The University of Southampton
University of Southampton Institutional Repository

Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition

Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition
Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition

Reconstructions of past changes in the seawater calcium concentration (Casw) are critical for understanding the long-term changes in ocean chemistry, the carbon cycle and for accurate application of elemental proxies (El/CaCaCO3 ) in foraminifera (e.g., Mg/Ca as proxy of temperature). Here we show that Na/Ca ratios in foraminiferal shells could be used for reconstructing Casw and Mg/Ca in the past oceans. Ca has a short residence time in the ocean (∼1 My), whereas Na in seawater has a residence time of ∼100 My. Hence it may be reasonably assumed that Nasw is invariant over the Cenozoic, enabling variations in oceanic Ca to be deduced from foraminiferal Na/Ca (Na/Cashell) if Na incorporation into foraminiferal shells depends on Na/Ca in seawater. Furthermore, the paleo-concentrations of other major and minor elements may then be calculated relative to the Ca in the shells, provided that other environmental or biological factors do not present a further complication. To evaluate this hypothesis, we cultured the benthic foraminifer Operculina ammonoides, an extant relative of the Eocene Nummulites, under varying Casw and temperature. The foraminifera grew well under the experimental conditions and increased their weight by 40–90%. The newly grown calcite (identified using a 135Ba labeling in the experimental seawater) was analyzed by Laser-Ablation ICP-MS for Li, Na, Mg and Sr to Ca ratios. The relationship between Na/Ca and Mg/Ca in the shell and their ratio in the solution are best described as a power function, where the instantaneous distribution coefficient is the derivative of the power fit to the El/Cashell versus El/Casw. In contrast, DSr and DLi are invariant with El/Casw. The influence of temperature on Li, Na and Sr incorporation was smaller than the uncertainty of our measurements. We conclude that Na/Ca in foraminiferal shells can be used to calculate paleo-calcium concentrations in the oceans and also other elements that may change relative to calcium (e.g., Mg, Sr, Li and others).

live-foraminifera, Na/Ca calibration, ocean paleochemistry, seawater calcium proxy
0012-821X
80-91
Hauzer, Hagar
68d86aec-9d2c-4c71-9b63-0fedac4ed501
Evans, David
878c65c7-eab9-4362-896b-166e165eb94b
Müller, Wolfgang
360a71f7-0b47-4ff3-8c32-1912d70401aa
Rosenthal, Yair
0130f66f-7653-490b-b323-76956e66c9e1
Erez, Jonathan
ed56a557-377e-4b63-8ba8-3d23e506e5c0
Hauzer, Hagar
68d86aec-9d2c-4c71-9b63-0fedac4ed501
Evans, David
878c65c7-eab9-4362-896b-166e165eb94b
Müller, Wolfgang
360a71f7-0b47-4ff3-8c32-1912d70401aa
Rosenthal, Yair
0130f66f-7653-490b-b323-76956e66c9e1
Erez, Jonathan
ed56a557-377e-4b63-8ba8-3d23e506e5c0

Hauzer, Hagar, Evans, David, Müller, Wolfgang, Rosenthal, Yair and Erez, Jonathan (2018) Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition. Earth and Planetary Science Letters, 497, 80-91. (doi:10.1016/j.epsl.2018.06.004).

Record type: Article

Abstract

Reconstructions of past changes in the seawater calcium concentration (Casw) are critical for understanding the long-term changes in ocean chemistry, the carbon cycle and for accurate application of elemental proxies (El/CaCaCO3 ) in foraminifera (e.g., Mg/Ca as proxy of temperature). Here we show that Na/Ca ratios in foraminiferal shells could be used for reconstructing Casw and Mg/Ca in the past oceans. Ca has a short residence time in the ocean (∼1 My), whereas Na in seawater has a residence time of ∼100 My. Hence it may be reasonably assumed that Nasw is invariant over the Cenozoic, enabling variations in oceanic Ca to be deduced from foraminiferal Na/Ca (Na/Cashell) if Na incorporation into foraminiferal shells depends on Na/Ca in seawater. Furthermore, the paleo-concentrations of other major and minor elements may then be calculated relative to the Ca in the shells, provided that other environmental or biological factors do not present a further complication. To evaluate this hypothesis, we cultured the benthic foraminifer Operculina ammonoides, an extant relative of the Eocene Nummulites, under varying Casw and temperature. The foraminifera grew well under the experimental conditions and increased their weight by 40–90%. The newly grown calcite (identified using a 135Ba labeling in the experimental seawater) was analyzed by Laser-Ablation ICP-MS for Li, Na, Mg and Sr to Ca ratios. The relationship between Na/Ca and Mg/Ca in the shell and their ratio in the solution are best described as a power function, where the instantaneous distribution coefficient is the derivative of the power fit to the El/Cashell versus El/Casw. In contrast, DSr and DLi are invariant with El/Casw. The influence of temperature on Li, Na and Sr incorporation was smaller than the uncertainty of our measurements. We conclude that Na/Ca in foraminiferal shells can be used to calculate paleo-calcium concentrations in the oceans and also other elements that may change relative to calcium (e.g., Mg, Sr, Li and others).

This record has no associated files available for download.

More information

Published date: 1 September 2018
Additional Information: Publisher Copyright: © 2018 Elsevier B.V.
Keywords: live-foraminifera, Na/Ca calibration, ocean paleochemistry, seawater calcium proxy

Identifiers

Local EPrints ID: 503000
URI: http://eprints.soton.ac.uk/id/eprint/503000
ISSN: 0012-821X
PURE UUID: edcda9f9-86d2-44c7-bcbd-7b74e40c970e
ORCID for David Evans: ORCID iD orcid.org/0000-0002-8685-671X

Catalogue record

Date deposited: 15 Jul 2025 16:56
Last modified: 17 Jul 2025 02:23

Export record

Altmetrics

Contributors

Author: Hagar Hauzer
Author: David Evans ORCID iD
Author: Wolfgang Müller
Author: Yair Rosenthal
Author: Jonathan Erez

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×