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Incorporation of model accuracy in 
gravitational wave Bayesian inference
 

Charlie Hoy    1  , Sarp Akçay    2, Jake Mac Uilliam    2 & 
Jonathan E. Thompson    3,4

Inferring the properties of colliding black holes from gravitational wave 
observations is subject to systematic errors arising from modelling 
uncertainties. Although the accuracy of each model can be calculated 
through comparison to theoretical expectations from general relativity, 
Bayesian analyses are yet to incorporate this information. As such, a 
mixture model is typically used where results obtained with different 
gravitational wave models are combined with either equal weight or based 
on their relative Bayesian evidence. In this work we present a new method 
for incorporating the accuracy of several models into gravitational wave 
Bayesian analyses. By analysing simulated gravitational wave signals in zero 
noise, we show that our technique uses 30% less computational resources 
and more faithfully recovers the true parameters than existing techniques. 
We further apply our method to a real gravitational wave signal and, when 
assuming the binary black hole hypothesis, demonstrated that the source of 
GW191109_010717 has unequal component masses, with a 69% probability 
for the primary being above the maximum black hole mass from stellar 
collapse. We envisage that this method will become an essential tool for 
ground-based gravitational wave astronomy.

Our ability to infer the properties of colliding black holes from an 
observed gravitational wave (GW) signal depends on our chosen model1. 
Models that poorly describe general relativity will not only yield biased 
results for individual sources2–7 but also incorrect inferences for the 
properties of the underlying astrophysical population, for example, the 
mass and spin distributions of black holes in the Universe8–10. Unbiased 
results can be obtained only with models that are perfect descriptions 
of general relativity (assuming a known understanding of the noise in 
the GW detectors11–13).

Unfortunately, directly computing GW signals from general rela-
tivity is a computationally expensive task; numerical relativity simu-
lations, for which Einstein’s equations of general relativity are solved 
on high-performance computing clusters, require millions of central 
processing unit (CPU) hours to perform14. For this reason, only sev-
eral thousand simulations are currently available14–21. As a result, the 

latest GW models rely on analytical or semi-analytical prescriptions 
that are calibrated to the numerical relativity simulations2,3,22–26 or are 
based on surrogate modelling techniques27,28. However, each modelling 
approach will incur some degree of approximation errors.

The accuracy of a GW model is typically measured by the mis-
match29 between the model and a fiducial waveform, often a numerical 
relativity simulation. The mismatch varies between 0, signifying that 
the model and the true waveform are identical (up to an overall ampli-
tude rescaling), and 1, meaning that the two are completely orthogonal. 
It is well known that certain models are more faithful to general relativ-
ity than others in different regions of the parameter space5.

The standard approach to account for modelling errors when 
inferring the properties of binary black holes is to construct a mix-
ture model in which results from numerous analyses are combined. A  
Bayesian analysis is performed for each GW model and the results are 
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binary parameters5,7. Such a system with notable spin-induced orbital 
precession has been predicted to be observed once in every 50 GW 
observations made by the LIGO, Virgo and KAGRA GW observatories 
based on current black hole population estimates44.

We used three of the most accurate cutting-edge models currently 
available for describing the theoretical GW signals produced by col-
liding black holes: IMRPhenomXPHM22 (with the updated precession 
formulation26), IMRPhenomTPHM23 and SEOBNRv5PHM2. All models 
include the general relativistic phenomenon of spin-induced orbital 
precession42 and higher-order multipole moments45. We analysed 8 s of 
data and considered frequencies only in [20, 2,048] Hz. We generated 
the numerical relativity simulation from ~10 Hz to ensure that most of 
the higher multipole content was generated before our analysis win-
dow. Our analysis was restricted to a two-detector network comprising 
LIGOHanford and LIGOLivingston11, and we assumed a theoretical 
power spectral density for the design sensitivity of Advanced LIGO46. 
We used the most agnostic priors available for all parameters, which 
are identical to those used in all detections made by the LIGO–Virgo–
KAGRA Collaboration30: flat in the component masses, spin magnitudes 
and cosine of the spin tilt angles. We performed Bayesian inference 
with the DYNESTY nested sampling software47 using Bilby (ref. 48), as 
has been done in all LIGO–Virgo–KAGRA analyses since the third GW 
catalogue30.

Figure 1 compares the results obtained with our method to 
those from two widely adopted techniques. The contours labelled 
NR informed (informed by numerical relativity) use the method pre-
sented here, evidence informed combines separate inference analyses 
obtained with different GW models according to their relative Bayes-
ian evidence31 and standard combines the results of a separate infer-
ence analysis with equal weights. Standard is the method currently 
adopted by the LIGO–Virgo–KAGRA Collaboration30, as it is probably 
the most agnostic. When considering the inferred primary and second-
ary masses of the binary, all three techniques captured the true value 
within the two-dimensional marginalized 90% credible interval. Both 
the NR-informed and standard methods more accurately inferred 
the true values of the binary, with the injected values lying within 
the 50% credible interval. Given that the standard method equally 
combines analyses from the individual GW models, the uncertainty 
was inflated in comparison to the method presented here and to the 
evidence-informed result.

either mixed together with equal weights30 or according to their rela-
tive Bayesian evidence31 or by averaging the likelihood32. An alternative 
technique involves sampling over a set of GW models in a single joint 
Bayesian analysis33,34. Although widely used, these methods do not 
account for the known accuracy of the GW model.

Other approaches have suggested quantifying the uncertainty in 
a GW model and marginalizing over this error in Bayesian analyses35–39. 
Either these methods have not been demonstrated in practice or they 
are suitable only for a single model. Preliminary work has investigated 
incorporating model accuracy into likelihood averaging techniques 
for simplified models40. However, this approach incurs a comparable 
computational cost to evidence mixing31 and is difficult to interface 
with standard Bayesian inference techniques.

In this work we present an approach for incorporating the accu-
racy of several cutting-edge models into a single GW Bayesian analysis 
while also reducing the computational cost (Methods). This technique 
accounts for modelling errors by prioritizing the most accurate GW 
model in each region of parameter space, thereby mitigating against 
biased results from using models that are unfaithful to general relativ-
ity. For GW signals likely observed by the LIGO11–Virgo12–KAGRA13 GW 
detectors, we demonstrate that current techniques will more likely 
inflate uncertainties and have the potential to produce biased param-
eter estimates. On the other hand, we show that the method presented 
here either outperforms current techniques or, in the worst case, gives 
comparable results.

GW Bayesian inference
We first applied our approach to analyse an example of a theoretical GW 
signal expected from general relativity, specifically, the SXS:BBH:0926 
numerical relativity simulation16,41 produced by the Simulating eXtreme 
Spacetimes Collaboration (https://www.black-holes.org). We assumed 
a total mass of 100 M⊙, and we injected this signal into zero noise at a 
signal-to-noise ratio of 40. The SXS:BBH:0926 simulation has mass 
ratio 1:2 and large dimensionless spin magnitudes perpendicular to the 
orbital angular momentum (within the orbital plane of the binary) for 
both black holes of ~0.8 out of a maximum possible value of 1. For this 
system, the general relativistic phenomenon of spin-induced orbital 
precession42 is substantial and contributes a signal-to-noise ratio43 of 
~9 to the total power of the signal. This simulation was chosen because 
most GW models obtain biased results and disagree on the inferred 
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Fig. 1 | Two-dimensional posterior probabilities obtained in our analysis of 
the SXS:BBH:0926 numerical relativity simulation. Left, measurement of the 
primary and secondary masses of the binary. Right, inferred effective parallel 
and perpendicular spin components (as defined in Methods; see equations (11) 

and (12)). An effective perpendicular spin of 0 means that the spin vector lies 
perpendicular to the plane of the binary. The contours represent 90% credible 
intervals, and the black cross hairs indicate the true values.
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We now turn our attention to the inferred spin of the binary. 
Because the individual spin components are difficult to measure for 
binary black holes at present-day detector sensitivities49, we consid-
ered the measurement of effective spin parameters that describe the 
dominant spin effects of the observed GW signal50,51. Figure 1 shows 
the measurement of the effective spin parallel and perpendicular to 
the orbital angular momentum, as defined in Methods. We see sub-
stantial differences between the obtained posterior distributions: the 
NR-informed approach introduced in this work is the least biased as it 
encompasses the true value within the two-dimensional marginalized 
90% credible interval. Although the evidence-informed result has been 
described as the optimal method in previous work31, it produced an 
inaccurate result for this simulated signal. This is because IMRPhe-
nomTPHM has the largest Bayesian evidence despite not being the 
most accurate model; it has been shown previously that less accurate 
models can give large Bayesian evidences due to mismodelling34. Our 
analysis, on the other hand, predominantly uses SEOBNRv5PHM, spe-
cifically 90% of the time, whereas IMRPhenomTPHM is used 8% of the 
time and IMRPhenomXPHM 2% of the time. This demonstrates one 
of the limitations of our method: although we preferentially use the 
most accurate model in each region of the parameter space, there is 
no guarantee that this model is accurate enough to avoid biases in the 
inferred parameter estimates52,53. However, we highlight that it is the 
most accurate method of those currently used, and it can be evolved 
to include more accurate models when they are developed.

Figure 2 presents the ratio of mismatches obtained with the dif-
ferent GW models used in this work. SEOBNRv5PHM has the smallest 
mismatch in the region of parameter space containing the simulation 
parameters and is, therefore, the most faithful to the general relativ-
ity results in this region. Specifically, it yields mismatches ~3 and ~1.8 
times smaller than IMRPhenomXPHM and IMRPhenomTPHM do, 
respectively.

Because the NR-informed approach chooses the GW model based 
on its accuracy to numerical relativity in each region of the parameter 
space rather than combining finalized results from each GW model 
individually, there is a notable decrease in the computational cost. Our 
analysis uses 30% fewer computational resources than the standard and 
evidence-informed analyses during sampling. The analysis completed 
in 230 CPU days, compared with 35 CPU days, 118 CPU days and 181 CPU 
days for the individual IMRPhenomXPHM, IMRPhenomTPHM and 
SEOBNRv5PHM analyses, respectively. In the worst-case scenario, we 

expect our method to use the same computational resources as the 
standard and evidence-informed analyses.

Our technique is free to use any combination of GW models. When 
SEOBNRv5PHM was removed from this analysis, we found consistent 
results between our method and the evidence-informed result, with 
overlapping two-dimensional marginalized 90% confidence intervals. 
The reason is because IMRPhenomTPHM now has the largest Bayesian 
evidence and is the more accurate of the two remaining GW models 
considered in the region of the parameter space.

A single analysis with the model that is, on average, the most accu-
rate in the parameter space of interest can be performed54. However, 
the issue with this technique is that the mismatch varies considerably 
across different regions of the parameter space, particularly for the 
spins, which are often not well measured. For instance, when averaging 
across the parameter space consistent with SXS:BBH:0926, SEOBN-
Rv5PHM is the most accurate model. However, for effective parallel 
spins >0 and perpendicular spins <0.05, we found that IMRPhenomT-
PHM is more accurate than SEOBNRv5PHM and that IMRPhenomXPHM 
is of comparable accuracy to SEOBNRv5PHM. By simply averaging the 
mismatch across the parameter space, we neglected this information, 
resulting in the use of a less accurate model in certain regions of the 
parameter space. On the other hand, the method presented in this 
work to incorporate the accuracy of several models into a single GW 
Bayesian analysis fully uses this information.

Numerical relativity surrogate techniques provide accurate mod-
els for describing GWs produced by colliding black holes27,28. We did 
not sample over surrogate models in this work because they are used 
as a proxy for numerical relativity simulations when assessing model 
accuracy (Methods). We quantified the efficacy of our approach by 
comparing its results to those obtained with surrogate models. For the 
same numerical relativity simulation we found that NRSur7dq4—the 
leading generic-spin numerical relativity surrogate model27—more 
accurately captures the true parameters of the binary, as expected 
(Supplementary Fig. 1). Our NR-informed approach offers the most sta-
tistically similar one-dimensional posterior probability distributions 
to the surrogate posteriors out of the methods considered in this work.

Contrary to standing belief, NRSur7dq4 is not guaranteed to 
be the most accurate model, even within its calibration region. For 
instance, when comparing against numerical relativity simulations 
that were not used to validate NRSur7dq4, we found that SEOBN-
Rv5PHM, IMRPhenomTPHM and IMRPhenomXPHM can more faithfully 
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Fig. 2 | Ratio of mismatches to numerical relativity simulations. Contour 
plots showing the ratio of mismatches to numerical relativity simulations for 
different effective parallel and perpendicular spin components when averaging 
over different mass configurations. Left, comparison of IMRPhenomXPHM and 

SEOBNRv5PHM. Right, comparison of IMRPhenomTPHM and SEOBNRv5PHM. 
In orange we show samples obtained from our analysis of the SXS:BBH:0926 
numerical relativity simulation. In both cases, a ratio of mismatches greater than 
unity implies that SEOBNRv5PHM is more faithful to general relativity.
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describe numerical relativity than NRSur7dq4. Specifically, based on 
mismatches against the CF_52 simulation14 (a single-spin, mass ratio 
1:4 simulation with primary dimensionless spin magnitude 0.6 and 
total masses 75, 80 and 85 M⊙), we estimated that according to our 
NR-informed approach, SEOBNRv5PHM would be ~140 times more 
likely to be used than NRSur7dq4 in this region of the parameter space 
due to its improved accuracy. Although corner cases such as this exist, 
NRSur7dq4 is still suitable as a proxy for numerical relativity in this 
work because we are performing Bayesian inference on numerical 
relativity simulations where the surrogate is the most accurate model27. 
We emphasize that when more numerical relativity simulations become 
available, the surrogate will no longer be needed as a proxy to assess 
model accuracy, and we will be able to incorporate the faithfulness of 
all models, including the surrogate, within our Bayesian framework.

Although not presented in this section (Supplementary 
Figs. 2 and 3), we also analysed the SXS:BBH:0143 numerical relativity 
simulation16,41 and the SXS:BBH:1156 numerical relativity simulation16,41 
produced by the Simulating eXtreme Spacetimes Collaboration. 
SXS:BBH:0143 was chosen because it resides in a region of the param-
eter space where we expect our method to give comparable results 
to the standard and evidence-informed analyses. SXS:BBH:1156 was 
chosen because it has largely asymmetric mass components and lies 
in the extrapolation regime of our technique (see Methods for details). 
We found for SXS:BBH:0143 largely overlapping posteriors between all 
three methods, with most of the one-dimensional marginalized 90% 
confidence intervals containing the true value. Our analysis of this 
case used SEOBNRv5PHM 80% of the time, IMRPhenomTPHM 15% of 
the time and IMRPhenomXPHM 5% of the time. This represents the 
worst-case scenario: by construction our method should at worst give 
the same results as other methods. For SXS:BBH:1156, our method out-
performed the standard and evidence-informed analyses despite partly 
being in the extrapolation regime of our technique: we more accurately 
captured the true parameters of the binary. Like SXS:BBH:0926, the 
evidence-informed analysis preferred IMRPhenomTPHM owing to 

the larger Bayesian evidence, whereas our analysis preferred SEOBN-
Rv5PHM, as it is the more accurate model in this region of the parameter 
space. Our analysis used SEOBNRv5PHM for 78% of the time, IMRPhe-
nomTPHM for 9% and IMRPhenomXPHM for 13%.

Finally, we applied our technique to a real GW signal. 
GW191109_010717 was observed on 9 November 201930 and has sparked 
interest within the community because its source probably has large 
component masses that lie within the upper mass gap. Theories indi-
cate that the maximum black hole mass from stellar collapse is ~65 M⊙ 
(ref. 55). As shown in Fig. 3, by incorporating model accuracy in the 
GW Bayesian inference, we more tightly constrained the total mass of 
GW191109_010717 to 100 M⊙ < M < 124 M⊙ and demonstrated that the 
source of GW191109_010717 has conclusively unequal component 
masses (assuming the binary black hole hypothesis). Our reanalysis 
shows that when using consistent priors and sampler settings as the 
LIGO–Virgo–KAGRA Collaboration, there is a 69% probability that the 
primary component mass of GW191109_010717 lies within the upper 
mass gap, consistent with previous work where GW191109_010717 was 
reanalysed with NRSur7dq4 (ref. 56). Compared to the 51% probability 
from the LIGO–Virgo–KAGRA analysis30, we have appreciably increased 
the probability that GW191109_010717 was produced from a hierarchi-
cal formation mechanism in which the primary component mass was 
formed from a previous black hole merger. Other one-dimensional 
posterior probability distributions remain comparable among the 
different methods considered in this work.

Conclusions
In this work we present a method for incorporating model uncertainty 
into GW Bayesian inference. We applied this method to theoretical GW 
signals expected from general relativity and show that (1) it marginalizes 
over model uncertainty by prioritizing the most accurate model in each 
region of the parameter space and that (2) it outperforms widely used 
techniques that use Bayesian model averaging. The method presented 
in this work is independent of the models chosen and can, in principle, 
be used with any combination. Although the approach preferentially 
uses the most accurate model in each region of the parameter space, 
there is no guarantee that that model is accurate enough to avoid 
biases in the parameter estimates. However, GW models are continu-
ally being developed and will probably improve in accuracy across 
the parameter space. Once available, these more accurate models can 
be incorporated into this method. Similarly, when more numerical 
relativity simulations are produced, the accuracy of this method will 
increase and more models can be included. The method presented here 
is applicable to ground-based GW parameter estimation analyses, and 
we highly encourage its use.

Methods
Estimating waveform accuracy
As discussed in ‘Model systematics in gravitational wave astronomy’, 
the accuracy of a theoretical GW model is often assessed by comparing 
the signals produced by the model against numerical relativity simula-
tions. We introduce a noise-weighted inner product between the model 
representation (hm) of a signal and the signal itself (hs)29:

⟨hm ∣ hs⟩ = 4ℜ∫
fmax

fmin

̃h
∗
m ̃hs

Sn( f )
df, (1)

where a tilde denotes a Fourier transform, an asterisk denotes complex 
conjugation and Sn(f) is the noise power spectral density, which in this 
work is the design sensitivity of Advanced LIGO46. The mismatch29 
between two signals is computed by optimizing the normalized inner 
product over a set of (intrinsic or extrinsic) model parameters λm:

ℳ = 1 −max
λλλm

⟨hm ∣ hs⟩
√⟨hm ∣ hm⟩⟨hs ∣ hs⟩

. (2)
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Fig. 3 | Two-dimensional posterior probabilities obtained in our analysis of 
GW191109_010717. Measured total mass of the binary and the mass ratio, defined 
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The intrinsic parameter space for a generic quasi-circular compact 
binary system comprises two masses, m1,2, and two spin vectors, S1,2, add-
ing up to eight degrees of freedom (d.f.). Additionally, a quasi-circular 
binary comes with seven more extrinsic parameters: the right ascension, 
declination and the luminosity distance {α, δ, dL} to the centre of mass 
of the binary; the inclination of the orbit and its relative polarization 
{ι, ψ}; and the overall constant time and phase shift {tc, φc} of the GW.

For binaries where the spins of the compact bodies are aligned 
with the orbital angular momentum of the system, several of the binary 
parameters become constant in time and the intrinsic and extrinsic 
parameters decouple, thus reducing the dimensionality of the model 
space to four d.f.: {m1, m2, S1z, S2z}, where the individual components 
of the spin vectors are specified at any fixed frequency. To compute 
the matches for the aligned-spin configurations that follow, we held 
all extrinsic parameters fixed and optimized the match over the set of 
model parameters λm = {tc, φc}. We maximized over tc with an inverse 
fast Fourier transform and over ϕc using the Nelder–Mead optimization 
algorithm in the minimize function in SciPy57.

For binary systems in which the spins contain non-zero compo-
nents orthogonal to the orbital angular momentum, the intrinsic and 
extrinsic parameters couple and evolve in time. Our aim was to isolate 
the intrinsic parameter space, so the mismatch to which we intended to 
fit had somehow to be independent of the extrinsic parameters. For this 
purpose, we first mapped {α, δ, ψ} into a single parameter known as the 
effective polarizability κ (ref. 58). We then prepared an evenly spaced 
signal grid over the {κ, ϕc, ι}s ∈ [0,π/2] ⊗ [0, 2π) ⊗ [0, π] space with 
7 × 6 × 7 = 294 elements. At each point in this signal grid, we computed 
the sky-optimized mismatch5,58,59 between the signal and the model 
template from equation (2), where the parameter set we optimized 
over is λm = {tc, φc, κ, φspin}. Here φspin represents the freedom to rotate 
the in-plane spin (azimuthal) angles ϕ1 and ϕ2 of S1 and S2 by a constant 
amount. κ was optimized analytically, and φc and φspin were optimized 
numerically using dual annealing algorithms3,22,59. Note that there is no 
universally agreed grid for {κ, φc}26,59,60 nor for ι (refs. 3,61). Our specific 
choice for the {κ, φc} grid was based on recent work5. Our ι grid spac-
ing is also consistent with results in the literature61 but extended to π 
because the ‘up/down’ symmetry of the GW multipoles with respect to 
the orbital plane is broken due to precession62–67.

With these optimizations, we arrived at the maximum possible 
match between the template and the signal at a given point {κ, ϕc, ι}s 
in the signal grid. We repeated this procedure at every point of the 
294-element grid and then computed the mean of this set as our final 
result for the mismatch:

ℳav ∶=
1

294

294
∑
s=1

ℳ(κs,φc,s, ιs). (3)

This was done to marginalize over any dependence of the mismatch 
on the sky position and inclination, thus obtaining values that depend 
exclusively on the intrinsic parameters of the source. We additionally 
retained the standard deviation σ of the 294-mismatch set and used 
this as our error bar when needed. Note that our mean match, 1 −ℳav, 
is a discretely averaged version of the sky-and-polarization-averaged 
faithfulness given by equation 35 of ref. 2. For the remainder of this 
article, we drop the subscript ‘av’ from ℳ.

Multi-model Bayesian inference
The parameters of a binary are inferred from a GW signal through 
Bayesian inference. Here, the model-dependent posterior distribution 
for parameters λλλ = {λ1, λ2,… , λj} is obtained through Bayes’ theorem:

p(λλλ ∣ d,𝔐𝔐i) =
Π(λλλ ∣ 𝔐𝔐i) ℒ(d ∣ λλλ,𝔐𝔐i)

𝒵𝒵 , (4)

where Π(λλλ ∣ 𝔐𝔐i) is the probability of the parameters λ given the model 
𝔐𝔐i, otherwise known as the prior; ℒ(d ∣ λλλ,𝔐𝔐i)  is the probability of  

observing the data given the parameters λλλ and model 𝔐𝔐i, otherwise 
known as the likelihood; and 𝒵𝒵 is the probability of observing the data 
given the model, 𝒵𝒵 = ∫Π(λλλ ∣ 𝔐𝔐i) ℒ(d ∣ λλλ,𝔐𝔐i)d λλλ, otherwise known as the 
evidence. It is often not possible to trivially evaluate the 
model-dependent posterior distribution; the challenge is evaluating 
the evidence because that involves computing the likelihood times the 
prior for all points in the parameter space. Thankfully, nested sampling 
was developed to estimate the evidence through stochastic sampling 
and return the model-dependent posterior distribution as a 
by-product68. Here, a set of live points are randomly drawn from the 
prior, and the point with the lowest likelihood is stored and replaced 
with another point randomly drawn from the likelihood-constrained 
prior; the new point is randomly drawn from the prior provided that 
the likelihood is larger than the point that it is replacing. This iterative 
process continues until the highest likelihood region(s) is identified.

When there is an ensemble of models, Bayesian model averaging 
can be used to marginalize over the model uncertainty:

p(λλλ ∣ d) =
N
∑
i=1

p(λλλ ∣ d,𝔐𝔐i)p(𝔐𝔐i ∣ d)

=
N
∑
i=1

[𝒵𝒵i Π(𝔐𝔐i)p(λλλ ∣ d,𝔐𝔐i)
∑N

j=1 𝒵𝒵j Π(𝔐𝔐j)
] ,

(5)

where p(𝔐𝔐i ∣ d) is the probability of the model 𝔐𝔐i given the data, Π(𝔐𝔐i) 
is the discrete prior probability for the choice of model and N is the 
number of models in the ensemble. If there are uniform priors for the 
model, Π(𝔐𝔐i) = 1/N , Bayesian model averaging simply averages the 
model-dependent posterior distributions, weighted by the 
evidence.

An alternative to marginalizing over model uncertainty is to simul-
taneously infer the model and model properties in a single joint analy-
sis34. Here, the parameter set λλλ is expanded to include the model m: 
̃λλλ = {λ1, λ2,… , λj,m}, and a discrete set of models can be sampled during 

standard Bayesian inference analyses: for each step in, for example, a 
nested sampling algorithm, a (j + 1)-dimensional vector of model 
parameters is drawn from the prior, including an integer for the model, 
m. The integer m is mapped to a GW model, and the likelihood is evalu-
ated by passing the remaining model parameters and the selected 
model to the standard GW likelihood1. It has been demonstrated that 
such a joint analysis will be at most N times faster to compute compared 
to performing Bayesian model averaging34.

Defining a discrete prior probability for a model in GW astronomy 
is challenging because the accuracy of each model varies across the 
parameter space λλλ (ref. 5). This makes it difficult to perform Bayesian 
model averaging; a uniform prior probability is often assumed for the 
choice of model31,32 or, in some cases, the model accuracy is averaged 
over the parameter space of interest34. However, a parameter- 
space-dependent prior for the choice of model may solve this problem34. 
For instance, a j-dimensional vector of model parameters can be drawn 
from the prior and Π(𝔐𝔐i ∣ λλλ) can be evaluated for all models, that is, the 
prior probability of the model given the parameter set λλλ. The most 
probable model can then be determined, and the GW likelihood subse-
quently evaluated. Although other priors have been suggested34,40, we 
used the following model prior conditional on the parameters λλλ:

Π(𝔐𝔐i ∣ λλλ) =
ℳi(λλλ)

−4

∑jℳj(λλλ)
−4 , (6)

where ℳ(λλλ) is the mismatch between the model 𝔐𝔐i and a numerical 
relativity simulation with parameters λλλ. Equation (6) implies that the 
most accurate GW model will more probably be used to evaluate the 
likelihood in each region of the parameter space.
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Although we tested several mismatch-dependent priors, equation (6)  
was chosen for this work because it accentuates small differences in 
the mismatch between models and because it was found to perform 
optimally. However, because the mismatch is a function of the power 
spectral density, it will subtly change when the profile of the power 
spectral density is varied, for example, due to an improvement in the 
sensitivity of GW detectors as a result of commissioning periods or 
because of small daily variations due to noise artefacts. As a result, 
it is possible that the relative model probabilities in equation (6) will 
vary for different power spectral density realizations. Note that this 
is a common problem in GW astronomy with, for example, search 
pipelines similarly using a single representative power spectral density 
when constructing template banks69. We leave a more detailed analysis 
investigating the choice and stability of this distribution to future work.

Constructing a match interpolant
Mismatch computations are fast, taking O(ms) per evaluation, for 
simplified models of the GW signal, such as those for aligned-spin 
configurations with only dominant quadrupolar emission. With 
increased model complexity, the computation can take an appreciably 
longer time to evaluate, and producing the mismatch ℳ(λλλ) will be a 
limiting cost in a Bayesian analysis because the likelihood is evaluated 
O(108) times during a typical nested sampling analysis. For this reason, 
we constructed an interpolant for the mismatch across the parameter 
space, ℳ(λλλ), based on a discrete set of K mismatches for each of the GW 
models used in this analysis.

Owing to computational limitations, we did not use numerical rela-
tivity simulations for all possible regions of the compact binary param-
eter space. For the aligned-spin interpolant construction, therefore, we 
evaluated mismatches using the numerical relativity hybrid surrogate 
model NRHybSur3dq8 (ref. 28) as a proxy for the numerical relativity 
simulations. There is a long and productive history of GW signal mod-
elling using a variety of approaches3,22,23,25,59,60,70–85, and we compared 
against the IMRPhenomXHM83 and IMRPhenomTHM85 waveform mod-
els, two of the leading frequency and time-domain models available for 
aligned-spin binaries, respectively. We did not use the state-of-the-art 
effective-one-body models2,25 for the aligned-spin proof-of-principle test 
because IMRPhenom models are one to two orders of magnitude faster 
to evaluate. For the precessing model interpolants, we used the models 
described in ‘GW Bayesian inference’: IMRPhenomXPHM (ref. 22; with the 
updated precession formalization26), IMRPhenomTPHM23 and SEOBN-
Rv5PHM2, and we compared the precessing models against the numerical 
relativity waveform surrogate model NRSur7dq4 (refs. 27,28) as a proxy 
for full numerical relativity simulations when computing mismatches.

We next describe, in the ‘Interpolant for aligned-spin waveform 
mismatches’ section, how we constructed an interpolant for binaries 
with spins aligned with the orbital angular momentum. We tested 
this interpolant by comparing the posterior samples obtained from a 
Bayesian inference analysis guided by an actual mismatch computa-
tion at every step versus a Bayesian inference analysis guided by the 
interpolant. We describe how we generalized this to build a generic-spin 
interpolant. Because of the computational cost, we used the Bayesian 
inference verification analysis to justify using an interpolant-guided 
analysis for systems with generic spins.

Interpolant for aligned-spin waveform mismatches
We begin with a test of the method using aligned-spin GW models 
containing higher signal multipoles. To simplify the construction of 
the mismatch interpolant for this test application, we reduced the 
dimensionality of the mismatch parameterization by artificially fixing 
several signal and model parameters. We chose to fix the total mass of 
the binary to M = 90 M⊙ and the inclination angle to θJN = π/3, where θJN 
spans the angle between the line of sight to the binary and the total 
angular momentum vectors. This choice leaves three remaining free 
parameters in each model: the mass ratio q = m2/m1 ≤ 1 and the 

component spins of the primary and secondary masses aligned with 
the orbital angular momentum, χ1 and χ2, respectively, defined from 
χi = Siz/m2

i  for i = 1, 2 with −1 ≤ χi ≤ 1.
The three-dimensional mismatch interpolants were constructed 

from mismatches computed on a uniform grid of eight points in 
0.125 ≤ q ≤ 1 and 17 points in each −0.8 ≤ χ1,2 ≤ 0.8, providing 2,312  
total mismatch points for each model. The interpolants were  
produced as polynomial fits to log10ℳ  of the form

log10ℳ(q, χ1, χ2) = ∑
0 ≤ a ≤ 6

0 ≤ b, c ≤ 8

fabc qaχ b
1 χ c

2 , (7)

with the fitting coefficients fabc computed using the Fit function in Math-
ematica and exported to Python using FortranForm. These mismatch 
surfaces were well behaved, and we found that the simple-polynomial 
fits described provide sufficiently small relative errors (arising from 
equations (22) and (23) described below) of 10−4 and 10−3, respectively, 
which suffices for this initial proof-of-principle test.

Next, we validated that our interpolant gives indistinguishable 
results compared to computing the mismatch directly in a Bayesian 
inference analysis. We performed two Bayesian inference analyses, both 
with the DYNESTY nested sampling software47 using Bilby48. We used 
the same priors and sampler settings as those typically used in LIGO–
Virgo–KAGRA analyses. The only distinguishing factor between these 
runs is that in one we used equation (7) when computing the conditional 
probabilities of equation (6) and in the other we directly computed the 
mismatch between the models and the surrogate at the sample point.

We used the Jensen–Shannon divergence to compare posterior 
distributions86 because it is commonly used in GW astronomy87,88. The 
Jensen–Shannon divergence ranges between 0 bits (for statistically 
identical distributions) and 1 bit (for statistically distinct distributions). 
A general rule of thumb is that a Jensen–Shannon divergence <50 mbits 
implies that the distributions are in good agreement87.

Supplementary Table 1 presents the Jensen–Shannon divergences 
between marginalized posterior distributions obtained when cal-
culating the mismatch exactly and when using the interpolant. All 
divergences were considerably less than 50 mbits, implying that the dis-
tributions are close to statistically identical. The Bayesian analysis that 
used the interpolant completed in ~500 CPU hours, about ×250 faster 
than the Bayesian analysis that computed the mismatch exactly. Given 
the almost statistically identical posteriors and reduced computational 
cost, we used the interpolated mismatch for all subsequent analyses.

Interpolant for precessing waveform mismatches
When computing interpolants for the mismatches in equation (3), we 
chose to fit for the log10 of the sky-averaged, optimized waveform 
mismatch equation (3). Accordingly, our error bars become σlog ∶=
| log10(ℳ − σ) − log10(ℳ + σ)|.

Next, we generated a mismatch dataset for the fitting construction 
(training). We could have simply selected values for the intrinsic param-
eters {m1, m2, S1, S2} and obtained ℳ  with the procedure above, but we 
found that the brute force use of analytic functions of eight variables 
to fit to this dataset was not the best approach. Instead, we opted to 
first reduce the dimensionality of the parameter space and then employ 
functional fitting. As described in Appendix A of Mac Uilliam et al.5, we 
had already seen encouraging preliminary results of this approach. We 
also note that generating just a single data point for this mismatch set 
is computationally expensive because of the four-dimensional opti-
mization over λm = {tc, ϕc, κ, φspin}, which needs to be repeated for every 
element of the 294-term sum in equation (3). For example, depending 
on the mass ratio and total mass, the computation of the average mis-
match equation (3) at a single point in the intrinsic parameter space 
takes approximately 2–3 CPU hours for IMRPhenomXPHM, 4.5–11 CPU 
hours for IMRPhenomTPHM and 6 CPU hours for SEOBNRv5PHM. 
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Therefore, we had to keep in mind the computational economics when 
generating the data to construct the fits.

We started by mapping m1,2 to the total mass M and the symmetric 
mass ratio η:

M = m1 +m2, η ∶= m1m2
M2 , (8)

with the former quoted in solar masses (M⊙) here and the latter being 
bounded 0 < η ≤ 1/4. Alternatively, we could have worked with the chirp 
mass Mc := (m1m2)3/5(m1 + m2)−1/5 instead of M, but we opted to work with 
the total mass, as its impact on the mismatch, equations (2) and (3), has 
been well documented2,5,23,59,82.

The Cartesian components of each spin vector can be written in 
terms of spherical coordinates with respect to some reference frame, 
usually taken to be the orbital angular momentum vector at a refer-
ence frequency89. Thus, we can write Si = |Si|(sin θi cos φi, sin θi sin φi, 
cos θi)

T for i = 1, 2.
We reduced the dimensionality of this eight-dimensional intrinsic 

parameter space by mapping the six-dimensional spin space to two 
effective spins that we here label as x and y, which represent the effec-
tive spin projections perpendicular and parallel to the reference orbital 
angular momentum vector of the binary, respectively. Two logical 
candidates for {x, y} already exist: {χp, χeff}. The former is given by79,90

χp = max ( ̄S1 sinθ1,q
4q + 3
4 + 3q

̄S2 sinθ2) , (9)

with the bounds 0≤ χp ≤ 1, and we have introduced ̄S1,2 = S1,2/m2
1,2 . A 

non-zero value for this quantity is an indication of spin precession, with 
χp = 1 corresponding to a maximally precessing binary, so that all com-
ponent spins of the binary constituents lie in the orbital plane with 
their maximum magnitudes.

χeff is the parallel projection counterpart to χp (refs. 79,91–93):

χeff =
1

1 + q ( χ1 + qχ2) =
1

1 + q (
̄S1 cosθ1 + q ̄S2 cosθ2). (10)

This is a conserved quantity up to 1.5 post-Newtonian order92, and its 
magnitude changes very little over the course of an inspiral, making 
it very useful for inferring spin information about a compact binary 
system. It is clear from equation (10) that −1 ≤ χeff ≤ 1, given the Kerr 
spin limit ∣χ1,2∣ ≤ 1.

Other perpendicular projections are described in the literature61,94, 
but the one that we empirically determined to be the best for fitting 
is χ⊥ (ref. 95):

χ⟂ =
|S1,⟂ + S2,⟂|

M2 , (11)

where Si,⟂ = ̄Sim2
i (sinθi cosϕi, sinθi sinϕi,0)

T for i = 1, 2. We also experi-
mented with a generalized version of χp (ref. 96) but found this quantity 
to be not as well suited for fitting as χp or χ⊥. Given that the mismatches 
will be maximized over the in-plane spin angle φspin, we mapped ϕ1,2 to 
a single azimuthal spin angle Δϕ = ϕ2 − ϕ1 by rotating our source frame 
axes such that ϕ1 = 0.

Finally, as an alternative to χeff, we introduced

χ∥ ∶=
|S1,∥ + S2,∥|

M2 = 1
(1 + q)2

( χ1 + q2χ2). (12)

We, thus, have several choices for each perpendicular or parallel  
scalar: x = χp or χ⊥ and y = χeff or χ∥, yielding four possible pairings for the 
dimensional reduction of the spin space. Our preliminary work based 
on gauging the faithfulness of the fits, however, compelled us to drop 

χp as it produced less faithful results, partly because it does not carry 
any information about the planar spin angle separation Δϕ. Thus, we 
were left with two possible pairings for the reduced spin space: {χ⊥, χeff} 
and {χ⊥, χ∥}. Accordingly, we introduced the fitting training-set labels 
K1 = {χ⊥, χeff, η, M} and K2 = {χ⊥, χ∥, η, M}.

The spin parameters introduced above depend on q. Accord-
ingly, our fitting variables {x, y, η} do not form a linearly independent 
three-dimensional subspace. Our motivation for choosing the particu-
lar fitting variables above was ultimately empirical: our initial fits, using 
projections of spins with no q dependence, were less faithful to the 
data. It seems that mass-ratio-dependent spin projections retain more 
useful information when the dimensionality of the parameter space is 
reduced. Additionally, we found that {x, y, η} were either not correlated 
or weakly correlated, for which we present correlation coefficients at 
the end of this section.

Next, we introduced a discrete parameter grid over the chosen 
four-dimensional {x, y, η, M} space, which we used for fitting. We lim-
ited η to the range from 0.16 (corresponding to q = 1/4) to 0.25 (q = 1) 
in four even steps, resulting in five distinct values ηj, j = 1, …, 5. For 
the total mass, we employed M = {75, 117.5, 150} M⊙ as our grid points, 
chosen because of the following reasons. (1) NRSur7dq4 was trained 
with data only from binaries with q ≥ 1/4. (2) The time length limit in 
NRSur7dq4 (ref. 27) of 4,300M imposes M ≳ 75 M⊙ in order for the 
binary to enter the detector bandwidth at a GW frequency of 20 Hz. (3) 
Binaries with M > 150 M⊙ mostly emit merger-ringdown signals in the 
detection band5, thus leaving hardly any imprint of precession in the 
waveform reconstructed from detector data. (4) Model mismatches 
tend to weakly depend on the total mass2,5,23,59,82, thus three grid points 
in mass space suffice for our current purposes given the computational 
burden of generating new data.

For better fitting performance, the remaining two fitting parame-
ters, x and y, also had to be placed on a regular grid. However, the quanti-
ties that we picked to cover this space, namely the pairings {χ⊥, χeff} and 
{χ⊥, χ∥}, are not intrinsic parameters of the binary system. To construct 
a regular grid in {x, y}, therefore, we started from a regular grid of roughly 
50,000 elements in { ̄S1, ̄S2,θ1,θ2,Δϕ} space and used this to populate the 
{x, y} space with values of q already determined by the ηj grid. The result-
ing grid in, for example, the χ⊥–χeff plane, is show as a scatter plot of blue 
dots in the left panel of Supplementary Fig. 4. The parameter space seems 
to be bounded by a half prolate ellipse drawn as the orange curve. The 
horizontal and vertical axes of the ellipse are given by

a = max(x), b = max( y). (13)

Guided by this observation, we constructed a regular, elliptical grid in 
{x, y} space as follows. First, we introduced the elliptical coordinates 
(A, Φ) with oblate/prolate-ness parameter μ > 0:

x = A sinhμ cosΦ, (14a)

y = A coshμ sinΦ, (14b)

with Φ ∈ [0, 2π] and the usual parametrization:

x2

A2sinh2μ
+ y2

A2cosh2μ
= 1. (15)

For an ellipse of fixed size, A and μ are obtained from the relations 
A sinhμ = a  and A coshμ = b . Note that in equations (14a)–(15), we 
swapped coshμ and sinhμ because, as we show below, our ellipses are 
prolate, that is, a < b.

Here, we aimed to create a grid based on ‘concentric’ ellipses with 
the same aspect ratio, starting with the outermost one (orange curve in 
the left panel of Supplementary Fig. 4). With A and μ fixed, we created 
an elliptical grid of our choosing:
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xrs =
r
Nr

A sinhμ cos ( π
Ns

s − π
2 ) , (16a)

yrs =
r
Nr

A coshμ sin ( π
Ns

s − π
2 ) , (16b)

with r = 1, …, Nr and s = 0, …, Ns. We show such a grid for {x, y} = {χ⊥, χeff}  
in the left and middle panels of Supplementary Fig. 4 represented by 
the red dots with Nr = 10 and Ns = 24, that is, a grid of 10 × 25 = 250 points. 
The grid over r builds concentric ellipses with the same aspect ratio, 
and s angularly goes along each ellipse in steps of π/Ns.

The intrinsic parameters that we sought had to be chosen such 
that the corresponding values for {x, y} yield points on the elliptical 
grid, that is, the red dots in the left panel of Supplementary Fig. 4. We 
started by finding the nearest point from the set of 50,000 points (blue 
dots in the left panel) to each grid point (red dot). For the kth grid point 
with coordinates {xk, yk}, we found the nearest blue dot with coordinates 
{xnk , y

n
k } generated from the intrinsic parameters {qn, ̄Sn1 , ̄Sn2 ,θn

1 ,θ
n
2 ,Δϕ

n}. 
We used these values as initial guesses in a root-finding algorithm that 
translates to solving the following system:

xk − x(q, ̄S1, ̄S2,θ1,θ2,Δϕ) = 0, (17a)

yk − y(q, ̄S1, ̄S2,θ1,θ2) = 0, (17b)

with the caveat that the q values used are consistent with our afore-
mentioned ηj grid.

As this is numerical root-finding, we replaced the right-hand sides 
of equations (17a) and (17b) with a threshold of 10−12. We ran this 
root-finding procedure for every single elliptical grid point. The result 
is shown in the middle panel of Supplementary Fig. 4. Over each red 
dot, we have placed a faint blue dot representing the grid points that 
our algorithm found. On average, each numerically determined grid 
point was offset by ≤10−12 from the exact grid (red) point. For a grid of 
250 points, this amounted to a total grid offset of ≲3 × 10−9. We actually 
found this number to be 1.5 × 10−8 for the elliptical {χ⊥, χeff} grid of Sup-
plementary Fig. 4 because we had to relax our strict tolerance from 
10−12 to 10−10 for certain grid points to speed up the procedure. As we 
show further below, a grid offset of ~10−8 is much smaller than the aver-
age fit unfaithfulness that we obtained, ∼𝒪𝒪(10−2), and, thus, was com-
pletely acceptable.

We repeated the same procedure to also obtain an elliptical grid 
in the χ⊥–χ∥ plane. In the interest of expediency, we used a tolerance of 
10−8, resulting in an overall grid offset of 5 × 10−6. Note that a few of the 
intrinsic coordinates for the grid points exceed the training limit for 
NRSur7dq4 of ̄Si = 0.8 for spin magnitudes, but only by ~0.01, which is 
not severe.

As is well known, rectangular domains are often best suited for 
constructing fits to data. Therefore, we went one step further and 
transformed the elliptical coordinates into rectangular ones:

x = XA sinhμ cos (Y ) , (18a)

y = XA coshμ sin (Y ) , (18b)

where X ∈ [0, 1] and Y ∈ [−π/2, π/2]. Correspondingly, we have the fol-
lowing inverse relations:

X = 1
A cschμ sechμ√x2cosh2μ + y2sinh2μ, (19a)

Y = tan−1 ( y tanhμ
x ) . (19b)

Comparing equations (16a) with (18a) and (16b) with (18b) gives the 
Nr × Ns rectangular grid {Xr, Ys} with r = 1, …, Nr and s = 0, …, Ns, which 

we show in the right panel of Supplementary Fig. 4. Overall, we have 
the following four-dimensional grid for the fitting: {Xr, Ys, ηj, Mk} with  
j = 1, …, 5 and k = 1, 2, 3. As a final step, we introduced the rescaled  
variables Z = 4η and V = M/(75 M⊙).

After much trial and error, we settled on the following fitting 
function:

ℱ(X,Y,Z,V ) =
ni

∑
i=0

n j

∑
j=0

∑nk
k=0∑

1
l=0 cijkl ZkVl

∑nk
k=0∑

3
l=2 |cijkl|ZkVl−2

XiY j. (20)

We chose this particular form to better curb the extrapolation behav-
iour of the fitting in parts of the {Z, V} (mass ratio, total mass) space 
outside the training region Z < 0.64 (η < 0.16) and V < 1 ∪ V > 2 corre-
sponding to M < 75 M⊙ ∪ M > 150 M⊙. We used two-dimensional polyno-
mials in the {X, Y} subspace of the fitting training domain because, as a 
result of our elliptical grid design, only rare combinations of intrinsic 
parameters yield points just outside our outermost ellipse. The values 
of {ni, nj, nk} in the triple summation of equation (20) were chosen such 
that we had at most roughly the same number of fitting parameters as 
the total number of grid points used in the {x, y, η} subspace, which for 
Supplementary Fig. 4, for example, was 10 × 25 = 250. Note that in the 
denominator of equation (20), we used the absolute value of the fitting 
coefficients cijkl to ensure that there were no singularities. We also set 
cij02 = 1, which is the leading term in the denominator, a standard choice 
for Padé-type fits. Our general procedure is as follows:

	(i)	 Start with a large ensemble of intrinsic parameters {qi, S1,i, S2,i} 
for i = 1,… ,𝒪𝒪(104).

	(ii)	 Impose an elliptical grid of size N = Nr(Ns + 1) with the grid coor-
dinates given by equations (16a) and (16b).

	(iii)	 Determine the set of intrinsic parameters {qI, S1,I, S2,I} yielding 
this grid to some tolerance, for example, 10−12.

	(iv)	 Compute the mismatches ℳK,L of L models to NRSur7dq4 for 
the set {MK, qK, S1,K, S2,K} where K = 3I for the three distinct values 
of M that we use.

	(v)	 Transform to the rectangular grid {XK, YK, ZK, VK}.
	(vi)	 For each model L, perform the fitting to the set 

{XK,YK,ZK,VK, log10ℳK,L} using the NonlinearModelFit function in 
Mathematica and store the coefficients cijkl,L of equation (20).

We started our fitting optimization routine with {ni, nj, nk} =  
{4, 3, 2} and generated fits up to some {nmax

i ,nmax
j ,nmax

k } to ensure that 
the total number of fitting parameters was ~N. The choice of {4, 3, 2} 
yielded 160 fitting parameters. Smaller values of {ni, nj, nk} resulted in 
fewer than 100 fitting coefficients and led to underfitting for training 
grids of size ≳𝒪𝒪(200), which, as we explain below, is the grid size that 
we adopted. Our routine picked as the final fit the one for which the 
values of {ni, nj, nk} in equation (20) yielded the lowest relative difference 
with respect to the training dataset. For this purpose, we defined the 
relative difference between the data and the fit at the kth point:

Δk
rel ∶= 1 − ℱ(Xk,Yk,Zk,Vk)

log10ℳk
, (21)

and introduced two quantities to gauge fit quality during training. The 
first is the l2-norm of Δk

rel between the fit and the data normalized by the 
length of the vector:

Δ(1)
rel ∶=

1
3N

√√√
√

3N
∑
k=1

||Δk
rel
||
2
, (22)

and the second is the signed average relative difference:

Δ(2)
rel ∶=

1
3N

3N
∑
k=1

(Δk
rel) , (23)

which tells us whether the fit globally over- or underestimates the data.
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We picked values for {ni, nj, nk} that simultaneously minimized both 
of the above relative differences. These relative differences are the most 
important fitting attributes for this work, as we must robustly predict 
the mismatches to numerical relativity when selecting the appropri-
ate model to use at a given point in the parameter space. When more 
than one set of values for {ni, nj, nk} was returned, we opted for the set 
that yielded a reduced chi squared (χ2/d.f.) closest to unity. Once the 
fitting training was complete with the above optimization of {ni, nj, nk}, 
we checked the fitting performance over an appropriate verification 
set, which we discuss further below.

The question of training grid resolution can be answered only after 
setting an unfaithfulness threshold for the target fit. We aimed for 
Δ|av|
rel ≈ 0.05 for each fit, where

Δ|av|
rel ∶= 1

3N

3N
∑
k=1

|Δk
rel| (24)

is the average absolute relative disagreement between the fit and the 
verification data. With the above threshold established, we set out to 
determine whether the {x, y} training grid of size 10 × 25 sufficed. First, 
we downsampled this grid to create coarser grids of dimension 10 × 13, 
5 × 13 and 5 × 7 and computed Δ|av|

rel  for each with respect to the original 
verification set (of size 250). As we gradually increased the grid size 
from 5 × 7 to 10 × 25, we observed Δ|av|

rel  decreasing from ~0.10 to ≲0.05 
for the fits listed in Supplementary Table 2. For example, the fit used 
to make Supplementary Fig. 5 yielded Δ|av|

rel = 0.048. Increasing the grid 
size to 𝒪𝒪(1,000)  elements should further reduce Δ|av|

rel . However, this 
quickly turns into a problem of diminishing returns given that it would 
take one month to generate the mismatch data using 128 CPUs on  
this grid.

Furthermore, an inspection of the structure of the mismatch data 
revealed that an elliptical grid with 𝒪𝒪(10) points along the radial direc-
tion and 𝒪𝒪(20) points along the azimuthal direction sufficed to capture 
the dominant trends in the data at the level of fitting unfaithfulness 
that we sought: Δ|av|

rel ≈ 0.05. Thus, our aforementioned grid of dimen-
sions 10 × 25 had sufficient resolution. We leave fitting improvements 
to future work, which we have already begun undertaking.

Supplementary Fig. 5 shows contour plots of the unfaithfulness 
of the fit for the log10 of the NRSur7dq4 versus SEOBNRv5PHM mis-
matches to the verification dataset. Because of the computational 
burden required to obtain the mismatches, we used data with y = χ∥ 
(χeff) to verify the data trained with χeff (χ∥). This resulted in verification 
sets that were the same size as the training sets, so ours is rather a harsh 
verification test. The contours represent the absolute value of the rela-
tive difference between the fit and the data. The fitting was trained over 
the y = χ∥ set (black dots) which, by design, trace concentric prolate 
ellipses in the {x, y} = {χ⊥, χ∥} plane. The white dots mark the {x, y} coor-
dinates of the verification data. From the figure, we see that in a large 
portion of the space, the relative difference was 0.05 or less. Note that 
this quantity is not Δ(2)

rel  applied to the verification set but rather the 
absolute value of the summand in equation (23). The fits for the 
NRSur7dq4 versus IMRPhenomTPHM and the NRSur7dq4 versus IMR-
PhenomXPHM mismatches also yielded similar level of agreement, as 
did the fits trained with the y = χeff set.

We summarize these results and provide other metrics for all the fits 
in Supplementary Table 2. The average relative distance (equation (22))  
between each fit and the corresponding verification data was always 
less than 4 × 10−3, and the average relative difference (equation (23)) 
had magnitude less than 0.02. Interestingly, Δ(2),ver

rel  for the verification 
set was negative for most fits, indicating that the fits slightly  
overestimate the data. The value of 1 − ̃R2

 was ≲0.01 for all our fits, 
where ̃R2

 is the reduced R squared. For most cases, we observed 
χ2/d.f. ≈ 𝒪𝒪(1). The cases for which this quantity was about an order of 

magnitude lower arose because we overestimated our errors bars. 
Recall that these are actually the standard deviations of an ensemble 

of mismatches (over a grid of certain extrinsic parameters per a given 
set of intrinsic parameters) whose average we took to be our individual 
data points.

As another check of the fits, we investigated their behaviour in 
the extrapolation region corresponding to η < 0.16 (q < 1/4), ̄S1,2 > 0.8 
and M < 75 M⊙ ∪ M > 150 M⊙. Recall that we chose the particular form 
of equation (20) for the fitting function to better control unwanted 
extrapolation behaviour, such as the blow-ups common to polynomial 
fitting. Specifically, the Padé-type dependence on η and M was 
adopted so that the fits would not produce any nonsensical results, 
such as log10ℳ > 0, in regions of the {η, M} space very distant from 
the training (interpolation) regime. On the other hand, because the 
relevant two-dimensional cut of the training region covered most of 
the {x, y} space, polynomial extrapolation should not cause issues.

We illustrate all this in Supplementary Fig. 6, where we plot the fit 
in equation (20) to the log10 of the NRSur7dq4 versus SEOBNRv5PHM 
mismatches as a function of M, evaluated at various extrapolated values 
of {η, ̄S1 = ̄S2} . The blue ellipse in the χ⊥–χeff plane traces the values 
{η, ̄S1,2} = {0.139,0.85} (q = 1/5), and other intrinsic parameters were cho-
sen accordingly. Similarly, the red ellipse traces the {η, ̄S1,2} = {0.122,0.9} 
(q = 1/6) set and the orange ellipse the edge of the fitting training region 
with {η, ̄S1,2} = {0.16,0.8}  (q = 1/4), which was shown in Supplementary 
Fig. 4. The blue, red and orange dots mark the positions of seven cases 
along each corresponding ellipse in angular steps of π/6. An inset point-
ing to each dot displays the plot of the fit from M = 50 to 200 M⊙, but at 
each separate elliptical coordinate, hence the blue, red and orange 
curves. The shaded grey region in each inset marks the training range 
M ∈ [75, 150] M⊙ for the fits, which is actually relevant only to the orange 
curve, as the blue and the red curves are, by definition, outside the 
training region. Thanks to the specific functional form of the fit, the 
extrapolation does not exhibit any pathologies. Additionally, note that 
the blue curves mostly lie between the orange and the red ones, as we 
would expect. We should, however, caution that we are merely demon-
strating that the extrapolation is not pathological. This does not mean 
that the fits are expected be faithful to the data in this regime. As such, 
we recommend their use in the regime q ≥ 1/5 and ̄Si ≤ 0.85.

As a further test of the fitting performance in its extrapolation 
regime, we performed two more parameter recoveries of a numerical 
relativity simulation, SXS:BBH:1156, with the injected value for M set to 
75 or 100 M⊙ and q = 0.228, placing the former ‘squarely’ outside the 
M > 75 M⊙ and q ≥ 1/4 training regime of our fits. This simulation also had 
|S2,⟂|/m2

2 ≈ 0.76On the other hand, because whereas the primary had 
negligible planar spin. We show the results of our method applied to this 
Bayesian inference analysis in Supplementary Fig. 3. The 
two-dimensional posteriors from the M = 75 M⊙ (100 M⊙) injections are 
plotted in the top (bottom) panels. In both analyses, our method recov-
ered the injected values for m1 and m2 and the effective spins very well, 
with most samples clustered near the injected values. Such a good recov-
ery of the masses and, hence, the mass ratio for the M = 75 M⊙ injection 
is an indirect testament to the robustness of the fit (equation (20)), 
especially because slightly more than half of the total mass posteriors 
for this particular Bayesian analysis happened to be less than 75 M⊙.

We conclude this section by briefly returning to two issues. The 
first is that the fitting variables {η, x, y} used to construct the fit are not 
fully independent of each other, as each is a function of the mass ratio 
q. The second regards the choice of power spectral density used when 
calculating the mismatch and, hence, the fits. For the first issue, as we 
have explained already, the q-scaled spin projections yielded more 
faithful fits to the data. As a check, we computed the correlation coef-
ficients 𝒞𝒞mn  between the above parameters of the training sets, 
K1(y = χeff) and K2(y = χ∥). For K1, we obtained 𝒞𝒞χ⟂–χeff = 0.09, 𝒞𝒞η–χeff = 0.02 
and 𝒞𝒞η–χ⟂ = −0.315 . For K2, we have 𝒞𝒞χ⟂–χ∥ = −0.1 , 𝒞𝒞η–χ⟂ = 0.03  and 
𝒞𝒞η–χ∥ = 0.216. For both parameter sets used in fitting training, we have 
either uncorrelated pairings of fitting variables or weakly correlated 
pairings. That |𝒞𝒞η–χ∥ | of set K2 is less than |𝒞𝒞η–χ⟂ | of set K1 may partly explain 
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why we observed slightly better performance from the fits constructed 
from K2, as indicated in Supplementary Table 2.

For the second issue, as already explained, we used the design 
sensitivity of Advanced LIGO46 when computing the mismatch, which 
subtly changes when the profile of the power spectral density is varied. 
If this method were to be used during live observing run periods, dur-
ing which the power spectral density changes every day owing to noise 
artefacts in the GW strain data, we would suggest using a harmonic 
average power spectral density estimated from engineering run data 
to calculate mismatches, as is commonly done in GW search pipelines69. 
The fit would then be reconstructed before each GW observing run.

Data availability
The aligned-spin and generic-spin match interpolants as well as 
the posterior samples from the analyses performed in this work are 
available at https://icg-gravwaves.github.io/incorporating_model_ 
uncertainty_into_Bayesian_inference.

Code availability
Python scripts detailing our modifications to Bilby48 are available at 
https://icg-gravwaves.github.io/incorporating_model_uncertainty_ 
into_Bayesian_inference.
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