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Abstract—A three-dimensional (3D) sparse signal recovery
problem formulation is conceived for delay, Doppler, and angular
(DDA) domain target parameter estimation in millimeter wave
(mmWave) multiple-input multiple-output (MIMO) orthogonal
frequency division multiplexing (OFDM)-based integrated sens-
ing and communication (ISAC) systems relying on a hybrid
beamforming architecture. Subsequently, a 3D-sparse Bayesian
learning (3D-BL) algorithm is proposed to jointly estimate the
angular, range, velocity, and radar cross-section (RCS) param-
eters of the targets. Furthermore, an uplink beamformer is
designed for the user equipment (UE) to alleviate the complexity
of uplink parameter estimation at the dual-functional radar-
communication (DFRC) base station (BS) by eliminating the need
for angle of departure (AoD) estimation. Additionally, a Bayesian
alternating minimization (BAT-MIN) algorithm is constructed for
the designing of a DFRC waveform, enabling the simultaneous
generation of beams toward both the radar targets and the UE.
Furthermore, the sparse Bayesian learning lower bound (SBL-
LB) and the Bayesian Cramér-Rao lower bound (BCRLB) are
derived to serve as benchmarks for estimation performance. Fi-
nally, simulation results are presented to showcase the enhanced
performance of the proposed methodologies in terms of multiple
performance metrics when contrasted both to the existing sparse
recovery techniques and to conventional non-sparse parameter
estimation algorithms. The simulation outcomes unequivocally
demonstrate the commendable performance of the proposed 3D-
BL estimation methodology, approaching closely to the SBL-LB.
Notably, this approach exhibits a substantial gain of at least 5
dB when compared to alternative techniques. Additionally, the
introduced BAT-MIN beamformer emerges as a highly compet-
itive solution, closely approximating the capabilities of a fully
digital beamformer while maintaining a noteworthy minimum
advantage over its contemporaries. These findings underscore
the significance and efficacy of the proposed techniques in the
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context of advanced signal processing and beamforming.

Index Terms—Integrated sensing and communication (ISAC),
hybrid analog-digital (HAD) beamforming, dual-functional
radar-communication (DFRC), sparse Bayesian learning (SBL),
millimeter wave (mmWave).

I. INTRODUCTION

The convergence of radar and communication technologies
has emerged as a transformative trend that holds tremendous
promise across a wide spectrum of applications. This con-
vergence, commonly referred to as integrated sensing and
communication (ISAC), represents a paradigm shift that brings
traditionally distinct fields together to create synergies, unlock
new capabilities and address pressing challenges [1]–[3]. The
fundamental concept of ISAC involves consolidating both
sensing and communication functions within a single hard-
ware platform and utilizing joint spectral resources for both
purposes [4], [5]. Compared to independent communication
and radar systems, ISAC provides benefits in terms of cost,
power consumption, latency and spectrum efficiency [6]. This
amalgamation has opened various applications like vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I) paradigms,
indoor positioning using WiFi, and drones acting as base
stations [7]–[9]. However, high communication throughput,
enhanced sensing resolution, and low latency are necessary for
an ISAC system to fulfill the needs of these next-generation
applications.

Exploring the millimeter wave (mmWave) spectrum might
be a way to overcome this challenge in next-generation (NG)
systems [10], [11]. The mmWave band provides very high
bandwidth, which in turn results in good range resolution in
radar applications. Moreover, owing to the limited availability
of multiple paths within the mmWave spectrum, radar echoes
are likely to encounter reduced clutter compared to the sub-
6 GHz frequency bands [12]. However, mmWave communi-
cation also has several drawbacks, including significant path
loss, susceptibility to blockages and reliance on line-of-sight
(LoS) propagation [13]. To elaborate further, owing to the short
wavelength of mmWave signals, which allows us to reduce the
inter-antenna spacing, and construct compact multiple-input
multiple-output (MIMO) transmit precoding for high gain.
This mitigates the path-loss problem by creating highly di-
rectional beams [14]. Furthermore, transmitting multiple data
streams through spatial multiplexing is capable of enhancing
the spectral efficiency. However, implementing a transceiver
employing digital beamforming and a radio frequency (RF)
chain for each antenna element at high-frequency mmWave
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settings is demanding regarding cost, power consumption and
overall complexity. To surmount this challenge and facili-
tate the practical implementation of mmWave MIMO dual-
functional radar communication (DFRC) transceivers, one
can leverage hybrid analog-digital (HAD) signal processing
architectures. These architectures require a significantly lower
number of RF chains compared to the conventional fully-
digital (FD) architecture, [15]. In the HAD architecture, the RF
transmit precoding (TPC) and receive combining (RC) opera-
tions occur at the RF front-end of the transceiver, involving a
network of phase shifters that enhances directional beamform-
ing. Furthermore, multiplexing gains are also attained through
digital precoding in the baseband. As a result, the design
and implementation of hybrid precoders and combiners play a
crucial role in unlocking the significant performance benefits
offered by mmWave MIMO technology.

In modern communication standards, orthogonal frequency
division multiplexing (OFDM) is a pivotal technology, playing
a vital role in 4G and 5G wireless networks. OFDM, when
combined with MIMO systems, significantly augments the
capacity and reliability of wireless communication networks.
This enhancement is attributed to OFDM’s innate resistance to
multipath distortion and inter-symbol interference (ISI) as well
as to its ease of synchronization and equalization. Remarkably,
OFDM signals have demonstrated their versatility also in
radar applications [16]. The orthogonal nature of OFDM
waveforms, achieved through the fast Fourier transform (FFT)
operations at the transceivers, streamlines signal processing
for communication and radar sensing tasks. Consequently,
the attributes of OFDM waveforms render them eminently
suitable for ISAC applications [17]–[20]. Radar tasks like
range-velocity (RV) estimation and target recognition often
employ sparse recovery techniques due to the occurrence of
sparse channels in radar applications. Therefore, sophisticated
sparse recovery techniques are the need of the hour. In this
context, the Bayesian learning (BL) framework has garnered
significant interest in addressing sparse recovery challenges. In
sparse recovery problems, the objective function of BL, based
on a log-likelihood formulation exhibits a reduced number of
local maxima compared to similar approaches, such as FO-
CUSS [21]. The Expectation-Maximization (EM) algorithm,
known for its well-established characteristics, ensures global
convergence for the sparse BL method. This implies that each
iteration is guaranteed to decrease the cost function progres-
sively until a stable fixed point is attained. Therefore, the
robust convergence exhibited by the EM algorithm, coupled
with the characteristics of the SBL-based log-likelihood, con-
tributes to an enhanced performance in the context of sparse
parameter estimation. Despite being a technique with roots
harking back over a decade, BL continues to be a powerful tool
for sparse recovery, demonstrating its enduring relevance and
effectiveness in the NG wireless communication systems [22]–
[24]. The following subsection provides a concise overview of
the current state-of-the-art.

A. Review of existing works
The treatises [25], [26] considered the family of OFDM-

based ISAC systems. Liyanaarachchi et al. in [25] proposed

a maximum-likelihood (ML) framework for the estimation of
the delay and Doppler parameters in an OFDM-ISAC system.
Moreover, to find the optimal radar subcarrier allocation,
CRLBs of the delay and Doppler estimates were optimized
therein. Vargas et al. [26] address a challenging scenario,
where the overlapped radar and communication signals, as
well as the channels, are unknown to the receiver. A seminal
scheme was proposed for this model that achieved blind
estimations of the radar and communication parameters. To-
ward this, a dual-blind deconvolution (DBD) problem was
formulated by the authors and then a so-called sum of mul-
tivariate atomic norms (SoMAN) minimization technique was
proposed that leveraged the sparsity for the estimation of
both the radar and communication parameters. However, it
is crucial to emphasize that all the contributions mentioned
above considered operation in the sub-6 GHz frequency band
for ISAC systems. Therefore, they were unable to exploit the
wider spectrum and other advantages of the mmWave band.

Kumari et al. in [27] created a vehicular radar model utiliz-
ing the IEEE 802.11ad standard for mmWave communication
and radar operations at 60 GHz. Likewise, for a bistatic
mmWave ISAC system, Dokhanchi et al. [28], contrasted
the benefits of orthogonal-frequency-division-multiple-access
(OFDMA) and phase-modulated-continuous-wave (PMCW)
waveforms. However, a large number of power-hungry ADCs,
DACs, and power amplifiers, necessitated by the assignment of
an independent RF chain to each antenna prohibit the employ-
ment of a conventional FD beamforming transceiver design
in mmWave MIMO systems. This has prompted researchers
to investigate a hybrid analog-digital (HAD) beamforming
framework for overcoming this impediment. In this context,
Liu et al. [29] explored the HAD architecture’s suitability
for the ISAC systems and employed subspace techniques,
including the multiple signal classification (MUSIC) algo-
rithm, matched-filtering (MF), as well as angle and phase
estimation (APES) for the radar target and wireless channel
parameters. In a related study, the authors of [30] developed
target parameter estimation algorithms, drawing inspiration
from the MUSIC and MF methods for a mmWave MIMO-
OFDM based full-duplex ISAC system. In this study, the re-
searchers also developed TPCs and RCs to optimize the signal-
to-noise ratio (SNR) for both downlink (DL) communication
and radar target detection, while also tackling self-interference
(SI) cancellation. Kaushik et al. [35], in their innovative
paper, introduces a dynamic RF chain selection mechanism
for HAD ISAC systems, focusing on energy efficiency under
both radar and communication constraints. Their approach
invokes fractional programming to handle the non-convex
problem of optimizing the numbers of RF chains (RFCs)
and employs an alternating minimization approach for hybrid
precoder design. Huang et al. [31] proposed a radar-aided
mmWave channel estimation algorithm using a deep-learning
technique in vehicle-to-everything (V2X) multi-user uplink
scenarios. However, it is important to note that previous studies
in [29], [30], [35] assumed explicit knowledge of the number
of targets at the DFRC base station, which is not the case in
practical in real-world scenarios. Moreover, the deep-learning
technique proposed in [31] is a computationally intensive and
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TABLE I: Contrasting our contributions to the existing literature

Features [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] Proposed
OFDM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MIMO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
mmWave band ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hybrid architecture ✓ ✓ ✓ ✓ ✓
AoA estimation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Range estimation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Velocity estimation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CRLB ✓ ✓ ✓ ✓ ✓ ✓
Imaging ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sparsity ✓ S ✓ ✓ ✓
BL-based estimation DE ✓
BL-based DFRC beamforming ✓
Simultaneous sparsity-based beamformer ✓

Note S: only for sensing, DE: Only for delay estimation

data-hungry technique.
It is worth noting that a limitation of the previously dis-

cussed solutions is that they do not take advantage of the
inherent sparsity of the scattering environments at mmWave
frequencies, where only a small number of radar targets or
scatterers are present. Exploiting this sparsity can substantially
improve the accuracy of target detection, target parameters
and channel estimation. In this context, Zheng et al. [36]
present a super-resolution algorithm for sparse OFDM passive
radar signals, utilizing atomic norm constraints for modeling
signal sparsity in the delay-Doppler plane. It employs a
convex semidefinite program (SDP) to estimate the target
parameters. Gao et al. [32] proposed an orthogonal matching
pursuit with support refinement (OMP-SR) algorithm for radar
sensing, which iteratively refines the angle estimates based
on coarse initial estimates. In order to facilitate target speed
measurement and payload data demodulation, the framework
therein also incorporates techniques for the estimation and
compensation of Doppler shifts. However, the OMP technique
is sensitive to both the stopping threshold and to the choice of
the sensing matrix, which leads to structural and convergence
deficiencies. Moreover, the complexity of the atomic norm
technique employed in [36] is very high. To address these
constraints and to leverage the benefits of the BL framework in
a multi-user MIMO-OFDMA system, Rahman et al. [33] intro-
duced a fast marginalized block sparse BL algorithm (BSBL-
FM) designed for one-dimensional (1-D) target parameter esti-
mation [33]. The delay is initially estimated by the BSBL-FM
algorithm, and subsequently, the remaining sensing parameters
are determined by estimating the amplitudes corresponding to
those delay positions. Although these 1D compressive sensing
(CS) techniques exhibit significantly reduced complexity, their
estimation performance remains modest [33]. Subsequently,
authors of [34] explored radar sensing using one-dimensional
(1D) to three-dimensional (3D) CS techniques, employing
signals that are in line with 5G standards. However, it is worth
noting that [34] did not consider the HAD architecture for
mmWave MIMO systems and its impact on the associated
waveform design.

To address the limitations and knowledge gaps in the prior
research, we develop novel algorithms for target sensing and
beamforming in mmWave MIMO-OFDM ISAC systems rely-
ing on the BL framework that also suitably exploits the sparsity

in the delay-Doppler-angular domain. This leads to notable
improvements in the accuracy of radar parameter estimation
as well as target detection. Moreover, the BL framework
in the joint beamformer design leads to significant spectral
efficiency improvements compared to the competing state-of-
the-art schemes. Table-I contrasts our contributions to those in
the existing literature, which are further detailed in the next
section.

B. Contributions

‚ This paper considers a mmWave MIMO-OFDM ISAC
system relying on a hybrid analog-digital architecture and
leverages the delay-Doppler and angular (DDA) domain
sparsity for radar target parameter estimation.

‚ To facilitate precise radar target parameter estimation, a
3D sparse model is derived. Building on this, we propose
a novel 3D-BL algorithm. This algorithm can simultane-
ously estimate critical radar parameters including radar
cross section (RCS), range, velocity, and angle-of-arrival
(AoA) of multiple moving targets at the DFRC base
station.

‚ An uplink beamformer is proposed that utilizes the AoA
estimated at the UE. This approach significantly reduces
the complexity of uplink parameter estimation at the
DFRC BS by bypassing the need for AoD estimation,
which typically adds unnecessary computational burdens.

‚ A Bayesian alternating minimization (BAT-MIN) algo-
rithm is proposed that incorporates the Bayesian learning
framework alongside alternating minimization to jointly
optimize radar and communication beamforming. The
proposed BAT-MIN algorithm can also be adapted for
dynamic RF chain selection in scenarios where the
number of targets and scatterers is not known a priori.
Furthermore, we benchmark the performance of the BAT-
MIN algorithm against state-of-the-art algorithms such
as simultaneous orthogonal matching pursuit (SOMP)
[14] and M-FOCUSS-based beamformers, demonstrating
superior accuracy.

‚ Moreover, the SBL lower bound (SBL-LB) is derived
for the error covariance matrix corresponding to the esti-
mated sparse RCS coefficients of the radar targets. Addi-
tionally, the Bayesian Cramér-Rao lower bound (BCRLB)
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Fig. 1: mmWave MIMO-OFDM ISAC system

is derived to benchmark the NMSE performance, assum-
ing perfect knowledge of all unknown parameters except
RCS.

‚ Comprehensive simulation results are provided for char-
acterizing target parameter estimation, spectral efficiency
(SE) at the UE, 2D-imaging, and beampattern.

Notation: Vectors and matrices are denoted by bold low-
ercase and bold uppercase letters, respectively. The ith row
and jth column of matrix B are denoted by Bpi, :q and
Bp:, jq. The operator diagp¨q extracts diagonal elements into a
vector. The Kronecker product is denoted by b. The operators
p¨qT , p¨qH , p¨q˚, p¨q:, and Trp¨q represent transpose, Hermitian,
complex conjugate, Moore–Penrose pseudoinverse, and trace,
respectively. Norms } ¨ }2, } ¨ }0, and } ¨ }F denote the ℓ2, ℓ0,
and Frobenius norms. Finally, Et¨u denotes expectation.

C. Organization

This paper is organized as follows: Section-II presents
a comprehensive overview of the radar and communication
system models. Section-III introduces the proposed 3D-sparse
radar parameter estimation framework. Section-IV describes
the downlink AoA estimation and uplink beamformer de-
sign. Section-V develops the Bayesian DFRC beamforming
approach. Section-VI analyzes the computational complexity
of the proposed algorithms. Section-VII provides simulation
results to validate the proposed methods. Section-VIII con-
cludes the paper. Finally, the Appendix presents the derivations
of the BCRLB and SBL-LB.

II. RADAR AND COMMUNICATION SYSTEM MODELS

Consider a monostatic mmWave MIMO-OFDM ISAC sys-
tem, where a DFRC BS employs NT transmit antennas
(TAs), NR receive antennas (RAs), NRF RFCs satisfying
NRF ! minpNT , NRq and transmits Ns ă NRF data streams
as shown in Fig. 1. Given that the antenna array size at
the user equipment (UE) is usually considerably smaller than
that at the base station (BS) and has limited computational
complexity, we assume that the UE employs a fully digital

(FD) beamforming configuration. The UE is equipped with
MR RAs.

Consider a scenario, where P targets are randomly dis-
tributed throughout the scattering environment. Among these
P targets, L targets are resolved as scatterers for the com-
munication channel between the DFRC BS and UE [29]. The
parameters of all the P targets are sensed at the DFRC BS,
while the AoAs of the L multipath components are sensed
at the UE. Therefore, the components reflected by the L
communication scatterers, which also act as targets, do not
create any interference at the BS.

An ISAC system is considered to operate over a total
bandwidth of B Hz. The OFDM system partitions the overall
bandwidth into M subcarriers, obeying B “ M∆f , where
∆f represents the bandwidth of each subcarrier. To meet
specific constraints on the maximum delay τmax and maximum
Doppler shift νmax, the subcarrier spacing ∆f and the symbol
duration T are selected to fulfill the following conditions:
∆f ą νmax, T ą τmax, with T “ 1{∆f and Ts “ T `Tcp,
where Tcp is cyclic prefix (CP) duration.

A. Radar signal model

Consider that the P targets are randomly scattered at un-
known locations in a radar-scattering environment. Let xn,m P

CNsˆ1 denote the signal vector transmitted by the DFRC BS
at time instant n and at subcarrier index m. After combining
at the DFRC BS, the received echo ȳechopn,mq P CNsˆ1 can
be expressed as

ȳechopn,mq “ WH
mHr

n,mFmxn,m ` WH
mvn,m, (1)

where vn,m denotes a symmetric complex additive white
Gaussian noise (AWGN) vector distributed as CN p0, σ2

vINR
q.

Furthermore, the matrices Wm “ WRFWBB,m, Fm “

FRFFBB,m where WBB,m P CNRF ˆNs and FBB,m P

CNRF ˆNs represent the frequency selective baseband RC
and TPC, respectively, corresponding to the mth subcarrier.
Moreover, WRF P CNRˆNRF and FRF P CNT ˆNRF are the RF
RC and RF TPC, respectively. Since, the RF TPC and RC are
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constructed using a digitally controlled network of the phase-
shifters, WRF and FRF are constrained to have constant mag-
nitude entries of |WRFpi, jq| “ 1?

NR
and |FRFpi, jq| “ 1?

NT

@i, j.
The MIMO-OFDM radar channel matrix Hr

n,m P CNRˆNT

can be formulated as [37], [38]

Hr
n,m “

P
ÿ

p“1

αpe
´j2πm∆fτpej2πnTsνpaRpθpqaHT pθpq, (2)

where the four-tuple pαp, τp, νp, θpq signifies the complex
radar cross-section coefficient (RCS), delay, Doppler and
AoA/AoD of the pth target. It is important to note that, in the
monostatic ISAC system considered, the AoA and the AoD
are the same, which is θp. The vectors aR pθpq P CNRˆ1

and aT pθpq P CNT ˆ1 denote the array steering vectors at
the DFRC RAs and TAs, respectively, corresponding to the
AoA/AoD θp, which are expressed as

aR
`

θp
˘

“
“

1, e´j 2πλ dR sinpθpq, . . . , e´jpNR´1q 2π
λ dR sinpθpq

‰T
,

aT pθpq “
“

1, e´j 2πλ dT sinpθpq, . . . , e´jpNT ´1q 2π
λ dT sinpθpq

‰T
.

B. Downlink communication model
Assume that L multipath components exist between the

DFRC BS and UE. The received signal ȳDLpn,mq P CMRˆ1

at the UE can be expressed as

ȳDLpn,mq “ Hd
n,mFmxn,m ` zn,m, (3)

where zn,m is the AWGN having the distribution
CN p0, σ2

zIMR
q. Since the UE performs FD beamforming, the

standard zero-forcing (ZF) or minimum mean square error
(MMSE) combiner is applied for the received signal model of
(3) during symbol detection. Furthermore, Hd

n,m P CMRˆNT

represents the downlink MIMO-OFDM channel’s frequency
response (CFR) matrix corresponding to the mth subcarrier
and nth OFDM symbol, which can be expressed as [37]

Hd
n,m “

L
ÿ

ℓ“1

βℓe
´j2πm∆fτ̃ℓej2πnTsν̃ℓbRpϕℓqa

H
T pϑℓq, (4)

where βℓ, τ̃ℓ, ν̃ℓ, ϕℓ and ϑℓ denote the complex path-gain,
delay, Doppler, AoA and AoD of ℓth scatterer, respectively.
The vector bRpϕℓq P CMRˆ1 represents the array steering
vector at the UE, which is defined similarly as in radar signal
model.

C. Uplink communication model
After combining at the DFRC BS, the received signal

ȳULpn,mq P CNsˆ1 can be expressed as

ȳULpn,mq “ WH
mHu

n,mUx̃n,m ` WH
mṽn,m, (5)

where the vector ṽn,m is the AWGN with distribution
CN p0, σ2

ṽINR
q and U P CMRˆNs denotes the precoder

at the UE. The quantity Hu
n,m P CNRˆMT represents the

uplink MIMO-OFDM CFR matrix corresponding to the mth
subcarrier and nth OFDM symbol, which can be expressed as

Hu
n,m “

L
ÿ

ℓ“1

βℓe
´j2πm∆fτ̃ℓej2πnTsν̃ℓaRpϑℓqb

H
R pϕℓq, (6)

where the various quantities are defined similar to (4).

III. 3D SPARSE RADAR PARAMETER ESTIMATION

To construct a sparse representation of the MIMO-OFDM
radar channel in the Delay-Doppler-Angle (DDA) domain, let
us denote the grid sizes used for the delay, Doppler, and angu-
lar domains by Gτ , Gν , and Gθ, respectively. Furthermore, the
delay grid Gpτq and Doppler grid Gpνq are defined as Gpτq “
!

τi : τi “ i
M∆f

)Gτ ´1

i“0
,Gpνq “

!

νj : νj “
j

NTs

)Gν´1

j“0
, re-

spectively, and the AoA grid Gpθq is defined as Gpθq “
!

θk : θk “ k π
Gθ

´ π
2

)Gθ´1

k“0
. Let αi,j,k represent the complex-

valued RCS coefficient corresponding to the delay-index i,
Doppler-index j and AoA-index k. The 3D-sparse radar chan-
nel model can be formulated as

Hr
n,m “

Gτ ´1
ÿ

i“0

Gν´1
ÿ

j“0

Gθ´1
ÿ

k“0

αi,j,ke
´j2π m

M iej2π
n
N jaRpθkqaHT pθkq.

(7)
Then, the echo signal impinging at the DFRC receiver can be
expressed as

yechopn,mq “ WH
RF

ÿ

i,j,k

αi,j,ke
´j2π m

M iej2π
n
N jaRpθkqaHT pθkq

ˆ FRFxn,m ` WH
RFvn,m.

(8)
Let ϕi,j,kpn,mq P CNRF ˆ1 be equivalent to

ϕi,j,kpn,mq “ e´j2π m
M iej2π

n
N jWH

RFaRpθkqaHT pθkqFRFxn,m.
(9)

The system model in (8) can be expressed as

yechopn,mq “
ÿ

i,j,k

ϕi,j,kpn,mqαi,j,k ` WH
RFvn,m, (10)

which can also be formulated in the more compact form of

yechopn,mq “ rΦpn,mqα ` WH
RFvn,m, (11)

where rΦ P CNRF ˆGτGνGθ and sparse radar cross-section
(RCS) vector α P CGτGνGθˆ1 defined as

rΦ “ rϕ0,0,0,ϕ0,0,1, . . . ,ϕGτ ´1,Gν´1,Gθ´1s

α “ rα0,0,0,α0,0,1, . . . ,αGτ ´1,Gν´1,Gθ´1sT .

It is crucial to highlight that the vector α is sparse in nature
due to the fact that the number of targets obeys P ! GτGνGθ.
Hence, α contains only a few non-zero values, which corre-
spond to the delay, Doppler and angle tuples pi, j, kq of the
targets present in the scattering environment.

The observations corresponding to M subcarriers and Np

training OFDM symbols are stacked as yr P CNRFMNpˆ1,
and defined as

yt “
“

yT
echop0, 0q,yT

echop0, 1q, . . . ,yT
echopNp ´ 1,M ´ 1q

‰T
.

Therefore, the observation vector yr can be rewritten as

yr “ Φrα ` vr, (12)

where the quantity Φr “
”

rΦ
T

p0, 0q, rΦ
T

p0, 1q, . . . , rΦ
T

pNp ´ 1,M ´ 1q

ıT

P

CNRFMNpˆGτGνGθ is the associated dictionary
matrix. In (12) we have vr “ pIMNp

b WH
RFqrvr P
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CNRFMNpˆ1, where the vector rvr can be defined as

rvr “

”

vT
0,0,v

T
0,1, . . . ,v

T
Np´1,M´1

ıT

.
As this is a linear model, the optimal linear unbiased esti-

mate of α can be obtained using the popular least squares (LS)
method, expressed as pαLS

“ Φ:
ryr. Moreover, the minimum

mean square error (MMSE) estimate can be formulated as

pαMMSE
“
`

ΦH
r R´1

v Φr ` R´1
α

˘´1
ΦH

r R´1
v yr, (13)

where the covariance matrices obey Rα “ E
␣

ααH
(

P

CGτGνGθˆGτGνGθ and Rv “ σ2
v

“

IMNp
b WH

RFWRF
‰

P

CNRFMNpˆNRFMNp . Although the system model outlined in
(12) is essentially linear in nature and can be addressed using
the LS and MMSE methods, these conventional techniques
often yield sub-optimal results. This is primarily because the
parameter vector α exhibits strong sparsity, which is not
exploited by traditional estimators. Therefore, the problem
presented in (12) essentially boils down to a sparse recovery
problem. Consequently, techniques such as the orthogonal
matching pursuit (OMP) can be employed to determine the
solution. Nevertheless, it is crucial to acknowledge that the
efficiency of OMP critically relies on the careful selection
of the threshold and the dictionary matrix. In this scenario,
the Bayesian learning framework, as outlined in [21], has
shown remarkable performance in the realm of sparse signal
recovery. The subsequent section provides a detailed exposure
of this novel framework within the context of 3D radar target
parameter estimation.

A. 3D-BL based radar RCS parameter estimation

In the proposed 3D-BL framework, we initially assign a
parameterized Gaussian prior to the unknown sparse RCS
coefficient vector α as [21]

ppα;Ωq “

GτGνGθ
ź

g“1

1

πωg
exp

˜

´
|αpgq|

2

ωg

¸

, (14)

where ωg represents the hyperparameter associated with the
gth component of α, governing its prior variance. The diagonal
matrix composed of these hyperparameters is denoted as Ω “

diag pωq P RGτGνGθˆGτGνGθ , where ω P RGτGνGθˆ1 can be
expressed as ω “ rω1, ω2, .., ωGτGνGθ

s
T . The log-likelihood

function log ppyr;ωq can be formulated as

log ppyr;ωq “ ´ϖ ´ log |Σyr
| ´ yH

r Σ´1
yr

yr, (15)

where ϖ “ ´NRFMNp logpπq and Σyr
“ pΦrΩΦH

r `

Rvq P CNRFMNpˆNRFMNp . Since the hyperparameter vector
is unknown in practice, the ML estimate of ω can be obtained
as follows

pωML “ argmax
ωě0

log ppyr;ωq. (16)

As a result of the non-concave nature of the log-likelihood
function in (16), attempting a direct maximization of
log ppyr;ωq imposes mathematical intractability [21]. To ad-
dress this issue, the iterative EM framework provides an ap-
pealing low-complexity strategy, ensuring convergence to local
optima. In this algorithm, the initial step involves defining the
complete data set as tyr,αu, where α represents the latent

variable. Let pΩ
pj´1q

denote the estimate of Ω obtained in the
pj ´ 1qst iteration. In the expectation step (E-step), the log-
likelihood for the complete data is expressed as

L
ˆ

Ω|pΩ
pj´1q

˙

“ E
α|yr; pΩ

pj´1q tlog ppyr,α;Ωqu ,

“ E tlog rp pα;Ωqsu ` E tlog rp pyr|αqsu .
(17)

To compute the expectation mentioned above, it is necessary
to calculate the posterior density function of the parameter α,
which can be obtained as

p

ˆ

α|yr; pΩ
pj´1q

˙

“ CN
´

pαpjq,Σpjq
¯

, (18)

where pαpjq and Σ
pjq
r are derived as

pαpjq
“ Σpjq

r ΦH
r R´1

v yr,

Σpjq
r “

˜

ΦH
r R´1

v Φr `

ˆ

pΩ
pj´1q

˙´1
¸´1

.
(19)

Next, in the Maximization step (M-step), we aim for max-

imizing the log-likelihood function L
ˆ

Ω|pΩ
pj´1q

˙

with re-

spect to the hyperparameters Ω. It is evident from (17) that
the second term, E tlog rp pyr|αqsu, is independent of the
hyperparameters Ω. Consequently, this term can be ignored
during the maximization step. Thus, the optimization problem
of estimating the hyperparameters Ω in the jth iteration can
be devised as

pΩ
pjq

“ argmax
Ω

E tlog rppα;Ωqsu ,

“ argmax
Ω

GτGνGθ
ÿ

g“1

ˆ

´ log pπωgq ´
1

ωg
E
α|yr; pΩ

pj´1q

␣

|αpgq|2
(

˙

.

Notably, the maximization of this equation concerning Ω can
be performed independently for each ωg as

pωpjq
g “ argmax

ωg

ˆ

´ log pπωgq ´
1

ωg
E
α|yr; pΩ

pj´1q

␣

|αpgq|2
(

˙

.

By setting the derivative with respect to ωg to zero, the
estimated value of the hyperparameter ωg in the jth iteration
can be formulated as

pωpjq
g “ E

α|yr; pΩ
pj´1q

␣

|αpgq|2
(

“ Σpjq
pg, gq `

ˇ

ˇ

ˇ
pαpjq

pgq

ˇ

ˇ

ˇ

2

.

(20)

The E-step and M-step procedures mentioned above are
iteratively carried out until one of the stopping conditions
is met: either the maximum affordable number of iterations

κ1 is reached or
›

›

›

›

pΩ
pjq

´ pΩ
pj´1q

›

›

›

›

2

F

falls below a predefined

threshold ϵ1. This stopping threshold is appropriately chosen
to ensure accurate parameter estimation. Algorithm-1 outlines
the steps involved in the proposed 3D-BL scheme for RCS
parameter estimation. Moreover, the SBL-LB for the mean
square error (MSE) of the sparse RCS estimate α can be
expressed as

MSE ppαq ě Tr
!

`

ΦH
r R´1

v Φr ` Ω´1
˘´1

)

. (21)
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Algorithm 1: 3D-BL based sparse RCS estimation
Input: Observation vector yr, dictionary matrix Φr,

noise covariance matrix Rv and stopping threshold ϵ1
and maximum number of iterations κ1

Initialization:
Hyperparameters pω

p0q
g “ 1, @ 1 ď g ď GτGνGθ, i.e.,

pΩ
p0q

“ IGτGνGθ
, counter variable j “ 0 and

pΩ
p´1q

“ 0GτGνGθ
.

while ,
›

›

›

›

pΩ
pjq

´ pΩ
pj´1q

›

›

›

›

2

F

ą ϵ1 and j ă κ1 do

j Ð j ` 1,
E-Step:

Σpjq
r “

˜

ΦH
r R´1

v Φr `

ˆ

pΩ
pj´1q

˙´1
¸´1

pαpjq
“ ΣpjqΦH

r R´1
v yr

M-Step: Update the hyperparameters

pωpgq
r “ Σpjq

pg, gq `

ˇ

ˇ

ˇ
pαpjq

pgq

ˇ

ˇ

ˇ

2

end while
Output: pα

A detailed explanation of the derivation is provided in Ap-
pendix. The next section presents the AoA estimation and the
UL beamforming at the UE.

IV. AOA ESTIMATION AND UPLINK BEAMFORMING

An uplink beamformer is required to direct the signal toward
the scatterer by utilizing the knowledge of AoA at the UE.
Toward this, an uplink pilot is sent to the BS to estimate the
delay, Doppler, and AoA of the moving scatterers. Considering
the limited computational capability of the UE, only the
AoA is estimated at the UE by exploiting the high-resolution
1D multiple signal classification (1D-MUSIC) algorithm as
described next [39].

A. AoA estimation of scatterers at the UE
The downlink signal received by the UE is given as

yDLpn,mq “ Hd
n,mFRFxn,m ` zn,m, (22)

and its covariance matrix Ry P CMRˆMR is evaluated as

Ry “ EryDLpn,mqyDLpn,mqH s

“ ErHd
n,mFRFxn,mxH

n,mFH
RFpHd

n,mqH s ` Erzn,mzHn,ms.

To this end, the sample covariance matrix pRy can be formu-
lated as

pRy “
1

MNp

M´1
ÿ

m“0

Np´1
ÿ

n“0

yDLpn,mqyH
DLpn,mq. (23)

Furthermore, the eigenvalue decomposition of pRy can be
expressed as

pRy “ QpΛ ` σ2
vIMR

qQH

“ rQs,Qns

„

Λs 0
0 Λn

ȷ „

QH
s

QH
n

ȷ

,
(24)

where Qs “ rq1,q2, . . . ,qLs P CMRˆL and Qn “

rqL`1,q2, . . . ,qMR´Ls P CMRˆpMR´Lq contain the basis
that span the signal and noise subspaces, respectively. Finally,
the MUSIC spectrum can be formulated as

PMUSICpϕq “
1

bH
R pϕqQnQH

n bRpϕq
. (25)

The angles corresponding to the top L peaks of the spectrum
are selected as the estimated AoAs.

B. Uplink beamformer design and scatterer parameter esti-
mation

In this section, we will design an uplink beamformer that
reduces the receiver complexity while estimating the scatterer
parameters at the BS. With this objective in mind, the uplink
channel in (6) can be compactly represented as

Hu
n,m “ ARRCDBH

R , (26)

where AR “ raRpϑ1q, . . . ,aRpϑLqs P CNRˆL and BR “

rbRpϕ1q, . . . ,bRpϕLqs P CMRˆL. The matrices R,C,D P

CLˆL are diagonal matrices whose ℓth diagonal entries are
e´j2πm∆fτ̃ℓ , βℓ and ej2πnTsν̃ℓ , respectively. Employing the
above definitions, the uplink received signal yULpn,mq at the
DFRC BS can be expressed as

yULpn,mq “ WH
RFARRCDBH

RUx̃n,m ` WH
RFṽn,m. (27)

Similar to the radar system model of (12) at the DFRC BS,
the sparse model can be constructed to estimate the unknown
parameters of the scatterers, which is given as

yULpn,mq “ WH
RF

ÿ

i,j,k,l

βi,j,k,le
´j2π m

M iej2π
n
N jaRpϑkqbH

R pϕlq

ˆ Ux̃n,m ` WH
RFṽn,m,

(28)

where we have Gpϕq “

!

ϕl : ϕl “ l π
Gϕ

´ π
2

)Gϕ´1

l“0
and Gϕ is

the grid size for the AoDs at the UE. One can observe that, in
contrast to the radar system model, the AoAs and AoDs are not
the same for the communication system. Hence, the DFRC BS
cannot exploit the 3D sparsity, but rather, it has to introduce
an angular grid for the AoDs ϕl, which significantly increases
the complexity at the receiver. Since the information of AoD
at the DFRC BS is not required for transmit beamforming, the
estimation of the AoD at the DFRC BS is redundant. At this
juncture, one can harness the AoA estimated in the previous
stage to reduce the overall complexity. To begin with, the zero-
forcing (ZF) beamformer is expressed as

U “ BRpBH
RBRq´1. (29)

Upon employing this, the model in (27) reduces to

yULpn,mq “ WH
RFARRADx̃n,m ` WH

RFṽn,m

“ WH
RF

L
ÿ

ℓ“1

βℓe
´j2πm∆fτ̃ℓej2πnTsν̃ℓaRpϑℓqx̃n,m

` WH
RFṽn,m,

(30)
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and the 4D-sparse model of (28) can be reduced to the 3D-
sparse model given as

yULpn,mq “ WH
RF

ÿ

i,j,k

βi,j,ke
´j2π m

M iej2π
n
N jaRpϑkqx̃n,m

` WH
RFṽn,m.

(31)
This is the similar to the (8), hence by following the procedure
from (8) to (12) one can obtain the 3D-sparse model as

yc “ Ψβ ` wr, (32)

where Ψ P CNRFMNpˆGτGνGϑ is the dictionary matrix. This
is also a 3D-sparse model similar to (12). Hence, 3D-BL can
be exploited to estimate the parameters of the scatterers. With
these estimations, the BS can now differentiate which targets
are resolved as scatterers, enabling the subsequent design
of the beamformer. Moreover, the estimated Doppler can be
used to compensate the Doppler before formulating the DFRC
beamformer. The Doppler-compensated communication chan-
nel is given by

Hc,m “

L
ÿ

ℓ“1

βℓe
´j2πm∆fτ̃ℓbRpϕℓqa

H
T pϑℓq. (33)

V. DFRC BEAMFORMER

In this section, a joint optimization framework is presented,
aiming for deriving the DFRC beamformer capable of direct-
ing the beam toward both the K “ P ´ L targets and L
targets resolved as scatterers. With this in mind, the DFRC
activates NRF “ P RFCs. The objective of the beamformer
is to maximize the downlink data rate, which is given by

SErms “ log2

ˇ

ˇ

ˇ

ˇ

IMR
`

1

σ2
vNs

Hc,mFRFFBB,mFH
BB,mFH

RFH
H
c,m

ˇ

ˇ

ˇ

ˇ

.

(34)
Therefore, the joint radar and communication beamformer
design problem is constructed as

max
FRF,FBB,m

M
ÿ

m“1

SErms

s.t. |FRFpi, jq| “
1

?
NT

, }FRFFBB,m}
2
F “ Ns,

(35)

where the first constraint represents the constant-modulus
property of the elements in the analog beamformer and the sec-
ond constraint restricts the total transmit power to unity. Nev-
ertheless, the non-convex constant-modulus constraint linked
to every component of the RF precoder FRF and the coupling
of TPC in the second constraint make direct optimization
of the aforementioned objective function difficult. One can
approximate the above mutual information maximization prob-
lem by a Euclidean distance minimization problem between
the optimal FD TPC and hybrid TPC [35], [40]. To this
end, it is proposed to employ a weighted sum objective for
the radar and communication tasks. This approach aims for
breaking down the product FRFFBB,m into components that
closely approximate the optimal FD TPC matrix FC,m for
the mth subcarrier during its communication operation, while
simultaneously approaching the optimal radar TPC matrix FR

for radar operations. This leads us to the joint optimization
problem that combines radar and communication operations
for the design of the hybrid TPCs, which can be expressed as:

min
FRF,FBB,m,QT,m

δ }FRFFBB,m ´ FC,m}
2
F

` p1 ´ δq }FRFFBB,m ´ FRQT,m}
2
F

s.t. |FRFpi, jq|“
1

?
NT

, }FRFFBB,m}
2
F “Ns,QT,mQH

T,m “IP ,

(36)
where δ P r0, 1s is the weighting factor used for striking a
trade-off between the radar and communications tasks. The
communication operation is prioritized with a high value of δ,
whereas the radar functionality is given priority with its low
value. The matrix FC,m P CNT ˆNs is an ideal unconstrained
FD communication-only beamformer obtained through the Ns

largest right singular vectors corresponding to the Doppler-
compensated channel Hc,m formulated in (33). Furthermore,
the matrix FR “ rapθ1q,apθ2q, ..,apθKqs P CNT ˆK is the
radar-only beamformer and QT,m P CKˆNs is a semi-unitary
matrix applied for compensating the change of dimensions
between FR as well as FC,m and does not affect the radar
beampattern.

The problem in (36) involves non-convexity of the objective
function and constraints, which makes the problem difficult
to solve. An efficient and iterative alternating minimization-
based approach is proposed therefore to find a near-optimal
solution. In this regard, the problem in (36) is decomposed
into two separate sub-problems, where the first problem finds
QT,m while fixing FRF and FBB,m, while the second problem
is solved for FRF and FBB,m simultaneously, while keeping
QT,m fixed. By setting FRF and FBB,m to fixed values, the
sub-problem of optimizing the auxiliary matrix QT,m can be
formulated as

min
QT,m

}FRFFBB,m ´ FRQT,m}
2
F

s. t. QT,mQH
T,m “ IP .

(37)

The problem in (37) is a well-known orthogonal Procrustes
problem (OPP), which can be solved by the SVD of the matrix
FH

RFRFFBB,m. Let UmΣmVH
m “ FH

RFRFFBB,m define its
SVD. The solution of problem (37) is given by

QT,m “ UmIKˆNs
Vm, (38)

where IKˆNs is obtained by selecting the first K rows of an
Ns ˆ Ns identity matrix.

To find the optimum FBB,m and FRF simultaneously, we
formulate a sparse matrix reconstruction problem. In this
regard, by fixing QT,m, the sub-problem to compute FBB,m
is given as

min
FRF,FBB,m

δ }FRFFBB,m ´ FC,m}
2
F

` p1 ´ δq }FRFFBB,m ´ FRQT,m}
2
F

s. t. |FRFpi, jq| “
1

?
NT

, }FRFFBB,m}
2
F “ Ns.

(39)
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Algorithm 2: BAT-MIN algorithm for joint beamform-
ing

Input: FR, FC,m, δ, tolerable accuracy for BAT-MIN
ϵ2 ą 0, maximum iteration for BAT-MIN κ2,
tolerable accuracy for M-BL ϵ3 ą 0 and maximum
number of iterations for M-BL κ3,

Initialization:
‚ F

p0q

RF ,F
p0q

BB,m,Q
p0q

T,m initialized randomly and the
optimization objective in (36) is denoted as f p0q,
hyperparameters pγ

p0q
g “ 1, @ 1 ď g ď Gθ, i.e.,

pΓ
p0q

“ IGθ
, BAT-MIN counter variable k “ 0, M-BL

counter variable j “ 0 and pΓ
p´1q

“ 0Gθ
.

while
ˇ

ˇf pkq ´ f pk´1q
ˇ

ˇ ą ϵ2 and k ă κ2 do
k Ð k ` 1,
Solve sub-problem (37) to compute QT,m

while
›

›

›

›

pΓ
pjq

´ pΓ
pj´1q

›

›

›

›

2

F

ą ϵ3 and j ă κ3 do

j Ð j ` 1,
E-Step:

Σpjq “

ˆ

1

σ2
w

AH
TAT `

´

pΓpj´1q
¯´1

˙´1

Mpjq
“

1

σ2
w

ΣpjqAH
TΞ

M-Step: Update the hyperparameters

pγpjq
g “

1

Ns

›

›

›
Mpjq

pg, :q
›

›

›

2

2
` Σpjq

pg, gq.

end while
M-BL Output: F̆pkq

BB,m “ M
Obtain F

pkq

BB,m and F
pkq

RF using (48) and procedure
discussed thereafter

end while
Output: Optimal QT,m,FBB,m and FRF

The following matrices can be used for simplifying this
problem:

P1 “

”?
δINT

,
?
1 ´ δINT

ıT

,

P2 “

”?
δFT

C,m,
?
1 ´ δQT,mFT

R

ıT

,

Ξ “ PH
1 P2.

The problem (39) can be succinctly derived in a compact form
as

min
FRF,FBB,m

}Ξ ´ FRFFBB,m}
2
F

s. t. |FRFpi, jq| “
1

?
NT

, }FRFFBB,m}
2
F “ PT .

(40)

Furthermore, in order to simultaneously determine the optimal
FBB,m and FRF, a sparse matrix reconstruction problem is
formulated next. As demonstrated in [40], it has been estab-
lished that the columns of FRF can be selected from the set of
transmit array steering vectors. Consider AT as the quantized
transmit array response dictionary matrix that can be expressed

as AT “ raT pθ1q ,aT pθ2q , . . . ,aT pθGθ
qqs P CNT ˆGθ . The

objective of the TPC design problem is to achieve the best
approximation to the matrix Ξ, which can be formulated as
follows:

F̆opt
BB,m “ arg min

F̆BB,m

›

›

›
Ξ ´ ATF̆BB,m

›

›

›

2

F
,

s.t.
›

›

›
diag

´

F̆BB,mF̆H
BB,m

¯
›

›

›

0
ď NRF ,

›

›

›
ATF̆BB,m

›

›

›

2

F
“ Ns.

(41)
The first constraint arises due to the fact that F̆opt

BB,m P

CGθˆNs can only have NRF non-zero rows associated with
the number of active RFCs. This imposes a simultaneous
sparse structure on F̆BB,m. The second constraint represents
the transmit power constraint as described in (36). Moreover,
to leverage the simultaneous sparsity inherent in F̆BB,m, a
multiple-measurement vector (MMV) based Bayesian learning
(M-BL) regime can be employed. The key motivation for the
use of SBL in optimizing ISAC beamforming lies in its robust
performance toward achieving sparse solutions. The objective
function of SBL, which is derived from a log-likelihood
formulation, has fewer local maxima, making it more reliable
in evaluating the underlying sparse solution. Additionally, the
algorithm leverages the EM method, which is renowned for
its ability to ensure convergence. With each iteration, the
EM algorithm steadily achieves a lower cost function until it
converges to a stable fixed point [21]. This iterative refinement
enhances the reliability and effectiveness of the SBL approach.
The M-BL technique assigns the following parameterized prior
to the matrix F̆BB,m:

p
´

F̆BB,m;Γ
¯

“

Gθ
ź

g“1

p
´

F̆BB,mpg, :q; γg

¯

, (42)

where γg represents the hyperparameter associated with the
gth row of F̆BB,m and the hyperparameter matrix Γ “

diag pγ1, γ2, ¨ ¨ ¨ , γGθ
q P RGθˆGθ . The parameterized prior

assigned to the Ns-dimensional row vector F̆BB,mpg, :q is
given as p

´

F̆BB,mpg, :q; γg

¯

„ CN p0, γgINs
q. The key

motivation for this prior assignment is that the estimate
of F̆BB,mpg, :q Ñ 0 as the corresponding hyperparameters
γg Ñ 0 [21]. This pertains to the RF TPC column, specified
by the beam steering vector for the gth element of the angular
grid Gpθq. The a posterior density of F̆BB,m can be computed
as p

´

F̆BB,mp:, sq | Ξp:, sq;Γ
¯

„ CN pMp:, sq,Σq, for all
1 ď s ď Ns, where the posterior mean M and covariance
Σ are expressed as

M “
1

σ2
w

ΣAH
TΞ, Σ “

ˆ

1

σ2
w

AH
TAT ` pΓq´1

˙´1

, (43)

and σ2
w represents the variance of the approximation error. It is

evident from (43) that the determination of F̆BB,m relies on the
hyperparameter matrix Γ. Therefore, the estimation problem
of F̆BB,m simplifies to the estimation of the corresponding
hyperparameter vector γ “ rγ1, γ2, ¨ ¨ ¨ , γGθ

s
T . The iterative

EM algorithm can now be employed for maximizing the
Bayesian evidence p pΞ;Γq. Toward this, in the E-step of the
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TABLE II: Parameters used for ISAC System-1 and System-2

Parameters System-1 System-2 Parameters System-1 System-2
System bandwidth, B 1.92 MHz 5.12 MHz # DFRC BS RFCs, NRF 8 8
Subcarrier Spacing, ∆f 120 kHz 160 kHz # UE antenna, MR 8 10
# subcarriers, M 16 32 DFRC Velocity resolution (m/s), ∆V “ c{2fcNpTs 73.05 47.62
# OFDM pilot Symbols in a frame, Np 8 16 Range resolution (m), ∆R “ c{2B 78.12 29.30
Cyclic prefix duration, Tcp 0.1T 0.125T DFRC angular resolution, ∆θ0 100 50

# Scatterers, L 2 3 Doppler bins, Gν 8 12
# Targets, P 3 6 Delay bins, Gτ 8 12
# DFRC TAs/RAs, NT / NR 16 32 Angular bins, Gθ{Gϑ 18 36

TABLE III: Computational complexity for (a) 3D-BL (b) BAT-MIN and (c) MUSIC

(a) 3D-BL

Operation Complexity order
Σ

pjq
r OpG3

τG
3
νG

3
θq

αpjq OpG2
τG

2
νG

2
θq

ω
pjq
r OpGτGνGθq

(b) BAT-MIN

Operation Complexity order
Σpjq OpG3

θq

Mpjq OpNsG2
θq

γ
pjq
g OpNsGθq

(c) MUSIC, Gm: number of spectral grids

Operation Complexity order
Covariance Ry calculation OpM2

RMNpq

Eigenvalue decomposition OpM3
Rq

Noise subspace construction OppMR ´ LqM2
Rq

Spectral search OpM2
RGmq

jth iteration, the average log-likelihood L
ˆ

Γ | pΓ
pj´1q

˙

for

the complete dataset is computed which is expressed as:

L
ˆ

Γ | pΓ
pj´1q

˙

“ E
F̆BB,m|Ξ;pΓ

pj´1q

!

log p
´

Ξ, F̆BB,m;Γ
¯)

.

(44)
Subsequently, in the M-step, the maximization is performed

for L
ˆ

Γ | pΓ
pj´1q

˙

with respect to the hyperparameter vector

γ, yielding the estimate

pγpjq “ argmax
γ

E
F̆BB,m|Ξ;pΓ

pj´1q

!

log p
´

Ξ | F̆BB,m

¯

` log p
´

F̆BB,m;Γ
¯)

.
(45)

The first term in (45) is observed to be independent of the
hyperparameter vector γ and can, therefore, be discarded
during the maximization in the M-step. The corresponding
optimization problem of estimating the hyperparameter vector
γ can be simplified as

pγpjq
“ argmax

γ
E
F̆BB,m|Ξ;pΓ

pj´1q

!

log p
´

F̆BB,m;Γ
¯)

“argmax
γ

Gθ
ÿ

g“1

´Ns log pπγgq ´

›

›

›
Mpjq

pg, :q
›

›

›

2

` NsΣ
pjq

pg, gq

γg
,

(46)
where Mpjq and Σpjq are obtained from (43) by setting Γ “

pΓ
pj´1q

. By setting the gradient of the objective function in
(45) with respect to γ to zero, we can determine the estimate
of γg during the jth iteration of the EM algorithm as

pγpjq
g “

1

Ns

›

›

›
Mpjq

pg, :q
›

›

›

2

2
` Σpjq

pg, gq. (47)

Upon convergence, we aim at F̆BB,m “ Mpjq. The baseband
TPC matrix FBB,m can be derived from F̆BB,m by first
obtaining the largest NRF hyperparameters and their indices.
Let I denote the set of the row indices corresponding to
the largest hyperparameters. Then the unnormalized baseband
TPC matrix FBB,m can be expressed as

FBB,m “ F̆BB,mpI, :q. (48)

Subsequently, the RF TPC denoted as FRF can be derived
from AT by selecting the NRF columns that align with the
rows extracted from F̆BB,m. Finally, the baseband TPC is
then normalized as FBB,m Ð

?
Ns

}FRFFBB,m}F
FBB,m to satisfy the

power constraint. Algorithm-2 provides a concise overview of
this procedure.

It is important to mention that the proposed BAT-MIN
algorithm can also be adapted for dynamic RFC selection in
scenarios, where the number of targets and scatterers is not
known a priori [34]. The number of dominant hyperparameters
obtained at the convergence of the algorithm can be utilized
to activate the minimum number of RF chains necessary for
closely approximating the ideal digital precoder or combiner,
hence offering better energy efficiency.

VI. COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed 3D-BL tech-
nique is of the order OpG3

τG
3
νG

3
θq per iteration due to the

inversion of the matrix Σr P CGτGνGθˆGτGνGθ . Similarly, the
complexity of the BAT-MIN algorithm is of the order OpG3

θq

per iteration due to the inversion of Σ P CGθˆGθ . The MUSIC
algorithm requires OpM3

Rq operations due to the eigenvalue
decomposition of the covariance matrix Ry P CMRˆMR . A
detailed description of computational complexity is given in
Table. III.

VII. SIMULATION RESULTS

This section characterizes the performance of the 3D-BL
and BAT-MIN techniques proposed for radar target parame-
ter estimation and DFRC beamformer designs, respectively.
System-1 and System-2, have been examined, and the various
simulation parameters used are provided in Table II. The tar-
gets are dispersed randomly in the scattering environment, and
the RCS coefficients of these targets are generated as random
variables, following a distribution denoted as αp „ CN p0, 1q.
A similar distribution is followed by βℓ. For the estimation
based on BL, the stopping parameters are configured as
ϵ1 “ ϵ2 “ ϵ3 “ 10´6 and κ1 “ κ2 “ κ3 “ 50. The
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Fig. 2: (a) NMSE versus SNR performance of sparse RCS estimation for System-1; (b) System-2; (c) BCRLB and SBL-LB comparison; (d)
NMSE versus SNR performance of true RCS estimation for System-1.

regularization parameter for FOCUSS is set to 0.1σ2, the
lp-norm parameter is adjusted to p “ 0.8 with a stopping
threshold of ϵ “ 10´6, and the maximum number of iterations
is set to Nmax “ 800.

A. Radar parameter estimation

Fig. 2a and 2b depict a comparison of the NMSE perfor-
mance for the proposed 3D-BL schemes designed for the 3D-
sparse radar model, in contrast to the OMP, FOCUSS, and
MMSE techniques. The outcomes are illustrated separately for
System-1 and System-2 in Fig. 2a and Fig. 2b, respectively.
Furthermore, the efficiency of the proposed techniques is
assessed by comparing them against the SBL-LB derived in
(56). The NMSE of the RCS estimate for the radar target is
defined as NMSE fi

}pα´α}
2
2

}α}22
.

In Fig. 2a, a notable NMSE gain of approximately 5 dB
and 15 dB is observed for the proposed 3D-BL techniques
when compared to OMP and FOCUSS, respectively. The OMP
algorithm suffers due to its dependence on both the choice
of the sensing matrix and on the threshold, hence requiring
careful empirical tuning. Even a slight variation in the stopping
parameters may result in convergence and structural errors.

Furthermore, each incorrect column selection in an iteration
has a cascading effect, leading to error propagation [21].
FOCUSS also faces limitations due to convergence issues
and its susceptibility to the regularization parameter [41].
The NMSE performance of the MMSE estimator is notably
suboptimal, which is attributed to its failure to leverage
the inherent sparsity in the parameter α. This observation
underscores the significance of incorporating sparsity-aware
techniques for enhancing the estimation accuracy in our study.
A significant NMSE performance improvement of 10 dB
is observed for 3D-BL in System-2 over System-1. This is
attributed to the difference in the number of observations,
which is NRFMNp “ 4096 for System-2, whereas it is 1024
for System-1. This increase in observations provides better
estimation accuracy [42].

Fig. 2c shows the comparison of SBL-LB and BCRLB
derived in the appendix. The SBL-LB serves as a lower
bound for the sparse RCS vector α P CGτGνGθˆ1, while the
BCRLB operates under the assumption of perfect knowledge
of all parameters except the true RCS coefficient provides the
lower bound for the true RCS coefficients ᾱ P CPˆ1. The
SBL-LB requires the hyperparameter matrix Ω, which is esti-
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Fig. 3: Demonstration of the parameter estimation of System-II at SNR“ ´5 dB and SNR“ 5 dB. (a) Estimated AoA and range by 3D-BL
at SNR “ ´5 dB (b) Estimated absolute RCS coefficients versus velocity estimated by 3D-BL at SNR “ ´5 dB (c) MUSIC spectrum of
AoA at the UE at SNR “ ´5 dB (d) Estimated AoA and range estimated at SNR “ 5 dB (e) Estimated absolute RCS coefficients versus
velocities estimated by 3D-BL at SNR “ 5 dB (f) MUSIC spectrum of AoA at the UE at SNR “ 5 dB.

mated during the 3D-BL process. While these hyperparameters
should ideally be zero at non-support locations, some small
values still appear in estimation. By pruning these small values
and replacing them with near-zero values, the hyperparameter
matrix Ω approaches its ideal value, bringing the SBL-LB
closer to the BCRLB, as shown in Fig. 2c. Fig. 2d shows the
NMSE of true RCS for 3D-BL, also compared against the
multi-dimensional OMP (MOMP) [43]. While MOMP uses
smaller, decoupled dictionaries for each parameter dimension,
3D-BL employs a global dictionary that jointly captures delay,
Doppler, and angle information. This joint modeling increases
computational complexity but enables superior recovery. As
shown in Fig. 2d, while MOMP performs slightly better
than the OMP, 3D-BL outperforms MOMP by about 3 dB,
justifying its higher complexity.

B. Imaging

Once the estimate of the RCS vector pα has been ob-
tained using the 3D-BL, imaging of the scattering scene
can be conducted. The reliable detection of any target in
the delay, Doppler, and angle bin pi, j, kq is confirmed if
|pαpi, j, kq| ą η, where η ! 1 is a carefully chosen thresh-
old. Moreover, let T represent the set of all bins pi, j, kq

satisfying the detection criterion, which can be expressed as
T “ tpi, j, kq | |pαpi, j, kq| ą ηu . Then the number of targets
that can be detected is given by pP “ |T |. The range, velocity
and AoA of the pth target can be estimated by

pRp “
c

2M∆f
pi, pvp “

c

2fcNpTs

pj pθp “
π

Gθ

pk. (49)

Furthermore, the Cartesian coordinates px̂p, ŷpq of the pth tar-
get, relative to the BS located at the origin, can be determined
from the estimated AoA θ̂p and range R̂p as follows:

x̂p “ R̂p cos θ̂p, ŷp “ R̂p sin θ̂p.

Fig. 3(a)-(c) and 3(e)-(g) illustrate the imaging performance of
the proposed 3D-BL scheme at SNR “ ´5 dB and SNR “ 5
dB, respectively, where the detection threshold is set to η “

0.01. In 3(a) and 3(b), the polar scatter plots representing the
angle-range information of the targets are displayed for SNR “

´5 dB and SNR “ 5 dB, respectively. Even at SNR “ ´5 dB,
the positions of all six targets are accurately estimated, albeit
with a relatively high false positive rate. This false positive
rate is notably reduced at SNR “ 5 dB, and the angle-range
information of the targets is estimated with high precision. Fig.
3(c) and 3(d) depict the efficacy of the proposed 3D-BL in
terms of both velocity and RCS parameter estimation. At low
SNRs, such as SNR “ ´5 dB, some false positives can also be
seen. However, it is interesting to see from Fig. 3 (c) that while
false positives exist at low SNR, their magnitude is weak. This
type-I error rate is significantly reduced at SNR “ 5 dB. In
addition, Figures 3(e) and 3(f) showcase the efficiency of AoA
estimation at the UE using MUSIC. The MUSIC spectrum
in 3(e) reveals that at such low SNRs, the estimation of the
angle of two communication scatterers is very close to the
true AoA, while an erroneous estimation occurs at an angle of
´300 corresponding to the true location at 200. However, at
SNR “ 5 dB, all the angles of the communication scatterers
are accurately estimated.
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Fig. 4: Spectral efficiency achieved by the fully digital precoder and BAT-MIN algorithm with different values of δ for (a) System-1; (b)
System-2. Spectral efficiency achieved by different hybrid beamforming algorithms at δ “ 1 for (c) System-1; (d) System-2.

C. Spectral efficiency

Fig. 4a and 4b shows the spectral efficiency achieved by the
proposed BAT-MIN algorithm for the weighting factor values
δ =t0.4, 0.5, 0.6, 1u, corresponding to System-1 and System-
2, respectively. The performance of the proposed scheme is
also contrasted to that of the optimal FD beamformer in
these plots. It is evident that as δ increases, the SE also
increases, indicating a higher weight allocated to obtaining
the hybrid communication beamformer, which approaches the
performance of the optimal FD beamformer. Moreover, a ca-
pacity difference of 3 bps/Hz can be observed between δ “ 0.4
and δ “ 1 at SNR=10 dB. This divergence arises due to the
allocation of higher weight to the radar beamformer when
δ “ 0.4, thereby eroding the communication performance.
Even at δ “ 0.4, when the beamformer is more biased
towards the radar side, a SE of 10 bps/Hz can be obtained.
Furthermore, the SE difference between the proposed BAT-
MIN algorithm at δ “ 1 and the optimal FD beamformer
is marginal at 2 bps/Hz. It is also interesting to see that
the proposed algorithm achieves a performance close to the
optimal FD beamformer, especially in the low-SNR region,
regardless of the value of δ.

Fig. 4c and 4d compare the SE performance of the BAT-
MIN algorithm to other competing schemes. Here the SOMP
and M-FOCUSS are the alternating minimization algorithms
associated with SOMP and M-FOCUSS used for the design
of F̆BB,m. It is evident that the proposed BAT-MIN algorithm
results in a 1 bps/Hz SE improvement over the SOMP-based
alternating minimization. Moreover, the M-FOCUSS-based
alternating minimization algorithm exhibits a 2 bps/Hz SE loss
over the proposed BAT-MIN algorithm. These observations are
in line with our previous discussion of the NMSE performance
seen for the OMP and FOCUSS. Within the class of sparse
beamforming algorithms, SOMP stands as a potential competi-
tor [14]. However, SOMP, being a greedy algorithm, exhibits
sensitivity both to the selection of the dictionary matrix and
to the stopping criterion, which impacts its performance. By
contrast, as demonstrated in our simulations, the proposed
SBL approach consistently outperforms SOMP and other state-
of-the-art methods in ISAC beamforming, highlighting its
effectiveness and reliability.

One can also observe the SE improvement of System-2 as
compared to System-1. This improvement is attributed to an

increase in the number of communication paths in System-2,
which is L “ 3, in contrast to L “ 2 for System-1. This
improves the rank of the communication channel, resulting in
the observed SE improvement of System-2.

D. Beampattern

Fig. 6 shows the beampatterns of the proposed BAT-MIN
beamformer along with δ “ t0.1, 0.5, 0.9u, P “ 5 and L “ 2.
The proposed beampattern is also compared to the ideal radar
and communication beampattern. It can be observed that at
δ “ 0.1 the radar operation dominates, and hence the DFRC
beamformer can effectively steer beams in the direction of the
targets along negligible directivity towards the communication
scatterers. On the other hand, a trade-off between sensing and
communication is noticeable at δ “ 0.5, where the proposed
DFRC beamformer succeeds in forming beams towards all
the targets and scatterers. One observes that at δ “ 0.9,
namely when the communication operation dominates, the
DFRC beamformer effectively steers the beams toward the
communication scatterers, with no beams toward the targets.
It is also interesting to note that in all the cases, the side lobes
are weaker than the side lobes of the ideal communication
beamformer, which shows the effectiveness of the proposed
beamformer.

VIII. SUMMARY AND CONCLUSION

We introduced a representation of the radar channel in
the delay-Doppler-angular domain and subsequently derived
the end-to-end relationship of a mmWave MIMO-OFDM
ISAC system. Subsequently, an innovative radar parameter
estimation model was developed, exploiting the inherent three-
dimensional sparse structure of the radar channel, followed
by the development of a radar parameter estimation model
to exploit the inherent 3D-sparsity. The proposed 3D-BL
framework achieved superior NMSE performance compared
to its competitors, like the OMP, FOCUSS, and MMSE-based
schemes. Furthermore, a zero-forcing beamformer was utilized
to reduce the system complexity to estimate the uplink param-
eters. Moreover, we introduced an innovative technique that
leverages Bayesian learning in conjunction with an alternating
minimization algorithm for joint beamformer design. This
addition represents a significant advancement in optimizing
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Fig. 5: BAT-MIN DFRC beampattern of System-1 for (a) δ “ 0.1; (b) δ “ 0.5; (c) δ “ 0.9.

the beamforming process within a mmWave MIMO-OFDM
ISAC system, which ultimately enhanced the system’s overall
performance and related capabilities.

The simulation results undeniably validate the effectiveness
of the proposed 3D-BL schemes, showcasing its commendable
performance that closely aligns with the SBL-LB. Noteworthy
is the substantial improvement of at least 5 dB compared
to alternative techniques. Furthermore, the proposed BAT-
MIN beamformer stands out as a formidable solution, closely
rivaling the capabilities of a fully digital beamformer and
maintaining a significant minimum advantage of 1 bps/Hz over
its peers. These collective findings emphasize the substantial
significance and practical efficacy of the proposed techniques.

IX. APPENDIX

A. Bayesian Cramér-Rao lower bound

Let us define the radar channel Hr
n,m in the

compact form as Hr
n,m “ ARRmCDnA

H
T , where

AR “ raRpθ1q, . . . ,aRpθP qs P CNRˆL and
AT “ raT pθ1q, . . . ,aT pθP qs P CNT ˆL. The matrices
Rm,C,Dn P CPˆP are diagonal matrices whose pth diagonal
entries are e´j2πm∆fτp , αp and ej2πnTsνp , respectively. Note
that for BCRLB derivation we assume that the parameters
θp, τp, νp are assumed to be known for 1 ď p ď P , and the
RCS coefficients αp are to be estimated. Based on the system
model of (1), we have:

yechopn,mq “ WH
RFARRmCDnA

H
T FRFxn,m ` WH

RFvn,m,

“ Ψn,mᾱ ` ṽn,m,

where Ψn,m “ pxT
n,mFRFA

˚
TD

T
n d WH

RFARRmq P CNRF ˆL

and ᾱ “ rα1, . . . , αP sT P CLˆ1. Following the procedure
from (11) to (12), the stacked observations corresponding to M
subcarriers and Np training OFDM symbols can be obtained
as

yr “ Ψrᾱ ` vr. (50)

Since this is a linear model, both the best linear unbiased
estimator (BLUE) and the Cramer-Rao bound (CRB) ᾱ can

be derived as pᾱ “ Ψ:
ryr, while the BCRLB of pᾱ associated

with Rα “ I is formulated as [44]

E
“

ppᾱ ´ ᾱqppᾱ ´ ᾱqH
‰

ě pΨH
r R´1

v Ψr ` R´1
α q´1 (51)

ùñ MSEppᾱq ě Tr
!

pΨH
r R´1

v Ψr ` R´1
α q´1

)

. (52)

B. SBL-lower bound

In this section, the SBL-LB of the proposed 3D-BL scheme
is derived. The Bayesian Fisher Information matrix (FIM)
JT P CGτGνGθˆGτGνGθ for the linear model of (12) can be
determined as JT “ Jy ` Jα, where Jy P CGτGνGθˆGτGνGθ

and Jα P CGτGνGθˆGτGνGθ are the FIMs associated with the
observation vector yr and RCS vector α, respectively. The
matrices Jy and Jα can be defined as

Jy “ ´Epyr,αq

"

B2Lpyr|αq

BαBαH

*

,Jα “ ´Eα

"

B2Lpα;Ωq

BαBαH

*

,

(53)
where Lpyr|αq “ logp pyr|αq and Lpα;Ωq “ log p pα;Ωq

are the log-likelihood of the observation and log-prior density
of the RCS vector α, which can be expressed as

Lpyr|αq “ ϖ1 ´ pyr ´ ΦrαqHR´1
v pyr ´ Φrαq,

Lpα;Ωq “ ϖ2 ´ αHΩ´1α.
(54)

The constant terms ϖ1 and ϖ2 are derived as

ϖ1 “ ´NRFMNp log π ´ log detpRvq,

ϖ2 “ ´GτGνGθ log π ´ log detpΩq.
(55)

Now, by substituting (54) and (55) into (53), one can obtain
Jy “ ΦH

r R´1
v Φr and Jα “ Ω´1. Therefore, the Bayesian

FIM JT can be formulated as JT “ ΦH
r R´1

v Φr ` Ω´1.
Hence, the SBL-LB for the MSE of the estimation of the RCS
vector α can be expressed as

MSE ppαq ě Tr
`

J´1
T

˘

. (56)
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