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Figure 1: Ilustration of MOGO, a GPT-style model for high-quality text-to-motion generation. The
model supports open-vocabulary prompts and can generate long, lifelike 3D motion sequences from
natural language inputs.

Abstract

Recent advances in transformer-based text-to-motion generation have led to im-
pressive progress in synthesizing high-quality human motion. Nevertheless, jointly
achieving high fidelity, streaming capability, real-time responsiveness, and scalabil-
ity remains a fundamental challenge. In this paper, we propose MOGO (Motion
Generation with One-pass), a novel autoregressive framework tailored for efficient
and real-time 3D motion generation. MOGO comprises two key components: (1)
MoSA-VQ, a motion scale-adaptive residual vector quantization module that hier-
archically discretizes motion sequences with learnable scaling to produce compact
yet expressive representations; and (2) RQHC-Transformer, a residual quantized
hierarchical causal transformer that generates multi-layer motion tokens in a single
forward pass, significantly reducing inference latency. To enhance semantic fidelity,
we further introduce a text condition alignment mechanism that improves motion
decoding under textual control. Extensive experiments on benchmark datasets
including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves
competitive or superior generation quality compared to state-of-the-art transformer-
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based methods, while offering substantial improvements in real-time performance,
streaming generation, and generalization under zero-shot settings.

1 Introduction

Text-to-motion generation is a rapidly evolving research area with growing importance in virtual
environments, such as gaming, AR/VR, and humanoid robotics [1l]. Recent advances have leveraged
large language model (LLM)-based techniques to generate high-quality 3D human motion from text
descriptions, typically using vector-quantized variational autoencoders (VQ-VAE) and autoregressive
decoding strategies [2H5]]. Meanwhile, diffusion-based approaches have also demonstrated strong
generation performance, particularly in terms of motion fidelity and diversity [6].

Despite these achievements, both diffusion- and LLM-based frameworks face practical limitations [[7-
10]. Diffusion models often rely on iterative refinement processes, which introduce significant
inference latency and hinder their suitability for real-time or interactive applications [7]. On the other
hand, LLM-based models, although autoregressive, typically involve large parameter sizes and long
context dependencies, leading to high memory and computation costs that challenge deployment on
lightweight or streaming scenarios [9]]. A broader discussion of related research trends is provided in
Section[dl

To address these issues, we propose MOGO (Motion Generation with One-pass), a transformer-based
autoregressive framework that directly predicts motion tokens in a single forward pass. Compared to
diffusion-based models, MOGO enables streamable motion decoding without iterative sampling, sig-
nificantly reducing inference time. Furthermore, unlike LLM-based motion generators, MOGO adopts
a lightweight yet expressive transformer architecture with considerably fewer parameters—allowing
for real-time token generation while maintaining high motion fidelity.

MOGO is composed of two key components: (1) MoSA-VQ (Motion Scale-Adaptive Residual
VQ-VAE), which discretizes motion sequences via hierarchical quantization and learnable scaling,
producing compact and adaptive representations [11]]; and (2) RQHC-Transformer (Residual Quan-
tized Hierarchical Causal Transformer), which autoregressively generates multi-layer motion tokens
in a single pass [12]]. As shown in Figure [T} this design allows for the synthesis of coherent and
extended motion sequences while preserving streaming capability and generalization across diverse
prompts and datasets.

Extensive experiments demonstrate that MOGO achieves superior results on both in-distribution and
out-of-distribution scenarios, outperforming state-of-the-art LLM-based motion generators in quality,
inference speed, and scalability—making it a robust and real-time-capable solution for practical
text-to-motion generation.

Our main contributions:

* MOGO: A unified transformer-based framework for one-pass high-fidelity motion generation.
It achieves generation quality comparable to state-of-the-art LLM- and diffusion-based
methods, while significantly improving real-time efficiency and enabling streamable motion
synthesis.

* MoSA-VQ: A motion discretization module that employs hierarchical quantization and
learnable feature scaling for compact and expressive representations.

* ROHC-Transformer: A lightweight hierarchical causal transformer that autoregressively
generates multi-layer motion tokens in one forward pass.

All code and demonstration pages will be made publicly available on our GitHub repository upon
acceptance.

2 Methods

We introduce MOGO, a unified framework designed for efficient and expressive text-to-motion
generation. Mogo could generate a high-quality motion sequence from a textual description, where
each frame m; € R” represents a D-dimensional human pose. As shown in Figure 2, our MOGO
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Figure 2: Overview of the proposed MOGO framework. Left: We first encode the motion sequence
using a hierarchical MoSA-VQ module with learnable feature scaling, indexing a multi-level code-
book. Right: Then, tokens are autoregressively generated by a RQHC-Transformer with relative
positional attention. Finally, the predicted token sequence is quantized and decoded into a full 3D
human motion sequence.

framework consists of two core components: (1) MoSA-VQ (left) that discretizes motion into multi-
level tokens with high precision, and (2) RQHC-Transformer (right) leveraging hierarchical causal
forward computation to generate motion tokens collectively in a streamlined manner (algorithms
are shown in Appendix C). To enhance zero/few-shot performance, we incorporate text condition
alignment (TCA) for improved motion decoding.

2.1 MoSA-VQ: Motion Scale-Adaptive Residual VQ-VAE

To effectively transform continuous human motion sequences into discrete representations suitable for
autoregressive modeling, we adopt a residual vector quantized variational autoencoder (RVQ-VAE)
architecture. This module, termed MoSA-VQ, serves as the foundation for learning compact yet
expressive motion codes. Residual quantization enables progressive refinement of motion features
across multiple levels, capturing both coarse and fine-grained temporal dynamics essential for high-
fidelity generation.

However, previous RVQ-based approaches [2| 5] often rely on manually calibrated feature ranges,
which limit their adaptability and quantization efficiency in complex motion settings. To address
this, we introduce a novel learnable feature scaling mechanism, allowing the quantization space to
dynamically adapt at each hierarchy level. This design not only eliminates the need for manual tuning
but also improves reconstruction accuracy and codebook utilization.

Hierarchical Quantization with Feature Scaling. Motion encoder outputs a latent representation
be R™*4 where n is the number of motion tokens and d is the feature dimension. At each level
1€{0,1,..., L}, we perform feature scaling before residual quantization. Let r” = b be the residual
feature at level 0. We first compute a scaled version of the residual feature:

l
Tscaled

= |ls"|| - ' + b, (1



where s' € R? and b' € R? are learnable scale and bias parameters. The input r' is the residual
feature passed from the previous quantization level and represents the information that has not yet
been captured.

We then apply vector quantization to the scaled residual:

bécalcd = Q(récalcd) ) (2)

where Q(-) maps each input to the nearest codebook entry. This quantized output exists in the scaled
feature space, so we invert the transformation to project it back into the original residual space:

b' = (bl .ea — b")/IIs']I. 3)

The recovered quantized vector b! captures the portion of the motion representation explained at
level v, and we update the residual for the next layer by subtracting this contribution:

't =yl —pl. 4)

This process repeats hierarchically across all levels, resulting in a set of quantized vectors
{b% b, ..., bl}. The final quantized latent representation is reconstructed by summing contribu-

tions from all layers:
L
b=>"b )
1=0

which is subsequently passed to the decoder to generate the full motion sequence.

Training Objective. To guide the hierarchical quantization process toward informative and stable
motion representations, we jointly optimize a multi-term objective designed to promote accurate
reconstruction, effective codebook usage, and numerical stability. The overall loss function is defined
as:

L L
- l 1712 l 2 12
Livg = m—ifli + 5 |Ir" = sg®5+7 D (Is' = 15+ [b']3), (©)
=1 1=0
where sg|-] denotes the stop-gradient operator. The first term encourages accurate motion reconstruc-
tion, the second enforces codebook commitment, and the third stabilizes training by constraining the
scale and bias parameters to remain close to identity mappings.

To preserve fine-grained temporal details throughout the encoding and decoding process, we employ
stride-1 convolutions in both the encoder and decoder. This design avoids excessive downsampling,
which can introduce high-frequency aliasing artifacts and degrade motion continuity.

Learnable scaling allows the quantization layers to focus on encoding residuals at different abstraction
levels, with deeper layers specializing in finer motion refinements. Such a design increases the
expressiveness and interpretability of the latent representation, contributing to higher reconstruction
quality and better hierarchical decomposition of motion dynamics.

2.2 RQHC-Transformer: Residual Quantized Hierarchical Causal Transformer

multi-level token representation via MoSA-VQ, the next challenge is to generate these tokens from a
textual prompt in a temporally coherent and semantically aligned manner. To this end, we propose
the RQHC-Transformer, a specialized autoregressive model designed to synthesize motion token
sequences across multiple quantization levels in a single unified framework.

Unlike prior transformer-based models that process motion tokens at a single resolution or require
separate modules per layer [2], our RQHC-Transformer embraces the hierarchical structure of the
quantized latent space. It sequentially predicts tokens from coarse to fine levels, enabling the model
to first capture the overall motion structure and then refine it with increasing detail. This mirrors the
residual nature of MoSA-VQ and preserves the interpretability of each quantization stage.

Input Construction. To generate the token sequence at quantization level [, we construct an input
sequence s' that conditions on both the textual prompt and the residual context from lower levels:

s' = [P + Qemp, t]"], (7



where p is the CLIP-based text prompt embedding, and ey is the embedding representing the
current quantization level. The sequence t; " is computed by aggregating token embeddings across
all previous levels at each position:

t;" = [Embed(t;), Embed(t7), ..., Embed(t}")] ®

Here, n denotes the number of motion tokens (i.e., temporal steps) in the sequence. Each ¢! is the i-th
quantized token at layer [, and Embed(-) maps each token to its corresponding embedding vector.

Relative Positional Encodings. To effectively handle long motion sequences, we incorporate a
relative positional encoding scheme into our causal attention layers. Compared to absolute positional
encodings, this approach better preserves attention consistency for varying sequence lengths and
enhances the model’s ability to capture long-range dependencies.

Given an input token sequence, the attention score between token ¢ and token j is computed as:
1 T T T T
AFi=dq; kj+q; dij+u kj+v dij, ©))

where q; and k; are the query and key embeddings at position ¢ and j, and ¢;_; is a learned relative
position embedding, and u and v are learnable global bias vectors.

This formulation allows the model to incorporate relative distance information into the attention
computation. The final output of the masked self-attention is:

a]’ = Masked-Softmax(A}" )V}, (10)

where A} is the attention score matrix incorporating relative positional encoding at layer n of the
[-th quantization level. V' denotes the value matrix at the same layer.

Autoregressive Objective. We use a multi-layer conditional maximum likelihood objective:

JJEECARCL A l l
L= =5 2303 logpalty | O 1v0) 0

i=1j=1 I=1

Here, B is the batch size, T; is the sequence length for the ¢-th sample, and L is the number of
quantization levels. té- denotes the ground truth discrete token at position j in layer [, while 057 -1
represents the model’s predicted context (e.g., previously generated tokens or hidden states) up to
position j—1 for sample 7 and layer . The conditional input ¢ encodes auxiliary information such as
the text prompt, and pg(-) denotes the model’s predicted probability distribution parameterized by

weights 6.

2.3 Text Condition Alignment for Improved Motion Decoding

Despite the RQHC-Transformer being trained on structured datasets such as HumanML3D, real-
world user prompts at inference time often exhibit substantial variation in phrasing, granularity,
and semantic clarity. This distribution shift between training and deployment introduces a critical
challenge: the model may underperform on out-of-distribution inputs due to linguistic mismatch
between test-time instructions and training-time prompts.

To mitigate this discrepancy, we propose TCA (text condition alignment), a lightweight inference-time
module that reformulates raw user instructions into a training-compatible form without altering the
model’s weights. TCA operates by leveraging a pretrained language model 7, which serves as a
prompt rewriting transformer to align free-form inputs with the motion model’s learned linguistic
prior.

We denote the space of unstructured user prompts as U, which includes arbitrary, potentially noisy
natural language descriptions. In contrast, S denotes the domain of structured, semantically aligned
prompts used during training. Given a test-time input ¢,y € U, TCA produces an aligned instruction
Caligned € S by querying the rewriting model 7" under a style prior ¥:

Caligned = T(Craw | \I/)a (12)

where W encapsulates syntactic and semantic formatting patterns derived from the training corpus.



The aligned prompt Cyjigned 1 then directly used as the conditioning input for the motion generation
pipeline, replacing the original c.,y. This inference-time alignment improves compatibility between
the textual condition and the model’s learned text-motion mapping, enabling more robust, coherent,
and semantically accurate generation—particularly in zero- and few-shot settings. Since TCA operates
independently of model parameters and requires no additional supervision, it offers a practical and
efficient solution for open-domain deployment.

3 Experiments

We comprehensively evaluate our MOGO framework on text-to-motion generation tasks, focusing
on motion quality, text-motion alignment, and generalization. Additional experimental results and
ablation studies are provided in the appendix for further analysis.

3.1 Datasets and Evaluation Metrics

Datasets. We train and evaluate MOGO on HumanML3D [13]] and KIT-ML [14]]. HumanML3D
contains 14,616 motion clips and 44,970 textual annotations, while KIT-ML includes 3,911 motion
clips and 6,278 descriptions. Data splits follow T2M [[13]] with ratios of 0.8/0.15/0.05. To assess
out-of-distribution generalization, we evaluate zero-shot performance on the CMP dataset [15]], which
includes 8,700 non-daily, combat-style motions. CMP provides three levels of text descriptions, and
we use its test split. During CMP evaluation, prompt engineering is disabled to ensure fairness.

Evaluation Metrics. We adopt standard metrics from [[13]]. FID (Frechet Inception Distance) mea-
sures motion realism and serves as a primary evaluation metric. R-Precision evaluates text-motion
alignment (Top-1, 2, 3). MM-Dist computes the distance between motion and text embeddings.
MultiModality measures the variance of motions generated from the same text prompt.

3.2 Real-time Inference

To enhance zero- and few-shot generalization, we leverage GLM-4 [16] to rewrite user prompts
that deviate from the HumanML3D style, aligning them more closely with the model’s learned
text-motion priors. Moreover, benefiting from MOGO’s autoregressive design, motion tokens are
generated in a streaming fashion—each token is predicted and emitted sequentially—enabling low-
latency, frame-by-frame output without the need to wait for the entire sequence.

This architectural advantage allows MOGO to operate in real-time settings, achieving an inference
speed of 30 frames per second on a single NVIDIA A100 GPU, making it well-suited for interactive
applications such as virtual avatars, animation systems, and embodied agents.

3.3 Comparison to State-of-the-art Approaches
3.3.1 Reconstruction Quality of Motion Encoder

We compare the reconstruction fidelity of our MoSA-VQ with other state-of-the-art motion VAEs. As
shown in Table[l] our encoder achieves the lowest FID on both HumanML3D and KIT-ML datasets.

3.3.2 Quantitative Results

As shown in Table 2]l MOGO exhibits Table 1: Comparison of the reconstruction of our VAE

consistently strong performance across  Design vs. Motion VAEs from previous works.
the HumanML3D, KIT-ML, and CMP

(zero-shot) benchmarks. With the in- HumanML3D KIT-ML
corporation of our proposed TCA mod- Method FID Method FID §
ule, MOGO achieves leading results M2DM [I7]  0.063F°°°Y  M2DM[T7]  0.413%0-009
in several key metrics—particularly in T2M-GPT [ 0-070?‘001 TIMGPT[3] 04725001
t £ ti lit d di MoMask [Z] 0.019%0-001 MoMask [2] 0.112%0-00
erms ob generation quality and di- MMM [4] 0.075£0-001 MMM @] 0.641£0-014
versity—while maintaining competitive MOGO 001359991 MOGO 0.037£0-001

performance across all others.



On in-distribution datasets like HumanML3D and KIT-ML, MOGO with TCA demonstrates top-tier
performance across most metrics, though it exhibits a slight increase in FID compared to the base
MOGO, the overall generation quality remains state-of-the-art, underscoring the robustness of our
hierarchical architecture.

Table 2: Comparison with Motion Generation Models.

R Precisiont

Datasets Methods FID| MultiModal Dist| MultiModalityt
Top 1 Top 2 Top 3
MotionDiffuse [I8]  0.49140.001  0.68140.001  0.782+0.001  0.630+0.001 3.11340.001 1.55340.042
T2M-GPT! 3 0.49140.003  0.680+0.002  0.775+0.002  0.116:£0.004 3.11840.011 1.85640.011
Fg-T2M (T9] 0.49240.002  0.683+0.003  0.783+0.003  0.243+0.019 3.10940.007 1.61440.049
AtT2M' 3] 0.49940.005  0.690+0.006  0.786+0.004  0.112:£0.004 3.03840.016 2.45240.043
HumanML3D  MotionGPT' [20]  0.49240.003  0.68140.003  0.778+0.002  0.232:0.008 3.096:£0.009 2.008-:0.084
MoMask (2] 0.52140.002  0.713+0.002  0.807+0.002  0.045:£0.002 +0.008 1.24140.040
MMM [4 0.504+0.002  0.696 +£0.003  0.79440.004  0.08040.004 2.998+0.007 1.226+0.035
MOGO' +0.003 +0.003 +0.003  0.038+0.002 2.95140.008 +0.070
MOGO with TCAT  0.527+0.007  0.722:£0.008  0.827-:0.012 +0.003 2.849+0.003 2.34440.037
MotionDiffuse [I8]  0.417£0.004  0.62140.004  0.7394+0.004  1.954+0.062 2.95840.005 0.73040.013
T2M-GPT! 3 0.41640.006  0.627+0.006  0.745+0.006  0.514:£0.029 3.00740.023 1.5704:0.039
Fg-T2M [19 0.41840.005  0.626+0.004  0.745+0.004  0.571=£0.047 3.11440.015 1.01940.029
AtT2M' 5] 0.41340.006  0.632+0.006  0.751+0.006  0.870-£0.039 3.03940.016 2.28140.043
KIT-ML MotionGPT' [20]  0.366+0.005  0.558+0.004  0.680+0.005  0.510-:0.004 3.52740.021 2.32840.117
MoMask (2] 0.43340.007  0.656+0.005 0.781+0.005  0.204:£0.011 2.77940.022 1.13140.043
MMM [4] 0.38140.005  0.590+0.006  0.718+0.005  0.429+0.019 3.146+0.019 1.10540.026
MOGO' +0.007 +0.007 +0.007  0.191+0.016 +0.029 +0.066
MOGO with TCAT  0.44740.023  0.668+0.016  0.801=£0.007 +0.009 2.84940.007 2.27340.073
T2M-GPT! 3]~ 0.061£0.003  0.10340.005  0.1474+0.006  16.092+0.099 4.17940.049 2.11840.033
AuT2M! 5 0.065+0.004  0.109+0.008  0.147+0.008  18.4030.071 +0.017 2.20840.019
MotionGPT' [20] ~ 0.050+0.002  0.094+0.002  0.133-£0.003 +0.183 4.43140.021 5.53540.259
CMP (zero-shot) MoMask [2 0.06240.003  0.108+0.005  0.150+0.004  24.35140.205 4.81740.022 1.65140.050
MMM [4] +0.004 +0.008 +0.008  17.087+0.313 4.360+0.017 2.80240.011
MOGOf 0.07140.003  0.124+0.004  0.183+0.004  10.388-0.171 3.84740.029 4.562+0.066
MOGO with TCAT  0.122£0.006  0.22740.011  0.30440.004  6.873+0.073 3.04040.014 +0.013
Red = Best, Blue = Second Best, = Third Best.

This advantage becomes more pronounced in the CMP zero-shot setting, where other transformer-
based approaches often suffer from significant degradation. In contrast, MOGO with TCA achieves the
best results in multiple metrics, highlighting its ability to generalize effectively to out-of-distribution
prompts. These improvements stem from the synergy between our hierarchical generation framework
and the inference-time input alignment mechanism introduced by TCA.

Furthermore, MOGO supports streaming token-wise generation, allowing for real-time inference
without sacrificing output quality. This combination of strong generalization, high overall perfor-
mance, and low-latency generation makes MOGO well-suited for practical deployment in open-ended,
real-world motion generation scenarios.

3.3.3 Qualitative Comparison and Long-range Generation

Qualitative Comparison. As shown in Figure[3] our generated motions are smoother, more consistent
and better aligned with input prompts compared to other methods (more results are shown in Appendix
A, and videos are also provided in the supplementary material). Built upon a hierarchical architecture,
MOGO enables longer motion generation without sacrificing coherence or realism, demonstrating
competitive performance among transformer-based autoregressive models and strong generalization
capabilities (more ablation studies are shown in Appendix).

4 Related Work

Human Motion Generation. Recent advances in human motion generation have enabled condi-
tioning on modalities like text, audio, music, and images [1]]. Early deterministic models [21} [22]
often produced over-smoothed, unrealistic motions. To address this, stochastic approaches, such
as GANs [23| 24] and VAE-based models [25, 26l], improved motion diversity. Text-to-motion
generation gained prominence with works like [[13], which used temporal VAEs to model text-
motion distributions. Recently, diffusion-based methods [27, [18 28| 17,8} 6] and transformer-based
approaches [2| 3, 20]] have led the field.
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Prompt: a person steps forward and leans over; they grab a cup with their left hand and drink it
before putting it down and stepping back to their original position.
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Figure 3: Qualitative comparison among our model, Momask [2f], and MotionGPT [20]].

LLM-Based Motion Generation Models. LLM-based architectures have become a cornerstone of
text-to-motion generation, leveraging their ability to model sequential data and adapt to varied tasks [2--
5, 120]]. Models like MoMask [2]] and MMM [4]] use masked token modeling to produce high-quality
motions but struggle with streaming output and generalization in low-data or out-of-distribution
settings due to their bidirectional design. Conversely, autoregressive models like T2M-GPT [3]] and
AttT2M [5]] enable sequential generation, making them suitable for real-time applications and scalable
with larger datasets, though they often sacrifice some motion quality. Efforts like MotionGPT [20]
integrate multimodal language modeling but face challenges in achieving high-fidelity motion outputs.
Our MOGO framework addresses these issues by combining efficient encoding through the MoSA-
VQ with a single-pass autoregressive transformer, ensuring both high-quality motion and streaming
capabilities.

Hierarchical Transformers. Hierarchical transformer architectures excel in domains like NLP [[12,
29], image generation [30], and vision tasks [31,[32]]. By processing data at multiple abstraction levels,
these models enhance representation capacity and scalability. For instance, Swin Transformers [31]]
support scalable high-resolution vision, while CogView?2 [30] enables high-fidelity image synthesis.
In motion generation, hierarchical transformers are underexplored, especially for autoregressive
frameworks with residual quantization. Our RQHC-Transformer in MOGO leverages hierarchical
modeling to efficiently process multi-layer motion tokens, improving quality and generalization.



Motion Tokenization. Discretizing continuous motion data into tokens v‘ia vector quantization is
central to transformer-based motion generation. TM2T [33] introduced VQ-VAE to map motions
to discrete sequences. T2M-GPT [3]] enhanced token quality with exponential moving average and
codebook reset techniques. AttT2M [S] improved quantization through body-part-aware encoding.
MoMask [2] advanced this with residual vector quantization (RVQ), producing multi-level tokens
for better reconstruction quality. Compared to prior work, our approach introduces learnable feature
scaling into the residual vector quantization process, allowing each quantization level to adaptively
adjust the magnitude of its residuals. This scaled RVQ mechanism stabilizes the residual distribution
across quantization stages, mitigates the risk of later stages collapsing to noise, and ensures more
effective codebook utilization. As a result, the model benefits from improved reconstruction fidelity,
better token expressiveness, and enhanced training stability.

5 Limitations and Discussion

Despite MOGO'’s strong performance in real-time streaming and zero-shot generalization, several
limitations remain.

Motion Editing. Due to its unidirectional autoregressive design, MOGO struggles with temporal
editing tasks such as infilling or interpolation. This limits its use in scenarios like animation post-
processing, where flexible motion manipulation is needed.

Generation Length. While relative positional encoding allows MOGO to generate up to 260 frames
in cyclic motions, non-continuous sequences remain limited to around 196 frames. This is primarily
due to weak temporal correlations in motion data, which hinder the use of segment-level memory
mechanisms like Transformer-XL [34]].

To address these issues, future work should focus on (1) enabling conditional adjustments after initial
generation to support dynamic prompts, and (2) improving local condition alignment for seamless
mid-sequence control. These enhancements could make MOGO more adaptable for interactive and
editable motion generation.

6 Conclusion

We presented MOGO, a one-pass autoregressive framework for high-quality and real-time 3D
human motion generation. By combining the MoSA-VQ module for scale-adaptive residual vector
quantization with the RQHC-Transformer for hierarchical causal decoding, MOGO achieves efficient
and temporally coherent motion synthesis. The integration of TCA mechanism further enhances
semantic alignment and enables better generalization in zero- and few-shot scenarios. Our framework
supports low-latency, frame-by-frame inference, making it well-suited for real-time and streamable
applications. Extensive experiments demonstrate that MOGO outperforms prior transformer-based
methods across multiple benchmarks in terms of generation quality and text-motion alignment. While
current limitations remain in motion editing and handling complex non-cyclic sequences, MOGO
provides a robust foundation for future research toward controllable, editable, and interactive motion
generation.
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A Generation Results
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A person is playing basketball.(1 15, 220 (o

A person runs away in a panic.(13s, 200 frames)

A person is climbing up and down.(11s, ~ 20 (o)

A person is skating from forward to backward while facing away. Playing badminton, hit the shuttlecock, and then strive to save the ball that seems uncatchable.
(13s, 260 frames) .(13s, 260 frames)

Figure 4: Demonstration of generative capabilities for open vocabulary and ultra-long sequences.

Stylized Motion Generation. Figure [] illustrates the results of our model applied to stylized
motion generation. Three representative action types are shown, each demonstrating the model’s
ability to preserve motion semantics while adapting to distinct style patterns. To further showcase the
generality and diversity of our approach, we provide additional stylized motion sequences in MP4
format in the supplementary material.



Feeling Superised

Injured Walk

Roll Forward

Figure 5: Generated motions rendered on skinned 3D characters.

Qualitative Comparison. Figures[6H9|present a qualitative comparison of motion generation results
given the same text prompt, showcasing outputs among our model, Momask [2] and MotionGPT [20].
As observed, MOGO produces more complete and coherent motion sequences, particularly excelling
in motion completeness and fidelity. For a more intuitive evaluation, we additionally provide
corresponding video results in the supplementary material (MP4 format), which further highlight the
differences in motion quality and realism.
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Figure 6: A person does a backflip, landing to the right.
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Figure 7: A person skips a circle.
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Figure 8: A person holds injured leg and collapses to ground
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Figure 9: A person does a swimming motion while standing.




B Ablation Study

Impact of Learnable Scaling in MoSA-VQ. We investigate the role of the proposed learnable
scaling mechanism in MoSA-VQ by comparing models with and without this design. In the baseline
configuration, residual features at each quantization level are directly quantized without any adaptive
normalization. In contrast, our full model applies a layer-specific affine transformation before
quantization, allowing each level to adjust the residual space dynamically.

As shown in Table[3] incorporating learnable scale and bias parameters leads to consistent improve-
ments across multiple evaluation metrics. The model demonstrates better reconstruction quality,
enhanced alignment between motion and text, and stronger semantic consistency. These results
highlight the benefit of introducing adaptive normalization in residual quantization, which facilitates
more expressive and stable token representations.

Table 3: Ablation study on the use of learnable scaling

Codebook size ‘ w/ Learnable Scaling

| FID| Topl?T MM-Dist
2048 x 512 0.05240.005 0.4984-0.002 2.9974:0.008
4096 x 256 0.04740.005 0.5014:0.002 2.9014:0.008
8192 x 128 0.038+-0.003 0.5154-0.007 2.9514-0.003

Codebook size I w/o Learnable Scaling

| FID, Topl1 MM-Dist].
2048 x 512 0.09440.011 0.4844-0.002 3.2734:0.009
4096 x 256 0.09140.004 0.49340.004 3.45140.017
8192 x 128 0.07940.002 0.50240.002 3.00240.008

Effect of Quantization Depth in MoSA-VQ. We further explore how the number of residual
quantization layers in MoSA-VQ affects the model’s overall performance. As residual quantization
hierarchically captures motion information from coarse to fine granularity, increasing the depth allows
more detailed refinement of the motion representation.

Table 4: Study on the number of Layers in MoSA-VQ on HumanML3D [[13] test set. Bold indicates
the best FID result.

L Reconstruction ‘ Generation
ayers
FID| Toplt MM-Dist| ‘ FID| Toplt MM-Dist|

1 0.067+£0.001  0.508+0.002  2.997+0.007 | 0.068+0.009  0.469+0.002  3.138+0.006
2 0.0464+0.001  0.504+0.001  2.98440.010 | 0.053+0.008  0.467+0.003  3.11440.002
3 0.0354+0.001  0.508+0.003  2.98040.004 | 0.0444+0.005 0.498+0.002  2.99740.008
4 0.0234+0.001  0.505+0.003  2.98940.006 | 0.045+0.005 0.501+0.002  2.98240.002
5 0.0174+0.001  0.511£0.001  2.98040.003 | 0.041+0.005  0.498+0.002  2.977+0.002
6 0.013+0.001  0.510+0.001  2.9824+0.006 | 0.038+0.003  0.515+0.002  2.95140.003
7 0.013+0.001  0.503+0.002  2.9934+0.007 | 0.040£0.003  0.513+0.007  2.94340.003

As shown in Table 4] models with a shallow quantization depth tend to underperform, suggesting that
limited hierarchy constrains the representational capacity of the latent code. As the number of layers
increases, performance improves consistently across reconstruction fidelity, text-motion alignment,
and multimodal distance. However, the gains tend to plateau beyond a certain depth, indicating
diminishing returns. This analysis supports the use of a moderate number of residual layers as a
trade-off between expressiveness and efficiency.

Codebook Size. We evaluate various codebook sizes on HumanML3D. As shown in Table [5}
8192 x 128 achieves the best FID for generation and competitive reconstruction.

Dataset Size. We evaluate MOGO’s scalability by mixing HumanML3D with varying proportions of
CMP data (Table[6). Without retraining the MoSA-VQ, generation quality improves significantly
with increased data volume.
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(a) w/o PnQ condition

Figure 10: Comparison of attention patterns with and without the PnQ (Prompt-and-Quantization)
condition. (a) Without PnQ, an extra layer token between the prompt and motion sequence causes
redundant attention and weakens the alignment between text and motion. (b) With PnQ, the prompt
token is directly fused with quantization conditions, improving attention efficiency and semantic

alignment.

Table 5: Study on the number of codes in codebook on HumanML3D [[13]] test set. Bold indicates the

(b) w/ PnQ condition

prompt token

based token

. attentions

layer index one-hot
embedding

masked attentions

layer transformer
condition

redundant attention

best FID result.
Codebook Size Reconstruction ‘ Generation

FID| Toplt MM-Dist| ‘ FID| Topl?t MM-Dist|
512 x 512 0.022+£0.001  0.5084+0.003  2.997+0.007 | 0.203+0.009  0.469+0.002  3.138+0.006
1024 x 1024 0.015£0.001  0.5114+0.002  2.984+0.010 | 0.114+0.008  0.467+0.003  3.11440.009
2048 x 512 0.017£0.001  0.51140.003  2.980+0.007 | 0.052+0.005  0.498+0.002  2.997+0.008
4096 x 256 0.019+0.001 0.510+0.002  2.98940.006 | 0.047£0.005 0.5014+0.002  2.901+0.008
8192 x 128 0.013+£0.001  0.5104+0.002  2.989+0.007 | 0.038+0.003  0.5154+0.007  2.951+0.003

Input Condition. We compared the perfor-
mance of input conditions by either adding
the prompt token and layer token as a se-
quence prefix or not. As shown in Table [/}
our experiments reveal that when without PnQ

Table 6: The impact of varying dataset sizes on FID
performance. Lower FID indicates better generation

quality.

Epochs | w/0% CMP

w/50% CMP  w/100% CMP

(adding prompt token to quantization layer to- 50
ken) is applied, the correlation between gen- 80

erated motion sequences and text (measured
by R-Precision and MM Distance) decreases
significantly. This may result from an additional layer token between action sequence tokens and

100

0.671
0.437
0.347

0.601
0.379
0.263

0.501
0.284
0.205

prompt tokens during training, leading to some attention loss, as shown in Figure

Table 7: Ablation study on the use of the PnQ condition.

Codebook size ‘ w/PnQ
| FID| Topl?t MM-Dist|
2048 x 512 0.05240.005 0.4984-0.002 2.9974-0.008
4096 x 256 0.047+0.005 0.50140.002 2.9014+0.008
8192 x 128 0.038+0.003 0.5154+0.007 2.95140.003
Codebook size wlo PnQ
FID.. Toplt MM-Dist].
2048 x 512 0.096+0.005 0.45240.002 3.2934+0.009
4096 x 256 0.091+0.005 0.45940.002 3.14140.007
8192 x 128 0.085+0.002 0.482+0.003 3.12740.008




C Algorithm

The core training code structure of our MoSA-VQ model is illustrated below. The variable abbrevia-
tions used in the code are defined as follows:

Algorithm 1 MoSA-VQ: Hierarchical Residual Vector Quantization with Feature Scaling

Require: Motion encoder output b € R™*?, levels L, learnable scales {s'}}_,, biases {b'}~,
codebooks { Q'
Ensure: Quantized latent representation b

1: Initialize residual r° < b

2: for! =0to L do

3 rleq < I8t - xt + bl > Feature scaling
4 bl ied & Ql(l;icaled) > Vector quantization
5 bl + % > Inverse transform
6: ritl«rl bl > Update residual
7: end for .

8: b+ >, ,b > Reconstruct quantized latent

The core training code structure of our RQHC-Tranformer is illustrated below. The variable abbrevia-
tions used in the code are defined as follows:

Algorithm 2 Motion Generation Algorithm

1: Input: p_texts, m_ids, m_len, lbls
2: bs, nt, r < shape(m_ids)
3: p_logits «+— EncodeText(p_texts)
4: p_logits <— CondEmb(p_logits)
5: m_ids < mask_motion_token(m_ids[:, :-1, :])
6: tks < TokEmb(m_ids)
7. fori=0ton_q-1do
8: r_tks < Reduce(tks, i)
9: tks_st[i] < r_tks
10: end for
11: all_layer_out < []
12: fori=0ton_t-1do
13: q_ids < Fill(bs, i)
14: g_oh « EncodeQuant(q_ids)
15: s_tks <— QuantEmb(qg_oh)
16: st_tks <— Concatenate(p_logits + s_tks, tks_st[i])
17: ret, att < Transformer(st_tks, 1bls)
18: layer_out <— Head(att)
19: all_layer_out.append(layer_out)
20: end for
21: Output: out < Stack(all_layer_out)
22: ce_loss, pred_id, acc <— CalcPerf(out, Ibls, m_len)
23: return ce_loss, acc, pred_id, out
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