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1 Introduction and summary

Conformal field theories (CFTs) with exactly marginal operators (moduli) form continuous

families of CFTs. The geometrical description of a family of CFTs is given by the moduli

space, whose coordinates are the exactly marginal couplings of the member CFTs. CFTs in a



moduli space! have the same central charge and have an enhanced symmetry group, which
may be further enhanced at particular points or loci in the moduli space. In two dimensions,
non-linear sigma-models with target spaces being tori or Calabi-Yau manifolds are among
the well-known examples of continuous families of CFTs [1, 2]. Various aspects of the moduli
spaces of 2-dimensional CFTs have been developed in the literature, often in the context of
string theory, but also with applications in condensed matter [3—19].

In many cases, for instance Calabi-Yau sigma-models, generic points in the moduli space
are not well characterized, i.e. the specific CFTs at those points are unknown. Regions on
these moduli spaces with further enhanced symmetries such as the orbifold loci or Gepner
points [20, 21] offer special points where the CFTs are known. One may hope that the known
CF'Ts along with knowledge of geometric aspects of the moduli space may be used to uncover
features of the CF'Ts at generic points, especially for the nearby CFTs. Exploring the changes
to a CFT by deforming the theory by an exactly marginal operator is known as conformal
perturbation theory. The goal of this work is to formulate the conformal perturbation theory
of n-point correlation functions in general 2-dimensional CFTs. Our main motivation is to
develop a systematic study of the deformation of the structure constants of a CFT.

Together with the conformal dimensions, the structure constants form the complete set
of the parameters of the CFT. While the deformation of the conformal dimensions has been
extensively studied, the deformation of the structure constants is somewhat less explored.
The latter requires the conformal perturbation theory of the 3-point functions, which we
consider at first order, as a special case of our n-point function perturbation framework.

Conformal perturbation theory has wide applications in physics, and in particular in
string theory. The conformal field theory framework and the geometric setup of the moduli
space were developed in [22-31]. Some applications to non-linear sigma-models and WZW
models have been studied in [32-43]. In the case of sigma-models on K3, understanding
generic CF'Ts plays a crucial role in resolving two long-standing puzzles. One is the emergence
of the Mathieu group Msy in K3 sigma-models and the conformal field theoretic origin
of the Mathieu moonshine [44], and the other is the distribution of rational points in the
moduli space of K3 CFTs [45].

The case of 2-dimensional CFTs with moduli spaces is also of great importance in the
context of the holographic principle, namely in the string theory realisations as well as in
other formulations of the AdS3/CFTy correspondence [46-72]. The dual CFT in many of
these holographic dualities is the symmetric product orbifold of a seed CFT, where the
seed theory can be e.g. a non-linear sigma-model with 7%, K3 or other target spaces, or
a supersymmetric minimal model.

In conformal perturbation theory one must start with a well characterized CFT, and
deform away from it on the moduli space. Various methods for computing correlation
functions on both sides of the holographic dualities have been developed [73-84], and applied
to perturbative analysis. In some cases the perturbed quantities may be protected by
supersymmetry or other mechanisms, and do not vary when deforming the theory [85-87].
Also of interest are quantities which acquire perturbative corrections. Conformal perturbation
theory on the moduli space of the holographic CFTs has been studied from different aspects [88—

!The moduli space is sometimes referred to as the conformal manifold.



125]. Many of these investigations characterize CFTs at nearby points in the moduli space by
focusing on changes to the conformal dimensions of operators, i.e. examining the spectrum
of operators in the perturbed CFTs. Changes to higher n-point function data have been
discussed more rarely, however, see [39] for general considerations for deforming structure
constants, and for specific cases [106, 107, 109, 113, 120]. Our aim here is to consider the
problem of the shifts to the structure constants generally, track counter terms precisely, and
address how to tackle the integrated 4-point function piecewise.

1.1 Summary of the results

To summarize the results, we briefly recall the basic structure of conformal perturbation theory.
As usual in quantum field theory, one may consider the space of theories by changing the action
of the theory under consideration, Sy, by adding to it a perturbative term: S = Sp+4JS. In the
path integral formulation, the partition function and correlation functions of the new theory
S are computed by expanding exp(Sp+ 0.5) order by order in perturbation theory. To restrict
conformal perturbation theory to be along the moduli space, we impose 65 = \¢ [ dz?O,.
The operators Oy are the exactly marginal operators with conformal dimensions (1,1), which
parameterize the tangent space of the moduli space at the point A = 0. The coefficients \¢
are the coupling constants, £ = {1,--- ,d}, and d is the total number of the moduli. Varying
the values of \¢ generates a neighborhood of the unperturbed theory in the moduli space.

Generically, an all-order perturbative expansion is extremely difficult. To make progress,
we pick a specific deformation operator Op, for which the coupling constant is simply given
as A, and expand in A. At leading order, A may show up in the correlation functions in two
ways: in A [ dz? Op from expanding the measure of the path integral; and in ¢; \ ~ ¢; + Ad¢;
from explicit lambda dependence of the fields. The integrals must be regulated, and we do so
by excising holes of radius € from the region of integration. This introduces ¢ dependence
that is generically divergent, and must be regulated with e divergent counter terms appearing
in d¢;. Once these divergences are removed, the ¢ — 0 limit may be taken to extract the
first order in A correction to the given correlator.

The form of the counter terms d¢; is essentially the question of the connection on the
space of the states of the theory. This has been studied in detail for the coordinates on the
moduli space [26] (see [18] for a more recent work). In some cases, one might hope that
the regulators and connections on the moduli space may be computed exactly, as was done
in [86, 87] for theories with extended supersymmetry, relying on the enlarged chiral ring
to constrain the connections. Here we keep our concerns limited to conformal symmetry,
and in fact we most heavily rely on the sl(2) structure of the theory, which we review in
appendix A. We shall computate corrections to general 3-point functions, that may not
be protected by any non-renormalization theorem. Furthermore, we will concern ourselves
beyond the exactly marginal operators which determine the local coordinates on the moduli
space and connections on these coordinates.

We begin in section 2 with the perturbation of the 2-point function, which arises from
an integrated 3-point function. In the literature, one often takes the two locations of the
inserted operators ¢1(z1) and ¢2(22) and maps them under an sl/(2) transformation to 0
and oo. The mapped region of integration, and its first order in e approximation (indicated



by = below), are
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For the leading order in e region, which we call the simplified domain, we obtain the

€ divergence, and define an appropriate set of counter terms in section 2.1. These are
given by [27]
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where the indices {i,p} above run over the set of quasi primaries in the theory, d; = h; +
h;, si = h; —h; denote the total dimension and spin of operators, and the structure constant for
equal dimension quasi primary operators has been diagnoalized to Cp ;;. The approximation
on the r.h.s. of eq. (1.1) is non-local. One may hope to find the full set of counter terms
which cancel the divergences for the original domain on the Lh.s. of eq. (1.1), before taking
the leading order in € approximation. The effects of changing the shape of the excised region
in a deformed theory has been discussed elsewhere, for example [126]. In section 2.2, we
find the correction to eq. (1.2) coming from the exact in € domain (1.1), and obtain the
full set of counter terms:
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where n and 7 are a pair of integers n = (£ + (s; — sp))/2,7 = (£ — (s; — sp))/2 defined by
the necessarily integer spin difference s; — s;.

In section 3, we show that the above counter terms, along with the hard disk cutoff for
the integrals, regulates all n-point functions needed in first order perturbation theory. This
is the first of the two main results of this work, and is obtained by showing that the above
terms naturally arise in the operator product expansions (OPEs) computed in section 3.1.
This procedure is effectively the regulator of [30] used to define “connection ¢”, one of the
integrable regulators in that work (although written in that work somewhat generically
without using much of the structure of the OPE). In eq. (1.3) we have written the counter
terms explicitly in terms of the si(2) highest weight states, i.e. the quasi primaries, and the
conformal dimensions and structure constants that characterize the theory. We note that the
sum (1.3) only includes the divergent terms, however, extending it beyond this leads to a
natural set of e independent (i.e. order €”) terms in two families. The first family is

(1)t
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if there exists a set of quasi primary operators ¢, with ﬁp = h;, hi — hy =58 —3s,>1a
positive integer (s; = h; — h; denotes the spin), and that ¢, have non-vanishing structure
constants with Op and ¢; (Cp;p # 0). The second family is

27N Cpiy T Gty (1.5)
(hz - hp) (2hp)ﬁz—hp
if there exists a set of quasi primary operators ¢, with h, = h;, h; — Bp =—(5—-5)>1a

positive integer, and Cp;, # 0. It is interesting to note that these operators lie on the Regge
trajectory of operators with lower conformal dimension than the operator in question ¢;.
Whether or not to include these “borderline operators” as part of the counter terms, and
whether we have correctly identified the coefficients, is a question of how to preserve the
correct functional form of the n-point functions, i.e. is a question of naturalness [26]. This is
most cleanly addressed in the most constrained correlators: 2-point and 3-point functions.
Knowing what types of functional form can be removed with counter terms is therefore
essential to extract meaningful answers. Our “borderline” operators (1.4) and (1.5) help
address this in n-point functions with n larger than 2. The 2-point functions are special
because of the simplicity of the functional form, essentially allowing derivatives to not affect
the general functional form: a power of a displacement. The additional counter terms found
above therefore seem to not play a role until one addresses 3-point functions and higher.
In section 4 we turn to the perturbed 3-point functions, which are calculated by an
integrated 4-point function. We define the function of the cross ratio f(¢,¢) by

(Op(2,2) ¢i(21,21) ¢j(22, 22) dr(23,23)) = (1.6)
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where Op is the deformation operator. The change to the structure constant arises from the
constant in e part of the perturbation integral —\ [ d?2f(2, %) over a regularized domain, see
the generalized sum rule in [39]. We explicitly find the regularized domain, which is
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We find the above domain difficult to analyze, and so consider its first order in € approximation:
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which we call the simplified domain. The perturbation integral over the simplified domain is
also difficult to compute, even given the conformal block structure of f(, 2). We find that the
corrections needed to go from the simplified domain (1.8) to the exact domain (1.7) can be
calculated in terms of the CFT data: this is the second of the two main results of this work.

We denote the €” part of —\ [ d?2f(2, 2) as Zsimp 0, simply dropping terms divergent in e:
a “minimal subtraction” scheme. As shown in section 3, the divergent terms in —\ [ d22f(2, 2)



must combine with divergent parts of the integral over the corrections to the simplified domain,
and these must cancel against the counter terms (1.3). We are able to show that the constant
in € part of —\ [ d?2f(2, %) over the full domain (1.7), which we call Zg, is given by

IO — I&mp,O + Ihol + Iahol + Ih + Iahol + I]};,%I + Iahol (19)

where each of the Iga)h]?i o may be calculated explicitly, for example:
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Above P is the Jacobi polynomial, and we have used h§’2 := h1 + hg — hg and h% = h1 — ho
to condense notation. The Jabcobi polynomial above is exactly the functional form that
may be removed using egs. (1.4) and (1.5) at each point, even agreeing with the coefficient
inferred by taking non-divergent terms in the sum (1.3). While the Jacobi polynomial is
canceled, the constant parts represent contributions to the change in the structure constant.
Thus, the change to the structure constant to first order in A is of the form:
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where Z, ;"" means to remove the Jacobi polynomials which may be canceled by counter

terms (1.4) and (1.5) (other counter terms may be necessary in Z o as well). For instance,
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can be read from eq. (1.10). The contribution from ZZ] simp,0 Must be calculated theory by
theory over the simplified domain, and then one must add to it the contributions (1.11). In
section 5 we use the compact boson CFT to give an example where contributions from the
simplified domain and the corrections above are necessary.

The rest of the paper is organized as follows. In section 2 we consider the integrated
3-point function which gives the corrections to the 2-point function. We find the full set of
counter terms (1.3) needed to regulate the integral, and compute the anomalous dimension
of the quasi primaries. We find that this calculation is unchanged whether one uses the
simplified domain or the exact domain of integration (1.1). In section 3, we show that the
same counter terms arise by considering the OPE of the deformation operator with the
fixed operators in an arbitrary n-point function. This shows that the counter terms (1.3)
are sufficient to regulate the integral appearing in the first order perturbative correction to
any n-point function. We apply our general perturbation framework to the case of 3-point
functions in section 4 and consider the shift to the structure constants of the theory. Section 5
contains an explicit example of the perturbation of the structure constant for the CFT of a
compact boson. We conclude in section 6. Several appendices contain proofs of the formulae
presented in the main text, as well as other technical details.



2 Shift of conformal dimensions

In this section we will compute the change in conformal dimensions, also known as anomalous
dimensions, of quasi primary operators at first order in perturbation theory. To do so, we start
in section 2.1 by considering the corrections to the 2-point function, which are calculated using
an integrated 3-point function. Two of the operators are placed at z; and z; respectively,
while the third operator is the exactly marginal deformation operator, with dimensions
(h,h) = (1,1), added to the Lagrangian of the theory; the position of the deformation
operator is integrated over. This 3-point function is singular when the deformation operator
approaches either of the insertions, and so the integral must be regulated.

We adopt a canonical regularization procedure where small disks of radius € are cut out
around z; and zo. When the size of the holes is relaxed ¢ — 0, the integral diverges, and we
must find appropriate counter terms to cancel such divergences. To do so, we proceed in
stages. First, in section 2.1, we map the two insertions at z; and 29 to the points 1 and oo
using an sl/(2) transformation. This transformation also maps the excised disks to excised
regions at 0 and oo as well, and we first consider the location and shape of these regions to
only to leading order in ¢, leading to a simplified region of integration. This allows us to find
a set of counter terms necessary to regulate the divergences in this simplified region, and
further allows us to find the anomalous dimension to first order in the coupling constant A. In
section 2.2 we go beyond leading order in € by correcting the excised regions at 0 and oo to all
orders in €, leading to a full set of counter terms necessary to regulate the integrated 3-point
function. These include operators belonging to new quasi primary families, but also include
sl(2) descendants (derivatives) of the original counter terms necessary to regulate the integral
in the simplified region. While these new counter terms are necessary, we find that they do not
alter the expression for the computation of the anomalous dimension of operators. The reader
familiar with the standard calculation in the simplified region may safely skip to section 2.2.

2.1 Simplified domain

Consider a moduli space of 2-dimensional CFTs with real coordinates Ay, £ = {1,--- ,d}.
A¢ are the coupling constants of the CFT at each point in the moduli space and we refer
to them collectively as A. Consider a set of quasi primary operators ¢;, which have been
put in an orthonormal basis for the CFT at position A in the moduli space. The two point
function of two such operators is given by

2hi(N) 22hi(A)
212 12

(Din(z1,21) @ja(22,22))x = (2.1)
Above we have explicitly written the coupling constant dependence of the action by giving the
expectation value a subscript lambda. We have also explicitly written the coupling constant
dependence of the operators themselves with the A subscripts. The normalization of operators
are fixed to be the same at all points A, leaving the only coupling constant dependence in the
conformal weights. We may therefore perturb for small A, and the r.h.s. of eq. (2.1) reads:
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The Lh.s. of eq. (2.1) may be expressed using path integral formulation and deforming
away from the A = 0 theory by an exactly marginal operator Op:

[ d[O] ¢ Siree = [ 22 0p (=) dix(z1,21) QjA(22,22)
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where d[O] refers to the fundamental fields appearing in the action Ske.. Expanding to
leading order in lambda, we find:
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A couple of remarks are in order. Firstly, since (Op)y—¢o = 0, the second term in the
denominator vanishes. Secondly, note that the operators ¢; y in general depend on A, which
we must eventually expand: the A° term matches the leading order term in (2.2), and the A
terms are counter-terms. In the second line, the correlation functions are calculated in the
undeformed theory (A = 0) and in the second term, operators under the integration should
not have any A dependence (such changes to the operators would give rise to O(\?) terms,
and so their subscripts have been removed). The operators that appear in the integrated
3-point function are a set of operators in the A = 0 theory which satisfy eq. (2.1) at A = 0.
Similar considerations exist for Op, which should naturally carry a A subscript as well. For
simplicity in subsequent formulas we will drop the subscript A on operators and expectation
values when A = 0.

Let us now focus on the integrated 3-point function in eq. (2.4):

- —/\/d2z<(’)D(z,5) Si(21,71) 6;(22, %)) (2.5)
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where a.h. refers to the anti-holomorphic counterparts (note, we make no distinction between
up and down indices on operators because of the choice of 2-point function). In the above
we have introduced the structure constant Cp; ;. The above integral diverges when the
deformation operator Op approaches operator insertions, i.e. at z — z1 or z — 29, depending
on the values of h;, hs, hj, fzj. The integral must then be regulated. We do so by excising small
holes around the operator insertions, allowing only the region |z — z1| > € and |z — 22| > ¢,
for 0 < e < 1.

We define new coordinate

z— 21
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Under this map, the excised regions are near 2 = 0 and 2 = oo, and the region of integration

is mapped to

2
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We find this region cumbersome to deal with because the circular boundaries are not concentric,
and their radii are not simple functions of the regulation parameter €. To make progress,
we first approximate the region with the leading order behavior in € for the above region,
postponing the higher order corrections to section 2.2. To leading order, we find

o cp) < 222 (2.8)

which we refer to as the simplified domain. When restricting (2.5) to the simplified domain,
we refer to this integral as As. To make the left-moving/right-moving symmetry obvious,
we define s; = h; — fzi and d; = h; + ﬁi which denote respectively the spin and scaling
dimension of operator ¢;. We change to coordinates 2 = re’®, and recall that the area
integral has a Jacobian d?2 = 2rdrd¢ (or defining this as our convention?), eq. (2.5) over
the simplified domain reads

|12 ~(hithy) (z,5)~(hith;
/ 12 dr (21) (hithy) (7))~ (hiths) o—i(si—s;) (2.9)
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where z;; = z; — z;. The integral over ¢ is unobstructed, and so requires that s; = s;. This is
perhaps not surprising because a weight (1, 1) operator should not spoil spin conservation,
which we will also see later on as well when considering all orders in e. Next, consider
the two distinct cases: d; = d; or d; # d;. In the first case, d; = d; and s; = s; impose
hi = hj and h; = h;. We find

Ay = —47A Cp s 277" 277 (In(210) + In(212) — 21n(e)) (2.10)

The logarithmic terms appear to match the expansion (2.2), however, the matrix Cp
makes the above have possible ¢ # j off diagonal terms. This is simply because there is
an ambiguity in the choice of orthogonal operators as in (2.1) if there are multiple quasi
primary operators with the same conformal dimension. We choose a basis which diagonalizes
Cp,,j as well, given that this must be a symmetric matrix. With this, the regularization
dependent term may be absorbed into a counter term, utilizing the first term in the right
hand side of eq. (2.4) to eliminate this divergence.
For the case d; # dj, eq. (2.9) becomes

1 1 1 1
A, = 4mcD,i,-55i,S.< _ ( : ) 4 _ ( : )) (2.11)
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2This gives some differences from what appears in some other references, given that many references define
d? Zelsewhere = rdrd¢. However, all integrals performed here are over positions of deformation operators which
always come with factors of A, and so this amounts to a scaling of A\. To match this other common convention,
one may simply replace \ys = %)\elsewhere for easy comparison.



Only one of the terms above is divergent: the first term when d; > d;, and the second when
d; > d;. For now we focus on the first term. In this case, it is natural to associate the
divergences with parts of the integral where Op approaches ¢;: in such a case, an occurrence
of ¢; in the OPE has a singular coefficient for the case at hand d; > d;. We think of these
terms as the ones needing to be regularized by counterterms in ¢; y. For the same reasons,
we associate second term in the above equation with counter terms in ¢; ). Furthermore,
divergences of this type will happen for all such quasi primary fields and thus, must be
summed over (the ¢; in the correlator simply projects the sum over terms onto this specific
quasi primary). This operator mixing leads to a sum of “off diagonal” terms which may be
absorbed by a set of counter terms. All in all, we obtain

5si s
Gix= @i — 2T\ ln(ez) Cp.ii @i + 47\ Z (d—d )7:(difdp) Cpip®p + O()\Q) . (2.12)
p, dp<d1‘ v P

Inserting eqs. (2.10)—(2.12) in eq. (2.4), we evaluate the two-point function at the first
order perturbation theory. In particular, the counter terms cancel the In(e) terms in (2.10),
leaving only the In(z12) and In(Z12) terms. These can be then matched to the log terms
n (2.2), giving the well-known expressions for the anomalous dimension [25-27]:3

i(A)
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2.2 Exact domain

The regulators in the last subsection are non-local. Going from the allowed region (2.7) to
the simplified region (2.8) necessarily introduces correction terms in powers of €/z;2, and
so requires knowledge of the location of both operator insertions. It is interesting, and
perhaps a bit mysterious, that the integral over this simplified region still admits local counter
terms which cancel divergences.

However, we wish to have a fully local regulator, which the original region (2.7) supplies.
The exact domain (2.7) is nearly identical to the simplified domain (2.8) along with corrections
to the domain near 2 = 0 and 2 = co. This suggests breaking the integral into three parts:
the integral over the simplified domain; the corrected domain near z = 0 associated with
operator 7; the corrected domain near Z = oo associated with operator j, i.e.

A=A+ A+ Aj (2.14)

We find that A; and A; are integrals defined over crescent regions near 2 = 0 and 2 = oo,
respectively — see figure 1.
Implementing this split of the domain, we find

2 |z 12|R d

A = —20Cp w/ dd)/'m' T Q). A= —2ACD,,-J/ do = Q9)

(2.15)

\212\

3Keeping in mind our convention for the area explained in footnote 2 on page 9, the right hand side of
eq. (2.13) must be divided by 2 to match these references.
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Figure 1. The modification of the integrated area near Z = 0. Above we have plotted for ¢ = 0.8 and
|z12] = 5, where the blue circle (slightly to the right) is |2| = €/|z12| and the red circle (slightly to the

2

left) is ‘2 + % € (1 — =55)~t — see egs. (2.7) and (2.8).

[212 T Tl T el

where the integrand in each term is the same as in eq. (2.9):

~(hithy) (35)~(Rith)
Q. ¢) = (212) ;Ezl?) " omid(sims;) (2.16)
rdi—d;

The upper and lower bounds of integration in eq. (2.15) are determined by eq. (2.7):

Roo = \/1 62 Sin2(¢) + € Cos(qS) RO _ 1 _ \/1 — ﬁ Sin2(¢) o @ COS(¢) |

- zf? |212] R 1- 2
|z12]
(2.17)
Note, one may change variables in A; to r = 1/r',¢ = —¢/, and along with the symmetry

Cp,i;j = Cp,j; of the structure constants, we see that (i <+ j)A; = A;. This makes A
manifestly ¢ <+ j symmetric, a property we should expect from a local regulator. Thus, we
may concentrate on A; and extract A; by symmetry.

Concentrating on A; for the case d; # d;, we find

A = (212)_(hi+hj)(512)_(Bi+ﬁj) 272l — |z

—2A CD,i,j 0 edi=dj (di - dj)

di—d;
| (1-— Rgéﬁdj) cos((s; — s5)0)

(2.18)

where we have noted that the R is symmetric under ¢ — —¢ and so only the cos((s; — s;)¢)
in A; survives. The above expression furnishes an expansion

2m di—d [di—d;) GE
o (1 - i = 5)6) = di —di, i — 85) —— + - . 2.1
fae (- R eostlo =)0 = 3 s =i =) g + (219
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The constants a¢(d; — d;, s; — s;) are geometrically calculable given a pair of operators with
d; > d;, and are explicitly computed in appendix B.
Some general properties of the ay coefficients are easily obtained. First we consider the

dj

range of £. Expanding R%™% in ¢ above order |d; —d;| gives terms which go to zero as € — 0,
and so we truncate the sum there (although these terms are still calculable). The lower bound
lmin can be found by considering the trig functions appearing in the expansion. A term of
order " may be built from €2 sin?(¢) and € cos(¢), or more succinctly as € (sinusoid)™. Given
a spin mismatch s; — s;, any terms with ¢ < |s; — s;| will not contribute, as these Fourier
modes have not yet been accessed by the expansion of R.,. This gives ¢ > |s; — s;|. Finally,
we note that ¢ — ¢ + m,e — —e is a symmetry of R, and so only £ — |s; — s;| € 27 give
non-zero a; coefficients (only even/odd powers of € appear, depending on whether s; — s; is
even/odd). It is further evident that ag = 0 because (1 — RY W ) is 0 at order €.

Inserting the expansion (2.19) in eq. (2.18), we find

ldi—d;]

1 _ ‘_S,L'fsj+e B oF . sifsjfz ap d'_d',S'_S'
AZ’ ~ +2>\CD,z,] Z d — d (212) 2hJ 2 (212) 2h3+ 2 ( * difjdjflf ‘7) ,
E#O,Z2|sifsj\ ¢ J €
L—|s;—s;|€2Z
(2.20)

where ~ means up to terms which vanish as € — 0. The integral A; contributes to singular
terms when the hierarchy of dimensions is reversed, i.e. d; > d;, as a result of the i <+ j
Symmetry.

Given the bounds of the sum, we see that M =n>0and w =7, > 0 define
two positive integers n,n, which allows us to write the summand of (2.20) as

1
(2f~lj)ﬁ

The divergences above are associated only with operators obeying d; > d;. It is natural to

_ . di —d;, s; — s,
57 ()2 M= D5 = 55) g gy

—2h.
6?(2'12) 7 Edi—dj—e

" di—d; (2h)n

associate these with divergent terms in the OPE as Op approaches ¢;, producing operators
in the family ¢, with d; > d,: the operator ¢; simply projects onto the operator family j
because of the normalization of 2-point functions for quasi primaries. We therefore group the
divergences above with counterterms associated with the operator ¢;, and so the derivatives
01 are preferred in this case. The counter terms associated with ¢; correspond to the crescents
near Z = 0o, and can easily be extracted using the ¢ <> j symmetry of A. We will approach
finding the counter terms using the OPE analysis directly in the section 3.
Finally, in appendix B we prove that

(di — dj) (_1)6 (1 —h; + hj)n (1 — iLZ + B])ﬁ

a¢(d; — dj, s; — s55) = —2m (di —d; —0) n!n!

(2.22)

for all allowed values of ¢ (recalling that ¢ # 0, or equivalently ag = 0 by eq. (2.19)). Plugging
in these results, (2.20) then reads

S i+ ~

—hi+hj)n (1 —hi + hj)a e

Ai = —47ACp j z s L 9 (219) 2O (Z19)
l—|s;—s;|€2Z
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Such divergences occur for any quasi primary field ¢; satisfying d; > d;. We must sum over
all such terms to account for the crescent regions. Counter terms may then be easily obtained:

Cp. (1= hi +hp)n (1 — hi + hy)a
HATA Y > AT Al (2
by 120, s (B o = DT n! (2hy)n 7! (2hy)
|si—sp|<|di—dp] €—|s;—s;|€2Z

ldi—d;] i
8”8"@, ,

(2.23)
which we must add to the previous counter terms (2.12) which cancel the divergences
associated with the simplified region. Interestingly, the previous counter terms of (2.12) are
those that exactly complete the above sum by including ¢ = 0 terms when s; = s,. Thus,
the full counter terms are the above sum dropping the £ # 0 restriction. We therefore see
that the above sum includes new quasi primaries in the sum over p that are spin mismatched,
but made to match total spin using derivatives. In addition, the sum also includes the si(2)
descendants of the old counter terms (2.12).

We have yet to address the case d; = d; in A; in equation (2.15). We obtain

/ ao [ - er@ (212) 41 (35)~ (it d¢ In(Roc) cos((si — 5,)9) (2:24)

[21 2\

which is finite in the limit ¢ — 0, and thus no additional counter terms are required.
The final result for the counter terms, to all orders in ¢, is of the form

Gin = ¢; — 2n\ In(e?) Cp ;i i (2.25)
Ld dpJ 7 7
Ch, (L= i + ) (L — Jog + Fop)a
+ 47\ b ——— "™
p,c%;di zzgsp (di — dp — )eti=r=" n! (2hp)n 7! (2hy)5 P
|si—spl|<|di—dp| £—|s;—sp|E2Z
+0(\?),

with the integers n and # determined by

£+si—sp>0 ﬁEE—(si—sp)>0

;=0 2 20

n (2.26)

and recalling the requirement that s; — s, € Z, so that the 3-point function is single valued,
and so may be integrated.

We see the above counter terms result from contributions from the integration over the
simplified region (2.8) in subsection 2.1 along with the new contributions from the crescents
in figure 1 which correct the simplified domain (2.8) to the exact in € domain (2.7). The i <+ j
symmetry of (2.14), shown below eq. (2.17), generates the counter terms for ¢;. Finally, note
that matching the log terms in (2.2) is unaltered because no additional In(e/|z12]) appear in
the calculations of the terms coming from the crescents. Therefore, the anomalous dimension
is not affected by the higher order corrections in € to the region of integration, and is given
by eq. (2.13). We will discuss these counter terms in more detail in section 3, where we
show that they are sufficient to regulate all integrated n-point functions at leading order in
perturbation theory, and so have a bearing on the changes to all CFT data.
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For now, we see that we have a powerful calculational tool at hand for calculating
anomalous dimensions. First, we map the location of the two fixed operators to zero and
infinity. We implement regulation by restricting the domain of integration to €/|z12| <
|Z2| < |z12|/€, which we know is non-local. However, going to the local regulator (2.7) only
introduces new power-law terms in €/|z12|, which may be canceled by counter terms which
are exactly calculable — i.e. eq. (2.25). However, it does not introduce new logarithmic
terms. Thus, the simplified domain of integration (2.8) is sufficient to read off the anomalous
dimension of quasi primary operators at order A! in perturbation theory. This is because of
the difficulty in generating log terms [26]. Furthermore, this technique already commonplace
in the literature [25-27], however the calculation above makes the reasoning more explicit.
We will see in section 4 that corrections to the structure constant are not as robust when
attempting a similar simplification for the domain of integration. Nevertheless, corrections
arising from changing the domain of integration will be calculable.

3 n-point functions and counter terms

We will now consider corrections to n-point functions of quasi primary operators to the first
order in conformal perturbation theory. We regulate the singularities using the OPEs of
the deformation operator with the quasi primary operators. This approach was developed
in [29, 30]. Our motivation to use this approach comes from our results for the counter
terms in the case of 2-point functions in the previous section. The counter terms (2.25) are
written entirely in terms of quasi primary fields and their si(2) descendants, i.e. derivatives.
This immediately suggests tackling the OPE coefficients, grouping the operators in terms
of the quasi primary ancestors and their sl(2) descendants. We will find that, interestingly,
this procedure produces the same counter terms (2.25). Moreover, it proves that these
counter terms are sufficient to regulate all integrated n-point functions at leading order A in
perturbation theory. This one of the main results of our work: expressing the counter terms
explicitly in terms of quasi primaries and derivatives of quasi primaries, with coefficients
written in terms of CFT data (namely, conformal dimensions and structure constants).

3.1 OPEs of quasi primary fields

Let us consider a pair of quasi primary fields ¢; and ¢2. We place ¢o at the origin for
simplicity, making the state | ¢2), and apply the operator ¢1(z, z) to this state. This results
in the expression for the OPE (written in terms of states):

D1(2,2) | d2) =D Cpag > Yz Mrhetheingmiuzhathytn g o pn L7 | ¢y),  (3.1)
p

n=0n=0

where p sums over all quasi primaries ¢,, the sums over n and 7 account for all si(2)
descendants, and 2 and Bg are descent coefficients to be determined. The above formula
is just as general as the usual sum over conformal families defined by primaries and their
full Virasoro descendants, see e.g. [127, eq. (6.165)]; it is simply a repackaging of the same
information. The set of all quasi primaries and their sl(2) descendants is a full set of operators
in the theory, just as all primaries and their Virasoro descendants is a full set of operators.

— 14 —



The simplicity from considering each quasi primary family separately is that the descendants
are constructed using simple powers of L_; and L_;, where in the full Virasoro case one uses
all possible combinations of L_, and L_z. Considering each quasi primary family separately
allows us to compute the descent coefficients g2 and Bg in closed form, for all n and p, as
we shall soon see. This in turn will determine the full set of counter terms in terms of quasi
primaries and their descendants. The tradeoff is that the set of structure constants Cj, 1 2 is
much larger in eq. (3.1) as compared to [127, eq. (6.165)], since there are many more quasi
primaries than primaries in a conformal field theory.
We introduce the notation

L") = LI | ) (3.2)
The normalization of these states is given by
(O | ) = 615 G Sl (2R} ) (2R0) (3.3)

which follows from the sl(2) algebra, and may be proved with a simple induction on 7 and
n.Y The quasi primary fields have normalization 1.

To compute the coefficient 5, we simply project onto the state (L_1)"| ¢p). Eq. (3.1)

1 (p | (L1)" P1(2,2) | ¢2) hatha—hy

reads:

h = 3.4
0 Ry T e (G, [1(L1) | 6a) 34
Similar expression is obtained for Bg We evaluate this expression in appendix C and show that
We may then write the operator product (3.1) as
hy—h;+h hi — hi + hy)s
¢1(2’ z ¢z szz ch,z,p Z ( ) ( ! = p) (36)

2 ! (2hy)n Al (2hy)n

n,n=0

X (2 — zi) —hithotn (5 gy hi-hithe i grgng (o 5 |

When considering the case ¢1 = Op for perturbation theory, one simply replaces hy = hy = 1.
We recall that the location z will be integrated over in perturbation theory, and in such an
integration we again see that the above expansion contains divergences as z — z; for the case
d; — d, > 0. This suggests the operators ané%p as those to include as counter terms.

3.2 Perturbation of n-point functions

Let us now consider perturbation of an n-point function of quasi primary fields. To the
first order in perturbation theory, we have

(D17 (21,21) - Pua(2ns Zn))a = (D12 (21,21) =+ - DA (2ns Zn)) a=0 (3.7)
—A/dzdz (Op(2,2) ¢1(21,21) - dn(2n, 2n)) + O(N?) .

4The § functions arise from orthogonality of the quasi primary families, and from the matching of conformal
dimensions within a given family.
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Op

Figure 2. The full region of integration for the location of the deformation operator is the area
outside of the disks of size e. The integral over this region diverges as ¢ — 0. We break this full region
of integration into the region outside of the disks of radius «a, plus the annuli of outer radius « and
inner radius € centered at each operator.

The integral in the second line is divergent. We regulate the integral in stages by considering
first a cutoff radius of a around each operator. The integration of the deformation operator
outside these disks of radius « is necessarily finite. However, we consider a second cutoff inside
of these disks of size € < «a, and integrate over the entire domain outside of the disks of size €
— see figure 2. This integral can be broken into two pieces, the integral over the area outside of
the disks of size a, plus the integral over the annuli around each operator: each annulus has
outer radius v and inner radius €, centered at the location of each operator. The divergence of
the integral over the entire domain diverges as ¢ — 0, and this divergence is clearly captured
by the integral over the annuli: this is the only part of the integral that changes as ¢ — 0.
Furthermore, these annuli may be considered in isolation because they are disjoint and well
separated. Therefore, we may use the OPE between the deformation operator and each
inserted operator to determine the behavior of the n-point function at each annulus.

We adapt cylindrical coordinates at each annulus (z — z;) = re®, and show that the
divergences are completely captured in the lower bound of integration in the r variable.
The annuli themselves, however, are rotationally symmetric. For simplicity, we center the
i*h annulus at 0, and consider the divergences at this point. The perturbation integral in
this annulus is given by

(1(20,21) d(e2,22) -+ (A [ 2 Op(2.2) 64(0.0)) -+ Guen2)) (3.8)

where we group Op and ¢; together since these are the only operators which become close in
the integral for the ¢*® annulus. Note that the ¢; fields can not have any A dependence at the
first order in perturbation. Defining B; = A [, d?2 Op ¢; and using the OPE (3.6), we obtain

1—h;+hy)n 1—}~Li+7l A
_2)\/ rdr/ d¢ Op(z,Zz) ¢i(0,0) _2)‘ZCD7W Z @ )p) ( o )p)
=0 ' p/n . )N

/ dr / do . d,, e el Ao g gig (0,0) . (3.9)

The Fourier mode must cancel and so the spin difference is given by the integer As = s; —
sp = n — 1 (this must be integer for the deformation to be well-defined). Define £ =n + 7.

,16,



The r integration is then [ dr r~(di=dp+1=0) " Thig only contains divergences from the lower
bound of integration if d; —d, +1 — ¢ > 1.

Consider nesting the sum in eq. (3.9) with the sum over p as the last sum performed.
Thus, the sum over n and 7 is performed knowing both ¢; and ¢,, and so s; — s, is known.
If s; > sp, then n = s, — s, + f, . =: f, where f is an integer which steps up both n and
n, keeping their difference fixed. Therefore, / =n +n = s; — s, + 2f has a minimum value
of s; — s,. Moreover, £ and s; — s, are both even or both odd. Similarly, if s; < s, then
n=s,—8+fandn=:f. Then ¢ =n+n = s, —s; +2f has a minimum ¢ = s, — s;,
with similar restrictions. All in all, £ > |As|, and ¢ — |As| € 2Z.

Note that if d; = d,, in eq. (3.9), then the only divergent term possible is n = n = 0,
implying As = 0. This is the h; = hy, h; = in block, which is assumed to be diagonalized —
see below eq. (2.10). To keep only the divergent terms in € in eq. (3.9), we limit the sums
and evaluate only on the lower bound of the integral over r. We find:

Bi ~ =47\ CD,i,i 111(6) ¢z’(07 0) (3.10)
ldi—dp] T 7
Cpi (I—hi+hp)n (L=hi+hp)i =0
1A »bP : P _ _ P 8”8”(25 0’07
P, g;di zlszi;s]al (di —dp = ) eb==0 nl (2hp)n ! (2hp)n (00)

|si—sp|<|di—dp| €—|s;—sp|€2Z

where ~ denotes keeping only the divergent terms. Reinserting eq. (3.10) into the expectation
value (3.8) gives the divergences explicitly in terms of power law and log divergences in €
multiplying functions that only involve the locations z; of the fixed operators (i.e. the evaluated
correlation function). There is a separate sum of such divergent terms for each annulus in
figure 2. Altogether, they represent the full divergence of the perturbation integral in eq. (3.7).

We next write the perturbation to the n-point function (3.7), keeping both counter terms
and the integrated correlation function. To order A! we obtain:

(Bir - duna = (61 - dubrco + 3 (61 --361 -~ ba) (3.11)
=1
—A/dzdz (Op(2,2) ¢1(21,71) -+ dn(2n, 2n)) + O(N?),

where d¢; refer to the O(A) counter terms which must cancel the divergences that appear in the
perturbation integral in the second line. Using eq. (3.10), the counter terms are of the form:

¢ix = ¢i — 47X Cpi; In(e) gi+ (3.12)
Ldi_dpj 7 7
Cp. (1—hi+h)n (1—hi+h)ﬁ L
A o - 2 g
pg;di eg;s;)l (di — dp — L)%=t nl(2hy)n l (2hp) ’
|si—sp|<[di—dp| £—|s;—sp|€2Z
+0(N\?),

where n = [{+4 (s; —sp)]/2 > 0 and 7 = [{ — (s; —sp)]/2 > 0. This exactly matches
the expression (2.25), which was found using only the integrated 3-point function. Thus,
the counter terms (3.12) are sufficient not only for the regulation of the integrated 3-point
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function, but they are sufficient to regulate all integrated n-point functions that appear at
leading order in A.

Since this is one of the main results of this work, it is worth considering the counter
terms (3.12) in detail. Given the form of the counter terms (3.12), one may be concerned in
the case the d; —d, — £ = 0 in the sum. Such a term may only be present if d; —d, € Z, along
with the condition d; — d), — |s; — s;| € 27 so that such an ¢ exists. In this case, the coeflicient

by = —2n (di — dp) (_1)€~ (1_ di — dp + (si — Sp))[ B (1_ di — dp — (si — 8p)>£_ 3

(di —dp —0)n!n! 2 G ] 2 (85— 5p)
seems ill-defined, because the denominator goes to 0. However, one may consider how the
above expression arises in the integrated 3-point of the last section. There, integrals defining
the ay (2.22) are manifestly well defined, as is the integral over the simplified region, which
combine to give the above coefficient by. We expect, therefore, that there is no issue. One can
see this directly by rewriting the Pochhammer symbols appearing in by in terms of |s; — sp|
and using the identity (), = (—=1)""(1 — a — m),,. Doing so, we find:

(d; — dp) di —d, — ¢ di —d, — 1
(di—dp—E)n!m( 2 )b(f)b (3.13)

We first consider the case (¢ + |s; — sp|)/2 = 0. This would require both s; — s, = 0 and
¢ = 0. Terms with ¢ = 0 are excluded from the corrections coming from the crescents, and so

by = —27

this term must come from the integration over the simplified domain. In this case, can the
denominator be 07 This would require that d; — d, — ¢ = d; — d, = 0. However, if s; = s;
and d; = d;, then we have that h; = h; and h; = Bj which is the case treated separately
that leads to the log term. Thus, we conclude that (¢ + |s; — sj])/2 > 1 for there to be a
problematic d; — d, — £ = 0 denominator. However, in such a case we may expand the first
pochhammer symbol (because the subscript is (¢ + |s; — s;])/2 > 1), leaving

o (di—dy) di—dy— 42 d; —dy— 0
b[ = =27 20l 7! ( 9 )ng‘siQ,sp‘_l (f) [7‘31'27317‘ (314)

which is manifestly well defined. In fact, in finding equation ay (2.22) in appendix B, the
final lines in the proof for aj are written in the form above.

There is one other interesting fact about eq. (3.12). We have truncated the sum in ¢ such
that terms with positive powers of € are simply dropped, which is not strictly necessary given
that these terms will vanish as ¢ — 0. The negative powers of € which diverge are tuned to
cancel the divergences in the integrated n-point function, including the log term. However,
there are borderline cases with coefficient €, i.e. when d; — d,, — £ = 0, which are exactly the
problematic terms from the last paragraph. We have already shown that these arise only
when ¢ > 1, allowing us to write the expression (3.14). Using the expression (3.14), we see
that this expression is finite if the second Pochhammer symbol has subscript 0, and vanishes
otherwise. Thus, such terms only show up when ¢ = |s; — s, = £As > 1.

Consider the case where £ = s;—s, > 1 (i.e. 7 = 0), along with the condition d; —d,—¢ = 0,
so that we are considering an € term. Combining the two conditions yields h; = Bp. Thus,
d;—dy = si—sp = hi—hy, =€ € Z'. We find that there exists an e-independent term in (3.12):

(1)t

27X Cp,
7T CD, P (hl — hp) (th)hl—hp

il g, (3.15)
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only if there exist quasi primary operators ¢, with ﬁp = hy, hi — hy = s; —s, > 1a
positive integer, and that ¢, have non-vanishing structure constants with Op and ¢;. Similar

considerations for the case ¢ = —(s; — s,) > 1 (i.e. n = 0) give that there exists an €
counter term:
(~1)ht Shi—h
2N Cp iy ——— ghihv g, (3.16)
(hi = hp) (2hp)j,, _5,
only if there exist quasi primaries ¢, satisfying h, = h;, h; — hy = —(s; — s,) > 1 a positive

integer, and Cp;, # 0. We see these as “Regge trajectories” of quasi primaries with d, < d;
which may have their spins and dimensions “fixed” to agree with ¢; using only 9%~% or 9% 4

The above argument may be viewed with some suspicion, given that there are some
fine cancellations between the Pochhammer symbols in the numerator and the (d; — d), — )
factor in the denominator in eq. (3.12). This might seem to indicate an order of limits issue.
However, one should view this as arising from a natural regulation scheme, allowing the
dimensions of the fields to vary continuously, as they do on the moduli space of conformal
field theories. Thus, it prescribes a way of relaxing an €’ term with § small to § = 0, resulting
in the sought-after term. This result provides guidance about the types of counter terms that
are available and natural at order €. This becomes particularly important when computing
the shift to the structure constants. In the next section, we will adopt a similar approach to
section 2, where the operators are mapped to fixed points, and the domain of integration
approximated. The domain is then corrected to give the result for the local regulator. We
will find that the corrections introduced in this process have functions which are exactly
those that get canceled with the above type of operators, in fact, with the same coefficients.
Thus, operators (3.15) and (3.16) do appear to play a role in the correct calculation of the
shift in structure constants. We will follow this up in section 5 with an explicit example
using the compact boson, where such terms are shown to be necessary to reproduce the
correct result for the shift in a specific structure constant.

4 Structure constant deformation
We start with the 3-point function of quasi primary fields on the moduli space
(Pix(z1,21) A (22,22) drA(23,23)) A

Ici,j,k()\)( 293 )hi(/\)( 213 )M(M( 212 )hk(A)X (ah)

212713 212723 213223

(4.1)

where C; ;1 ()) is the structure constant. Starting at the base point A = 0, perturbations
of 3-point functions come from both changes to the structure constant 6C; ; and changes
to the conformal dimensions 8h;, dh;. The aim of this section is to consider 0C; j 1 at first
order in perturbation theory.
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We start by expanding the right hand side of (4.1) for small \:

Ci’j’k’A(lezjls)hi(/\)(21221;23)%(/\)<z1212223)hk(/\) x (ah)= (4.2)
Oh; Oh; oh
feusa(ieafGl i (22 + G2, () + ] (22)] + [o])

dC; j k. 293 \Pi(0) /293 \hi(0) /219 \Pk(0)
A= h. A2
* dA ‘)\O}(Zlgzlg) <212223) (213223> X (a‘ ) +O( ) )

where C i = Cjjx(N)|x=0. In what follows, we will simply call A(0C; ;x/0N) = dC; ;.
Using path integral formulation, the left hand side of eq. (4.1) reads:

(in(z1,21) Pja(22, 22) dra(23,23))x = (Din(21, 21) Dja(22, 22) Dra(23,23)) (4.3)
- )\/d2z (Op(z,2) ¢i(21, 21) ¢j(22, 22) Pr(23, 23))
+0(\?) .

We again regularize the integral by cutting out small disks of radius € around the insertion
points z;, i = 1,2,3. The e dependence in the integral in eq. (4.3) must be canceled by the
counter terms appearing in the first line, leading to the e-independent answer (4.2).

The rest of this section analyzes eq. (4.3), focusing on extracting the ” terms which
contribute to 6C; ;5. In section 4.1 we calculate the ¥ contributions arising from counter
terms; these counter terms have already been found in egs. (3.15) and (3.16). This helps
us identify what functions of z;; appearing in the integral in eq. (4.3) at order ¢’ may be
eliminated with counter terms. In section 4.2 we map the integral in eq. (4.3) using an
sl(2) transformation which sends the points z; to 0, 1 and co. This allows us to identify a
single integral which leads to the terms of order A! appearing in eq. (4.2): the integration
parameter is the cross ratio appearing in the 4-point function in eq. (4.3), and integrand is
the function of cross ratios which naturally appears in the 4-point function. Furthermore, this
allows us to identify the exact in € domain over which this integral is evaluated, along with
a simplified domain of integration which approximates it. The integral over the simplified
domain is difficult to analyze, even when written in terms of s/(2) conformal blocks. However,
in section 4.3 we are able to show that the integral over the simplified domain is insufficient
for finding 0C; ;. We do so by explicitly finding the corrections to 0C; ;j arising from
correcting the simplified domain of integration to the exact in € domain, which are expressed
in terms of the CFT data.

4.1 Contributions from counter terms of order €°

Let us consider the counter terms associated with ¢y, 5 in the first term on the r.h.s. of eq. (4.3).
Replacing ¢y » by a sum of ¥ counter terms (3.15) gives the ® contribution to the first term:

2A Y Oy I g ) b 3) (). (44)
= Ry (hk _ hp) (2hp)h —hy 3 7 ) J ’ p ) )
p, p: -
hk—hpézk+
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where the sum is over all ¢, allowed. We divide this expression by the pre-factor on the
r.h.s. of eq. (4.2), for later convenience. We find:

_1\h—h h _hp _ _ _
2 CD,k:,p (hk_(hp:;)(QZp):kfhp a3k <¢i(zl7 Zl) ¢j(227 ZQ) (bp(z?n Z3)>

C,};%l = :
’ —(hi+hj—hy) _—(hi+hik—h;) —(hj+hr—h;
p,inZFLk 212( J k)zlg( k ])ZZS( J k ) % (ah)
hi—hp€Zt
_n (hgg — hy — 1) /213 (Br=hs)
=2mA Y CpyCligp(—1)hhe 2822 22 (212 (4.5)
p,ﬁp:ﬁk (zhp)hk—hp Z12
hy—hpeZt
hir—h
kz:p (hi + hyp — hj)q (hj + hp = hi)py—n,—q (@)q '
q=0 q! (hk - hp - Q)! 213

We label this term as C};fol because it arises from the holomorphic derivative family of
Counter terms for ¢, at order €%, i.e. eq. (3.15). Define the complex parameter w = z93/213,
which represents the only independent parameter written in terms of 21, 22, 23, and is both
dimensionless and translation invariant. This allows us to write

(hx — hy — 1)! 1 (he=hp) _(_ph.—hp+hi2h,—1
CI};OOI =21\ E : CD7k7p Ci7j7p (2h )p (1 _ ) P}Ek—zp * ! )(2(1—'11})—1),
T _7 P hk*hp w
pahp*hk
hy—hpeZt

where P,sa’ﬁ ) (x) is the Jacobi polynomial and is defined in appendix D.1. Using the identity

P’saﬁ) (2/u _ 1) _ %P§a,—ﬂ—a—2v—1)(2u _ 1)

with v = (1 — w), we obtain

B — oy — 1))l heshe Rt
Cio =27 > Cpuy Ci,j,pMP( e e RGO

hi—h
p ilp:ilk (zhp)hkfhp m 12 12

hy—hp€ZT
There are the anti-holomorphic terms as well, which occur from eq. (3.16). Thus, at each
insertion point, there are two sums of such operators: the terms arising from holomorphic
derivatives of quasi primaries, and the anti-holomorphic derivatives of quasi primaries. Similar
arguments hold for the counter term insertions at z; and z2, and are summarised in eq. (D.2).

4.2 Domains of integration and integrand

We now consider the perturbation integral in eq. (4.3). The 4-point function may be written
as usual in terms of a fixed function times a function of the cross ratio f(¢,¢):

j,' = _)\/dQZ <OD(Z,§) ¢i(21, 21) ¢j(22,22) ¢k(23723)> (47)
_ 2 z23 \M/ z13 \Mi/ z12 \* 212213 hp _
= [ (2 () () () ¢ k) x AGO

where hp = hp = 1, and the cross ratio is defined as ¢ = (z12(2 — 23))/(203(21 — 2)). Our
particular choice for the definition of the function of the cross ratio above will become clear
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momentarily. To regulate the integral, we excise disks around z;, and limit the integration
parameter z to the domain |z — 21| > €, |z — 22| > €, |z — 23] > e. We may take this integral
to a more standard form by performing an si(2) transformation

L (-3 (4.8)
293 (2 — 21)
which maps {z1, 22,23} — {0,1,00}, and further ¢ = 2. The integral (4.7) reads
T gt he) i) (atha—ha) g / @25 £(2,5) . (4.9)
The allowed region in the Z plane is given by three simultaneous constraints:
Loz € | [#12] ¢ (4.10)
23 |213]% — €2 | 223 213] 1—% ’
|z13]
2
R z € z € .z z12]|2
s (1 )]s Ll . sy 22|  Pzlla]
23 |z12]? — € |z23||212] 1 — ¢ B Z23 |z23| €

|z12

As in section 2, we find the above domain difficult to deal with directly. Therefore, we turn
to the leading order terms in ¢, finding:

5> Jzele

|Z13‘6 ’A‘ ‘212H213‘
|z03]| 213 ’

|2 —1] >
‘223‘6

asllenal” (4.11)
which we refer to as the simplified domain of integration. We will consider the higher order
terms in € later in section 4.3. The powers of z;; multiplying the integration on the r.h.s.
of (4.9) are just the powers expected from the unperturbed 3-point function, which also
appear in eq. (4.2). We strip these powers off for easy comparison to the terms of order A
inside of the curly brackets on the r.h.s. of eq. (4.2), and so define:

IE—)\/d22 F35,5) =L AT+ T+ T (4.12)

where the subscript ‘s’ refers to the simplified domain of integration, i.e. eq. (4.11). This is the
generalized sum rule from [39], writing the domain of integration piecewise. The additional
integrals Z;,Z;, 1, which we explore in the next subsection, give the corrections from the
simplified domain (4.11) to the exact in € domain (4.10). The corrections to the domain of
integration are again given by double crescent regions (see figure 1), and are given subscripts
1, j, k for the operator insertion near which they are located. All four integrals have the same
integrand, and the four separate terms simply represent dividing up the domain of integration.
We next turn to the integrand. The function f(2,2) is naturally written in terms of
conformal blocks. Given that the counter terms (3.12) are written in terms of the sl(2)
descendants of quasi primary fields, it will be necessary to write f(2,2) in terms of sl(2)
conformal blocks for direct comparison (as opposed to using Virasoro conformal blocks).
Recalling eqs. (3.1)—(3.3) and (3.5), and the discussion in appendix A that the set of all quasi
primaries and their s/(2) descendants form a basis, we consider the 4-point function:

G?’,Zi(%g) = (o1 ] 92(1,1) ¢3(2,2) | ¢4) - (4.13)
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We insert a complete set of orthonormal states

> 1

(n12)y (i)
G3a(22) =2 2 o th)n w1 DT G 1 99(2.2) [on) (414)
_ Zzhp*hsffm Zﬁp*ﬁs*im Cps4Cho i (h2 — i+ hp)n (h3 —ha hp)(n) ﬁ
- p7 ’ =

(2hp)n, n!
— hy + hy)i (hs — hy + Bp)(ﬁ)

* Z (Qﬁp)ﬁ

and observe that the sl(2) conformal blocks may be written in terms of ordinary hyperge-

';_;.‘t\u

ometric functions (see appendix D.2 for definitions) [128-130]:°

hp7 hp73 B}L , hp73
Ggizz 20,340’212 h34__h342F1( L7 ;Z)QFl( 1 ~ 4 ;5) (4.15)
2h, 2h,

where we define the symbols
hy =hi+h;j—he,  hi=hi—h;, kY =hi+hj—hy, hi=h;—h;. (4.16)
Crossing symmetry imposes

1
4,1 N
G5 4(75 Z)=Gyh(l—2,1-2)= T

G31(1/2,1/%7) . (4.17)

The corresponding expressions in terms of hypergeometric functions are outlined in eq. (D.4).
To make contact with perturbation theory, we set 1 — 4, 2 — 5, 3 — D, and 4 — k, and
note that hp = ﬁD = 1. This gives

WETRE 4+ 1 >2F1(13§’j,13§+1

GchZZ ZC,Dkauzk Fhi—1 F( oh, of,
P

;z). (4.18)
The crossing symmetry expressions are summarised in eq. (D.5).

Restoring z — 2, we have Gjl.’)iﬁk(é, %) = f(%, %), which must now be integrated over the
allowed region in the perturbation integral (4.12). The utility of eqs. (4.18) and the crossing
symmetric expressions (D.5) is that they make the divergences in the integral quite clear. Note
that although the series of descendants which contribute to the 4-point function is infinite,
only a finite number of terms give divergences, which effectively truncates the hypergeometric
series to a finite number of terms when considering the singularity structure.® We may use
the crossing symmetric expressions to extract the singularity structure at other points as well.

The integral Zg (4.12) is difficult to compute in general. Consider the integrand
G]]':’)i’k (4.18). While we have analytic expressions for the divergent terms at Z = 0 in
the local coordinates, the full expression becomes cumbersome when attempting to evaluate

5We thank Scott Collier for useful discussions about this point, and pointing us to these references.

6 Although more care may be needed in cases where there is a conserved current in the spectrum, or if
the theory develops a continuum [18]. However, in such cases there may be additional “charge conservation”
constraints for correlators. This would limit counter terms to be within the same charge sector, possibly still
limiting to a finite number of operators.
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it near other points, especially 2 = 1 and oo where the hypergeometric functions in (4.18)
have branch points. We know that the branch cut discontinuities must cancel, at least in
the sum over p, leading to the crossing symmetric expressions which are manifestly single
valued around these points. Thus, unlike the case of the integrated 3-point function, see
egs. (2.10) and (2.11), we are not able to obtain a universal expression for Zg, i.e. an expression
which holds for all conformal field theories. The method for integrating the 4-point function
may be addressed theory by theory, and in particular cases may be solved exactly (some
examples are discussed in section 5).

Speaking generally, the integral Z; has an € piece which contributes to the shift 0C; j k-
We may ask whether this contribution from the simplified domain (4.11) and the calculation
from the exact in € domain (4.10) give the same € piece. If so, then 0C; j i is unaffected, and
one can safely use the simpler cutoffs (4.11). We will now turn to this point and find that,
interestingly, the constant pieces from the simplified domain (4.11) need to be corrected when
using the full expressions (4.10). This leads to corrections to the shift in structure constant
0C; j k- We find that these corrections are universal: they can be exactly calculated and
expressed in terms of the original CFT data, namely the unperturbed structure constants
and conformal dimensions.

4.3 Corrections to the simplified domain to all orders in €

We now turn our attention to the integrals Z;,7;,7; in eq. (4.12). As discussed above, the
evaluation of Zg is difficult, given that the different crossing symmetric expressions for the
4-point function are useful only in a fixed neighborhood around the point for which they
were adapted. The three integrals over crescents, however, are localized near the respective
operators. The double crescents in each case lie order ¢ away from the operator in question.
Thus, using crossing symmetry, one inserts the form of the function f(Z, 2) adapted to the point
in question (D.5) to compute the integral over the double crescent near this point. This will be
sufficient to find the order €’ contributions, which is our primary purpose in this subsection.

We tackle the hole at z3 first, corresponding to the hole at 2 = 0. We identify the bounds
of integration using eq. (4.10). Define the real coordinates 2 = re!(®+12=¢23+7) where the
phases ¢12 and ¢o3 are defined by: 212 = |212|€?12, 293 = |223]€!¥23. Plugging these into (4.10),
we find that the new contour in the Z plane is defined by:

|2:12| 1 62 62
- €, Reii= /(1 - —=)+ cos?(¢) +
|z23]|213| Roo,13 M ( ’zij|2> | 5] (@)

cos(¢)  (4.19)

|24
where we have defined R ;; for later use. The correction 7y at 2 = 0 is given by
To=—X[ d25f(2,3) = —2)\/ dqﬁ/‘”‘"‘”zw‘ rdr f(2,%) . (4.20)

cresg l212]
[z2311213] Roo 13
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The form of f(2, 2) is the one adapted to the singularity at 2 = 0, given by eq. (4.18). We find:

)n

B2 ) (B + D ()i (
(2hp)n ! (2h

12l

X e —i(p12—¢23) (s —sp—(n—n)) 92 d¢ \223H213\ dr e—i¢(8k—8p—(n—ﬁ))‘

0 elz19] 1 rdr—dp+1—(n+n)
lz2311213] Roo,13

R"B

(4.21)

hy +
Ik :_)‘Z Z Cppk Cpii e/ (sh=sp=(n=n)) ( )

31

The integral in the second line is the same as the integrals in eq. (2.15) upon substituting
di—d;j - dp—dyp—(n+n)and s; —s; = sy —sp — (n—n). Thecase d, —d, — (n+n) =0
produces a term log(R,13), and represents a purely perturbative expansion in e. The singular
terms correspond to dy — dp, — (n+n) > 0. With this restriction, and using our analysis
in appendix B, we evaluate the integral:

/2’T /z231Z13 7i¢((skfsp)f(n7ﬁ))_2 Z 203|213 dr—dp—(nti) , N\ ¢
dr rdi—dgti—(ntn) 2" |z12€ |z13]

212
"= Teasllz13] Roc 13 £>|(sp—sp)—(n—n)|

O—|(sk—sp)—(n—n)|€2Z

(4.22)

(1 . dkfdpf(nJr’FL)JQrskfst(nfﬁ) ) <1 _dip—dp—(nt+n)—(sx—sp)+(n—")
I4

L4(s—sp—(n—)) 2 ) L—(sp—sp—(n—n))
2 2

x(=1)

(Z—i—(sk—sg—(n—ﬁ)))!(Z—(sk—sg—(n—ﬁ))>!(dk_dp_(n+ﬁ)_£)

As discussed in section 2.2, the above is a pure power law series with no logarithmic terms.

The singular terms in eq. (4.22) are grouped in with the singularities in Zg (4.11), and
cancel against counter terms (3.12). The finite terms that vanish as € — 0 are negligible.
However, there may exist terms that go like € and do not vanish. Such terms require
¢=d—d,— (n+n), and dy — d, € Z*. Note that at least one of the Pochhammer symbols
in the sum (4.22) has a non-zero subscript (otherwise ¢ = 0, which is an excluded term in
the sum), and thus contains the factor (dy — d, — (n + ) — ¢), which cancels the one in
the denominator. If the subscripts of both Pochhammer symbols are non-zero, then the
constant term is simply 0. Thus, we have either { = d, —d, — (n+n) = s — s, — (n — 1)
or l =dy—dp—(n+n) =—(sp —sp — (n—n)).

We first consider the case ¢ = d, —d, — (n +7) = s — s, — (n — 1), i.e. the bottom
term in the sum (4.22). This gives hy — h, = 1 and £ = hy, — h, —n € Z*, and imposes
0 <n < hy —h, — 1. Plugging into (4.21), we have (1 —hy +hy)s = (1 —7); = 0 unless 72 = 0.
Thus, to have a non-zero entry requires hy = Bp, n =0, and d, — d, = s — sp = hy, — hy.
This leads to one of the two e-independent pieces of eq. (4.21), which we refer to as I,?%l,
where ‘hol’ denotes that the conditions on hyg, ﬁk, hp, in exactly correspond to those of
holomorphic counter terms (3.15). We find:

hol kfn (h§7p>n (hp + 1) 23 h];—n
ko—_QWAZ Z C’ch’“(_) (h’;—n)(?h)nn'< ) ’

hyp= hk
hy—hy,€Z+

212

where we have reunited the phases ¢93 and ¢12 with the appropriate magnitudes, e.g.
Z219 = \zm]ew”. Furthermore, we read the above l'ho1 as meaning the contribution to eq. (4.3)
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arising from the Zntegral, at order °, which does not vanish because Bp = hy, in the sum (4.22),
i.e. that only the holomorphic weights hy, h, may differ. Defining ¢ = hy, — h, — n and using
q as the new summation index, we have:

hi—hp (hp+j)hk (hp—i—l) .
- - k hk—q—1 /293\4
Iiy = —2m Cp.pk Cp g (1)1 ——2= - VY (4.23)
? ~zp:~ qgl e (th)h’;—q (hlg_Q)! (212)
hp=hu,
hk—hpeZJr

Using the definition for Jacobi polynomials (D.1), we finally obtain:

h = 27\ W= e o P + U U
w0 " ; (2}7’1’)’1’5 R (212 212) (h5)!
ilp:ilk,hk—hpEZJr

(4.24)

The resulting sum is almost the same form as the one we found for the counter terms (4.6)!
Perhaps this is not too surprising, given that the counter terms and the expression for
the conformal blocks both arise from the OPE (although integrated over regions that look
dissimilar). Furthermore, in both cases the calculation is at first done for general conformal
weights, giving manifestly well defined expressions, and then relaxed to obtain the ¥ term.

The conformal block calculation (4.24) has yielded exactly the same Jacobi polynomial
as in (4.6), with only the ¢ = 0 term (the second term on the r.h.s. ) subtracted off — cf.
eq. (4.23). This explicitly shows that in the exact region (4.10), the counter terms (3.15) must
be considered, at least when comparing the results between the simplified and full domain of
integration. In the simplified region (4.11), however, these counter terms may not be required
(in the compact boson example in section 5, we indeed perform calculations where they are
not required). This is not to say that we may simply drop Jacobi polynomials when they
show up in Zg, rather, any Jacobi polynomials that appear in Zg must be combined with those
from the crescent calculations, and then the full set of Jacobi polynomials are removed with
counter terms. As a result, the order € term has been shifted by a constant because the
leading term in the Jacobi polynomial from the crescents is not included in the sum (4.24).
Thus, the ¢ = 0 term represents a further shift to the structure constant.

Recall that at the same location z = z3 (2 = 0), one should also consider the case
0= —(sp —sp— (n—n)) as well, see below eq. (4.22). This will lead to a similar expression
to (4.24) with holomorphic weights and variables flipped to antiholomorphic counterparts.
This amounts to requiring the counter terms (3.16). Furthermore, there are contributions from
the crescent regions at z = z9 (2 =1) and z = 21 (£ = c0), which are obtained using crossing
symmetry (4.17). For the double crescent region at 2 = 1 we define (1 — 2) = re!(+913=023)
and find:

hol __
j’O -
J.k
(hj —hyp —1)! i (=it —hIF) rza1 | zo3 (=1 + Ly
Coa S W T I o O | (T (22 By D Ty )
2 Gy, Cr0aCo | DR Cor s

;LPZBJ‘ s hj —hp ezt
(4.25)
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Comparing to the counter term insertions in the second equality in eq. (D.2), we observe
that the shifted hole at z = 29 act somewhat differently. For the double crescent region at
2 = 0o, we use 2 = rel(@to12=¢23+m) gn(q obtain:

h’ — 1) (=h2I —hb*y /2 z (—hiﬁj + Dpi
hol 7Y Z pD’LCp,j,k: Ph% k J (E_’_ 13) . (hl)' P ,
L)

by hl,h heZ+

223 223
(4.26)

which agrees with the counter terms in the last equality in eq. (D.2). Thus, at all three
insertion points, shifting from the simplified domain (4.11) to the e-exact domain (4.10)
introduces shifts to the functional form, which can be compensated for by counter terms,
but also shifts by calculable constants, given the CFT data. Together with anti-holomorphic
derivative insertions, there are in total six constant terms that modify C; ;, see eq. (1.11)
in the introduction.

In the above calculation, the shifts arising from the crescents near 2 = 0 and 2 = co have
the opposite signs of those arising from the counter terms. However, for the crescents at
Z =1, half the terms from the crescents match the signs from the counter term calculation,
and the other half appear with negative signs. We expect all insertions to be treated on
the same footing for a local regulator. Thus, we interpret this to mean that the calculation
of 74 contains no occurrences of the Jacobi polynomials germane to Z = 0, 2 = oo, and are
introduced by the crescents, making them natural, and included the same way at both points.
To have the same effect on the operator at 2 = 1 we should have that some Jacobi polynomials
appear in Zg with coefficient twice what appears above, and the others do not. The shift
from the crescents at 2 = 1 will then shift them to have all the same coefficient, making the
counter terms identical at all points. We expect this on the grounds that the local regulator
should have all counter terms show up symmetrically under interchange of operators, or
equivalently, one may choose which operators to map to 2 = 0,1, co respectively. We will
consider this in the next section for the CFT of a compact boson and show that the inclusion
of these counter terms is needed with exactly the coefficients (3.15)—(3.16).

5 Compact boson

We now consider the well-known theory of a compact free boson. The shifts to the conformal
dimensions and structure constant can be exactly computed in this theory. Hence, it provides
a concrete setup to compare our conformal perturbation theory analysis with exact results,
appropriately expanded for small A. In particular, in subsection 5.1 we present an example
where the integral Z (4.12) leads to an order € piece which is insufficient to give the correct
change to a certain structure constant. To obtain a matching between the perturbative and
exact results, we modify the order € piece from Z; by including the contributions from the
crescent regions, i.e. the constants appearing in eqgs. (4.24)—(4.26), and by cancelling the Jacobi
polynomials with a counter term. This results in an exact matching at leading order in A.

We start with the action of the unperturbed theory, Sgee = ﬁ [d*z Ox dx, where z is
the compact bosonic field, x = x + 27 R, and R is the radius of the circle on which z takes
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its values. We choose conventional string theory normalizations [131, ch. 8] with o/ = 2.
Let us define x(z,2) = zr(2) + zr(2), with

xr(2) = xo L —iagln(z) +i Z zR(Z) = o, p — G In(2z) +1i Z o

and standard commutation relations [y, o] = My, —n, [To,1, 0] = 4, together with similar
expressions for the right movers. The OPEs take the standard form =1 (z)zz(0) = —In(2)+-- -,
and x(Z)xr(0) = —In(2) + - - -, where - -- denotes the non-singular terms. The momentum
and winding sectors are given by a pair of integers m,w giving the eigenvalues (kr, kr) of
the operators («v, &) respectively. We define the momentum vector k = (kr, kr), where
m  wR m wR
kp = —+ —, kr=—— —, 5.1
LTRT "R 2 (5:1)
and k is a vector in the even self-dual lattice of signature (1,1).
The operators 1, dz and dz are Virasoro primaries with dimensions (h, h) = (0,0), (1,0)
and (0, 1), respectively. Moreover, there are the vertex operators

Vi(2,2) = exp (%r(kL — kn)(ao + o)) < explikpar() + ikper(2) s, (5.2)

which are Virasoro primaries with dimensions (k% /2,k%/2). A few normalized low-lying
quasi primaries are of the form:

1 - 1 - _
\/QT:_\E Oxdx , ﬂT:_\ﬁ Oxdx (5.3)
V. — (0z0x + ik0%x) o ke tiknan V. _ (0x0x + ikr0*x) kLT HikRTR
k,2,0 5 ’ k,0,2 2 ’
2(k7 +1) 2(kp +1)
Ve, = (0x0z + ikp0%x) (0x0x + ikrd’x) . cikLastiknarn
- 2(k? +1) 2(k% +1)

where we introduce ¢z = exp(‘F (kr — kg)(ao + dp)) for the cocycle, and for simplicity drop
the normal ordering product symbol : :, keeping it implicit. In this notation, the vertex

operators are given by Vi = V- /.. As an example, the OPE of V;., ; with the stress tensor is

k2,0

1 2k -1 : : 1 k2 1
T(2) Vi (0.0) ~ = e e OihnenO4 = (TLa) Ve (0,0)4 9Vy, (0,0,

k,2,0 4 2 k,2,0 k,2,0
250 2(k2 4+ 1) z

showing that it is a quasi primary with holomorphic dimension h = k% /2 + 2. Note that

VE,z,o is a Virasoro primary when k% = 1/2, which is possible, e.g. at the self dual radius

R = /2 with (m,w) = (1,0) or (0,1). The operators V;; A, have been scaled so that their
2-point functions are normalized:

<V-‘ 5a,a’ 5b,b’
k7 +2a kH+20

k,(l,b<z7 5) V—E,a’,b’ (0’ 0)) = elﬂ-mw

(5.4)
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We then define fields which diagonalize the 2-point function with only positive momenta:”

N eiﬂ% - eiw%
Fap D) = 5 Veap tVoian): W32 = 5 Vews = Viiay)  (5:5)
Let us now perturb the theory by the exactly marginal operator:
A 9 =
S = oo+ E/d 29202 = (14 A) Sheo . (5.6)

It is straightforward to compute the spectrum of the theory. Define X = v/1+ Az. The
periodicity then becomes X = X + 27v/1 + A R. The perturbation simply gives a shift to
the compactification radius, with the new radius being R’ = v/1 + X\ R. The exact spectrum
of S has operators 1, X and dX with dimensions (0,0), (1,0) and (0,1), and has the
vertex operators:

Vki/ = exp (%r(k'L — k) (ap + d0)> : exp(iky X1 (2) + ikr XRr(2)) : (5.7)

with k7 = m/R' + wR'/2 and kf, = m/R' — wR'/2. The corresponding quasi primary
operators and the W¥ operators are defined as in eqs. (5.3) and (5.5).

The compact boson thus provides a simple example which is solvable, and where all
conformal dimensions and 3-point functions can be computed exactly. This allows us to
expand these quantities in A to calculate the corrections they acquire, and to compare with the
perturbative analysis developed in the previous sections. As a warm up exercise, we compute
the anomalous dimensions of the vertex operators V; to first order in A in appendix E.1.
We verify that the results of the exact and perturbation theory approaches match — see
also [42, section 2]. Below, we compute the shifts to a specific structure constant which
obtains order €’ contributions from two sources: Zg from the simplified domain; and Z

from the crescent region correction.

5.1 Structure constant deformation

We found in subsection 4.3 that the corrections to the perturbation integral over the simplified
domain (4.11) are rather complicated at the insertion point z9, but straightforward at z;
and zz — see the discussion below eq. (4.26). According to eq. (4.25), the complication at
2y depends on there being a quasi primary of dimensions lower than that of ¢;(22,22), i.e.
(hyj, ﬁj), which one can take derivatives of to make an operator of dimensions (h;, ﬁj) This
suggests that the simplest calculation to do is to consider an operator at zo for which there
is no candidate exchange operator satisfying the constraints. This is easily satisfied in the
3-point function (V_z(z1,21) Oz 0x(22, Z2) Vi(23,23)), where V;- are the vertex operators (5.2),
and the operator at zo happens to be the modulus used to perturb the theory. This example
turns out to be too simple because all three operators are the lowest conformal dimension

operators in their momentum class and there are no additional terms arising from crescent

"“Positive” momentum is determined by the pair (m,w): it is positive when m > 0. If m = 0, the
momentum is positive if w > 0, splitting the lattice in half. Each non-zero momentum k= (kr,kr) is then
represented in only one such pair W; The simultaneous case m = w = 0 is neither positive nor negative. It
represents the zero momentum sector, and is considered separately.
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corrections to the simplified domain. Therefore, a minimal subtraction scheme, namely
evaluating the perturbation integral Zs (4.12) over the simplified domain, is sufficient to
compute 6C; ;1. The computations are presented as a warm up 3-point function deformation
exercise in appendix E.2. An even simpler case where the structure constant is unchanged
is computed in [39].

We now consider the more interesting correlator <W;O 0(21, z1) Ox 0x(22, Z2) WE ) 0(23, Z3)),
where W are the diagonalized vertex operators (5.5). We observe from eq. (4.24) that there
are constant terms contributing from the e-exact domain (4.10). We proceed by first calculat-

ing the 3-point function in the perturbed theory with R’ = v/1+ \ R:

—2k} Kl 1 1

<W;0 o(21,21) 0X 9X (22, 22) W;Q o(23,23)) = - e gy
o - 2(kf +1) Z1_21 213 223 Z12 215 723

(5.8)
We denote the structure constant Cj, and expand it in A:

—2k K, k2 k2
Cha = 7,L B = Coa+ A L + i +0(\?) . (5.9)
2(k2+1) 2k +1) (K2 +1)4/2(k% +1)

The second term on the r.h.s. is the shift 6Cp 2 = 06,2 — Cp2 at order AL
We next wish to compute this in perturbation theory. The perturbation integral (4.7)
reads:

S 0x0x(2, %)) (5.10)

4

7= —)\/dQZ <V[/v]~;%07 21,21) 81’81’(22,22) WEZO(ZS’EB)

where the factor ﬁ is the normalization of the perturbation term (5.6). Using the 2
co-ordinates (4.8), and starting with the simplified domain of integration (4.11), the in-
tegral (4.12) reads:

. . 1 2 2k} 2k3 1 k3
L=-af 21D, 165 = — (- 5+ 2+ ) (2 + 2.
simp A1 /2(/{?% + 1)( 32 33 z ) (Z— 1)2 z
To extract the order € piece of the integral, we define
N2 Kk ~ 1
gL(Z) = 5_55 gR(Z):_(é—]_) ) (511)
and obtain
2k3N (= = k3
8gL 2) 4+ L) (Ogr(2) + L&) . (5.12)
47n/2k2+1 /snnp < >( Z)

We denote each term on the r.h.s. as Z¢, a = {1,--- ,4}. Three of them may be integrated
using the divergence theorem. Consider

).

Q|

)\ _ _
Tl = dzdz 0gr(2) Ogr(2) dz dgr.(2) gr(

T dmyf2(k2 + 1) Jsimp 4m/2 k2 +1) /asnnp
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At the boundary of the hole at 2 = 0, 2, 2 and d2 contain factors of e. The order ¥ term

AN\ d
must arise from terms of the form % <§) . However, only the ¢ = 0 term survives due

to the factors of €'® describing the contour. We must then find the coefficient of the 1/2
term in the expansion of gr near Z = 0, and extract the constant term in the expansion
of gr near 2 = 0. According to eq. (5.11), no such term exists. Thus, there is no constant
term arising from the hole at 2 = 0. Similar arguments apply to holes at 2 = 1 and oo,
and yield the same conclusion.

We next consider one of the other terms in eq. (5.12):

2k? _ i 2k2 _
s d3 Z5L Hgp(3) ! / (). (5.13)
z Osim z

47r./2 k3 +1) Jsimp 4#«/2 k? +1)

For the contour at 2 = 0, the factor 1/2 makes a contribution. Furthermore, gr(2) = 1+ O(2)
near 2 = 0. The contours for the excisions at finite points in the 2 plane are clockwise.
This then gives a contribution of Ak? /,/2(k% 4+ 1). Similar analysis shows that there are
no contributions from the excised hole at 2 = 1 and co. We denote the ¢ term of the

integral (5.13) as 120 = A\k?/4/2(k? +1). An analogous computation for

I3

’ 47n/2(k2 +1)

yields Is?:o = 0. Finally, we compute

N>I‘:§\3

/ dzdz dgr(3)

121211223 d

2kL k2 _4>\ k% k%{ /27Td €|zo3] ar

iz d3 6 /

% Ay /2 k2 +1) /sm 22 4mf2(k2 4 1) B
4\ kLkR / /\223\\212\

Ry (k2 +1) Jo= €1¢+1)(7“6‘1¢+1)’

The last term represents the excision of the disc near Z = 1, and is an integral of a finite

function over a vanishing domain. Therefore, it is purely perturbative in €, and may be
safely ignored. The first integral yields:

7t = 2\ k2 k%, (ln( €| z23] )—l—ln( €|z12| ))
2(k2 + 1) |z12|[213] |213||z23]

Recalling eq. (5.9), the coefficient of the log terms is found to be \(—kpkr/2) Co2. Note,
this provides another way to read off the anomalous dimension of the vertex operators,

ie. —kpkr/2 — see eq. (4.2) and appendix E.1. There is, however, no contribution of
O(e"). Thus, I}, = 0.
All in all, the constant term of the perturbation integral (5.12) at first-order in A is:
ki2

CoP = A——rol | 5.14
Z 2(k% +1) (519
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This does not agree with the shift computed exactly in eq. (5.9) at first order in A. In fact,
it only gives the first piece of the expression in eq. (5.9).

So far we have computed the perturbation integral (5.10) in the simplified domain (4.11).
In section 4 we showed that, given our regularization scheme, the correct computation of the
shift 0C; ;1 is obtained by integrating over the exact domain (4.10). As such, we must add
the contributions of the crescent regions around the insertion points, if appropriate crossing
channels exist. We shall now use the formulae derived in subsection (4.3) to compute the
constant term contributions from the exact domain.

Following the conventions of section 4, the 3-point function consists of ¢; = WE, +0,00
¢; = dz0x and ¢ = WE, +20° The only quasi primary that is a valid crossing channel
for this correlator is ¢, = WE, 40,
operator %(%véa: and W]; 100 At 23 (2 = 0). Thus, the only constant term contribution
comes from the crescent located at 2 = 0, i.e. I,?f’ol (4.24), with a single term in the sum

o> which is part of the OPE between the deformation

over p for ¢, = WE7 +.00° As argued in subsection 3.2, the Jacobi polynomial in eq. (4.24)

is removed by adding the counter term (3.15) to ¢ = W} ., ;- The contribution from the
perturbation theory integral I,}C‘:JOI is combined with the appropriate counter term C,E‘f’ol, giving

the shift to the structure constant as

hy —h —1)! (—h‘—hk—i-hi—i-l)h _h
S5OCTes = Zhol + Chol — 927\ ( P C C. s J k—%p
0,2 k,0 k,0 <2hp)hk7hp p,D,k ~p,j,i (hk . hp)'
We have h —ﬁ—i—Q h;i =1, h; =h _k The 3-point functions C = ——2kLkr
k= 3 s g =L, hi = hp = 5. p PDE = e 2k +1)
and Cy ;; = —krkr are computed in appendix E.2. We find:
k}2
5CGs° = A it (5.15)

(K2 +1),/20k2 +1)

The contribution of constant terms from the simplified domain (5.14), together with the
additional contribution from the crescents (5.15), leads to the total shift:

3CHS" = 6CHE™P +8CGs" = A ( L/ h ) (5.16)
’ ’ ’ 2(k% +1) (k2 +1)y/2(k? +1)
obtained from perturbation theory. This does agree with the order \! shift (5.9) exactly.
The extra contributions from the crescents and counter terms are necessary, even in simple
theories such as the compact boson.

It should be noted that the above analysis is insensitive to whether the theory is at the
self-dual radius: one may choose to analyze the primaries (m,w) = (1,0) or (0,1) at this
radius and still obtain meaningful results. In fact, the perturbation here may be thought of as
a symmetry breaking “Higgs” mechanism, where several short representations of the Virasoro
algebra with null vectors combine to make a long representation without null vectors.

6 Conclusions

We derived the full set of counter terms (3.12) sufficient to regulate the integrated n-point
functions of quasi primary operators which appear in first order conformal perturbation
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theory for general 2-dimensional CFTs, using a hard disk regularization. We show that these
counter terms do not affect the usual computation of the anomalous dimensions. We then
considered the perturbation of 3-point functions, computing the corrections to the structure
constant when the domain of integration for (4.9) is shifted from the simplified domain (4.11)
to the exact domain (4.10). Explicit expressions for these corrections are derived in terms of
the CFT data — eqgs. (4.24)—(4.26) and their anti-holomorphic counterparts.

Thus, our procedure to compute the shift of structure constants is as follows.

1. For the 3-point function at hand, construct the relevant 4-point function by including
the deformation operator in the correlator. Extract the function of cross ratios from this
4-point function, f(¢, ), where our convention for this function is given in eq. (4.7).

2. Evaluate —\ [ d%2f (2, 2) over the simplified domain (4.11), keeping only the € term.
The function f(2, %) contains no e dependence, and so the simplified domain’s simple
dependence on € helps identify the €? terms. This contribution must be evaluated theory
by theory.

3. In addition, one must compute the structure constants for the operators in the Regge
trajectory of lower conformal dimension to construct the constant parts of (4.24)—(4.26)
and their holomorphic counter parts. In these expressions one simply drops the Jacobi
polynomials: the relevant counter terms to do so have been identified.®

4. Adding the contributions to the €® term from step 2 and step 3 furnishes the full first
order in A change to the structure constant.

It would be interesting to consider CFTs for which the full shift to the structure con-
stants (1.11) can be exactly computed. The only obstruction here is step 2, while the
corrections from the crescent regions have been computed in this work. However, step 2
seems to be quite difficult to obtain in general, given that each crossing symmetric form of the
conformal block decomposition is only well adapted to part of the domain of integration [39].
Additional structure is needed. It might be in particular interesting to explore families of
rational conformal field theories where the simplified forms of the correlation functions may
allow for performing the perturbation integrals analytically. One of our main motivations for a
systematic study of the perturbation of the structure constants is to explore this deformation
in the context of holography, in particular in the moduli space of the D1-D5 brane system.
We hope to report on this elsewhere [132]. Orbifold CFTs provide a natural framework
where the correlators on the sphere can have simple forms, and may therefore allow explicit
evaluation of —\ [d?2f(2,2) over the simplified domain (4.11).
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A sl(2) algebra

In the main body we have leaned heavily on the si(2) structure of the theory, and so this is
worth reviewing. The sl(2) subalgebra of the Virasoro algebra is generated by L_1, Lo, L1;
quasi primaries of weight h; are defined via L; | ¢;) =0 and Lo | ¢;) = h; | ¢i) (we will use
¢; for quasi primaries and often use O; for primaries). In the space of quasi primaries, we
diagonalize each eigenspace of Ly under the 2-point function. Each of these operators is
regarded as the highest weight (lowest conformal dimension) operator in a representation
of the sl(2) algebra. As usual for any subalgebra, many such representations of the si(2)
subalgebra compose a single representation of the Virasoro algebra. This by itself is enough
to make the following assertion: any operator in the CFT may be written as a sum of quasi
primairies and their derivatives. We next prove this statement directly.

We start by dividing the state space by how many applications of L it takes to annihilate
a state. A state that is annihilated by LIfH, but not annihilated by L’f, is in “class k”, and
an operator in class 0 is quasi primary. Consider a primary ®, and a state of dimension h in
class k, | ®;), in this conformal family. Then L% | ®;) =| Q) where | Q) is a quasi primary of
dimension hg = h—k (> 0 for unitary theories, which we assume). We may write this state as

[y = ( ®) ~ oy o Q>> + e 1@

where (), denotes the Pochhammer symbol (), = [[7 (o +14) = T(a + m)/T' (). Using
LYLE | Q) = K!(2hg)k | Q) for Q quasi primary, the state in parentheses is annihilated by
LY by construction, and so is an operator in class k¥’ with ¥’ < k. The second operator is just
the derivative of a quasi primary L*; | Q) =| 9*Q). Iterating this procedure on the state in
parentheses one eventually arrives at class 0. Formalizing this gives an inductive proof that
any operator in the CFT may be written as a sum of quasi primaries and derivatives of quasi
primaries. We do likewise on the anti-holomophic side, and to simplify terminology, call those
operators annihilated by both L; and L; quasi primary. The set of distinct quasi primaries and
their sl(2) x sl(2) descendants provides a minimal spannin set of states/operators in the CFT.

Another important note is that the global Ward identities are constructed only using the
sl(2) generators. Under sl(2) transformations the quasi primaries transform as tensors. This
is enough to conclude that the usual expression for the global Ward identities apply to the
n-point functions of quasi primaries. More concretely, the global ward identities arise from
applying L,, with n = {—1,0,1} at infinity, giving 0, and then pulling the contour inward.
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We recall L_,, = %21*” T(z), limiting the powers of z in the measure to 0, 1,2 for the si(2)

operators. After deforming the contours in and expanding around each operator insertion,

)1="" with n/ = {—1,0,1} as well. If the operator insertions are

this leads to powers of (z — z;
quasi primary, only n’ = —1,0 survive, leaving expressions written in terms of the conformal

dimensions and derivatives of the fields. This yields the familiar Ward identities:

Zai(¢1(21) - On(zn)) =0, D (200 + hi){p1(21) - Pn(20)) = 0

1
D (270 + 2hizi) (d1(21) -+ - Pnlzn)) = 0
i
for ¢; quasi primary, which are the same as those stated for primary operators. Similar
considerations apply to the anti-holomorphic side. Thus, the form of the 2-point and 3-point
functions for quasi primaries is the same as the form of 2-point and 3-point functions of
primaries:

2h; =2h;’
212 %12

(pi(21,21) b5 (22, 22)) =

Cijk
hi+ha—hg _hi4+hs—h1 ho+hs—h1 shi+ha—hs ch1+hs—h1 Zhat+hs—h1
212 213 293 212 213 293

(hi(21,21) 0 (22, 22) (23, 23)) =

We consider the conformal dimensions h;, h; and the structure constants C; jx for the
quasi primary fields the data of the CFT. This is an over complete set of data in the CFT:
given the h;, h; and the structure constants C;,j .k for the primary fields, the h;, h; and the
structure constants Cj ;5 for the quasi primaries may be determined. However, this poses
a problem when dealing with special points in the moduli space. At some special points,
certain quasi primary fields may become primary, for example at special values of the moduli
in Narain lattices. When deforming away from these special points in the moduli space,
different (short) representations of the Virasoro algebra may merge to become one (long)
representation. We have seen one such example when considering the compact boson CFT
in section 5. From this viewpoint, the quasi primaries and the data associated with them
may seem more natural to consider on the moduli space. Indeed, one can see that the si(2)
descendants are never null states:

(Q | LYLE ) | Q) = K!(2hqQ)w

which is always positive. Thus, these representations always remain “intact”, and descent
relations which calculate correlators of sl(2) descendants in terms of the quasi primaries
are always available.

B a, coefficients

In this appendix we prove that the coefficients ay, which show up in the expansion of the
perturbation integral (2.19) in terms of €, are given by the expression (2.22). For this,
we will need several ingredients. First, we will need the generalized binomial expansion,

defined through the power series (1 4+ 2)® = Y_70_, ()™, where m is an integer and o
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is an arbitrary number. The coefficients of 2" in the sum are easily found by applying
derivatives on the power series:

() = )

where we have used the relation between Pochhammer symbols (¢)m = ¢(¢+1)(g+2)--- (g +

C(a=m+1)y, MNa+1)
o—0 m! S Tm+ DI —m+1) (B-1)

m — 1) and gamma functions: (q),, = I'(¢ + m)/T'(q). The latter expression may not be used
when ¢ is a non-positive integer. If ¢ is 0 or a negative integer, one must regulate the I’
functions, while the Pochhammer symbol is always well defined (and always agrees with the
regulation ¢ — g+ € in an € — 0 limit). The generalized binomial coefficient can be written as

(2)- e (e o)

:i(ﬁ—n—i-l)n (a=pB—(m=-—n)+1)mn

n! (m —n)!

B.2
=0,y=0 ( )

)
n=0
where [ is an arbitrary number and the final result is just the familiar “Pascal’s triangle”
recurrence relation for binomial coefficients when « and 3 are integers. It continues to be
valid for generalized binomial coefficients.” Similarly, we can write the generalized binomial
series (y + x)* = Y_po_o (@)y*~"a™ which is natural in the case |z| < |y|. If « is a positive
integer, the series naturally truncates, with all formulae above remaining valid because
(¢ —m + 1), = 0 for any integer m > «a + 1.
Next, we will use various relationships between factorials and Pochhammer symbols.
For any integer n > 1, we have n! = n!l(n — 1)!!, where the !! indicates the double factorial,
producing a product over every other descending integer greater than zero. For an even
number N = 2n, we have N!! = (2n)!! = 2"n! and for an odd number N = 2n + 1,
Nl = (2n + !l = 27+t (%)nﬂ. Furthermore, we may break Pochhammer symbols in the

middle as (a)my, = am-n (@ + (m —n)),. One may also break Pochhammer symbols into
“skipping by two”. If the subscript of the Pochhammer symbol is even N = 2n, we have

n/ 0 a+1
(@ = (@2 =2"(5) (F5) - (B.3)
and if the subscript is odd N = 2n + 1,
ont1 [ @ a+1
@x =@ =22 (5) (57) - (B.4)

With these preparations, we are ready to address the evaluation of the perturbation
integral (2.19). The first term in the integrand vanishes and thus we need to evaluate
the integral

2

)e (B.5)

9One may also prove eq. (B.2) by using the recurrence relations for T’ functions and shifting the bounds of

d.
d Roé 7 cos ) = E a <
0 ¢ (s 7 |212]

the sums; however, the above is more efficient.
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Note that a, = —a, defined in eq. (2.19). Define § = g Using eq. (2.17), we have

Roo = /1 — 62sin?(¢) +  cos(¢). Reintroduce the exponential in the integrand and note that
the integrand only depends on |s; —s;| — see the discussion below eq. (2.18). Eq. (B.5) reads

2 dlfd .
I= / d¢ (\/(1 —02) + 62 cos?(o) + 5(308((;5)) TemilAsle, (B.6)
0
where As = s; — s;. We now use the generalized binomial expansion and write

d;—d;—a—2b

e N di_dfj_a a+2b . _a+2b 2\ I i Asle
I:ZZ/O do " ) 09T cos P (@)(1 — 67) z e :

a=0b=0
Furthermore, taking the exponential form cos(¢) = M we have
T =
di—d;— _d.
oo o0 a+2b .op dz_dj 2J a a+2b 5a+2b i(a-+2b—20)6 o dj—dj—a—2b —i|As|o
20> [ do ga+2b © (1-09)"7 e :
a=0b=0 c=0 *0 a ¢

The Fourier modes must now match, giving a+ 2b— 2c = |As|. This is only satisfiable if a and
|As| are both even or both odd. Thus, the sum over a becomes restricted to a — |As| € 27Z.
Furthermore, it must be that a + 2b > a + 2b — 2¢ = |As|. Thus, the a and b sums are
restricted with a lower bound. As long as a +2b > |As| and a — |As| € 27Z, there is a member
of the sum over ¢ which matches the mode. The sums are then truncated to

> di —dj\ (E=2=2\ [ a+2b ) 6ot di—d;—a=2
=2 2”( )( b )(“*2";'“)%%“‘5% T

a=0,b=0
a+2b>|As|
a—|As|€2Z

We expand one further time to write

oo s di—d:—a di—dj—a—2b
di —dj\ [ =52 a+ 2b TN (D opiad
= 5 () ) () () e

a=0,b=0 d=0
a+2b>|As|
a—|As|€2Z

The power of ¢ is a+2b+2d > |As|. Hence, all terms with aj, £ < |As|, in the expansion (B.5)
vanish — see also the discussion below eq. (2.19). We wish to sum over all a, b, d which satisfy
a+ 2b+2d = ¢ to find the coefficient of &, i.e. the coefficient a} we seek in eq. (B.5). This
equation is only solvable if a and ¢ are both even or both odd. Thus, a,|As|, ¢ are all even or
all odd. Under this restriction, we solve for d = (¢ — (a + 2b))/2 > 0 where the restriction
is necessary for the positive integer to appear in the sum over d. This imposes £ > a + 2b
and we find ¢ > a 4+ 2b > |As|. All in all, using eq. (B.5), we find

—dj— di—dj—a—2b
0o d; —d; di—dj—a a+ 2b di—d;—a—<9 Cta 0~ (at2b)
a2:27r Z ( . J)( Z ><a+2b2|As|>< 57(a2+21,) )2 (+2b)(_1) 2 , (B.7)
2

a=0,b=0
£>a+2b>|As]|
a—|As|€2Z
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a+2b=1/

/

a+2b = |As]|

Figure 3. The shaded trapezoid region represents the terms in the sum over a and b that contribute
to aj (B.7). The restrictions a > 0, b > 0 and |As| < a+ 2b < ¢ define this region. Only those integers
with a — |As| € 2Z and ¢ — |As| € 2Z in the shaded region are allowed.

where ¢ — |As| € 27 is understood. It is now helpful to consider a geometrical description
of the sums in the space spanned by a and b.

Since ¢ and |As| must either be both even or both odd, we may take ¢ = 2f + |As|. The
integer f describes the thickness of trapezoidal region in the (a, b) space, as depicted in figure 3.
We wish to induct on f. Start with the base case f = 0. This yields £ = |As| and a+2b = |As|,
and restricts the sum over a. The trapezoid of figure 3 thus degenerates to a line given by
a = |As| —2b > 0. This truncates the sum in a and adds the restriction 0 < b < L@j:

LlAgslj di—d;—|As|+2b
d; —d; -t 1
! 2 : ? J 2 B

We break this into two separate cases when |As| is even and odd. For the even case define
|As| =25, S € Z*. Note that As = 0 is excluded and will be discussed shortly. We obtain:

S 22S—2b(di*dj*(25*2b)+1) (drdr(2572b)+2) (difdj725+2)
S—b 2 S—b 2 b

! _
Gi=las) = Qﬁbg (25 — 20)! bl 25

where have we used eq. (B.3). Using the identity

1 ( 25—22b+1 ) )

(25 —20)!  95-b (g — p)125-b (%)5

and combining the Pochhammer symbols under the sum we find:
di—d;—(25-2b)+1 25—2b+1

21 (di—dj—25+2) XS: ( 2 )S—b (#)b

S

/ —
=S T (D) 2 (S—0)! bl

b=0

Plug into eq. (B.2) the following: n = b, m = S, 8 = %, a = w.

eq. (B.1), the sum reads

Using

o (di —dj— 28+2) (di;dj)S'
S

/ —
=28 = s (1) 2 Sl
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The top term in product for the first Pochhammer symbol, (d; — d;)/2, is the same as the
bottom term in the second symbol. This term occurs twice, and can be factored. The two
Pochhammer symbols may be then combined into one. Using 225! (%)S = (29)! = (JAs]),
we finally obtain:

2w (dl—d]) (di—dj—|AS|

/ —
Ge=|asl=25 = AL T 2 2 )|As\—1 ' (B.9)

For the odd case, |As| =25+ 1, S € Z>o, in eq. (B.8), performing similar manipulations
shows that a’z:| As|=28+1 has the same expression as in the even case (B.9). Let us now
consider |As| = 0. Plugging this into eq. (B.7), or directly into the defining integral (B.5),
we find that a’£:| Asj=o = 27 The expression (B.9) remains valid for As = 0 if we take the
Pochhammer symbol with negative integer subscript to mean the product on reciprocals:
21 (d; — dj) ¢d;y —d,; (di—d;) 1
/ _&n 7 j 7 . 7 j .
Ge=|asl=0 = o 2 ( 2 )_1 2 G ay 2"

Let us next consider a non-degenerate trapezoidal region in figure 3 by taking f # 0
(recall that ¢ = |As| +2f). The sum (B.7) can be broken into sums over lines of the form
a+2b = |As|+2g, where g € {0,---, f}. The second two binomial coefficients in eq. (B.7) are
constant over the line. We thus may think of the double sum in (B.7) as a sum over distinct
lines making up the trapezoidal region in figure 3. Consider the line a + 2b = |As| + 2g. Over

difdjfa

this line, we are summing terms (di;dj)( ? )27(9428) that satisfy a +2b = |As| 4 2g. This
is just identical to the previous calculation (B.9) with the substitution |As| — |As| + 2g.

The remaining coefficients in the sum (B.7) differ only for different lines: for a line specified
di—d;—(|As|+29)

by g, the coefficient is (\As|g+2g)( . = )(—=1)/79. Thus we are left with a single sum

over g, which specifies the sum over distinct lines in the trapezoidal region:

f
2 (dl—d) di—d'—(|A$|+2g)
?= ¢ ! 1 B.10
" gz:%) (|As| +2g)! 2 ( 2 " )\Asl+2g—1 (B.10)
di—d;—(|A
" |As| +2g) [ (2\ s|+29) 1y
g f=9
Expanding out the binomial coefficients, we find
f
1 (d,—d) di—d'—(’AS‘—}—Qf) _
o J J f-g
= +1 -1 .
"= 2 (1As[+9)lg!(f =9t 2 ( 2 )IASIJrergfl

g=0
The Pochhammer symbol with g = 0 is common to all members of the sum and so may be
factored by splitting off this part of the Pochhammer symbol:

oy (AR )
;o i — dj NN
@ = e (=)
di—d;+|As|
xzf:<_ 2+ _g+1)g C—=f=(f-9)+ 1)y
g! o) ’

10As is commonly done, and is equivalent to the gamma function representation of Pochhammer symbols.
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where we have used the identity

1 _(6—2f+g+1)f_g
(|As| + g)! (lAas[+ )
Define o = —difgjfe,ﬁ = —%ﬂml,m = f,n = g, and use eq. (B.2) to obtain
di—d;—(|Asl+2) dimdyt
a/ _ 27‘(‘ (dl —dj) ( J 2 + 1>|As|+f*1 (—l)f ( 2] f+ 1>f
¢ 2 (JAs| + f)! 1!
di—d;—t di—d;—t
5 (di _ dj) ( 2J )Z+\2As\ ( 2J )e—|2As|
=AM g T+ ]As —[As
(di —dj —0) (%)1 (%)]
di—d;+As d;—d;—As
d — d; (1_ 2 )ﬂ (1_ 2 )ﬂ
= (1) 2 (di — d;) A 2 — 2 (B.11)
(di —dj = 0) (=) (=)

This concludes the proof of eq. (2.22).

C OPE coefficients 8? and /2

In this appendix we compute the coefficients 5P and Bf; in the OPE of quasi primary fields
¢1 and ¢9, defined in eq. (3.1). Expressing the OPE in terms of a sum over quasi primaries
¢p allows us to derive exact expressions for 5 and Bg, which solely depend on conformal
dimensions of ¢1, ¢2 and ¢,.

Let us consider first G2, derived in eq. (3.4), which we rewrite here for convenience:

1 <¢p | (Ll)n QSI(Z?Z) | ¢2> 2B1+ﬁ2—ﬁp (C 1)
n (th)(n) y—hi—ha+hp+n <d)p | 61(1,1) | ¢2) ‘ '

The expectation value in the denominator is just the structure constant Cp 12, which is

B =

assumed to be non-zero.'! Consider the expectation value in the numerator. The contour
defining L; is centered at 0, but with radius larger than z. One may pull this contour inward,
which results in two contours centred at 0 and z. The contour around 0 produces an L
acting on | ¢2), which annihilates this state. The contour around the operator ¢; at z yields:

dz' dz’'

— T =

57 ((z’ — 224+ 22(2 —2) + 22) T(2") = (Ls1+2zL,0+ 22L27_1)

L 2mi
where the z subscript on the L operators denotes that they are centred at z. These generators
satisfy the sl(2) algebra. We then find:

_ e n! -
(Lz1+22L0+ zQLZ7_1)"(;51(z, Z) ==z Z k'(T (2h1 + k) (n—p) 2" (sz_l)k 01(z, %)
k=0 """

k)
= (A (2l (2, 2)) ). (C.2)

This equation is proved by induction and the proof is provided in subsection C.1.

Y7f the structure constant is zero for a given quasi primary ¢,, then this family does not appear in the OPE.
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We thus obtain:

(@|LYG1(2,2) | 62) = 17200 (M4 gy | dn(2.2) | b)) (C.3)
which is a differential operator acting on the limiting form of a 3-point function. Plugging in
ggmg

Cp12
Zhl +ho —hp 2E1 -‘y—iLz —ilp

(0p | ¢1(2,2) | $2) =

into eq. (C.3), we find
(DpLT91(2,2) | 2) = Cp12 (ha — ha + hy)y, v i=hetn gho=hi=he,
We next Include the antiholomorphic sector and obtain

(@5 1p1(2,2) | d2) = Cpr2(dp | (L1)" (L1)" ¢1(2, 2) | 62)
= Cp12(h1 — ha + hp)p (h1 — ho + hy)z 2= —hatn =il

Inserting this in eq. (C.1), we find

(hl - h2 + hp)n

P — C4
A similar projection onto a state with n = 0 yields

N A A

p_ U —hotly) (C5)

T A (2hy)s
C.1 Proof of eq. (C.2)

The proof of eq. (C.2) by induction is fairly straightforward. First, the n = 0 case is trivially
satisfied. We assume that the equation holds up to n > 1. For the case n 4+ 1 we have

(L1 +22L,04 2°L. _1)" M 1(2, 2) (C.6)
n

n!
= (L1 +22L,0+ zQLZ,_l) Z N

Tk)(zhlw)(n k2" (Lz1)* d1(2,2)

Recalling that L1L* ¢ = [L1, L*{]¢1 = k(21 + (k — 1))LF71¢; for quasi primaries and
substituting in the eigenvalue for Lg, we find

(Loq+22L0,0+ z2LZ )" (2, 2) (C.7)
= 2" Z T 2t B 2 kR + k= 1)(Le ) 61(2,2)

2 Z K (n j (201 + K)oy 2 ¥ (2hy + 2k) (L. —1)" ¢1(2, 2)

L2 Z k' 2h1 + k)(n K 2 k (Lz,—l)k+1 ¢1(Z,2) )
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These three sums may be rewritten by shifting the sum indices such that the summand
terms all appear as szQ,l, being sure that no factorials of negative numbers nor negative
subscripts on Pochhammer symbols appear in the sum. In the first sum, we have

|
Y ﬁ (2h1 + k) gy 2 k(2R + k — 1)(Lzm1)" " 1(2, 2) (C38)

B nn+2n'(n+1—k)(n+2—k) (2h1+k_1)(n+2—k) 5 b1 B
S T it 2 ) Ohin) L) A=)

where we have added two new terms in the sum, £k = n + 1,n + 2, both of which are 0.
We have also dropped the term in the sum k£ = 0 which is 0. This allows us to write
k/k!=1/(k —1)!. Moreover, we have recognized (2h1 + k)(n—p)(2h1 + k — 1) = (2h1 + k —
Dnt1-k) = (2h1 + &k — 1) (nq2-1)/(2h1 + n). Shifting the indices of the sum on the second
line, the above equation reads

2" Z Hn  (2h + k) () 2 FE2hy +k —1)(L.—1)* " ¢1(2,2) (C.9)

n+1
_ ol (n+1—k) (2h +k)(nr1-k) i )
a Z k' (n + 1—k)! (2hy +n) 27 (Lz-1)" ¢1(2, 2) -

The second sum in eq. (C.7) may be written as:

"“Z W 2 R 2+ 20)(Le 1) 61 (2, 2) (C.10)

_ "i n'(n +1—k) (2h1+ k)1

M1 R @) 2 @+ 2h(Len) (= 2)

The third sum in eq. (C.7) sum reads:

2 Z o @+ B 2 (L) 01(2.2) (C.11)
n nl(k —|— 1 B
= Z (k+1)! ) Tt @Ry 2 (L) (7, 2)
fa Ik 2hy + k-1
- Z@ Mt l—hl @ tn) 2t Benn (o) di(z2)

The three sums (C.9)—(C.11) now all have the same overall power 2" ™! and the same
factor of szIZ“’,l in the summand. The coefficients that remain are

n! (n—k)(n+1—Fk)+(n+1—k)(2h1+2k)+k(2h1 +k—1))
m(2h1+k)(n+1 k) Shytn
= m<2h1+k)(n+l—k) (C.12)
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which completes the proof, i.e. eq. (C.2) with n — n + 1 has been proved. The second line
of eq. (C.2) follows by expressing L’j,,l(bl(z,é) = 0%¢; and

g (Zl—than(22h1+n—1¢1(z’ 2))) _ 2711 (z%f2h1 (81 + 62)” (Z%h1+n71¢1(2’2, 22»)

)
21=29=2

(C.13)
and expanding the operator (0; + d2)" in a binomial expansion.
D Jacobi polynomials and Hypergeometric functions
D.1 Constant counter terms
The Jacobi polynomials are defined as
@) = (@FBrntDp(@tmtDpm jz—1\m
ERUCEDY ml (n —m)! (45) (D-1)

m=0

In section 4.1 we compute the contribution from constant (i.e. order €”) counter terms for
3-point functions. Below we summarise such counter terms for quasi primaries ¢, ¢;, ¢;,
inserted respectively at z3, zo, z1. Their contribution to the first term on the r.h.s. of eq. (4.3)
is denoted as Cy, Cj and C; — see eqgs. (4.5) and (4.6). To order € we have:

_1\hr—h hi—h _ _ _
2 Cp (hrhpl))@llip):rhp 95" " (i(21, 21) 8;(22, 22) dp(23, 23))

Chol — 2)
k,0 — (212)—(hi+h]‘—hk)(213)—(hi+hk—h]‘)(Z23)_(hj+hk—hi) X (ah) .
p,np=n
hk—ZpEZ+
hi —hy — 1)V (—hj—hythi,—hi—h,+h;) (213 223
= Z QWACD,k,pCz’,j,p(%p) fsk—ﬁp * * ])(74'7)’
Pizp:fzk ( p)hkihp i i
hp—hpE€LF
1 hjfhp h:—h _ _ _
pa_ 27ACp jp (hj—(hp))(%p)h]._hp 9y P (Pi(21,21) Pp(22, 22) Pr(23, 23))
5,0 — (z12)—(hi+h]‘—hk)(Z13)—(hi+hk—h]‘)(223)—(hj+hk:—hi) x (a.h.)
pshp=nhy
hjf;szZ]_"
(hj —hp — D) (—hi—h;+the,—hj—huthi) (221 223
— 2tACp.ip Cippy ———=P 7 7 r Y=+ ==
) EZE 3JsP P, (2hp)hjfhp hj hp (213 213)
sep =1y
h;—hp €L
—1 hi—hp h;—h = = =
ool _ 27ACp.ip (hi_%p))@hp)hrhp N (dp(21, 21) Bj(22, 22) Pr(23, 23))
v fop—=h (z12) = (Rithi=hi) (z)5) = (hithi=hs) (z93) = (hithe=hi) 5 (a.h.)
p,p=hy
hi—}prZ+
hi —hy — 1)1 (—hi—hj+hy,—hi—hi+hy) (212 213
= Z 2N Cp,ip Cpjk (l2hp) ;(Ll.,hp It . J)(f + 7) )
P (2hp ) o
hi—hp€Z+

along with their anti-holomorphic counterparts (with analogous restrictions on the sums).
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D.2 Conformal blocks and crossing symmetry

The ordinary hypergeometric function is defined as:

o) TL

22 Z , (D.3)

o Fy (*

where |z| < 1. The 4-point function G%:}L defined in eq. (4.13) is expressed in terms of
hypergeometric function — see eq. (4.15). Crossing symmetry relations (4.17) yield:

, 23 W2 pp Bp,27hp7
ngll Z Z ZC 3,4 C 2,1 thg4 5h242F1< A ;Z> 2F1< Lo ;2) (D.4)
2, oh,,

: = AR AN
=3 Cpao Cpan (1—2)7"%" (1—2)7" 2F1( 1 —z) 2F1( 102 ;1—z>
~ 2h,, 20,

1 A N A VN A W2 R 1
_ ~ 1 1 gL g 1
et zp:Cp,:m Cp2a (z) <5) 2 1( oh, ’z) 2F1< oh, 1z)

where we have used the notation (4.16). For the perturbation integral of our interest (4.7),
we replace 1 — 4, 2 — j, 3 — D, and 4 — k. Recalling that the deformation operator has

dimensions hp = hp = 1, we obtain

P pp WPI RP 4
h; ,hk—l—l;z) 2F1< iy + ;z>

i 7Bp—
G%)kzz ZCpDkC,Jzzk k 121-171( o, o, (D.5)

_ . WPF 2 1 R R 41
=) C Dijki(l_Z)h§ a-z)M 12F1< P ;1—2> 2F1( R ;1—5)
p ) ’ vy 2hp 2hp

1 I\P—1 1\ RP—1 RS RP +1 1 R RP 41 1
= =Y Coni Coyn (Z) 1 (2) aR (TR )F(k >
2272 Lo P TPIk (z) (2) 2 1( oh, z) %! 2h, 'z

E Compact boson warm up

E.1 4hn

For the first warm up, we compute the anomalous dimensions, namely the change to the
conformal dimensions, of the quasi primary operators V~ (5 3). We may easily compute
exact expressions for the conformal dimensions in the perturbed theory with R = /1 — AR,
and then expand this to all orders in A. To the first order we find:

leQ 1,m? w?R? k% A m? w?R? 9
. 1 m?  w?R? k2, Am? w?R? )

We only expect shifts in the sectors with non-zero momentum lg, given that these are the

operators with R dependence in their dimensions.
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Let us now compute this shift in conformal perturbation theory. The integrand of the

E,a,bVE,a,b0D>’ where Op = 2020z is the

deformation operator — see eqs. (2.4) and (5.6). For simplicity we specialize to a = b =0

perturbation integral is the 3-point functions A (V_

and consider the vertex operators Vi (5.2). We obtain:

ITMmw

_ _ _ e —k241 _—k2+1 krkr
V - V- @) = — L R
(V_g(21,21) Vi(22, 22) Op(2, %)) Ar 12 “12 (z —21)(z — 22)(Z — 21)(2 — 22)

I

where the overall phase is resulted from commuting the cocycles.'? The result is symmetric
under mapping k — —k, and so is diagonalized by the basis (5.5). Denoting W+ = W

k,0,0°
we obtain
1
CD,W+,W+ = CD,W—,W_ = _E krkr . (EQ)
The shift to the dimensions (2.13) is then found to be:
Oh oh 1 1/m? w?R?
| =4y|. =2nC =—chkihkp=—z\55 ——— E.3
OXa=0 OAla=g T TDWEWE g VEMR 2(R2 4 )’ (E-3)
which matches with the exact shifts obtained in eq. (E.1). One may repeat this calculation for
the other W operators (5.5). The structure constant in all four cases is Cp, = 1+ = —%k Lkr.
? E,a,’b E,a,b

Therefore, they all experience the same shift (E.3), agreeing with the coefficient of A in (E.1).

E.2 5Ci,j,k

For the second warm up we compute the shift to the structure constant for an easy example
where the simplified domain of integration (4.11) is sufficient to evaluate the shift, and there
are no corrections to it coming from the exact domain (4.10). Consider the 3-point function:

Tmw 1. 1./
—e kp kR

k2—1 .
212 213 223 212 %213 223

)

<VLE,(21,51) 0X éX(ZQ,Eg) Vé,(z;;,gg)) =

where V' is the vertex operator in the perturbed theory (5.7). Diagonaizing in the W

basis (5.5), and recalling the notation W't= W]%io o We may expand the structure constant in A

m2 w2 R2
Coxaxw'«w'+ = —Kp kg = —krkr + )‘(ﬁ + 2

)+00) . (E.4)

Therefore, the exact computation gives 6Cyygx yy+ yy== A(m?/R? + w?R?/4).

We next compute the shift in conformal perturbation theory. The 3-point function in the
unperturbed theory is (V_j, (21, 21) Ox 01 (22, Z2) V7 (23, 23)). Consider the operator at zo.'?
The only operator of lower dimension than Oz in the zero momentum sector is the identity,
which has no sl(2) descendants. Therefore, at location z9, there is no quasi primary to take

derivatives of to make an operator with h = 1. (A similar argument holds for 5:U) As such,

2Tn fact, by definition, this is the same phase as appears in the 2-point function (5.4).

13The overall factor 1 /4w is not included. The inserted operator is not the deformation Op = ﬁ&réx
defined by the perturbative term (5.6), but rather the canonically normalized operator of dimension (1,1) in
the theory.
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there is no contribution from the crescent region at zo (4.25) to the shift C. This simplifies
matters as the latter contribution is rather involved — see the discussion below eq. (4.26).

Similarly, we observe that the operators inserted at z; and zy are of the lowest dimension
in their momentum class. Therefore, there are no contributions from crescents at z; and
z3 as well — see eqs. (4.24) and (4.26). Hence, no additional terms arise from integrating
over the full domain (4.10) as compared to the simplified domain (4.11). We shall verify
this below by an explicit computation.

The perturbation integral (4.7) is given by:

. _ 1 _
7 —)\/dz2(V_E(zl,21) 02 0123, %) Vilza, 53) 10w 00(2, 7)),
vy

We would like to evaluate this over the simplified domain (4.11) and extract its constant
term, which gives the value of the shift §C. The 4-point function in the integrand reads:

(V_g(z1,21) Ox 0x (29, Z2) Vi(23, 23) 0201(2, 2)) =

el k7 1 k% 1
—2 9 2 Fh2.0 o 2\ 2 + (z2-12)\ 5 * (2-1)2)
233 (21 — 2)* 21§ “z33 (21 — 2)

where 2 is defined in eq. (4.8). The correlator is invariant under k — —Fk, thus we may
consider the W basis (5.5). Integrating over the simplified domain (4.11), Zs (4.12) reads:

7
%13

A k? 1 k7 1
I:_f/ d22<f+A ><R+ ) E.5
i 4m simp z (Z - 1)2 Z (2 — 1)2 ( )
We compute the 4 terms individually and denote them as Z¢, a = {1,--- 4}. We first consider
4r

k2 k? 1 1
/ 425 "Lk —4771@%%(111 (212”’213‘) ~In (‘Zm)) —k:%k%/ 25—
simp 2z |23 € | 223|213 le—1]<0  1-21-2

where we have explicitly written out the excised hole at 2 = 1. The last integral is calculated
to be 27 In(1 — |213]%€?/(|223]%|212]?)), however, its value is unimportant: the integrand is a
function which is finite at 2 = 1, and is integrated over a vanishingly small region. Hence, it
represents a purely perturbative expansion in e. There is therefore no € piece contributing
from 71, i.e. Isl,o = 0. In fact, the coefficient of the log terms in the first term on the r.h.s.
give the shift to the conformal dimension of V’ (see eq. (4.2) and appendix E.1), and the
second integral shows that the shift to the conformal dimension of dzdx is 0, as it should.
(This is because the exactly marginal operator does not acquire an anomalous dimension).
We next consider another term in eq. (E.5):

I2::—)\/ ez 1
° 4 simp z (2—1)2’

which has singularities only at 2 = 0,1 and co. We write the integrand as —05(k2 /(£(2 — 1)).
This gives a delta function when 03 acts on the simple pole term 1/2. However, this is in
the excised region. We may therefore use the divergence theorem and write:

. 2 1
72 = —Myf dz (]'CL _ ) . (E.6)
47 Jasimp z z-—1
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On the boundary “dsimp” we take counterclockwise integration for the excised region of radius
1/e and clockwise for the regions of radius e. The three circles are given by — cf. eq. (4.11):

2 |z12]€ i

5 z13le g o _ |e2llzs] s (B.7)

’ — 14 28I ig 5=
| 223|213 | 223 | 212| | z23]€

N>

The contour integral (E.6) then reads:

2 A o k% o 2i¢ k%
%:_4,/d¢ . +/e d| —L—— (E.8)
a7 0 |z12]e e~ T _ ] 0 1+ |z13]€ eld

|z23(]213] |z23][212]

21 |223|6 . k2 )\ )\
— [ d i L =2 (=272 +0+0) = Z k?
/0 ? Terallens] € \1 = Exl oo £~ 2mkE £ 0+0) = ST,

|z12]|713

and we find Is2,0 = %k% Following the same steps, we obtain:

A k2 1 A
I3 = — 222~ "2 =73 . E.9
° 47T simp 2 (2 — 1)2 2 R =0 ( )

Finally, we address the integral

A 1 1 i\ 1 1
= — / d*z - = = ?f d - :
® 477 simp (Z - 1)2 (2 — 1)2 4 8simpz (2 - 1)2 (2 - 1)

where we used the divergence theorem to get the second equality. Using eq. (E.7), we have

2
Iﬁ:_i /”d¢1212]eei¢ 1A 1 |
47 0 |2’23H213| ( |z12]€ el — 1)2 ( |z12]€ e—ip _ 1)

|z23([213] [z23]]z13]
271' ’213|6 i 1 1
+/ |223HZ12|€ (Lzsle_gigy2 lzsle g
[223l[212] € [223]212] €
/%d(b ( |23 € )2( 1 1 )}
N |z23le  —ip\2 |z2sle '
0 [zaallz1s] )\ (1 — g2 emio)? (1 — E2leio)

The integrals may be computed exactly, however, it is more instructive to simply extract the
constant term. The first integral has one power of e’ from the measure d2. We expand
the integrand in 2 and 2. To cancel the ¢, only terms of the form % (%)n contribute (for
any n € 7). However, simultaneously we must cancel the €’?, and so only the n = 0 term
survives. Thus, only a term proportional to 1/Z in the expansion contributes to a constant.
Note that 1/(2 —1)2 = —9(1/(2 — 1)), and so no such 1/2 term can exist: the function is a
total derivative of a well defined function, excluding log terms which would lead to 1/2 terms.

Similar statements hold for the other two integrals. For completeness, we give the full answer:

lz12le\? |z3le \?
T4 — A (|2231H2213\) | 223|212 2 (|Z122‘T213|) E.10
2 (1 _( |z12]€ )2)2 - |z13]€ * (1 _( |z23]€ )2)2 ’ (E-10)
|z23([213] |z12]]213]

which clearly has no O(e") terms: Z;l’o = 0.
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All in all, the only constant terms come from eqgs. (E.8) and (E.9) and we find:

m?2 w2R2)
)

=t (E.11)

4

5Og§%X,Wi,Wi: (;Ig,o = %(k% + k) = )\(
which matches the shift computed exactly in eq. (E.4). Thus, in this simple example, the
“minimal subtraction” scheme is sufficient to compute the shift §C. This, however, is a special
case. In general, the results of section 4 show that the crescent regions contribute to 6C
and must be taken into account to compute the correct shift. The example worked out in
subsection 5.1 presents such a case where the integral over the simplified domain is insufficient
to calculate the perturbative change to a structure constant.
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