothesis Testing. In Introduction
to Statistical Pattern Recognition, 2nd ed.; Fukunaga, K., Ed.; Academic
Press: Boston, 1990; pp 51—123.

(34) Cicero, C. E.; Mostile, G.; Vasta, R.; Rapisarda, V.; Signorelli, S.
S.; Ferrante, M; et al. Environ. Res. 2017, 159, 82—94.

(35) Tran, D.; DiGiacomo, P.; Born, D. E.; Georgiadis, M.; Zeineh,
M. Front. Hum. Neurosci. 2022, 16, 838692.

(36) Fitzpatrick, A. W. P.; Falcon, B,; He, S; Murzin, A. G
Murshudov, G.; Garringer, H. J.; et al. Nature 2017, 547 (7662), 185.

(37) Spiro, T. G.; Strekas, T. C. Proc. Natl. Acad. Sci. US.A. 1972, 69
(9), 2622.

(38) Kastal, Z.; Balaban, A.; Vida, S.; Kéllay, C.; Nagy, L.; Varnagy,
K.; Sovags, L. Molecules 2024, 29 (10), 2171.

(39) Seal, M.; Mukherjee, S.; Dey, S. G. Metallomics 2016, 8 (12),
1266—1272.

(40) Hales, C. M.; Dammer, E. B; Deng, Q. D.; Duong, D. M,;
Gearing, M.; Troncoso, J. C.; et al. Proteomics 2016, 16 (23), 3042—
3053.

(41) Gozal, Y. M;; Duong, D. M,; Gearing, M,; Cheng, D. M,;
Hanfelt, J. J.; Funderburk, C.; et al. J. Proteome Res. 2009, 8 (11),
5069—5079.

(42) Cherry, J. D.; Zeineddin, A.; Dammer, E. B.; Webster, J. A.;
Duong, D.; Seyfried, N. T; et al. J. Neuropathol. Exp. Neurol. 2018, 77
(1), 40—49.

(43) de Geus, M. B; Leslie, S. N.; Lam, T.; Wang, W. W.; Roux-
Dalvai, F.; Droit, A.; Kivisakk, P.; Nairn, A. C.; Arnold, S. E.; Carlyle,
B. C. Sci. Rep. 2023, 13 (1), 22406.

(44) Kim, Y.; Kim, J.; Son, M.; Lee, J.; Yeo, L; Choi, K. Y.; Kim, H.;
Kim, B. C; Lee, K. H.; Kim, Y. Sci. Rep. 2022, 12 (1), 1282.

(45) Paraskevaidi, M.; Morais, C. L. M.; Halliwell, D. E.; Mann, D.
M. A,; Allsop, D.; Martin-Hirsch, P. L.; et al. ACS Chem. Neurosci.
2018, 9 (11), 2786—2794.

(46) Trevisan, J.; Angelov, P. P; Scott, A. D.; Carmichael, P. L;
Martin, F. L. Bioinformatics 2013, 29 (8), 1095—1097.

https://doi.org/10.1021/acs.analchem.5c00776
Anal. Chem. 2025, 97, 12189-12197


https://doi.org/10.1002/jrs.4523
https://doi.org/10.1002/jrs.4523
https://doi.org/10.3390/analytica3030020
https://doi.org/10.1016/j.molstruc.2004.12.046
https://doi.org/10.1007/s10103-024-04019-w
https://doi.org/10.1007/s10103-024-04019-w
https://doi.org/10.1038/s41598-023-34457-5
https://doi.org/10.1038/s41467-019-12898-9
https://doi.org/10.1038/s41467-019-12898-9
https://doi.org/10.1016/j.saa.2020.119188
https://doi.org/10.1016/j.saa.2020.119188
https://doi.org/10.1016/j.ibmed.2022.100068
https://doi.org/10.1016/j.ibmed.2022.100068
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1021/acs.analchem.9b00173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.8430332
https://doi.org/10.1126/science.8430332
https://doi.org/10.1038/s41380-023-02399-z
https://doi.org/10.1038/s41380-023-02399-z
https://doi.org/10.1002/jrs.4335
https://doi.org/10.1021/ja00380a006?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1117/1.1380668
https://doi.org/10.1117/1.1380668
https://doi.org/10.1590/0004-282x-anp-2022-s134
https://doi.org/10.1038/s41586-021-03911-7
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.1007/s00401-020-02253-4
https://doi.org/10.1186/1472-6807-11-13
https://doi.org/10.1186/1472-6807-11-13
https://doi.org/10.3389/fnmol.2021.623659
https://doi.org/10.1016/j.envres.2017.07.048
https://doi.org/10.3389/fnhum.2022.838692
https://doi.org/10.1038/nature23002
https://doi.org/10.1073/pnas.69.9.2622
https://doi.org/10.1073/pnas.69.9.2622
https://doi.org/10.3390/molecules29102171
https://doi.org/10.1039/C6MT00214E
https://doi.org/10.1039/C6MT00214E
https://doi.org/10.1002/pmic.201600057
https://doi.org/10.1002/pmic.201600057
https://doi.org/10.1021/pr900474t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/pr900474t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/jnen/nlx100
https://doi.org/10.1093/jnen/nlx100
https://doi.org/10.1038/s41598-023-49440-3
https://doi.org/10.1038/s41598-022-05384-8
https://doi.org/10.1021/acschemneuro.8b00198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acschemneuro.8b00198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/btt084
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

