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Inferring the properties of colliding black holes from gravitational-
wave observations is subject to systematic errors arising from mod-
elling uncertainties. Although the accuracy of each model can
be calculated through comparison to theoretical expectations from
general relativity, Bayesian analyses are yet to incorporate this in-
formation. As such, a mixture model is typically used where re-
sults obtained with different gravitational-wave models are com-
bined with either equal weight, or based on their relative Bayesian
evidence. In this work we present a novel method to incorporate
the accuracy of multiple models in gravitational-wave Bayesian
analyses. By analysing simulated gravitational-wave signals in
zero-noise, we show that our technique uses 30% less computa-
tional resources, and more faithfully recovers the true parameters
than existing techniques. We further apply our method to a real
gravitational-wave signal and, when assuming the binary black
hole hypothesis, demonstrate that the source of GW191109 010717
has unequal component masses, with the primary having a 69%
probability that it lies above the maximum black hole mass from
stellar collapse. We envisage that this method will become an es-
sential tool within ground-based gravitational-wave astronomy.

1 Model systematics in gravitational-wave
astronomy
Our ability to infer the properties of colliding black holes from

an observed gravitational-wave (GW) signal is dependent on our cho-
sen model1. Models that poorly describe general relativity will not
only yield biased results for individual sources2–6 (MacUilliam et al.,
in prep.), but also incorrect inferences for the properties of the un-
derlying astrophysical population – for example, the mass and spin
distributions of black holes in the Universe7–9. Unbiased results will
only be obtained with models that are perfect descriptions of general
relativity (assuming a known understanding of the noise in the GW
detectors10–12).

Unfortunately, directly computing GW signals from general rela-
tivity is a computationally expensive task; numerical relativity simu-
lations, where Einstein’s equations of general relativity are solved on
high-performance computing clusters, require millions of CPU hours
to perform13. For this reason only several thousand simulations are
currently available13–20. As a result, the latest GW models rely on ana-
lytical or semi-analytical prescriptions that are calibrated to the numer-
ical relativity simulations2, 3, 21–25, or are based on surrogate modelling
techniques26, 27. However, each modelling approach will incur some
degree of approximation errors.

The accuracy of a GW model is typically measured by the
mismatch28 between the model and a fiducial waveform, often a nu-
merical relativity simulation. The mismatch varies between 0, signify-

ing that the model and the true waveform are identical (up to an overall
amplitude rescaling), and 1, meaning that the two are completely or-
thogonal. It is well known that certain models are more faithful to
general relativity than others in different regions of parameter space5.

The standard approach to account for modelling errors when infer-
ring the properties of binary black holes is to construct a mixture model,
where results from numerous analyses are combined; a Bayesian anal-
ysis is performed for each GW model and the results are either mixed
together with equal weights29 or according to their relative Bayesian
evidence30, or by averaging the likelihood31. An alternative technique
involves sampling over a set of GW models in a single joint Bayesian
analysis32, 33. Although widely used, these methods do not account for
the known accuracy of the GW model.

Other approaches have suggested quantifying the uncertainty in a
GW model and marginalizing over this error in Bayesian analyses34–38.
These methods have either not been demonstrated in practice, or are
only suitable for a single model. Preliminary work has investigated
incorporating model accuracy into likelihood averaging techniques for
simplified models39. However, this approach maintains a comparable
computational cost to evidence mixing 30 and is difficult to interface
with standard Bayesian inference techniques.

In this work we present the first approach to incorporate the accu-
racy of multiple cutting-edge models into a single GW Bayesian anal-
ysis, while also reducing the computational cost (see Methods). This
technique accounts for modelling errors by prioritising the most accu-
rate GW model in each region of parameter space, thereby mitigating
against biased results from using models that are unfaithful to general
relativity. For GW signals likely observed by the LIGO10–Virgo11–
KAGRA12 GW detectors, we demonstrate that current techniques are
more likely to inflate uncertainties and have the potential to produce bi-
ased parameter estimates. On the other hand, we show that the method
presented here either outperforms current techniques, or in the worst
case, gives comparable results.

2 Gravitational-wave Bayesian inference
We first apply our approach to analyse an example of a

theoretical GW signal expected from general relativity, specifi-
cally, the SXS:BBH:092615, 40 numerical relativity simulation pro-
duced by the Simulating eXtreme Spacetimes (SXS) collaboration
(https://www.black-holes.org). We assume a total mass of 100M⊙
and we inject this signal into zero noise at a signal-to-noise ratio of
40. The SXS:BBH:0926 simulation has mass ratio 1 : 2 and large di-
mensionless spin magnitudes perpendicular to the orbital angular mo-
mentum (within the orbital plane of the binary) for both black holes
of ≈ 0.8 out of a maximum possible value of 1. For this system, the
general relativistic phenomenon of spin-induced orbital precession41 is
significant, and contributes a signal-to-noise ratio42 ∼ 9 to the total
power of the signal. This simulation was chosen since the majority of
GW models obtain biased results, and disagree on the inferred binary
parameters5 (MacUilliam et al., in prep.) Such a system with significant
spin-induced orbital precession has been predicted to be observed once
in every 50 GW observations made by the LIGO, Virgo and KAGRA
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Figure 1 | Two-dimensional posterior probabilities obtained in our analysis of the SXS:BBH:0926 numerical relativity simulation. The left panel shows the
measurement of the primary and secondary mass of the binary, and the right panel shows the inferred effective parallel and perpendicular spin components (as defined
in Methods, see equations (11, 12)). An effective perpendicular spin of 0 means that the spin vector lies perpendicular to the plane of the binary. The contours represent
90% credible intervals and the black cross hairs indicate the true value.

GW observatories based on current black hole population estimates43.
We use three of the most accurate and cutting edge mod-

els currently available for describing the theoretical GW signals
produced by colliding black holes: IMRPHENOMXPHM21 (with
the updated precession formulation25), IMRPHENOMTPHM22 and
SEOBNRV5PHM2. All models include the general relativistic phe-
nomenon of spin-induced orbital precession41 and higher order multi-
pole moments44. We analyse 8 seconds of data, and only consider fre-
quencies between [20, 2048] Hz. We generate the numerical relativity
simulation from ≈ 10Hz to ensure that most higher multipole content
is generated prior to our analysis window. Our analysis is restricted to
a two-detector network of LIGO-Hanford and LIGO-Livingston10, and
we assume a theoretical power spectral density for Advanced LIGO’s
design sensitivity45. We use the most agnostic priors available for all
parameters, identical to those used in all detections made by the LIGO–
Virgo–KAGRA collaboration29: flat in the component masses, spin
magnitudes and cosine of the spin tilt angles. We perform Bayesian in-
ference with the Dynesty Nested sampling software46 via Bilby47,
as has been done in all LIGO–Virgo–KAGRA analyses since the third
GW catalog29.

In Figure 1 we compare the results obtained with our method to two
widely adopted techniques. The contours labelled NR informed utilise
the method presented here, Evidence informed combines separate in-
ference analyses obtained with different GW models according to their
relative Bayesian evidence30, and Standard combines the results of sep-
arate inference analysis with equal weight. Standard is the currently
adopted method by the LIGO–Virgo–KAGRA collaboration29 as it is
likely the most agnostic. When considering the inferred primary and
secondary masses of the binary, we see that all three techniques cap-
ture the true value within the two-dimensional marginalized 90% cred-
ible interval. Both the NR Informed and Standard methods more ac-
curately infer the true values of the binary, with the injected values
lying within the 50% credible interval. Given that the Standard method
equally combines analyses from the individual GW models, the uncer-

tainty is inflated in comparison to the method presented here and to the
Evidence informed result.

We now turn our attention to the inferred spin on the binary. Since
the individual spin components are difficult to measure for binary black
holes at present-day detector sensitivities48, we consider the measure-
ment of effective spin parameters that describe the dominant spin ef-
fects of the observed GW signal49, 50. In Figure 1 we show the measure-
ment of the effective spin parallel and perpendicular to the orbital an-
gular momentum, as defined below in Methods. We see significant dif-
ferences between the obtained posterior distributions: the NR Informed
approach introduced in this work is the least biased as it encompasses
the true value within the two-dimensional marginalized 90% credible
interval. Although the Evidence informed result has been described
as the optimal method in previous work30, for this simulated signal it
produces an inaccurate result. This is because IMRPHENOMTPHM
has the largest Bayesian evidence despite not being the most accurate
model; it has been shown previously that less accurate models can give
large Bayesian evidences due to mismodelling33. Our analysis, on the
other hand, predominantly uses SEOBNRV5PHM; specifically 90%
of the time, while IMRPHENOMTPHM is used 8% of the time, and
IMRPHENOMXPHM 2% of the time. This demonstrates one of the
limitations of our method: although we preferentially use the most ac-
curate model in each region of parameter space, there is no guarantee
that this model is accurate enough to avoid biases in the inferred param-
eter estimates51, 52. However, we highlight that it is the most accurate
method of those currently used, and can evolve to include more accu-
rate models when they are developed.

In Figure 2 we present the ratio of mismatches obtained with the
different GW models used in this work. We see that SEOBNRV5PHM
has the smallest mismatch in the region of parameter space containing
the simulation parameters, and is therefore the most faithful to Gen-
eral Relativity results in this region. Specficially, it yields mismatches
∼ 3× and ∼ 1.8× smaller than IMRPHENOMXPHM and IMRPHE-
NOMTPHM, respectively.
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Figure 2 | Ratio of mismatches to numerical relativity simulations. Contour plot showing the ratio of mismatches to numerical relativity simulations for dif-
ferent effective parallel and perpendicular spin components when averaging over different mass configurations. The left panel compares IMRPHENOMXPHM
and SEOBNRV5PHM and the right panel compares IMRPHENOMTPHM and SEOBNRV5PHM. In orange we show samples obtained from our analysis of the
SXS:BBH:0926 numerical relativity simulation. In both cases, a ratio of mismatches greater than unity implies that SEOBNRV5PHM is more faithful to general
relativity.

Since the NR informed approach chooses the GW model based on
its accuracy to numerical relativity in each region of parameter space,
rather than combining finalized results from each GW model individ-
ually, we also see a significant decrease in computational cost. Our
analysis uses 30% less computational resources than the Standard and
Evidence informed analyses during sampling. The analysis completed
in 230 CPU days, compared with 35 CPU days, 118 CPU days and 181
CPU days for the individual IMRPHENOMXPHM, IMRPHENOMT-
PHM and SEOBNRV5PHM analyses, respectively. In the worst case
scenario, we expect our method to use the same computational re-
sources as the Standard and Evidence informed analyses.

Our technique is free to use any combination of GW models. If
SEOBNRV5PHM were removed from this analysis, we find consis-
tent results between our method and the Evidence informed result,
with overlapping two-dimensional marginalized 90% confidence inter-
vals. The reason is because IMRPHENOMTPHM now has the largest
Bayesian evidence and is the more accurate of the two remaining GW
models considered in the region of parameter space.

A single analysis with the model that is, on average, the most ac-
curate in the parameter space of interest can be performed53. How-
ever, the issue with this technique is that the mismatch varies consid-
erably across different regions of the parameter space, particularly for
the spins which are often not well measured. For instance, when av-
eraging across the parameter space consistent with SXS:BBH:0926,
SEOBNRV5PHM is the most accurate model. However, for effective
parallel spins > 0 and perpendicular spins < 0.05, we find that IMR-
PHENOMTPHM is more accurate than SEOBNRV5PHM, and IMR-
PHENOMXPHM is of comparable accuracy to SEOBNRV5PHM. By
simply averaging the mismatch across the parameter space, we neglect
this information, resulting in the use of a less accurate model in certain
regions of the parameter space. On the other hand, the method pre-
sented in this work to incorporate the accuracy of multiple models into
a single GW Bayesian analysis fully utilises this information.

Numerical relativity surrogate techniques provide accurate models
for describing GWs produced from colliding black holes26, 27. We do
not sample over surrogate models in this work since they are used as
a proxy for numerical relativity simulations to assess model accuracy
(see Methods). We quantify the efficacy of our approach by compar-
ing results to those obtained with surrogate models. For the same nu-
merical relativity simulation we find that NRSUR7DQ4 – the leading
generic-spin numerical relativity surrogate model26 – more accurately
captures the true parameters of the binary as expected (see Supplemen-
tary Figure 1). Our NR informed approach offers the most statistically
similar one-dimensional posterior probability distributions to the sur-
rogate posteriors out of the methods considered in this work.

Contrary to standing belief, NRSUR7DQ4 is not guaranteed
to be the most accurate model, even within its calibration region.
For instance, when comparing against numerical relativity simula-
tions that were not used to validate the NRSUR7DQ4, we find that
SEOBNRV5PHM. IMRPHENOMTPHM and IMRPHENOMXPHM
can more faithfully describe numerical relativity than NRSUR7DQ4.
Specifically, based on mismatches against the CF 52 simulation 13 –
a single spin, mass ratio 1 : 4 simulation with primary dimension-
less spin magnitude 0.6 at total masses 75M⊙, 80M⊙ and 85M⊙
– we estimate that according to our NR informed approach, SEOB-
NRV5PHM would be ≈ 140 times more likely to be used than NR-
SUR7DQ4 in this region of parameter space due to its improved accu-
racy. While corner cases such as this exist, NRSUR7DQ4 is still suit-
able as a proxy for numerical relativity in this work since we are per-
forming Bayesian inference on numerical relativity simulations where
the surrogate is the most accurate model 26. We emphasise that once
more numerical relativity simulations become available, the surrogate
will no longer be needed as a proxy to assess model accuracy, and we
will be able to incorporate the failthfulness of all models, including the
surrogate, within our Bayesian framework.

Although not presented in this section (see Supplementary Fig-
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Figure 3 | Two-dimensional posterior probabilities obtained in our analysis
of GW191109 010717. We show the measurement of the total mass of the binary,
as well as mass ratio, defined as the secondary mass divided by the primary mass.
A mass ratio of 1 implies equal binary component masses, and the mass ratio is
always less than or equal to 1. The contours represent 90% credible intervals.

ures 2 and 3), we also analysed the SXS:BBH:014315, 40 and
SXS:BBH:115615, 40 numerical relativity simulations produced by the
SXS collaboration. SXS:BBH:0143 was chosen since it resides in
a region of the parameter space where we expect our method to give
comparable results to the Standard and Evidence informed analyses.
SXS:BBH:1156 was chosen since it has largely asymmetric mass
components and lies in the extrapolation regime of our technique (see
Methods for details). For the case of SXS:BBH:0143, we find largely
overlapping posteriors between all three methods, with most of the one-
dimensional marginalized 90% confidence intervals containing the true
value. Our analysis of this case uses SEOBNRV5PHM 80% of the
time, IMRPHENOMTPHM 15% of the time and IMRPHENOMXPHM
5% of the time. This represents the worst case scenario: by construc-
tion our method should at worst give the same results as other methods.
For the case of SXS:BBH:1156, we find that our method outperforms
the Standard and Evidence informed analyses despite partly being in
the extrapolation regime of our technique: we more accurately cap-
ture the true parameters of the binary. Similar to SXS:BBH:0926,
the Evidence informed analysis preferred IMRPHENOMTPHM owing
to the larger Bayesian evidence, while our analysis preferred SEOB-
NRV5PHM since it is the more accurate model in this region of the
parameter space. Our analysis used SEOBNRV5PHM 78%, IMR-
PHENOMTPHM 9% and IMRPHENOMXPHM 13% of the time.

Finally, we apply our technique to a real gravitational-wave sig-
nal: GW191109 010717 was observed on the 9 November 2019 29,
and has sparked interest within the community since its source likely
has large component masses that lie within the upper mass gap – the-
ories suggest that the maximum black hole mass from stellar collapse
is ∼ 65M⊙

54. As shown in Figure 3, by incorporating model ac-
curacy in GW Bayesian inference for the first time, we more tightly
constrain the total mass of GW191109 010717 to 100 < M <
124M⊙, and demonstrate that the source of GW191109 010717 has
conclusively unequal component masses (assuming the binary black

hole hypothesis). Our re-analysis shows that when using consistent
priors and sampler settings as the LIGO–Virgo–KAGRA collabora-
tion, the primary component mass of GW191109 010717 has a 69%
probability that it lies within the upper mass gap, consistent with
previous work where GW191109 010717 was re-analysed with NR-
SUR7DQ4 55. This is compared to 51% probability from the LIGO–
Virgo–KAGRA analysis 29, thereby significantly increasing the prob-
ability that GW191109 010717 was produced from a hierarchical for-
mation mechanism where the primary component mass was formed
from a previous black hole merger. Other one-dimensional posterior
probability distributions remain comparable among the different meth-
ods considered in this work.

3 Conclusions
In this work we present a method to incorporate model uncertainty

into gravitational-wave Bayesian inference for the first time. We apply
this method to theoretical GW signals expected from general relativity
and show that it (i) marginalizes over model uncertainty by prioritis-
ing the most accurate model in each region of parameter space, and (ii)
outperforms widely used techniques that use Bayesian model averag-
ing. The method presented in this work is independent of the models
chosen and can, in principle, be used with any combination. Although
the approach preferentially uses the most accurate model in each re-
gion of parameter space, there is no guarantee that this model is accu-
rate enough to avoid biases in the parameter estimates. However, GW
models are continuously being developed, and will likely improve in
accuracy across the parameter space. Once available, these more accu-
rate models can be incorporated into this method. Similarly, with more
numerical relativity simulations produced, the accuracy of this method
increases, and more models can be included. The method presented
here is applicable to ground-based GW parameter estimation analyses
and we highly encourage its use in the future.

4 Methods
4.1 Estimating waveform accuracy: As discussed in Section 1, the
accuracy of a theoretical GW model is often assessed by comparing
the signals produced by the model against numerical relativity simula-
tions. We introduce a noise-weighted inner product between the model
representation of a signal and the signal itself28,

⟨hm|hs⟩ = 4ℜ
∫ fmax

fmin

h̃∗
m h̃s

Sn(f)
df, (1)

where a tilde denotes a Fourier transform, ∗ denotes complex conjuga-
tion, and Sn(f) is the noise power spectral density, which in this work
is Advanced LIGO’s design sensitivity45. The mismatch28 between two
signals is computed by optimising the normalised inner product over a
set of (intrinsic or extrinsic) model parameters λm,

M = 1−max
λm

⟨hm|hs⟩√
⟨hm|hm⟩⟨hs|hs⟩

. (2)

The intrinsic parameter space for a generic quasi-circular compact
binary system is comprised of two masses, m1,2, and two spin vectors,
S1,2, adding up to eight degrees of freedom. Additionally, a quasi-
circular binary comes with seven more extrinsic parameters: the right
ascension, declination and the luminosity distance {α, δ, dL}, respec-
tively, to the binary’s center of mass; the inclination of the orbit and its
relative polarisation {ι, ψ}; and overall constant time and phase shifts
{tc, φc} of the GW.

For binaries where the spins of the compact bodies are aligned with
the system’s orbital angular momentum, several of the binary parame-
ters become constant in time, and the intrinsic and extrinsic parameters
decouple, thus reducing the dimensionality of the model space to four
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degrees of freedom: {m1,m2,S1z,S2z}, where the individual com-
ponents of the spin vectors are specified at any fixed frequency. To
compute the matches for the aligned-spin configurations that follow,
we hold all extrinsic parameters fixed and optimise the match over the
set of model parameters λm = {tc, φc}. We maximise over tc via
an inverse fast Fourier transform and over ϕc using the Nelder-Mead
optimization algorithm found in SCIPY’s minimize function56.

For binary systems in which the spins contain non-zero compo-
nents orthogonal to the orbital angular momentum, the intrinsic and
extrinsic parameters couple and evolve in time. Our aim is to isolate
the intrinsic parameter space, accordingly the mismatch to which we
intend to fit should somehow be independent of the extrinsic parame-
ters. For this purpose, we first map {α, δ, ψ} into a single parameter
known as the effective polarisability57 κ. We then prepare an evenly-
spaced signal grid over the {κ, φc, ι}s ∈ [0, π/2] ⊗ [0, 2π) ⊗ [0, π]
space with 7 × 6 × 7 = 294 elements. At each point in this signal
grid, we compute the sky-optimised mismatch5, 57, 58 between the sig-
nal and the model template from equation (2), where the parameter set
we optimise over is λm = {tc, φc, κ, φspin}. Here φspin represents the
freedom to rotate the in-plane spin (azimuthal) angles ϕ1, ϕ2 of S1,S2

by a constant amount. κ is optimised over analytically and optimisa-
tions over φc and φspin are performed numerically using dual annealing
algorithms3, 21, 58. Note that there is no universally agreed upon grid for
{κ, φc}25, 58, 59, nor for ι3, 60. Our specific choice for the {κ, φc} grid
is based on recent work5. Our ι grid spacing is also consistent with
the literature60, but extended to π because the “up-down” symmetry of
the GW multipoles with respect to the orbital plane is broken due to
precession61–66.

With these optimisations, we arrive at the maximum possible match
between the template and the signal at a given point {κ, φc, ι}s in the
signal grid. We repeat this procedure at every point of the 294-element
grid then compute the mean of this set as our final result for the mis-
match

Mav :=
1

294

294∑
s=1

M(κs, φc,s, ιs). (3)

This is done to marginalise over any dependence of the mismatch on
the sky position and inclination, thus obtaining values which depend
exclusively on the intrinsic parameters of the source. We additionally
retain the standard deviation σ of the 294-mismatch set and use this
as our error bar when needed. Note that our mean match, 1 − Mav,
is a discretely averaged version of the sky-and-polarisation averaged
faithfulness given by equation (35) of Ramos-Buades et al.2. For the
remainder of this article, we drop the subscript “av” from M.

4.2 Multi-model Bayesian inference: The parameters of a binary
are inferred from a gravitational-wave signal through Bayesian infer-
ence. Here, the model dependent posterior distribution for parameters
λ = {λ1, λ2, ..., λj} is obtained through Bayes’ theorem,

p(λ|d,Mi) =
Π(λ|Mi)L(d|λ,Mi)

Z , (4)

where Π(λ|Mi) is the probability of the parameters λ given the model
Mi, otherwise known as the prior; L(d|λ,Mi) is the probability of
observing the data given the parameters λ and model Mi, otherwise
known as the likelihood; and Z is the probability of observing the data
given the model Z =

∫
Π(λ|Mi)L(d|λ,Mi) dλ, otherwise known

as the evidence. It is often not possible to trivially evaluate the model
dependent posterior distribution; the challenge is evaluating the evi-
dence since it involves computing the likelihood times prior for all
points in the parameter space. Thankfully, nested sampling was devel-
oped to estimate the evidence through stochastic sampling and return
the model dependent posterior distribution as a by-product67. Here,
a set of live points are randomly drawn from the prior, and the point

with the lowest likelihood is stored and replaced with another point
randomly drawn from the likelihood-constrained prior; the new point
is randomly drawn from the prior provided that the likelihood is larger
than the point that it is replacing. This iterative process continues until
the highest likelihood region(s) is identified.

When there is an ensemble of models, Bayesian model averaging
can be used to marginalize over the model uncertainty,

p(λ|d) =
N∑
i=1

p(λ|d,Mi) p(Mi|d)

=

N∑
i=1

[
Zi Π(Mi) p(λ|d,Mi)∑N

j=1 Zj Π(Mj)

]
, (5)

where p(Mi|d) is the probability of the model Mi given the data,
Π(Mi) is the discrete prior probability for the choice of model, and
N is the number of models in the ensemble. For the case of uniform
priors for the model, i.e., Π(Mi) = 1/N , Bayesian model averaging
simply averages the model-dependent posterior distributions, weighted
by the evidence.

An alternative solution to marginalizing over model uncertainty is
to simultaneously infer the model and model properties in a single joint
analysis33. Here, the parameter set λ is expanded to include the model
m: λ̃ = {λ1, λ2, ..., λj ,m}, and a discrete set of models can be sam-
pled over during standard Bayesian inference analyses: for each step
in, e.g., a nested sampling algorithm, a (j+1)-dimensional vector of
model parameters is drawn from the prior, including an integer for the
model,m. The integerm is mapped to a gravitational-wave model, and
the likelihood is evaluated by passing the remaining model parameters,
and the selected model, to the standard gravitational-wave likelihood1.
It was demonstrated that this joint analysis will be at most N× faster
to compute compared to performing Bayesian model averaging33.

For the case of gravitational-wave astronomy, defining a discrete
prior probability for the model is challenging since the accuracy of each
model varies across the parameter space λ5. This makes it difficult to
perform Bayesian model averaging; a uniform prior probability is of-
ten assumed for the choice of model30, 31 or in some cases, the model
accuracy is averaged over the parameter space of interest33. However,
a parameter-space dependent prior for the choice of model may solve
this problem33. For instance, a j-dimensional vector of model param-
eters can be drawn from the prior and Π(Mi|λ) can be evaluated for
all models, i.e., the prior probability of the model given the parame-
ter set λ. The most probable model can then be determined, and the
gravitational-wave likelihood subsequently evaluated. Although other
priors have been suggested33, 39, we use the following model prior con-
ditional on the parameters λ,

Π(Mi|λ) =
Mi(λ)−4∑
j Mj(λ)−4

(6)

where M(λ) is the mismatch between the model Mi and a numeri-
cal relativity simulation with parameters λ. Equation (6) implies that
the most accurate GW model will more likely be used to evaluate the
likelihood in each region of parameter space.

While several mismatch-dependent priors were tested, equation (6)
was chosen for this work since it accentuates small differences in the
mismatch between models, and was found to perform optimally. How-
ever, since the mismatch is a function of the power spectral density,
it will subtly change when the profile of the power spectral density is
varied, for example due to an improvement in the sensitivity of GW de-
tectors as a result of commissioning periods or due to small variations
on a day-to-day basis from noise artefacts. As a result, it is possible
that the relative model probabilities in equation (6) will vary for dif-
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ferent power spectral density realisations. We note that this is a com-
mon problem in GW astronomy with, e.g., search pipelines similarly
using a single representative power spectral density when constructing
template banks68. We leave a more detailed analysis investigating the
choice and stability of this distribution to future work.

4.3 Constructing a match interpolant: Mismatch computations are
fast, takingO(ms) per evaluation, for simplified models of the GW sig-
nal, such as those for aligned-spin configurations with only dominant
quadrupolar emission. With increased model complexity, the computa-
tion can take a significantly longer time to evaluate, and producing the
mismatch M(λ) will be a limiting cost in a Bayesian analysis since the
likelihood is evaluated O(108) times during a typical nested sampling
analysis. For this reason, we construct an interpolant for the mismatch
across the parameter space, M(λ), based on a discrete set of K mis-
matches for each of the GW models used in this analysis.

Owing to computational limitations, we do not have numerical rel-
ativity simulations for all possible regions of the compact binary pa-
rameter space. For the aligned-spin interpolant construction we there-
fore evaluate mismatches using the numerical relativity hybrid sur-
rogate model NRHYBSUR3DQ827 as a proxy for numerical relativ-
ity simulations. There is a long and productive history of GW sig-
nal modelling using a variety of approaches3, 21, 22, 24, 58, 59, 69–84, and we
compare against the IMRPHENOMXHM82 and IMRPHENOMTHM84

waveform models, two of the leading frequency and time-domain mod-
els available for aligned-spin binaries, respectively. We do not use the
state of the art EOB models2, 24 for the aligned-spin proof-of-principle
test because IMRPHENOM models are one to two orders of magnitude
faster to evaluate. For the precessing model interpolants we use the
models described in Section 2: IMRPHENOMXPHM21 (with the up-
dated precession formalisation25), IMRPHENOMTPHM22 and SEOB-
NRV5PHM2, and we compare the precessing models against the nu-
merical relativity waveform surrogate model NRSUR7DQ426, 27 as a
proxy for full numerical relativity simulations when computing mis-
matches.

We next describe how we construct an interpolant for binaries with
spins aligned with the orbital angular momentum in Section 4.4. We
further test this interpolant by comparing the posterior samples ob-
tained from a Bayesian inference analyses that is guided by an actual
mismatch computation at every step vs. a Bayesian inference analyses
guided by the interpolant. In Section 4.5 we describe how we gen-
eralise this to build a generic spin interpolant. Due to computational
cost, we use the Bayesian inference verification analysis in Section 4.4
to justify using an interpolant-guided analysis for systems with generic
spins.

4.4 Interpolant for aligned-spin waveform mismatches: We begin
with a test of the method using aligned-spin gravitational wave mod-
els containing higher signal multipoles. To simplify the construction of
the mismatch interpolant for this test application, we reduce the dimen-
sionality of the mismatch parameterisation by artificially fixing several
signal and model parameters. We choose to fix the total mass of the
binary to M = 90M⊙ and the inclination angle to θJN = π/3, where
θJN spans the angle between the line of sight to the binary and the total
angular momentum vectors. This choice leaves three remaining free
parameters in each model: the mass ratio q = m2/m1 ≤ 1 and the
component spins of the primary and secondary masses aligned with
the orbital angular momentum, χ1 and χ2, respectively, defined from
χi = Siz/m

2
i for i = 1, 2 with −1 ≤ χi ≤ 1.

The 3-dimensional mismatch interpolants are constructed from
mismatches computed on a uniform grid of 8 points in 0.125 ≤ q ≤ 1
and 17 points in each −0.8 ≤ χ1,2 ≤ 0.8, providing 2312 total mis-
match points for each model. The interpolants are produced as polyno-

mial fits to log10 M of the form

log10 M(q, χ1, χ2) =
∑

0≤a≤6
0≤b,c≤8

fabc q
aχb

1 χ
c
2, (7)

with the fit coefficients fabc computed using MATHEMATICA’s Fit
function and exported to PYTHON using FortranForm. These mis-
match surfaces are well-behaved and we find that the simple polyno-
mial fits described provide sufficiently small relative errors (arising
from equations (22) and (23) described below) of 10−4 and 10−3, re-
spectively, which suffices for this initial proof-of-principle test.

Next, we validate that our interpolant gives indistinguishable re-
sults to computing the mismatch directly in a Bayesian inference anal-
ysis. We perform two Bayesian inference analyses, both with the
Dynesty Nested sampling software46 via Bilby47. We use the same
priors and sampler settings as those typically used in LIGO–Virgo–
KAGRA analyses. The only distinguishing factor between these runs
is that in one we use equation (7) when computing the conditional prob-
abilities of equation (6), and in the other we directly compute the mis-
match between the models and the surrogate at the sample point.

To compare posterior distributions we use the Jensen-Shannon
Divergence85 since it is commonly used in gravitational-wave
astronomy86, 87. The Jensen-Shannon Divergence ranges between
0 bits, statistically identical distributions, and 1 bits, statistically dis-
tinct distributions. A general rule of thumb is that a Jensen-Shannon
Divergence < 50mbits implies that the distributions are in good
agreement86.

In Supplementary Table 1 we present Jensen-Shannon Divergences
between marginalized posterior distributions obtained when a) calcu-
lating the mismatch exactly, and b) using the interpolant. We find
that all Divergences are significantly less than 50mbits, implying that
the distributions are close to statistically identical. We find that the
Bayesian analysis that used the interpolant completed in ∼ 500 CPU
hours, ∼ 250× faster than the Bayesian analysis that computed the
mismatch exactly. Given the almost statistically identical posteriors
and reduced computational cost, we use the interpolated mismatch for
all subsequent analyses.

4.5 Interpolant for precessing waveform mismatches: When
computing interpolants for the mismatches in equation (3), we choose
to fit for the log10 of the sky-averaged, optimized waveform mis-
match equation (3). Accordingly, our error bars become σlog :=
| log10(M− σ)− log10(M+ σ)|.

Next, we generate a mismatch dataset to be used for fit construction
(training). We could simply select values for the intrinsic parameters
{m1,m2,S1,S2} and obtain M via the procedure above, but we find
that the brute force use of analytic functions of eight variables to fit
to this data set is not the best approach. Instead, we opt to first re-
duce the dimensionality of the parameter space and then employ func-
tional fitting. Already in Appendix A of MacUiliam et al.5 we had
seen encouraging preliminary results of this approach. We also note
that generating just a single data point for this mismatch set is compu-
tationally expensive because of the four-dimensional optimisation over
λm = {tc, ϕc, κ, φspin} that needs to be repeated for every element of
the 294-term sum in equation (3). For example, depending on mass
ratio and total mass, the computation of the average mismatch equa-
tion (3) at a single point in the intrinsic parameter space takes approx-
imately 2-3 CPU hours for IMRPHENOMXPHM, 4.5-11 CPU hours
for IMRPHENOMTPHM, and 6 CPU hours for SEOBNRV5PHM.
Therefore, we must keep in mind computational economics when gen-
erating the data to construct the fits.

We start by mapping m1,2 to the total mass M and the symmetric
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mass ratio η via

M = m1 +m2, η :=
m1m2

M2
(8)

with the former quoted in solar masses (M⊙) here and the latter being
bounded 0 < η ≤ 1/4. Alternatively, we could have worked with the
chirp mass Mc := (m1m2)

3/5(m1 +m2)
−1/5 instead of M , but we

opt to work with the total mass as its impact on the mismatch, equa-
tions (2, 3) has been well documented2, 5, 22, 58, 81.

The Cartesian components of each spin vector may be writ-
ten in terms of spherical coordinates with respect to some ref-
erence frame, usually taken to be the orbital angular momentum
vector at a reference frequency88. Thus, we may write Si =
|Si|(sin θi cosϕi, sin θi sinϕi, cos θi)

T for i = 1, 2.
We reduce the dimensionality of this eight-dimensional intrinsic

parameter space by mapping the six-dimensional spin space to two ef-
fective spins that we here label as x and y, representing the effective
spin projections perpendicular and parallel to the reference orbital an-
gular momentum vector of the binary, respectively. Two logical candi-
dates for {x, y} already exist: {χp, χeff}. The former is given by78, 89

χp = max

(
S̄1 sin θ1, q

4q + 3

4 + 3q
S̄2 sin θ2

)
(9)

with the bounds 0 ≤ χp ≤ 1, and we have introduced S̄1,2 =
|S1,2|/m2

1,2. A non-zero value for this quantity is an indication of
spin precession, with χp = 1 corresponding to a maximally precess-
ing binary, i.e., all component spins of the binary constituents lie in the
orbital plane and take their maximum magnitudes.

χeff is the parallel projection counterpart to χp. It reads78, 90–92

χeff =
1

1 + q
(χ1 + qχ2) =

1

1 + q
(S̄1 cos θ1 + qS̄2 cos θ2) . (10)

This is a conserved quantity up to 1.5 post-Newtonian (PN) order91 and
its magnitude changes very little over the course of an inspiral, making
it very useful for inferring spin information about a compact binary
system. It is clear from equation (10) that −1 ≤ χeff ≤ 1 given the
Kerr spin limit |χ1,2| ≤ 1.

Other perpendicular projections exist in the literature60, 93, but the
one which we empirically determined to be the best for fitting is χ⊥
given by94

χ⊥ =
|S1,⊥ + S2,⊥|

M2
, (11)

where Si,⊥ = S̄im
2
i (sin θi cosϕi, sin θi sinϕi, 0)

T for i = 1, 2. We
also experimented with a generalized version of χp

95, but found this
quantity to be not as well suited for fitting as χp or χ⊥. Given that the
mismatches will be maximized over the in-plane spin angle φspin, we
map ϕ1,2 to a single azimuthal spin angle ∆ϕ = ϕ2 − ϕ1 by rotating
our source frame axes such that ϕ1 = 0.

Finally, as an alternative to χeff, we introduce

χ∥ :=
|S1,∥ + S2,∥|

M2
=

1

(1 + q)2
(χ1 + q2χ2) . (12)

We thus have several choices for each perpendicular/parallel scalar:
x = χp or χ⊥, y = χeff or χ∥, yielding four possible pairings for the
dimensional reduction of the spin space. Our preliminary work based
on gauging the faithfulness of the fits has, however, compelled us to
drop χp as it produced less faithful results, partly due to the fact that it
does not carry any information about the planar spin angle separation
∆ϕ. Thus, we are left with two possible pairings for the reduced spin
space: {χ⊥, χeff} and {χ⊥, χ∥}. Accordingly, we introduce the fit
training-set labelsK1 = {χ⊥, χeff, η,M} andK2 = {χ⊥, χ∥, η,M}.

The spin parameters introduced above depend on q, accordingly
our fitting variables {x, y, η} do not form a linearly independent three-
dimensional subspace. Our motivation for choosing the particular fit
variables above was ultimately empirical: our initial fits, using projec-
tions of spins with no q dependence, were less faithful to the data. It
seems that mass-ratio dependent spin projections retain more useful in-
formation when the dimensionality of the parameter space is reduced.
Additionally, we find that {x, y, η} are either not correlated or weakly
correlated for which we present correlation coefficients at the end of
this section.

Next, we introduce a discrete parameter grid over the chosen four-
dimensional {x, y, η,M} space that we use for fitting. We limit η to
range from η = 0.16 (corresponding to q = 1/4) to η = 0.25 (q = 1)
in four even steps, resulting in five distinct values ηj , j = 1, . . . 5.
For the total mass, we employ M = {75, 117.5, 150}M⊙ as our grid
points, chosen because (i) NRSUR7DQ4 has been trained with data
from binaries with only q ≥ 1/4, (ii) NRSUR7DQ4’s time length
limit26 of 4300M imposes M ≳ 75M⊙ in order for the binary to
enter the detector bandwidth at a GW frequency of 20Hz, (iii) binaries
with M > 150M⊙ mostly emit merger-ringdown signals in the de-
tection band5, thus leaving hardly any imprint of precession in the re-
constructed waveform from detector data, (iv) model mismatches tend
to weakly depend on the total mass2, 5, 22, 58, 81, thus sufficing three grid
points in mass space for our current purposes given the computational
burden of generating new data.

For better fit performance, the remaining two fit parameters, x and
y, should also be placed on a regular grid. However, the quantities
that we picked to cover this space, namely the pairings {χ⊥, χeff} and
{χ⊥, χ∥} are not intrinsic parameters of the binary system. In order to
construct a regular grid in {x, y}, we therefore start from first a regular
grid of roughly 50,000 elements in {S̄1, S̄2, θ1, θ2,∆ϕ} space and use
this to populate the {x, y} space with values of q already determined
by the ηj grid. The resulting grid in, e.g., the χ⊥-χeff plane is scatter-
plotted as the blue dots in the left panel of Supplementary Figure 4,
where we observe that the parameter space seems to be bounded by a
half prolate ellipse drawn as the orange curve. The horizontal/vertical
axes of the ellipse are given by

a = max(x), b = max(y). (13)

Guided by this observation, we construct a regular, elliptical grid in
{x, y} space as follows. First, we introduce the elliptical coordinates
A,Φ with oblate/prolate-ness parameter µ > 0

x = A sinhµ cosΦ, (14a)

y = A coshµ sinΦ (14b)

with Φ ∈ [0, 2π] and the usual parametrization

x2

A2 sinh2 µ
+

y2

A2 cosh2 µ
= 1. (15)

For an ellipse of fixed size, A and µ are obtained from the relations
A sinhµ = a,A coshµ = b. Note that in equations (14a-15), we
swapped coshµ and sinhµ because, as we show below, our ellipses
are prolate, i.e., a < b.

Here, we aim to create a grid based on “concentric” ellipses of the
same aspect ratio starting with the outermost one (orange curve in the
left panel of Supplementary Figure 4). With A and µ fixed, we create
an elliptical grid of our choosing via

xrs =
r

Nr
A sinhµ cos

(
π

Ns
s− π

2

)
, (16a)

yrs =
r

Nr
A coshµ sin

(
π

Ns
s− π

2

)
(16b)
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with r = 1, . . . , Nr and s = 0, . . . Ns. We show such a grid for
{x, y} = {χ⊥, χeff} in the left and middle panels of Supplementary
Figure 4 represented by the red dots with Nr = 10, Ns = 24, i.e., a
grid of 10×25 = 250 points. The grid over r builds concentric ellipses
with the same aspect ratio and s angularly goes along each ellipse in
steps of π/Ns.

The intrinsic parameters we seek should be chosen such that the
corresponding values for {x, y} yield points on the elliptical grid,
i.e., the red dots in the left panel of Supplementary Figure 4. We
start by finding the nearest point from the set of 50,000 points (blue
dots in the left panel) to each grid point (red dot). For the kth

grid point with coordinates {xk, yk}, we find the nearest blue dot
with coordinates {xnk , ynk } generated from the intrinsic parameters
{qn, S̄n

1 , S̄
n
2 , θ

n
1 , θ

n
2 ,∆ϕ

n}. We use these values as initial guesses in a
rootfinding algorithm that translates to solving the following system

xk − x(q, S̄1, S̄2, θ1, θ2,∆ϕ) = 0, (17a)

yk − y(q, S̄1, S̄2, θ1, θ2) = 0 (17b)

with the caveat that the used q values are consistent with our aforemen-
tioned ηj grid.

As this is numerical root finding, we replace the right hand sides
of equations (17a, 17b) with a threshold of 10−12. We perform this
root finding procedure for every single elliptical grid point. The end
result is shown in the middle panel of Supplementary Figure 4, where
we place over each red dot a faint blue dot representing the grid points
that our algorithm finds. On average, each numerically determined grid
point is offset by ≤ 10−12 from the exact grid (red) point. For a grid of
250 points, this amounts a total grid offset of ≲ 3×10−9. We actually
find this number to be 1.5 × 10−8 for the elliptical {χ⊥, χeff} grid of
Supplementary Figure 4 because we had to relax our strict tolerance
from 10−12 to 10−10 for certain grid points to speed up the procedure.
As we show further below, a grid offset of ∼ 10−8 is much smaller
than the average fit unfaithfulness that we obtain, ∼ O(10−2), thus
completely acceptable.

We repeated the same procedure to also obtain an elliptical grid in
the χ⊥-χ∥ plane. In the interest of expediency, we used a tolerance
of 10−8 resulting in an overall grid offset of 5 × 10−6. Let us add
that a few of the intrinsic coordinates for the grid points exceed NR-
SUR7DQ4’s training limit of S̄i = 0.8 for spin magnitudes, but only
by ∼ 0.01 which is not severe.

As is well known, rectangular domains are often best suited for
constructing fits to data, therefore, we go one step further and transform
the elliptical coordinates into a rectangular ones via

x = X A sinhµ cos (Y ) , (18a)

y = X A coshµ sin (Y ) , (18b)

where X ∈ [0, 1] and Y ∈ [−π/2, π/2]. Correspondingly, we have
the following inverse relations

X =
1

A
cschµ sechµ

√
x2 cosh2 µ+ y2 sinh2 µ, (19a)

Y = tan−1

(
y tanhµ

x

)
. (19b)

Comparing equations (16a) with (18a), and (16b) with (18b) gives
the Nr × Ns rectangular grid {Xr, Ys} with r = 1, . . . , Nr, s =
0, . . . Ns, which we show in the right panel of Supplementary Figure
4. Overall, we have the following four dimensional grid for the fitting:
{Xr, Ys, ηj ,Mk} with j = 1, . . . , 5 and k = 1, 2, 3. As a final step,
we introduce the rescaled variables Z = 4η, V =M/(75M⊙).

After much trial and error, we settled on the following fitting func-
tion

F(X,Y, Z, V ) =

ni∑
i=0

nj∑
j=0

∑nk
k=0

∑1
l=0 cijkl Z

kV l∑nk
k=0

∑3
l=2 |cijkl| ZkV l−2

XiY j .

(20)
We chose this particular form to better curb the fit’s extrapolation
behaviour in parts of the {Z, V } (mass ratio, total mass) space outside
of the training region Z < 0.64 (η < 0.16) and V < 1 ∪ V > 2
corresponding to M < 75M⊙ ∪M > 150M⊙. We use two dimen-
sional polynomials in the {X,Y } subspace of the fit training domain
because, as a result of our elliptical grid design, only rare combinations
of intrinsic parameters yield points just outside our outermost ellipse.
The values of {ni, nj , nk} in the triple summation of equation (20)
are chosen such that we have at most roughly the same number of fit
parameters as the total number of grid points used in the {x, y, η}
subspace, which in the case of Supplementary Figure 4, for example,
is 10 × 25 = 250. Note that in the denominator of equation (20), we
take the absolute value of the fit coefficients cijkl to ensure that there
are no singularities. We also set cij02 = 1, which is the leading term
in the denominator, a standard choice for Padé type fits. Our general
procedure is as follows:
(i) start with a large ensemble of intrinsic parameters {qi,S1,i,S2,i}
for i = 1, . . . ,O(104).
(ii) Impose an elliptical grid of size N = Nr × (Ns + 1) with the grid
coordinates given by equations (16a) and (16b).
(iii) Determine the set of intrinsic parameters {qI ,S1,I ,S2,I} yielding
this grid to some tolerance, e.g., 10−12.
(iv) Compute the mismatches MK,L of L models to NRSUR7DQ4 for
the set {MK , qK ,S1,K ,S2,K} where K = 3I for the three distinct
values of M that we use.
(v) Transform to the rectangular grid {XK , YK , ZK , VK}.
(vi) For each model L, perform the fitting to the set
{XK , YK , ZK , VK , log10 MK,L} using MATHEMATICA’s
NonlinearModelFit function and store the coefficients cijkl,L of
equation (20).

We start our fit optimization routine with {ni, nj , nk} = {4, 3, 2}
and generate fits up to some {nmax

i , nmax
j , nmax

k } that ensures that the
total number of fit parameters is ≈ N . The choice of {4, 3, 2} yields
160 fit parameters. Smaller values of {ni, nj , nk} result in fewer than
100 fitting coefficients and leads to underfitting for training grids of
size ≳ O(200) which, as we explain below, is the grid size that we
adopt. Our routine picks as the final fit the one for which the values of
{ni, nj , nk} in equation (20) yield the lowest relative difference with
respect to the training data set. For this purpose, we define the relative
difference between the data and the fit at the kth point

∆k
rel := 1− F(Xk, Yk, Zk, Vk)

log10 Mk
, (21)

to introduce two quantities to gauge fit quality during training. The first
is the l2-norm of ∆k

rel between the fit and the data normalized by the
length of the vector

∆
(1)
rel :=

1

3N

√√√√ 3N∑
k=1

∣∣∆k
rel

∣∣2, (22)

and the second is the signed average relative difference

∆
(2)
rel :=

1

3N

3N∑
k=1

(∆k
rel) (23)

which tells us whether the fit globally over or underestimates the data.
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We pick the values for {ni, nj , nk} that simultaneously minimize
both of the above relative differences. These relative differences are the
most important fit attributes for this work as we must robustly predict
the mismatches to NR in order to appropriately select which model to
use at a given point in the parameter space. If more than one set of
values for {ni, nj , nk} are returned, we opt for the set which yields a
reduced chi square (χ2/DoF) closest to unity. Once the fit training is
complete via the above optimization of {ni, nj , nk}, we check fit per-
formance over an appropriate verification set which we discuss further
below.

The question of training grid resolution can only be answered after
setting a target fit unfaithfulness threshold. Here, we aim for ∆|av|

rel ≈
0.05 for each fit, where

∆
|av|
rel :=

1

3N

3N∑
k=1

|∆k
rel| (24)

is the average absolute relative disagreement between the fit and the
verification data. With the above threshold established, we set out to
determine whether or not the {x, y} training grid of size 10 × 25 suf-
fices. First, we downsample this grid to create coarser grids of dimen-
sion 10 × 13, 5 × 13, and 5 × 7 and compute ∆

|av|
rel for each with

respect to the original verification set (of size 250). As we gradually
increase the grid size from 5× 7 to 10× 25, we observe ∆|av|

rel decreas-
ing from ≈ 0.10 to ≲ 0.05 for the fits listed in Supplementary Table
2. For example, the fit used to make Supplementary Figure 5 yields
∆

|av|
rel = 0.048. Increasing the grid size to O(1000) elements should

further reduce ∆
|av|
rel . However, this quickly turns into a problem of di-

minishing returns given that it would take one month to generate this
mismatch data using 128 CPUs on this grid.

Furthermore, an inspection of the structure of the mismatch data
revealed that an elliptical grid with O(10) points along the radial direc-
tion and O(20) points along the azimuthal direction suffices to capture
the dominant trends in the data at the level of fit unfaithfulness that we
seek, i.e., ∆|av|

rel ≈ 0.05. Thus, our aforementioned grid of dimensions
10 × 25 has sufficient resolution. We leave fit improvements to future
work which we have already begun undertaking.

In Supplementary Figure 5, we show a contour plot of the unfaith-
fulness of the fit for the log10 of the NRSUR7DQ4-SEOBNRV5PHM
mismatches to the verification data set. Due to the computational bur-
den of obtaining the mismatches, we use data with y = χ∥ (χeff) to
verify the data trained with χeff (χ∥). This results in verification sets
that are the same size as the training sets, so ours is rather a harsh
verification test. The contours represent the absolute value of the rel-
ative difference between the fit and the data. The fit is trained over
the y = χ∥ set (black dots) which, by design, trace concentric pro-
late ellipses in the {x, y} = {χ⊥, χ∥} plane. The white dots mark
the {x, y} coordinates of the verification data. From the figure, we
see that in a large portion of the space, the relative difference is 0.05

or less. Note that this quantity is not ∆(2)
rel applied to the verification

set, but rather the absolute value of the summand in equation (23). The
fits for the NRSUR7DQ4-IMRPHENOMTPHM and the NRSUR7DQ4-
IMRPHENOMXPHM mismatches also yield similar level of agree-
ment as do the fits trained by the y = χeff set.

We summarize these results and provide additional metrics for all
the fits in Supplementary Table 2 where we see that the average relative
distance (22) between each fit and the corresponding verification data
is always less than 4 × 10−3 and the average relative difference (23)
has magnitude less than 0.02. Interestingly, we observe that ∆(2),ver

rel is
negative for most fits indicating that the fits are slightly overestimating
the data. The value of 1 − R̃2 is ≲ 0.01 for all our fits, where R̃2 is
the reduced R square and for most cases we observe χ2/DoF ≈ O(1).
The cases for which this quantity is about an order of magnitude lower

stem from the fact that we overestimate our errors bars. Recall that
these are actually the standard deviations of an ensemble of mismatches
(over a grid of certain extrinsic parameters per a given set of intrinsic
parameters) whose average we take to be our individual data points.

As an additional check of the fits, we investigate their behavior in
the extrapolation region corresponding to η < 0.16 (i.e., q < 1/4),
S̄1,2 > 0.8 and M < 75M⊙ ∪M > 150M⊙. Recall that we chose
the particular form of equation (20) for the fitting function to better
control unwanted extrapolation behavior such as blow-ups common to
polynomial fitting. Specifically, the Padé type dependence on η and M
was adopted so that the fits would not produce any nonsensical results
such as log10 M > 0 in regions of the {η,M} space quite distant
from the training (interpolation) regime. On the other hand, since the
relevant 2D cut of the training region covers most of the {x, y} space,
polynomial extrapolation should not cause issues.

We illustrate all of this in Supplementary Figure 6, where we
plot the fit in equation (20) to the log10 of the NRSUR7DQ4-
SEOBNRV5PHM mismatches as a function of M , evaluated at var-
ious extrapolated values of {η, S̄1 = S̄2}. The blue ellipse in the
χ⊥-χeff plane traces the values {η, S̄1,2} = {0.139, 0.85} (q = 1/5)
with other intrinsic parameters chosen accordingly. Similarly, the red
ellipse traces the {η, S̄1,2} = {0.122, 0.9} (q = 1/6) set and the
orange ellipse the edge of the fit training region with {η, S̄1,2} =
{0.16, 0.8} (q = 1/4), which was already shown in Supplementary
Figure 4. The blue, red and orange dots mark the positions of seven
cases along each corresponding ellipse in angular steps of π/6. An in-
set pointing to each dot displays the plot of the fit from M = 50M⊙ to
200M⊙, but at each separate elliptical coordinate, hence the blue, red,
orange colored curves. The shaded gray region in each inset marks the
training range of M ∈ [75, 150]M⊙ for the fits, only actually relevant
to the orange curves as the blue and the red are, by definition, outside
the training region. Thanks to the specific functional form of the fit, the
extrapolation does not exhibit any pathologies. Additionally, we note
that the blue curves mostly lay between the orange and the red ones
as we would expect. We should, however, caution that we are merely
demonstrating that the extrapolation is not pathological. This does not
mean that the fits are expected be faithful to the data in this regime. As
such we recommend their use in the regime q ≥ 1/5, S̄i ≤ 0.85.

As a further test of the fit’s performance in its extrapolation regime,
we performed two more parameter recoveries of an NR simulation,
SXS:BBH:1156, with the injected value for M set to 75M⊙ and
100M⊙, and q = 0.228 placing the former “squarely” outside the
M > 75M⊙, q ≥ 1/4 training regime of our fits. This simulation
also has |S2,⊥|/m2

2 ≈ 0.76 while the primary has negligible planar
spin. We show the results of our method applied to this Bayesian infer-
ence analysis in Supplementary Figure 3 with the 2D posteriors from
the M = 75M⊙ (100M⊙) injections plotted in the top (bottom) pan-
els. We can see that in both analyses, our method recovers the injected
values for m1,m2 and the effective spins very well with the majority
of the samples clustered near the injected values. Such a good recov-
ery of the masses, hence the mass ratio, for the M = 75M⊙ injec-
tion is an indirect testament to the robustness of the fit (20), especially
since slightly more than half the total mass posteriors for this particular
Bayesian analysis happen to be less than 75M⊙.

We conclude this section by briefly returning to two issues: the
first regarding the fact that the fitting variables {η, x, y} used to con-
struct the fit are not fully independent of each other, as each one is a
function of the mass ratio q, and the second regarding the choice of
power spectral density used when calculating the mismatch and hence
the fits. For the first issue, as we explained already, the q-scaled spin
projections yield more faithful fits to the data. As a check, we com-
puted the correlation coefficients Cmn between the above parameters
of the training sets K1(y = χeff), K2(y = χ∥). For K1, we obtain
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Cχ⊥-χeff = 0.09, Cη-χeff = 0.02 and Cη-χ⊥ = −0.315. For K2, we
have Cχ⊥-χ∥ = −0.1, Cη-χ⊥ = 0.03 and Cη-χ∥ = 0.216. For both
fit-training parameter sets, we have either uncorrelated pairings of fit
variables or weakly correlated pairings. The fact that |Cη-χ∥ | of set K2

is less than |Cη-χ⊥ | of set K1 may partly explain why we observe a
slightly better performance from the fits constructed from K2 as indi-
cated in Supplementary Table 2.

For the second issue, as already explained, we use the Advanced
LIGO’s design sensitivity45 when computing the mismatch and this
will subtly change when the profile of the power spectral density is
varied. If this method were to be used during live observing run peri-
ods, where the power spectral density is changing on a day-to-day basis
owing to noise artefacts in the GW strain data, we would suggest using
a harmonic average power spectral density estimated from engineering
run data to calculate mismatches, as is commonly done in GW search
pipelines 68. The fit would then be reconstructed prior to each GW
observing run.
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frequency-domain gravitational waveforms for precessing binaries with a
new twist. arXiv e-prints (2024). 2412.16721.

26. Varma, V. et al. Surrogate models for precessing binary black hole sim-
ulations with unequal masses. Phys. Rev. Research. 1, 033015 (2019).
1905.09300.

27. Varma, V. et al. Surrogate model of hybridized numerical relativity binary
black hole waveforms. Phys. Rev. D99, 064045 (2019). 1812.07865.

28. Owen, B. J. Search templates for gravitational waves from inspiraling bi-
naries: Choice of template spacing. Phys. Rev. D53, 6749–6761 (1996).
gr-qc/9511032.

29. Abbott, R. et al. GWTC-3: Compact Binary Coalescences Observed
by LIGO and Virgo during the Second Part of the Third Observing Run.
Phys. Rev. X 13, 041039 (2023). 2111.03606.

30. Ashton, G. & Khan, S. Multiwaveform inference of gravitational waves.
Phys. Rev. D 101, 064037 (2020). 1910.09138.

31. Jan, A. Z., Yelikar, A. B., Lange, J. & O’Shaughnessy, R. Assessing and
marginalizing over compact binary coalescence waveform systematics
with RIFT. Phys. Rev. D 102, 124069 (2020). 2011.03571.

32. Ashton, G. & Dietrich, T. The use of hypermodels to understand binary
neutron star collisions. Nature Astron. 6, 961–967 (2022). 2111.09214.

33. Hoy, C. Accelerating multimodel Bayesian inference, model selection,
and systematic studies for gravitational wave astronomy. Phys. Rev. D
106, 083003 (2022). 2208.00106.

34. Moore, C. J. & Gair, J. R. Novel Method for Incorporating Model Uncer-
tainties into Gravitational Wave Parameter Estimates. Phys. Rev. Lett.
113, 251101 (2014). 1412.3657.

35. Doctor, Z., Farr, B., Holz, D. E. & Pürrer, M. Statistical Gravitational
Waveform Models: What to Simulate Next? Phys. Rev. D96, 123011
(2017). 1706.05408.

36. Williams, D., Heng, I. S., Gair, J., Clark, J. A. & Khamesra, B. Precess-
ing numerical relativity waveform surrogate model for binary black holes:
A Gaussian process regression approach. Phys. Rev. D 101, 063011
(2020). 1903.09204.

37. Read, J. S. Waveform uncertainty quantification and interpretation for
gravitational-wave astronomy. Class. Quant. Grav. 40, 135002 (2023).
2301.06630.

38. Khan, S. Probabilistic model for the gravitational wave signal from merg-
ing black holes. Phys. Rev. D 109, 104045 (2024). 2403.11534.

39. Jan, A. Marginalizing over the waveform systematics of compact binary
coalescence models using RIFT. Master’s thesis, Rochester Institute of
Technology (2021).

40. Blackman, J. et al. Numerical relativity waveform surrogate model for
generically precessing binary black hole mergers. Phys. Rev. D 96,
024058 (2017). 1705.07089.

41. Apostolatos, T. A., Cutler, C., Sussman, G. J. & Thorne, K. S. Spin
induced orbital precession and its modulation of the gravitational wave
forms from merging binaries. Phys. Rev. D49, 6274–6297 (1994).

42. Fairhurst, S., Green, R., Hoy, C., Hannam, M. & Muir, A. Two-
harmonic approximation for gravitational waveforms from precessing bi-
naries. Phys. Rev. D 102, 024055 (2020). 1908.05707.

43. Hoy, C., Fairhurst, S. & Mandel, I. Rarity of precession and higher-order
multipoles in gravitational waves from merging binary black holes. Phys.
Rev. D 111, 023037 (2025). 2408.03410.

44. Goldberg, J. N., MacFarlane, A. J., Newman, E. T., Rohrlich, F. & Sudar-
shan, E. C. G. Spin s spherical harmonics and edth. J. Math. Phys. 8,
2155 (1967).

45. LIGO Scientific Collaboration and Virgo Collaboration. Noise curves used
for simulations in the update of the observing scenarios paper. DCC
(2022). URL https://dcc.ligo.org/LIGO-T2000012/public.

46. Speagle, J. S. dynesty: a dynamic nested sampling package for esti-
mating bayesian posteriors and evidences. Monthly Notices of the Royal
Astronomical Society 493, 3132?3158 (2020). URL http://dx.doi.
org/10.1093/mnras/staa278.

47. Ashton, G. et al. BILBY: A user-friendly Bayesian inference library
for gravitational-wave astronomy. Astrophys. J. Suppl. 241, 27 (2019).
1811.02042.

48. Pürrer, M., Hannam, M. & Ohme, F. Can we measure individual black-
hole spins from gravitational-wave observations? Phys. Rev. D 93,
084042 (2016). 1512.04955.

49. Ajith, P. et al. Inspiral-merger-ringdown waveforms for black-hole binaries
with non-precessing spins. Phys.Rev.Lett. 106, 241101 (2011). 0909.
2867.

50. Ajith, P. Addressing the spin question in gravitational-wave searches:
Waveform templates for inspiralling compact binaries with nonprecessing
spins. Phys.Rev. D84, 084037 (2011). 1107.1267.

51. Baird, E., Fairhurst, S., Hannam, M. & Murphy, P. Degeneracy between
mass and spin in black-hole-binary waveforms. Phys. Rev. D 87, 024035
(2013). 1211.0546.

52. Toubiana, A. & Gair, J. R. Indistinguishability criterion and estimating the
presence of biases. arXiv e-prints (2024). 2401.06845.

53. Hannam, M. et al. General-relativistic precession in a black-hole binary.
Nature 610, 652–655 (2022). 2112.11300.

54. Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of
massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

55. Islam, T. et al. Analysis of GWTC-3 with fully precessing numerical rela-
tivity surrogate models. arXiv e-prints (2023). 2309.14473.

56. Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods 17, 261–272 (2020).
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Supplementary Material
To demonstrate the improved accuracy of the NR informed ap-

proach compared to Evidence informed and Standard algorithms, we
compared the posterior distributions obtained with each method against
those obtained with NRSUR7DQ4; the leading generic spin numerical
relativity surrogate model. We only considered the SXS:BBH:0926
numerical relativity simulation since it was the main focus of this work.

In Supplementary Figure 1 we see that our NR informed approach
infers a posterior that significantly overlaps with NRSUR7DQ4. For
the inference of the binary masses we see that NR informed has sup-
port for slightly larger primary masses, but the secondary mass remains

comparable with NRSUR7DQ4. Similarly, when considering the in-
ferred component spins, we see that our NR informed approach infers
a comparable marginalized one-dimensional posterior for the effective
perpendicular spin, with slightly more support for larger effective par-
allel spin. Importantly, we see that the Evidence informed and Stan-
dard approaches fail to capture the true value. Specifically, the Evi-
dence informed result has low overlap with the NRSUR7DQ4 result
and the Standard result unnecessarily inflates the uncertainty for the ef-
fective perpendicular spin. Interestingly, while both our NR informed
approach and NRSUR7DQ4 capture the true effective spins of the bi-
nary with their two-dimensional 90% credible intervals, the majority of
posterior support is to lower effective perpendicular and larger effective
parallel spins. In general, we found that our NR informed approach
obtained the most statistically similar one-dimensional posterior prob-
ability distributions to the surrogate out of the methods considered in
this work.

We additionally analysed the SXS:BBH:014315, 40 and
SXS:BBH:115615, 40 numerical relativity simulations produced
by the SXS collaboration with our NR informed approach, as well
as the Evidence informed and Standard algorithms. For the case
of SXS:BBH:0143, we found largely overlapping posteriors be-
tween methods, with most of the one-dimensional marginalized
90% confidence intervals containing the true value. For the case of
SXS:BBH:1156, we found that our method outperforms the Standard
and Evidence informed analyses despite being in the extrapolation
regime of our technique. Here, we provide further details.

In Supplementary Figure 2 we show the results obtained with
our method, NR informed, vs. the Evidence informed and Standard
analyses for the parameter recovery of the SXS:BBH:0143 numer-
ical relativity simulation. We see that in general, all methods give
largely overlapping posteriors. When inspecting the one-dimensional
marginalized posterior distributions, provided in the associated data
release, the biggest disagreement is seen in the inferred secondary
spin magnitude of the binary: our method prefers a rapidly spin-
ning black hole, while the other methods are largely uninformative
with a spin ∼ 0.25. The reason is because our method primarily
chooses the SEOBNRV5PHM model, while the Evidence informed
result is primarily using IMRPHENOMTPHM. In this region of the
parameter space we find that SEOBNRV5PHM is the most accurate
model, hence why it is favoured in our method: we find that SEOB-
NRV5PHM is ∼ 1.4× more accurate than IMRPHENOMTPHM and
∼ 1.8× more accurate than IMRPHENOMXPHM. Given that the indi-
vidual spin components are difficult to measure at present-day detector
sensitivities48, it is not surprising that the biggest difference between
methods is seen for the secondary spin. Since the secondary spin con-
tribution is also suppressed for asymmetric mass ratio binaries, it is
possible that the mismatch interpolant is missing information, leading
to poorly chosen models in this region of the parameter space. A mis-
match interpolant that is a function of the individual spin components
may solve this problem, but it would require a significantly larger mis-
match dataset. We leave this to future work. It could also be indepen-
dent of the interpolant: the interpolant could be accurately describing
the mismatch, but SEOBNRV5PHM may not be accurate enough to
avoid parameter biases, despite being the most accurate model of those
considered in this region of the parameter space.

In Supplementary Figure 3 we compare results for the
SXS:BBH:1156 numerical relativity simulation. Although all meth-
ods infer the injected value within 90% credible interval, we see that
our method outperforms the others, especially seen for the high total
mass (M = 100M⊙) injection: only our method contains the in-
jected spin within the 40% confidence interval. When inspecting the
one-dimensional marginalized posterior distributions, provided in the
associated data release, we consistently see a more accurate inference
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Supplementary Figure 1 | Two-dimensional posterior probabilities obtained in our analysis of the SXS:BBH:0926 numerical relativity simulation. The left panel
shows the measurement of the primary and secondary mass of the binary, and the right panel shows the inferred effective parallel and perpendicular spin components
(as defined in equation 11, 12). The contours represent 90% credible intervals and the grey cross hairs indicate the true value. The Evidence-informed and Standard
analyses are set to a lighter color than in other Figures to highlight the comparison between NR informed and NRSUR7DQ4.

Supplementary Figure 2 | Two-dimensional posterior probabilities obtained in our analysis of the SXS:BBH:0143 numerical relativity simulation. The left panel
shows the measurement of the primary and secondary mass of the binary, and the right panel shows the inferred effective parallel and perpendicular spin components
(as defined in equation 11, 12). The contours represent 90% credible intervals and the black cross hairs indicate the true value.

of the binary parameters with our method. As with SXS:BBH:0143,
we see the worst performance for the inferred spin of the smaller black
hole in the binary. Although the injected value is contained within the
90% confidence interval, the Evidence informed and Standard anal-
yses capture the true value more accurately. For the low total mass
(M = 75M⊙) injection, we observe a better performance by all meth-
ods. We argue that this is because the GW produced from a lower

mass system spends more time within the sensitive region of the GW
detectors, meaning that all GW models better capture the true source
parameters of the binary, as long as the primary is not strongly precess-
ing.
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Supplementary Figure 3 | Supplementary Figure 3: Two-dimensional posterior probabilities obtained in our analysis of the SXS:BBH:1156 numerical relativity
simulation. The left column shows the measurement of the primary and secondary mass of the binary, and the right column shows the inferred effective parallel and
perpendicular spin components (as defined in equations (11, 12)). The top row shows a low total mass injection of M = 75M⊙ and the bottom row shows a high
total mass injection of M = 100M⊙. The contours represent 90% credible intervals and the black cross hairs indicate the true value.

Primary spin, χ1/m1 0.45 mbits
Secondary spin, χ2/m2 0.51 mbits
Mass ratio, q = m2/m1 0.89 mbits
Phase, ϕ 2.1 mbits
Polarization, Ψ 0.82 mbits
Right ascension α 0.99 mbits
Declination δ 1.3 mbits

Supplementary Table 1 | Comparison of Jensen-Shannon divergences when using the true mismatch. Jensen-Shannon divergences between posteriors obtained when
using true mismatch and the mismatch interpolant for an aligned-spin injection and recovery. Column one lists the parameters for which we display the Jensen-Shannon
divergences of the posteriors in column two. These Jensen-Shannon divergences are reported in the base 2 logarithm and reported in millibits (mbits).
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Supplementary Figure 4 | Construction of the two dimensional elliptical and rectangular grids. We show the construction of the two dimensional elliptical and
rectangular grids for the {x, y} = {Effective perpendicular spin, χ⊥, Effective spin, χeff} pairing. The blue dots in the left panel represent the ∼ 50000 points
obtained from a regularly spaced grid in the intrinsic parameter space {q, S̄1, S̄2, θ1, θ2,∆ϕ}. The orange curve is the outermost prolate ellipse whose axes
are determined via equation (13). The red curves are concentric ellipses retaining the same aspect ratio as the orange one. These are parametrized by r, s in
equations (16a, 16b). The red and orange dots situate the elements of the 10 × 25 elliptical grid where the azimuthal coordinate is sampled in steps of π/24 from
−π/2 to π/2. Though this grid size is somewhat arbitrary, it is limited by computational resources such as the runtimes to generate the mismatches (see Sec. 4.5)
and to construct the fits. The middle panel shows the same elliptical grid of the left panel overlaid, in faint blue, with the actual grid points that we determine by
finding the roots of equations (17a, 17b). On average, each blue dot is offset by 10−12 from the nearest, exactly positioned red dot. Finally, in the right panel,
we show the corresponding rectangular grid. The red dots are exact, hence simply given by the transformed rectangular coordinates X = 0.1, 0.2, . . . , 1, Y =
−π/2,−π/2 + π/24, . . . , π/2 and the blue dots are mapped from the blue dots of the middle panel via equations (19a, 19b).

Model y {ni, nj , nk} # Params ∆
(1),ver
rel ∆

(2),ver
rel 1− R̃2 χ2/DoF

SEOBNRV5PHM χeff {4, 3, 2} 220 0.0032 −0.013 0.0049 0.050
SEOBNRV5PHM χ∥ {5, 3, 2} 264 0.0026 0.0041 0.0052 1.3
IMRPHENOMTPHM χeff {5, 3, 2} 264 0.0039 −0.012 0.012 0.99
IMRPHENOMTPHM χ∥ {4, 3, 2} 220 0.0039 −0.0090 0.0077 0.076
IMRPHENOMXPHM-ST χeff {4, 3, 2} 220 0.0038 −0.019 0.010 1.2
IMRPHENOMXPHM-ST χ∥ {4, 3, 2} 220 0.0032 −0.0021 0.0078 0.74

Supplementary Table 2 | Metrics for the mismatch fitting function. Relevant metrics for the fits to the log10 of the mismatches between NRSUR7DQ4 and the
models listed in the first column. The fitting function is given in equation (20) with the transformation from the {X,Y } coordinates to the elliptical {x, y} done via
equations (19a, 19b). Column two lists our choice for y representing whether we used χeff or χ∥ when constructing the elliptical fit training grid, e.g., shown for χeff in
Supplementary Figure 4. Column three lists the upper limits of the triple summation used in equation (20) which then determines the total number of fitting parameters
cijkl displayed in column four. Columns five and six present the values for the two relative difference measures of equations (22, 23) applied to the verification sets.
Finally, column seven lists 1− R̃2, where R̃2 is the reduced R square and column eight the chi square over the degrees of freedom. Overall, we see that the fits based
on the y = χ∥ grid are slightly more faithful to the verification data and R̃2 ≳ 0.99 for all fits.
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Supplementary Figure 5 | Fit unfaithfulness over the verification set. We plot the absolute value of the relative difference, i.e., ∆k
rel [see equation (21)], between

the data for the log10 of the NRSUR7DQ4-SEOBNRV5PHM mismatches and the fit (20) to it with equations (19a, 19b) substituted. The panels from left to right
correspond to total masses of 75M⊙, 112.5M⊙, 150M⊙. The effective perpendicular, χ⊥, and effective parallel spins, χ∥, are defined in equations (11, 12),
respectively. The white dots mark the verification set data points while the black dots mark the training set points. The color scale is logarithmic. Overall, we observe
an absolute relative difference of less than 0.05 for most of the parameter space.
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Supplementary Figure 6 | Extrapolation of the fits. We show the performance
of the fit to the log10 of the NRSUR7DQ4-SEOBNRV5PHM mismatches ex-
trapolated to {q, S̄1,2} = {1/5, 0.85} (blue) and {1/6, 0.9} (red) as well as
the fit at the edge of its training region with {q, S̄1,2} = {1/4, 0.8} (orange).
The red, blue, orange dots accordingly mark the positions of seven cases along
each corresponding ellipse with the above {q, S̄1,2} values and the remaining
intrinsic parameters chosen such that the dots trace each ellipse in angular steps of
π/6. The smaller orange ellipse was shown previously in Supplementary Figure
4. Pointing to each Φ = constant dot is an inset showing the plot of the fit from
M = 50M⊙ to 200M⊙, but at each separate elliptical coordinate. The shaded
gray region in each inset has been placed to remind the reader our training range
of M ∈ [75, 150]M⊙. From the insets, we see that the extrapolation does not
appear to be pathological and the blue curves mostly lay between the red and or-
ange ones as expected.
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