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Abstract—A cooperative architecture is proposed for integrated
sensing and communication (ISAC) networks, incorporating coor-
dinated multi-point (CoMP) transmission along with multi-static
sensing. We investigate how the allocation of antennas-to-base
stations (BSs) affects cooperative sensing and cooperative commu-
nication performance. More explicitly, we balance the benefits of
geographically concentrated antennas in the massive multiple input
multiple output (MIMO) fashion, which enhance beamforming and
coherent processing, against those of geographically distributed
antennas towards cell-free transmission, which improve diversity
and reduce service distances. Regarding sensing performance,
we investigate three localization methods: angle-of-arrival (AOA)-
based, time-of-flight (TOF)-based, and a hybrid approach combin-
ing both AOA and TOF measurements, for critically appraising
their effects on ISAC network performance. Our analysis shows
that in networks having N ISAC nodes following a Poisson point
process, the localization accuracy of TOF-based methods follows
a In? N scaling law (explicitly, the Cramér-Rao lower bound
(CRLB) reduces with In? N). The AOA-based methods follow a
In N scaling law, while the hybrid methods scale as a In> N+bln N,
where a and b represent parameters related to TOF and AOA
measurements, respectively. The difference between these scaling
laws arises from the distinct ways in which measurement results
are converted into the target location. Specifically, when converting
AOA measurements to the target location, the localization error
introduced during this conversion is inversely proportional to
the distance between the BS and the target, leading to a more
significant reduction in accuracy as the number of transceivers
increases. In contrast, TOF-based localization avoids such distance-
dependent errors in the conversion process. In terms of commu-
nication performance, we derive a tractable expression for the
communication data rate, considering various cooperative region
sizes and antenna-to-BS allocation strategy. It is proved that higher
path loss exponents favor distributed antenna allocation to reduce
access distances, while lower exponents favor centralized antenna
allocation to maximize beamforming gain. Simulations confirm
that cooperative transmission and sensing in ISAC networks can
effectively improve non-cooperative sensing and communication
performance The proposed cooperative scheme shows superior
performance improvement compared to centralized or distributed
antenna allocation strategies.

Preliminary versions of this paper were presented at the Conference IEEE
WCNC 2025 [1].

The work of K. Meng was supported in part by UKRI under Grant
EP/Y02785X/1. The work of K. Han was supported in part by UKRI under
Grant EP/Y035933/1. The work of L. Hanzo was supported in part by the the
Engineering and Physical Sciences Research Council (EPSRC) projects under
grant EP/Y026721/1, EP/W032635/1, EP/Y037243/1 and EP/X04047X/1.

K. Meng, K. Han, and C. Masouros are with the Department of Electronic
and Electrical Engineering, University College London, London, UK (emails:
{kaitao.meng, kawon.han, c.masouros}@ucl.ac.uk). L. Hanzo is with School
of Electronics and Computer Science, University of Southampton, SO17 1BJ
Southampton, UK (email: Th@ecs.soton.ac.uk) (Corresponding author: Kawon
Han)

Index Terms—Integrated sensing and communication, multi-
cell networks, network performance analysis, stochastic geometry,
antenna allocation, cooperative sensing and communication.

I. INTRODUCTION

Given the increasing challenges of spectrum scarcity and
potential interference between separate sensing and communi-
cation (S&C) systems, integrated sensing and communication
(ISAC) technologies have garnered substantial academic and
industrial interest [1]-[4]. ISAC is recognized for its ability to
leverage unified infrastructure and waveforms to simultaneously
transmit information and receive echoes, thereby significantly
enhancing the spectrum-, cost-, and energy-efficiency [5]. Re-
cently, the international telecommunication union (ITU) identi-
fied ISAC as one of the six key usage scenarios for the forth-
coming sixth-generation (6G) networks. While current research
is primarily focused on link-level and system-level optimization,
such as waveform design and resource management within in-
dividual base stations (BSs) [6]-[10], the broader opportunities
of network-level ISAC, particularly multi-cell S&C cooperation,
have not been widely explored [11].

Network-level ISAC presents distinct advantages over con-
ventional single-cell ISAC, including expanded coverage, en-
hanced service quality, more flexible performance tradeoffs,
and the ability to gather richer target information [12]-[14].
Specifically, with the exploitation of the target-reflected sig-
nals over both the monostatic links (BS-to-target-to-originated
BS links) and the multistatic links (BS-to-target-to-other BSs
links), the sensing capabilities of ISAC can be maximized
through multi-static sensing configurations formed by several
cooperative BSs. Additionally, advanced coordinated multi-
point (CoMP) transmission and reception techniques can be
employed for mitigating inter-cell interference, enhancing com-
munication performance by connecting a single user to multiple
BSs for reliable connection and improved throughput [15]. The
strategic integration of cooperative sensing and communication
techniques within ISAC networks offers substantial potential to
enhance and dynamically balance the S&C performance. Some
early studies have explored network-level trade-offs between
sensing and communication [16], [17], focusing on aspects such
as waveform design and optimizing cooperative cluster sizes.
For instance, in [18], coordinated beamforming was employed to
mitigate interference in ISAC networks, providing valuable in-
sights into the optimal allocation of spatial resources. However,
most existing research neglects to explore the rationale behind



the specific antenna configurations of ISAC networks [16]-[18],
often assuming fixed setups without examining how the antenna-
to-BS allocation affects the overall network performance.

In ISAC networks, optimal antenna-to-BS allocation, repre-
sented by the number of antennas per site, plays a critical role in
maximizing the cooperative gains for both sensing and commu-
nication, since these two functions have fundamentally different
requirements for their antenna configurations. Typically, the
antenna-to-BS allocation strategies fall into two main categories,
namely centralized and distributed configurations. Centralized
multiple input multiple output (MIMO) systems simplify de-
ployment and reduce costs by concentrating antennas in a single
location within the service region, such as conventional cellular
MIMO networks [19]. However, this approach is prone to
high spatial channel correlation, particularly at millimeter-wave
frequencies, leading to significant performance erosion. By con-
trast, distributed MIMO configurations, where the antennas are
dispersed across various locations, can mitigate channel corre-
lation and enhance system performance by providing improved
spatial diversity and reducing targets/users access distances; a
prominent example is the cell-free MIMO system [20]. The
primary drawback of distributed MIMO systems is the challenge
of achieving and maintaining precise synchronization across all
antennas, which is crucial for improving the coherent processing
gain of ISAC networks. These synchronization requirements can
offset the performance gains and present significant obstacles to
fully realizing the potential of distributed ISAC networks due to
their high overhead and design complexity. Upon evolving from
communication-only to ISAC networks, the traditional antenna
configuration strategies tailored for communication may not
directly apply to the ISAC paradigm [21], especially for various
target information measurements, such as angle, distance, and
velocity. Consequently, this shift requires innovative ISAC co-
operation approaches, focusing on optimizing antenna resource
allocation to accommodate the distinct demands of sensing.

Building on the previous discussions, we propose a coopera-
tive ISAC scheme that combines the benefits of both centralized
and distributed antenna allocation strategies, for carefully allo-
cating antenna resources and for balancing the spatial diversity
with the number of antennas per site. Specifically, concentrating
more antennas at selected locations enhances beamforming gain
and coherent processing but requires a reduction in BS density
and increases the average service distance. Conversely, dis-
tributing antennas across multiple locations improves geometric
diversity, allowing for enhanced sensing and communication
services over shorter distances. In the literature, some related
work proposed to optimize antenna configurations based on the
specific location of users/targets [22]-[24], thereby increasing
system throughput. However, in practice, user locations, target
positions, and channel conditions are unpredictable, requiring
antenna-to-BS allocation strategies that account for the random-
ness in user, target, and BS locations, as well as channel fading
variability. These factors make it challenging to precisely char-
acterize the relationship between antenna-to-BS allocation and
the resulting sensing as well as communication performance.

To handle the above issue, stochastic geometry offers a pow-
erful mathematical framework for analyzing multi-cell wireless
sensing and communication networks [25]. For instance, the

framework proposed in [26] provides insights into average
data rate and coverage probability in multi-cell communication
networks. In [27], the statistics of data rate and incident power
density in user-centric cell-free networks are analyzed using
stochastic geometry, deriving useful performance metrics and
joint distribution bounds. As a further advance, [28] examines
a sensing metric based on the signal-to-interference-plus-noise
ratio (SINR) to establish the relationship between sensing
accuracy and the number of BSs transmitting signals with
sufficient power for effective localization. Also, in [29], the
authors introduced novel performance metrics for analyzing full-
duplex ISAC systems, capturing joint statistics of both functions
and optimizing network parameters while considering mutual
interference cancellation. In [30], the BS serves as a dual
functional transmitter that supports both S&C functionalities in
a time division manner, where during the search interval, the
radar scans the entire angular search space to find the maximum
number of mobile users. Furthermore, it is noteworthy that
the assessment of the sensing performance relying on metrics
like the SINR or mutual information overlooks the position
geometry of the cooperating BSs [18], [28], [31]. It is noted
that the analysis of sensing performance using other metrics
from estimation theory, such as the Cramér-Rao lower bound
(CRLB) that accounts for the node geometry [32], [33], is
essential as it effectively links the time-of-flight (TOF) and
angle-of-arrival (AOA) [34] measurements with the estimated
location. However, describing network performance based on
the CRLB is challenging, as it involves complex operations,
such as expectations over matrix inversions.

In this treatise, we propose a cooperative ISAC scheme, as
shown in Fig. 1, where multiple BSs within the cooperative
communication region cooperatively transmit the same infor-
mation data to the served user, while another set of BSs within
the cooperative sensing region collaborate with the objective
of offering localization services for each target. By strategi-
cally integrating CoMP-based joint transmission with multi-
static sensing, this scheme aims for striking a tradeoff between
sensing and communication performance at the network level.
In this work, we investigate three different target localization
methods: AOA-based, TOF-based, and a hybrid of AOA and
TOF based localization, for comprehensively assessing the im-
pact of antenna-to-BS allocation on cooperative sensing and
communication performance in ISAC networks. Based on this,
we reveal the performance of different antenna configuration
strategies and their corresponding scaling laws, as summarized
in Table II. In contrast to the most relevant studies without
antenna-to-BS allocation design [16], [17], in this work, both
the number of antennas per site and the power allocation of
S&C are optimized for further improving the whole network’s
performance and achieving a more flexible tradeoff between the
S&C performance at the network level. The main contributions
of this paper are summarized as follows:

o We propose a cooperative ISAC network that integrates multi-
static sensing with CoMP data transmission. Our approach
includes a localization method that exploits AOA and TOF
measurements. By leveraging our model and stochastic geom-
etry tools, we offer analytical insights into the performance



TABLE I
COMPARISON OF RELATED WORKS ON ISAC DESIGN CONSIDERATIONS

of both sensing and CoMP, highlighting key dependencies
related to antenna-to-BS allocation in ISAC networks.

o By analyzing the scaling laws of network localization
schemes, we find that, given that N ISAC BSs are employed,
TOF-based methods follow a scaling law of In®> N , where
the CRLB reduces with In? N. By contrast, the AOA-based
methods follow a scaling law of In /N, and hybrid methods
follow a scaling law of a In? N+bln N , where a and b denote
the parameters related TOF measurements and AOA measure-
ments, respectively. The primary difference stems from the
fact that converting AOA measurements to the target position
introduces additional distance-related variables, resulting in
a smaller scaling law for AOA-based methods. However, a
hybrid localization approach that combines both TOF and
AOA measurements can significantly enhance localization
performance, especially when the number of ISAC BSs is
relatively small. This is achieved by fully leveraging the
strengths of localization methods based on AOA and TOF
measurements.

o We derive the effective channel gain and the Laplace trans-
form of both the useful signals and inter-cell interference by
utilizing the moment-generating functions. Based on this, we
establish a tractable expression for the communication data
rate for various antenna-to-BS allocation strategies and coop-
erative region sizes. Additionally, we determine the optimal
antenna-to-BS allocation strategy of special cases, showing
that larger path loss exponents favor distributed allocation
for reducing access distances, while smaller exponents favor
centralized allocation to maximize beamforming gain.

« A performance boundary optimization problem is studied for
ISAC networks, and we verify that cooperative transmission
and sensing in ISAC networks can effectively improve the
S&C gain and strike a more flexible tradeoff between the S&C
performance. Moreover, it is revealed that when provided
with more antenna resource blocks, the proposed cooperative
scheme exhibits a more substantial performance improvement
than fully centralized or fully distributed allocation schemes.
Notation: B(a,b,c) = [;t*7*(1 — t)*!dt is the lower

incomplete Beta function, and B(a,b,¢) = [ t=1(1—t)°~'dt

is the upper incomplete Beta function. Lower-case letters in

bold font will denote deterministic vectors. For instance, X

and X denote a one-dimensional (scalar) random variable and a

random vector (containing more than one element), respectively.

Similarly, * and x denote scalar and deterministic vectorial

values, respectively. E,[-] represents statistical expectation over

the distribution of x, and [-] represents a variable set. C(0,r)

denotes the circle region with center at the origin and radius r.
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Fig. 1. Illustration of antenna-to-BS allocation in cooperative ISAC networks
with optimized BS density (Blue line refers to other time-frequency resources).

TABLE II

LOCALIZATION METHOD COMPARISONS
Localization  Time Accuracy CRLB
Method Synchronization  factors Scaling law*
Angle Array aperture size 1

No . ]
measurement Array orientation In N
Range .

& Yes Bandwidth 1
measurement In2 N
Hybrid 1
measurement NS AUl aln?2 N+bln N

* N denotes the number of BSs in the cooperative sensing cluster under
PPP distribution. a and b denote the parameters of TOF measurements and
AOA measurements, respectively.

The frequently used parameters and variables are give in Table
III.

II. SYSTEM MODEL
A. Network Model

As shown in Fig. 1, BSs inside the cooperative region,
defined by the circle centered at the target/user with radius
D, form a cluster for cooperative sensing and communication.
Specifically, for communication cooperation, each user is served
by multiple BSs within this region, where the BSs transmit
identical signals to the user by forming a CoMP cluster, thereby
enhancing the received signal power through constructive signal
superposition. Similarly, for target localization, BSs within the
target-defined cooperation region collaborate as a distributed
multi-static MIMO radar system, employing a code-division
multiplexing scheme to maintain orthogonality among trans-
mitted waveforms, ensuring accurate target localization. Given



TABLE III
IMPORTANT NOTATIONS AND SYMBOLS.

Notation  Physical meaning

Fa FIM for AOA-based localization

Fr FIM for TOF-based localization

Fu FIM for hybrid AOA and TOF localization

Fa FIM only with geometry factors for AOA localization
Fr FIM only with geometry factors for TOF localization
Fu FIM only with geometry factors for hybrid localization

Beamforming matrix of BS ¢

Combined sensing and communication signals of BS 7

transmitted signals after precoding of BS ¢

Communication signals of BS ¢

Sensing signals of BS

Transmit power of sensing signal

SICTEIEAEY K P>
s

Transmit power of communication signal

M, M, Numbers of transmit and receive antennas per BS
0; Angle of bearing for i-th BS to the target

o Pathloss factor of communication channel

5 Pathloss factor of communication channel

R, Average data rate

the significant cost and complexity associated with phase-level
synchronization required for coherent processing, our design
prioritizes a more practical non-coherent approach. In par-
ticular, BS clusters adopt non-coherent joint transmission for
communication and non-coherent MIMO radar processing for
sensing. This choice strikes a balance between performance
and feasibility, enabling effective cooperative operations while
mitigating the synchronization challenges typically encountered
in large-scale distributed deployments.

In this study, we explore the optimal strategy for allocating
antennas to BSs in cooperative ISAC networks, given the
constraints on antenna resources. Allocating multiple antennas
in a single array can enhance beamforming gain and coherent
processing gain for sensing and communication. Conversely,
the allocation of antennas in a distributed manner can enhance
macro-multiplexing gain by enabling S&C service delivery at
a closer distance and can improve target localization accuracy
leveraging the spatial diversity of distributed MIMO radar. Thus,
we design a novel antenna-to-BS allocation scheme to strike a
fundamental tradeoff between coherent processing gain, macro-
multiplexing gain, and geometric diversity gain in cooperative
ISAC networks.

Given a fixed total number of antennas, we aim for maxi-
mizing the cooperative S&C performance by optimizing the BS
density and the number of antennas allocated at each BS, as
shown in Fig. 1. Specifically, we define antenna density and
BS density as the average number of antennas per km? and
the average number of BS per km?, respectively. Then, given
the transmit antenna density A; and receive antenna density A,
assuming each BS is deployed with a uniform linear array, the

BS density to be optimized is denoted by A\, = Jt—ﬁ = %,

where M, and M, represent the number of transmit and receive
antennas per BS. With the fixed antenna density, increasing the
number of antennas per BS will reduce the overall BS density.
For example, when M; = M, = 1, the antennas are allocated
in a distributed manner. By contrast, given an area |A|, when

all antennas in this area are deployed at a certain location, we

have a centralized allocation. It is assumed that the locations
of BSs follow a homogeneous Poisson point process (PPP)
in a two-dimensional (2D) space, denoted by ®;, where PPP
offers analytical tractability and realistic modeling of spatial
randomness in cellular networks. Here, ®, = {d; = [z;,y:]T €
R?,Vi € NT}, where d; respectively represents the location of
BS i.

Each BS designs the transmit precoding (TPC) for sending
the information signal s¢(t) to the served user, together with a
dedicated radar signal si(¢) for the detected target, where the
variable t represents time instant.! This is consistent with the
assumptions in [35], [36], E[s$(¢)(s¢)*(¢)] = 0. In the follow-
ing discussion, we omit (¢) from the S&C signal notation for
simplicity. Upon letting s; = [s¢,s5]", we have E [s;s] = L.
Then, the signal transmitted by the ith BS is given by?

X; = WiSi = WZCSZc -+ Wfsg, (1)

where w¢ and wi € CMe*! are normalized transmit beamform-
ing vectors, i.e., |w¢|> = p© and |w$|* = p®. Here, p® and p°
respectively represent the transmit power of the S&C signals,
and W; = [w¢,wi] € CM*2 ig the TPC matrix of the BS
at d;. To avoid the interference between S&C, we adopt zero-
forcing (ZF) beamforming for the sake of making the analysis
tractable. Then, the beamforming matrix of the serving BS i is
given by
-1

Wi = V~V7; diag (VNVZHVNVz) R (2)
% -1 h#

where W, = HY/(HU) ' and 1, = | e | € oo
a i

Here, hffc € C™M: denotes the communication channel span-
ning from BS i to the typical user, and a’(g;) € C'*M:
represents the sensing channel impinging from BS ¢ to the
typical target. We have p°® 4+ p® = 1 with normalized transmit
power. Upon using ZF beamforming, inter-cell communication
interference is effectively mitigated because all BSs within the
cooperative cluster provide service to the same user, while
avoiding the use of sensing beams directed at this served
communication user.

B. Cooperative Sensing Model

We aim for exploring the optimal antenna-to-BS allocation
method by examining the scaling laws of target localization
techniques that rely on AOA measurements, TOF measurements,
and a combination of both, respectively. The location of a

I'Service requests are sent by users and targets to nearby BSs. When a BS is
connected to multiple users and targets, it is assumed that they are scheduled to
different orthogonal time/frequency resource blocks. This ensures that each BS
serves at most one user and one target in a given time/frequency slot. While
this simplified scheme is not optimal, it facilitates the derivation of tractable
expressions.

2If the BS only receives a request for communication services, the sensing
component is omitted, and the transmitted signal simplifies to x; = w{s¢.
Similarly, if the BS only receives a request for sensing services, the transmitted
signal becomes x; = w;'s?.



typical target is denoted as ; = [z¢, y¢]*.> Assuming unbiased
estimations, the CRLB serves as a benchmark for theoretical
localization accuracy in terms of the mean squared error (MSE),
which can be expressed as

var{1,} = E{|¢p; — ¢4|*} > CRLB, 3)
where 1/;t = [it,g]t]T represents the estimated location of the
typical target. The typical target is collaboratively sensed by NV
BSs. Let us assume that the transmitted radar signals {s}Y
of the BSs in the cooperative sensing cluster are approximately
orthogonal for any time delay of interest [38]. The base-band
equivalent of the impinging signal at receiver j is represented
as

B B
’b (HJ) d. ? aH (91) WiSi(t — Ti’j)

7

N -
y;(t) = Zi:l od;

target channel

“4)
+ Ziefbb Hi,jWisi(t — %i,j) +nl(t),
inter-cluster interference
where d; = |ld;|| denotes the distance from BS i to the

origin, 5 > 2 is the pathloss exponent between the serving
BS and the typical target.* Furthermore, o denotes the radar
cross section (RCS), 7; ; is the propagation delay of the link
spanning from BS ¢ to the typical target and then to BS j,
and 7; ; denotes the propagation delay of the link from BS 4
to BS j. In (4), H; ; denotes the channel from BS i to BS
j. Finally, the term n;(¢) is the additive complex Gaussian
noise having zero mean and covariance matrix o2I,;.. In (4),
we have a’(;) = [1,--. /™ (Mc=Dcos(0)] and b(h;) =
[1,---, /™ (Me=1)cos(0)]T \where ; denotes the angle of bear-
ing for the ¢-th BS to the target with respect to the horizontal
axis. The cooperative sensing model neglects interference from
other targets’ echoes, as distinct spatial locations, angles, and
propagation delays allow advanced filtering techniques, like
matched and adaptive filtering, to effectively mitigate it, con-
sistent with related works [39].

1) AOA Measurement based Localization: For the AOA
estimate at the receiver j, the covariance matrix can be
given by R, = E {yj(t)yf(t)}, and we perform an eigen-
decomposition to separate the signal and noise subspaces. The
MUSIC algorithm can be applied to this decomposition to
generate a pseudospectrum, where the peak corresponds to
the estimated AOA [40]. By measuring the AOAs of each
monostatic link and bi-static link, the target location can be
estimated by maximum likelihood estimation (MLE) [41]. For
the AOA measurement of the bi-static link from the jth BS to

3 According to Slivnyak’s theorem [26], [37], the typical target is assumed to
be located at the origin. Its performance is evaluated to determine the average
performance of all targets across the network, using the probability distribution
function of the distances from the BSs to this origin. Similarly, the average
communication performance of a typical user located at the origin is assessed
by analyzing the distance from the typical user to the BSs based on their location
distribution.

“In general, sensing relies exclusively on line-of-sight (LoS) channels, i.e.,
the reflection signal from NLoS channel is useless for sensing [3]; while
communication is modeled by circularly symmetric Gaussian distributions that
capture both LoS and NLoS conditions, leading to fundamentally different
channel coefficients.

the target and then to the ith BS, we have

i 1Yt~ Vi
0;; =tan~t
Tt — Xy

+ nf i (5)
In (5), n¢ j denotes the AOA measurement error, and n{ i~

N(O’p?,j)’ where plz»j = 7r2cosf"9iM7-(6M3*1)Gt%,j [42] and

. Here, G is the transmit beamforming gain, and

. — P’
Vi T apal

Yo represeﬁts the channel power at the reference distance of
1 m. Then, we transform N2 AOA measurement links into the
target location. The Jacobian matrices of the N BS measurement

errors, evaluated at the true target position @, = [xt,yt]T,
indicate
87&1 87@1 —sin 6, cos 01
Oz Oyt dy dy
= ¢ =] : . ©
aéN aéN —sinfy cos O
dxy Dyt dn dn Nx2

Then, the Fisher information matrix (FIM) of estimating the
parameter vector 1), for the AOA-based MIMO radar considered
is equal to

FA:jglejA

B ) N N COS2 92 sir(ll?% __ sin Gl-dgos 6;
= |<a| Zj:l Zi:l W __sin Olecos 0; co;zoi ’
3 T 2 (7)
where Jy = [J%,---,JT] e CN>*X2 =y =
diag(p%,lv"' vp?,jv"' ’p?V,N) € (CN2XN2’ and |<a|2 =

72 M, (M? — 1) Gyop®~o/0? [3]. Given the random location
of ISAC BSs, the expected CRLB for any unbiased estimator
of the target position is given by

CRLBA = Eg, q, [tr (F&')] . (8)

In (8), the expectation operation accounts for the randomness in
the locations of sensing BSs and the variability in beam power
caused by user channel fluctuations, thereby representing the
average sensing performance bound across the entire network.

2) TOF Measurement based Localization: From transmitter
J to the target and then to receiver 4, the term d; ; represents
the corresponding distance between the jth transmitter and the
ith receiver, which is given by

di (i) =

\/(xi —z)’ + (g — ) + \/(% —z)? + (yj — ye)? + ni s

€))

2 2

where  nj; ~ N (0,77;) and 77, Mﬁ c
denotes the speed of light, B2 represents the squared effective
bandwidth, showing that the larger bandwidth offers the more
accurate TOF estimation. For the TOF-based range estimation
cﬁ j» we apply matched filtering to the received signal to
correlate it with a replica of the transmitted waveform. This
process highlights peaks corresponding to time delays caused
by targets, which are then converted into range estimates using
the speed of light. For signals emanating from the transmitter
7, the Jacobian matrices of the N receiver measurement errors




evaluated at the true target position 1), are given by

ody . 9diy | Qddnn
T __ Oz Oz Ox¢
Jr = ddin .. 9dij . ddnn | (10)
Oyt Oyt Oy

where d;” = cosf; + cosf; and a” = sin6; + sinf;. Let
aij = = cosb; + cosf; and b; ; = bln@ + sin §;. Then, the FIM
of estimating the parameter vector v, for the TOF measurement
radar considered is equal to [39]

Fr =JLZ: ' Ir
2
_ 22 Z dPe| i @i, jbi;
=2 % [ai,jbm v, |

777]2V,N)' In (11), we have

Y

where ¥ = diag(m 1 7’71'2.,3'""

[39] ¢ = S”’ﬂffw where |(,| is the common system
gain term. Given the random location of ISAC BSs, the expected
CRLB for any unbiased estimator of the target position is given
by

CRLBg = Eg, c, [tr (Fg")] .

3) Joint AOA and TOF Localization: Incorporating both
AOA and TOF measurements, rather than relying solely on one
type of AOA or TOF measurement, can significantly enhance
the accuracy and reliability of the localization system, namely
the hybrid localization method. It is assumed that the AOA esti-
mation errors and the TOF estimation errors are uncorrelated.’
Using both AOA and TOF measurements, the expected CRLB
for any unbiased estimator of the target position is given by

CRLBy = Eg,.q, [tr ((FA ¥ FR)’l)} .

12)

13)

C. Cooperative Communication Model

We assume that the transmitters use non-coherent joint trans-
mission, where the useful signals are combined by accumulating
their powers. In this work, we employ a user-centric clustering
approach, where the BS closest to the typical user sends
collaboration requests to other BSs within a range D of the
user. The signal received at the typical user is then given by

= 4. *hW;s; +§ : d
Ye Zieéc ‘ ' je{@\e.}
collaborative intended signal

+ N,

2hHW §S;

inter-cluster interference

(14)

where o > 2 is the pathloss exponent, hff ~ CN (0,1,y,) is the
channel vector of the link between the BS at d; to the typical
user, ®. is the cooperative BS set, and n. denotes the noise. In
(14), s; denotes the transmitted signal vector from the cooperat-
ing BSs within the cluster (with the sensing signals nulled at the
user due to ZF beamforming), while the second term accounts
for interference from BSs outside the cooperation cluster. We
focus on evaluating the performance of an interference-limited
network within dense cellular scenarios. The impact of noise
is disregarded in this analysis as the interference arriving from

SIf there exists a correlation between these estimation errors, e.g., wideband
and large array aperture for near-field target sensing, the joint FIM should
include off-diagonal terms capturing their interdependence, which would alter
the CRLB expression. In such cases, equation (13) serves as a lower-bound
approximation.

outside the cooperation region far exceeds the negligible noise
power in our scenarios. The evaluation is based on the signal-
to-interference ratio (SIR) [43]. The SIR of the received signal
at the typical user can be expressed as

> gid;

i€D,

> gid
JE{Pp\ P}

the

SIR, = 15)

where desired

> ogid; s
i€,
g;d;
j€{¢'b\¢c} . . .
ference. Flnally, the mterference channel’s gain 1is
g; = p°|hf J’ + p* |hi'w3|”, accounting for interference
from both sensing and communication signals transmitted
outside the cooperation region. The average data rate of users

is given by

cooperative signal,

represents  the  inter-cluster inter-

R. = Eg, g, [log(1 4+ SIR.)]. (16)

III. SENSING PERFORMANCE ANALYSIS

In the following, we first analyze both AOA-based and TOF-
based localization. Then, we further examine the performance
of the hybrid localization method. To facilitate the analysis, we
assume that the number of BSs within a range D from each
target equals the average number of BSs in the area obeying
the density of the PPP. This approximation is widely used
and matches the law of large numbers in dense deployments.
Specifically, the circle of radius D centered at a target contains
exactly |®.| = \y7wD? of BSs. In simulations, we verify that this
assumption greatly simplifies the derivation, while providing
tight approximations.

A. Angle Measurement Based Localization

1) Geometry Gain of Cooperative Sensing: In practice, it
is non-trivial to derive a tractable expression for the expected
CRLB due to the complex operations involved, including matrix
inversions. To this end, we first study the sensing gain brought
by geometric diversity,® where all ISAC BSs are assumed to
be placed at the same distance from the target, i.e. d; = dj,
Vi, j,€ N, and N = {1,--- , N}. Then, by ignoring the effect
of each link’s signal strength, i.e., |(,| and d;, we analyze
the cooperative localization performance improvement purely
gleaned from the direction diversity of BSs. To this end, we
define a new matrix based on the FIM by removing |(,| and d;
in (11), yielding

= N N 2 Sin20i
FA*Z;‘:121‘:1COS % — sin 6; cos 0;
a7

Following the definition in [44], let tr(F ') be termed the
geometric dilution of precision (GDoP) in AOA-based radar
systems, which can be formulated as follows:

— sin #; cos 6;
cos20;

5Geometric diversity refers to the improvement in localization accuracy
achieved by positioning multiple BSs at different angles around a target,
allowing for more reliable and complementary directional measurements.
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CRLB, = Eqg, ¢,

tr(F ') =
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Proof: Please refer to Appendix B. ]

5-
(Ziil Ej:l 612) (Zi:l Zj:l fz2) - (Zi:l Zjvzl eifi)

(18)

where e; = sinf;cosf; and f; = cos?f;. Then, we employ

tight approximations to derive a simplified expression, aiming

to provide an intuitive illustration of the benefits of geometric

diversity.
Proposition 1: The expected GDoP can be approximated as
~ 32
By [or (Fy!)] » oo
oA 3N (N —1) (19)
Proof: Please refer to Appendix A. ]

Building upon the conclusion in Proposition 1, the scaling
law associated with an infinite number of ISAC BSs can be
derived as follows.

Corollary 1: For an infinite number of BSs involved in coop-
erative sensing, the expected GDoP can be further reformulated
from (19) as

. ~ 2 1 32 o 32

i o [6r(FR!) | N Jim sy Ve =5 @0
Corollary 1 states that the expected GDoP is inversely propor-
tional to the square of the number of BSs involved. If each
antenna array can orient itself perpendicular to the observation
direction, then the overall performance of a cooperative sensing
system is likely to improve. To this end, we define a new matrix

based on the FIM by removing cos? #; = 1 in (17), yielding
~ N N sin’6; —sin 0; cos 0;
Fo-3 Y0 |
21

— sin 0; cos 0; cos?0;
Proposition 2: The GDoP gain attained from dynamically
controlling the orientation of the antenna array is %.
Proof: Similar to the proof details adopted in Appendix A,

the expected GDoP of Fao can be approximated as

~ 4
Eg [tr (Fgé)} NN
It can be readily verified that the GDoP gain attained from
orientation control is % as compared to Proposition 1. ]

Proposition 2 demonstrates that by appropriately controlling
the orientation of each antenna array, a consistent gain in the
scaling law can be achieved.

2) Performance Gain of Cooperative Sensing: In this sub-
section, we derive the closed-form CRLB expression under the
assumption of random locations of both the BSs and targets. The
CRLB expression can be equivalently transformed into (23), as
shown at the top of the page. To obtain a more tractable CRLB
expression, we resort to a simple yet tight approximation. Then
the following conclusion is proved.

Proposition 3: For an infinite cooperative cluster size N and
fixed |4/,

(22)

Interestingly, we found that the expected CRLB in Proposition
3 is only determined by the expected distance from the BS to
the typical target. Furthermore, the expected distance from the
nth closest BS to the typical target can be expressed as

Ptd) (=
VAorT (n)

By substituting (25) into (24), the CRLB expression can be
further approximated as

E [d,] = (25)

Ao’

sl i
CRLBAN |< | Zz—lz 2

5 .
N ,_8 N 8 N . _g_
BAGTIY o k2 ((Zz 1l : 1) =iz i7? ?
(26)
For 3 = 2, we further derive the scaling law of the localization
accuracy as follows.

Theorem 1: For an infinite cooperative cluster size N and
fixed |,|, the expected CRLB of AOA-based localization is
given by
320

J\;gﬂoo CRLBA x InN =~ W.

27)

Proof: Please refer to Appendix C. ]

Remark 1: The CRLB scaling law for random BS locations,
as presented in Theorem 1, is critical for cooperative sensing
design. Unlike the scenario described in Proposition 1, the
performance gain decreases as more BSs participate. This gain
erosion occurs because, although distant BSs do contribute to
sensing diversity, their measurements have a limited impact on
localization accuracy due to the inevitable propagation loss.

For optimal sensing performance, the transmit beamforming
A\ D27
N

gain can be approximated as { J and the BS density can

be denoted by ﬁ—%g. Then, we have

1
CRLBA ~ )\ 3 5 3
D37 DA N 5
CGP{ J X { N J X (D27r)37T X In N
%,_/ —_——
Receive gain Transmit gain Geometry gain
N 320N
3|Ca2D276 AN, In N
- (28)
where |(,|? = tm20p*y0/02. According to (28), as the number

of BSs increases, the value of CRLB 4 also increases monotoni-
cally with N. Therefore, under total transmit power constraints,
a fully distributed antenna allocation is unlikely to be optimal.
This is primarily because accurate AOA measurement relies on
multiple antennas to enhance estimation accuracy.



CRLBg = Eq>b |C,«|_2 X

23 o diPd P (14 cos (6; — 0)))

B. Range Measurement Based Localization

In this subsection, we derive the closed-form CRLB expres-
sion of the TOF-based localization method. Similarly, we define
the corresponding GDoP expression as follows:

ai,jbij

S O R
R= 2 Lajey a; ;b; ; b?

.3

(29)

Proposition 4: The expected GDoP for TOF-based localiza-
tion can be approximated as

Ep [tr (F;{l)} ~ ﬁ

Proof: Tt can be proved in a similar way as that in Proposition
1. The details are omitted due to page limitation. ]

To facilitate the performance analysis, the CRLB expression
can be equivalently transformed into (31), where [z]"
max(z,1). For § = 2, we further derive the scaling law of
the localization accuracy as follows.

Theorem 2: For an infinite cooperative cluster size N and
fixed |(,|, the expected CRLB is given by

(30)

2
G PAm?

Proof: The proof follows a similar approach to that in
Theorem 1. Details are omitted due to space constraints. |

Remark 2: In comparison to the scaling law for TOF-based
localization, AOA-based localization exhibits a less favorable
scaling law, as demonstrated in Theorems 1 and 2. This is due
to the fact that the Jacobian matrix in AOA-based localization
includes a higher-order distance attenuation coefficient. Specif-
ically, when converting AOA measurements to target location,
the localization error is inversely proportional to the distance
between the BS and the target, leading to a more significant
reduction in accuracy as both the number of transceivers and
the measurement distance increase. Consequently, with greater
measurement distances, the accuracy of AOA-based localization
diminishes, resulting in a less favorable scaling law compared
to TOF-based localization.

The transmit beamforming gain can be approximated as
{,\tD"‘w
N

lim CRLBg x In’N ~ (32)
N—oco

J. For total transmit power constraints, we have

1
CRLBg ~

R I\ D2 \D2r NZ o,

G2 y N
N N D2

—_— ——— —

receive gain transmit gain Geometry gain

2

"1 2D2r2 A, In? N
(33)
where |§,~|2 = %, According to (33), when the num-
ber of BSs is sufﬁciéntly large, the CRLBgR value decreases
monotonically as the number of BSs NV increases. Therefore,
given the total BS power constraint, the TOF-based localization

N N N N _ :
S ook o (ki n iy (didy didy) g ibi s —ai sbr)”

&1V

method tends to favor a distributed antenna allocation to achieve
better sensing results at closer distances.

C. Joint Angle and Range Localization

In localization systems, fusing information from different
measurement modalities can significantly improve estimation
accuracy. In particular, combining AOA and TOF estimates con-
sistently enhances performance by exploiting their complemen-
tary information. The following theorem formally establishes
that the CRLB of the hybrid localization, which results from
this combination, is always lower than or equal to the CRLB
from either individual measurement.

Lemma 1: CRLBy < min (CRLB4, CRLBR) .

Proof: First, we will prove the inequality when F is a rank-
one matrix, i.e.,

Tr (Fa +Auu”) ™) < Tr (Fy'). (34)

where u € R™*! is a nonzero vector, and A > 0 is a scalar.
Then, the inverse of the sum F 5 + Fg follows the Sherman-
Morrison formula:

(Fa+Fr) ' =F," - m (35)
Since Tr (Fy'uu’F") = [|[Fy'ul/? > 0, it follows that:
Tr (Fa +Fr)™") < Tr(Fyh). (36)
Thus, we have
CRLBy < CRLB4. 37)

For a general Fr that is not rank-one, it can be decomposed
as a sum of multiple rank-one matrices. By applying the same
reasoning iteratively, the result remains valid. Similarly, we can
prove CRLBy < CRLBg. |

Lemma 1 demonstrates that combining AOA and TOF mea-
surements improves the target localization performance by en-
hancing the information available.

In a manner analogous to AOA-only and TOF-only localiza-
tion methods, we analyze the GDoP for the hybrid localization
method in the following. We define the GDoP for this hybrid
approach as

- N N 2 42
Fp= E E a;j ¢
j=14~i=1 | aijbij — cijeij
(38)

Proposition 5: The expected GDoP can be approximated as

160

- N
Ee {tr (FA ﬂ T 99N? — 67

Proof: Tt can be readily proved in a similar way to Appendix
A. |
It is straightforward to see that the GDoP for the hybrid
localization method that combines both TOF and AOA mea-
surements is lower than that for methods relying solely on

@i jbij = Cijei;

2 2
bi; +ei;

(39)
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either AOA or TOF measurements. However, because both
types of measurements are obtained from the same nodes,
the improvement in geometric gain compared to the GDoP
presented in Proposition 1 is relatively modest.

It is worth noting that localization methods solely based on
AOA or TOF measurements require at least two nodes to ob-
tain valid localization results. However, the hybrid localization
method utilizing both AOA and TOF measurements can obtain
location information even for a single ISAC BS. It is worth not-
ing that when there is only one BS, it is impossible to obtain the
target’s location information by relying solely on TOF or AOA
measurements, i.e., we have CRLB, = CRLBR = oo. The
localization method that combines TOF and AOA measurements
can successfully locate the target by relying on only a single BS.
When N =1, we have

1 a? +ci; ai jbij — i€
FH — 1,] 1,7 2,7 7%,] 1,30 . (40)
B2 | aighij —cigei; b7 tel;
Then, the CRLB can be formulated as:
1 1
tr (F;1) = ) 41
tFi) = [eaTcot, T A[CAT @b

It is evident that, compared to TOF-based localization, the
accuracy of AOA-based localization is more sensitive to the
distance of the BS from the target. Specifically, as the BS
moves farther from the target, a larger antenna array is needed
to compensate for the increased path loss. However, AOA-
based localization methods have the advantage of requiring less
stringent time synchronization between BSs, allowing them to
achieve accurate localization through collaboration even without
precise synchronization. When the number of cooperating BSs
increases greatly, the sensing performance will be determined
by the TOF measurement method.

Under general setup, the CRLB expression can be trans-
formed into (42) as shown at the top of the next page

where p; ; = d2d2, @i j = \/pi,j |Cr| (cosb; + cosb;), b

\/ Pij |CR|(SIH9 +sinb;), ¢j; = /pijlCr M, and

= \/pij RIS ©0s’0i Ty facilitate the analysis, we adopt the
following appr0x1mat10n

~ - 2
E [(dk,lbi,j - di,jbk,l) } ~ 2p;

€i,j

(43)

Similarly, ~we  have B |(G;én, —ék_’léiyj)ﬂ -

3 2 1 . P\

5500, Pk,1ICR] Z& and E (ai,jek,z+bk,zci,j) ] =
1

PiiPr,1 ICrICal 2z

Proposition 6: The CRLB of our hybrid localization method

2"

(42)

can be expressed as:

24
12 |€r| A2 72In® N + X375 |4 In N
Proof: Similar to the proof in Appendix C, the CRLB of the

hybrid localization method can be expressed as in (45) Then, bZ

substituting S8 i A InN 4y + o5 and SN i & T

into (45), along with v = 0.577, when N — oo, we have
~ 24 :

CRLBgy =~ 2 En e InZ NS S [EA I N This thus completes

the proof. ]

CRLBy ~ (44)

IV. COMMUNICATION PERFORMANCE

In this section, we derive a tractable expression of commu-
nication performance, and present an approximate expression
to acquire the optimal antenna-to-BS allocation for cooperative
transmission.

A. Expression of Communication Rate

According to [45], for the uncorrelated variables X and Y,
it follows that:

X 1
Bliog (14 3] = [T (1-B e ] B 0] e
Y 0 z
(46)
In (46), E [e*X1] and E [e=*[¥]] are the Laplace transforms
of X and Y. Then, exploiting the BSs for cooperative joint
transmission within the range D, the expectation of data rate

can be expressed as follows:

; i 1|~
o (1+ Y ica, illdil] )]
Zje{@b\éc} g; 14,
©1_E —zU
:/ 7[6 ] E [e7*1] dz,
0

z

E[log (1 +SIR.)] = E

(47)
where U =34 i Id;[| ™ and I = Zje{%\éc} g; ;[
In (47), I represents the interference arising from the BSs
located outside the cooperative region. The terms g; denote
the effective channel gains of the desired signal, where g; ~
I (M — 1,p°), as described in [15]. According to the definition
provided below equation (15), the distribution of g; can be
derived usmg the moment matching techmque [15]. Given that

E[p® |hfw$ p¢ and E[p* |hiw? p°, we obtain
Elg;] = p* +p = 1. Moreover, since E[gJ UhH jﬂ +
B[ ws|*] + 28 [[nffws | [nlfws || = (0 +p%)? = 1., the
interference channel gain g; can be approximated by a gamma-
distributed random variable. Consequently, g; ~ I'(1,1).

Based on the above discussions, the useful signal power can
be expressed by
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Then, we derive tight bounds on the Laplace transform of Ea,.g; {Zje{%\@a}gj l[d;]] 7”@} = 5D 7. Based

the cooperative transmission power and on the communication
interference as follows.
Lemma 2: The Laplace transforms of U and I are given by

E [e_ZU] = exp [~ Aty (2p°, My — 1,0, D)], (49)

E[e "] = exp[-7AHs (2,0, D)), (50)

where H; (z, K, a, D) = K22 (B (ﬁ 1-2 K+ g)) +
D?(1— (14D~ X H, (z,a, D) -
D2 ((1+2D )" = 1) + 28 (B (5w 1 - 2,14 2)),
Proof: Please refer to Appendix D.
Based on the Laplace transforms of U and [ in (49) and (50),
the expected data rate is formulated in Theorem 3.

Theorem 3: The communication performance is character-
ized by

R 7/00 1 —exp [—m\Hy (2p¢, My — 1, o, D))
o 2 (51
x exp [-7A\pHa (2, o, D)] d2,
where \, = \;/M,.
Proof: According to (46), by substituting the Laplace trans-
forms of useful signal and interference in Lemma 2 into (47),
the conditional expected spectrum efficiency is given by

/Oo /°° 1 —exp [-mA\Hy (2p°, My — 1, a, D))
o Jo z (52)
x exp [-m\Ha (2, a, D)] f (r) drdz,

and

where we have f, (1) = 27 \pre ™7 Here, we note that since
the collaboration region is fixed with a constant radius D, the
effective signal and interference contributions are determined
solely by the distance r to the nearest BS, eliminating the need
to consider the joint distance distribution of BSs within the
cooperation region. Then, by solving the integral with respect
to r, (51) can be obtained. This completes the proof. ]

According to (51), the communication rate increases mono-
tonically with the increase of D, which is due to having more
BSs on average participating in cooperative transmission, while
users receive less interference. We will show in Section VI that
the tractable expression given in (51) is closely approximated
by Monte Carlo simulations.

B. Optimal Antenna-to-BS Allocation Analysis

To analyze the optimal antenna-to-BS allocation, we adopt
simplifications for maximizing the expected SIR. First, we
simplify the expected data rate as

a1 5)] . [ (145].

(53)

on (53), we simplify the antenna allocation optimization by
reformulating the objective from maximizing the expected
spectral efficiency to maximizing the expected SIR, thereby
streamlining the analysis. Then, it follows that

E, 5., {m (1 + f)] ~E, [In(1+SIR)], (54)
where we have SIR = M, ((‘;;fr“x 4+ pmat2) pa—2 _ 1
In (54), we consider the optimal communication design, where
the beamforming gain is M; rather than p°(M; — 1). The
SIR value increases monotonically with the size of cooperative
regions D. Due to the complicated integral operation of the
distance distribution 7 in (54), it is challenging to directly
obtain the optimal antenna-to-BS allocation strategy based on
(54). Thus, we analyze the relationship between the optimal
number of antennas M; and the expected SIR of the typical
communication user. In the following, we use an approximate
method for analysis, where a sufficiently small value of ¢ is
chosen as the lower limit of integration to ensure the feasibility
of the integral and the validity of the analysis.

- 1) fr(r)dr

_2 a—z ﬂ-)\sz a
:Mt<g_a+2(77/\b) 22/ u"ze "du

(mh) 7 (DY s 2
+W/ﬁ u 2 eiudu + 677r)\bD —1) é G(Mt)
(55

Building on the above analysis, in the following, we investigate
the optimal antenna-to-BS allocation in two specific cases.

Proposition 7: When o — 2, the optimal antenna-to-
BS allocation strategy for communication is centralized, i.e.,
N = =57 and My = \D2

— wD2
2 [e3 . . .
Proof: Let f:’\D u”ze *du = 1. Upon substituting it
2 —a
into (55), due to lir% beD u"F e tdy = ol (1,7T)\1,D2), it
e—

follows that

T

S,
E L] =M, (19 +v (1, 7AD?) + e~™wD? _ 1) . (56)
Dueto y(l,z) =1—e %, E {%} = M9, we have ¥ > 0 since
E [%} > 0. Therefore, the derivative of G(M) follows

/(M) = g >0,

Thus, given a region |A|, the number of antennas is |A| X Ay,
and the expected SIR of the communication user increases upon

(57




increasing the number of antennas allocated at each location.
Therefore, the optimal antenna-to-BS allocation strategy is
centralized, i.e., A\ = # and M} = \,wD?. [ |

Proposition 8: When a > 4, the optimal antenna-to-
BS allocation strategy for communication is distributed, i.e.,

A=A My =1

2 o o
Proof: In (55), we have f:’\D u"Te du ~ 25(%“ and
mAD? a2 _. 9% .
fe u~z e “du= 2—=—. Then, it follows that
2 _ maD?
G(Mt) = Mt (7()]\4tT +e My — 1 s (58)
a—2 a
where Cy = #(ﬂ)\t)Te*EH (1+ai4). Due to
Ay D2 o _a
/. Moy Setduy > 22:;, the derivative of G(M;) be-

comes as follows

A\eD? = a € 44—«
) =2 ) ettt (a 1
G'(My) (( Mt) € (+a_4> 5 +>

D2
X UG <0.
My
(59
The ineg4uality in (59) holds due to
2(32) T et (14 55) 5% < ~1 when a > 4.
Therefore, G(M,) increases, as M; decreases. [ ]

The above conclusions provide practical guidance for
antenna-to-BS allocation. In environments suffering from strong
fading, a distributed antenna allocation strategy should be
adopted for positioning service antennas closer to the users.
In such scenarios, the distributed antenna allocation enhances
the useful signal, because although the interference may be
increased, the resulting mitigation of fading is typically more
substantial. Conversely, in environments having mild fading,
such as line-of-sight-dominant channels, distributed allocation
may significantly amplify the interference and this is not out-
weighed by the fading mitigation. In these cases, a centralized
allocation can be more effective, as beamforming techniques
can be used to strengthen the desired signal, while reducing
interference.

V. SYSTEM OPTIMIZATION

In this section, we analyze the optimization of cooperative
ISAC networks to demonstrate that antenna-to-BS allocation
introduces a new degree of freedom, enabling a flexible balance
between sensing and communication performance. Based on the
derivations in Sections III and IV, the derived tractable perfor-
mance expressions of both S&C are functions of the number
of antennas and BS density. Then, we present a performance
metric, namely the rate-CRLB performance region, to verify
the effectiveness of the proposed cooperative ISAC schemes.
Without loss of generality, the S-C network performance region
is defined as

Ce_s(L, N, p, p°) :{(fc, crlb) : 7. < R, crlb > CRLB,

pS _|_pC S 17Mt)\b S )\taMI‘)\b S )\T )
(60)
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Fig. 2. GDoP versus BS number with three different localization methods:
AOA-based, TOF-based, and Hybrid localization.

where (7, crAlb) represents an achievable rate-CRLB perfor-
mance pair. By examining this region, we gain a clear view of
how improvements in one domain (e.g., increasing communica-
tion rate) may impact the other (e.g., localization accuracy) and
vice versa. In this case, the rate-CRLB performance region can
be utilized to characterize all the achievable communication rate
and achievable CRLB pairs under the constraint of the antenna
resources.

It is not difficult to verify that R, is monotonically increasing
with the communication transmit power p¢, while the CRLB
is monotonically decreasing with the sensing transmit power
p®. Therefore, under a certain power allocation, if the sensing
and communication performance (7}, cflb*) at the current BS
density is better than the performance under all other BS density
configurations (7, crAlb/), then the power allocations at the latter
BS densities are definitely not on the performance boundary.
Indeed, it is sufficient to explore the two dimensions of A\, and
p¢ individually, instead of using a two-dimensional exhaustive
search. Then, according to the optimal cooperative BS density
of communication-only and sensing-only networks, denoted by
Af(c) and Aj(s), the search range can be drastically reduced
within [min(A}(c), A5 (s)), max(Aj(c), AL (s))].

VI. SIMULATIONS

Using numerical results, we have studied the fundamental
characteristics of ISAC networks and verified the tightness of
the derived tractable expression by comparing it to Monte Carlo
simulation results in this section. Our numerical simulations
are averaged over network topologies and small-scale channel
fading realizations. The system parameters are given as follows:
the number of transmit antennas M; = 4; the number of
receive antennas M, = 10; the transmit power P, = 1W at
each BS; [¢ |2 = 1; the transmit and receive antenna density
A = A\ = 50/km?; the frequency f¢ = 5 GHz; the
bandwidth B € [10,100] MHz; the noise power —100dB;
pathloss coefficients « = 4 and 5 = 2.

To verify the accuracy of our sensing performance analysis,
our Monte Carlo simulations are compared to the closed-
form expression derived in Section III, as shown in Fig. 2.
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Fig. 3. Localization performance scaling law with respect to the cooperative
BS number N under the fixed number of antennas per BS.

Specifically, the disparity between the simulation results and the
results outlined in Propositions 1, 4, and 5 is remarkably small.
This demonstrates the effectiveness of the GDoP expression
presented in Propositions 1, 4, and 5. It can be seen from
Fig. 2 that the TOF-based localization mechanism offers greater
geometric gains, as it leverages directional diversity in both
the transmission and reception stages, whereas AOA-based
localization only utilizes geometric diversity at the receiving
end. Typically, when the size of the cooperative sensing cluster
increases from N = 3 to N = 6, the geometry-based gain
of these three localization methods increases tenfold. When the
number of BSs is NV = 2, the hybrid localization method signif-
icantly reduces the GDoP values compared to TOF-based and
AOA-based localization methods, namely by factors of 5 and
50 respectively, because it can fuse two types of measurement
information for significantly increasing the amount of geometric
information, when the number of BSs is small.

In Fig. 3, given M; = 4 and M, = 10, and a bandwidth
B = 10 MHz, the scaling law of the CRLB expressions derived
in Theorems 1, 2, and Proposition 6 is also consistent with
the simulation results. It is important to note that when the
number of cooperating BSs is relatively small, specifically when
N < 4, the closed-form expressions show a slight deviation
from the results obtained through Monte Carlo simulations.
This discrepancy arises primarily from the reduced accuracy
in calculating the expectation of trigonometric functions, such
as E[sin(-)] and E[cos(-)], when the number of ISAC BSs is
limited. When the number of BSs is small, the hybrid local-
ization method can significantly improve performance. This is
primarily because the geometric arrangement of the BSs relative
to the target may be suboptimal, leading to poor performance
in localization methods that rely solely on ranging or AOA
measurements. Fig. 3 shows that increasing the number of
cooperative BSs significantly improves accuracy, when the total
number of BSs is limited. However, the performance gains
become marginal once N > 10. This is expected, as adding
more distant and randomly located BSs leads to increased signal
attenuation, offering diminishing returns compared to nearby
BSs. As depicted in Fig. 3, the expected CRLB decreases more
slowly upon increasing N than the GDoP value. Additionally,

——AOA-based (P)

-------- AOA-based (M;P)
TOF-based (P)

— = TOF-based (M,P)

——Hybrid (P) 3
Hybrid (M, P)

AOA-based

Root CRLB Value

Hybrid localization

Massive MIMO 101 Cell-free

BS density N/km?

Fig. 4. Localization performance comparisons with respect to the cooperative
BS density under the fixed antenna density (P and M; - P refer to the total
power constraint on each BS).

hybrid localization, which combines TOF and AOA estimation
results, can greatly enhance accuracy, when the number of BSs
is small.

In Fig. 4, both the transmit and receive antenna densities are
set to \; = A\, = 50/km2. The noise power is 02 = —100
dB, and the bandwidth is B = 10 MHz. In the legend, P
denotes the fixed energy allocated under a station-level fixed
power constraint, ensuring that each BS maintains constant total
power regardless of the number of antennas. Conversely, M; - P
indicates that the BS’s total power scales proportionally with the
number of antennas M, thereby keeping the overall network
power constant within the cooperation region. Consistent with
our analysis, Fig. 4 shows that under P power constraint,
the optimal allocation strategy for the TOF-based and hybrid
localization methods is a fully distributed configuration. By con-
trast, for AOA-based localization, the optimal allocation requires
concentrating a certain number of antennas to improve the AOA
estimation accuracy, resulting in an ideal allocation of eight BSs
per square kilometer. When M, - P power constraints are applied,
both TOF-based and hybrid methods tend to favor a mixed
configuration that combines centralized and distributed alloca-
tion. This approach better balances the beamforming gain of
multiple antennas with the macro-diversity gain. Under optimal
allocation conditions, our proposed hybrid localization method
reduces the localization error to just 1.3% and 28.8% of that
achieved by AOA-based and TOF-based localization methods,
respectively, significantly enhancing localization accuracy.

Fig. 5 shows that our tractable expression derived for the
communication rate closely aligns with the Monte Carlo sim-
ulations, given an antenna density of \; = 300/km2. Fig. 5
also shows that the spectral efficiency R, initially increases
with the number of antennas per BS but then decreases. This is
because the initial improvement in communication performance
attained by the beamforming gain is eventually outweighed by
the performance erosion resulting from the increased average
serving distance, which is due to the reduced BS density. As
the radius D of the cooperative area expands, the optimal
communication rate increases, mainly due to the higher signal
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power and reduced interference power. Additionally, for a larger
cooperative area, the optimal number of antennas per BS also
increases to maximize communication rates. This is because
a larger area provides more antenna resources, and adding
antennas at each BS improves beamforming gain, which helps
mitigate the path loss associated with the expanded cooperative
area.

In Fig. 6, it is observed that as the attenuation coefficient
« increases, a distributed allocation becomes more favorable,
which is consistent with our analysis in Propositions 7 and 8.
This is because distributing antennas reduce the average distance
between the service BS and users, making it possible to ignore
interference from distant sources, as both the effective signals
and interference from far-off locations become negligible. Con-
versely, when the attenuation coefficient o decreases, a cen-
tralized allocation becomes more advantageous. This is because
interference from distant BSs has a greater impact. Even though
centralized allocation increases the average distance between
the service BS and users, the reduced attenuation coefficient
ensures that signals still reach the users with sufficient strength.
It is observed from Fig. 6 that as the cooperative area radius
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|——Hybrid —-—- TOF-based = = AOA-based| "

[e]

~
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N
T
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Fig. 7. Rate-CRLB performance boundary with different localization methods.

D increases, the optimal proportion of antennas deployed at
each BS relative to the total number of antennas in the area
gradually decreases, for example, from 55% at D = 100 to
39% at D = 200. The primary reason is that the expansion
of the cooperative area involves more antennas in cooperation,
requiring a more dense distribution of antennas closer to users
to enhance communication rates.

Fig. 7 illustrates the performance boundaries defined in (60)
for the optimal joint allocation and power allocation across three
different localization schemes, of D = 1000 m. Notably, the
hybrid localization scheme that combines both TOF and AOA
information shows a significant enhancement in performance
boundaries. Specifically, under \; = 20/km? \, = 400/km?
and B = 1MHz, the hybrid localization method reduces errors
by a factor of 4.6 and 1.7 compared to TOF-based and AOA-
based localization methods, respectively, while maintaining a
communication spectral efficiency of 6 bits/Hz/s. The overall
S&C performance boundaries improve as the transmit antenna
density \; increases. This is primarily due to the increased flexi-
bility in resource allocation, which enables higher beamforming
gains. As the bandwidth decreases, it can be observed from
Fig. 7 that AOA-based localization outperforms TOF-based
localization. This is because the TOF measurement accuracy
declines upon decreasing the bandwidth.

VII. CONCLUSIONS

This work proposed an innovative cooperative ISAC network
that combines multi-static sensing with CoMP data transmis-
sion, incorporating advanced localization methods that exploit
both AOA and TOF measurements. Our study demonstrates
that optimal antenna-to-BS allocation, through a balance of
centralized and distributed configurations, significantly enhances
the network performance by maximizing spatial diversity and
coherent processing gains. Additionally, we provided analytical
insights into the scaling laws of different localization techniques
and establish a comprehensive framework for evaluating com-
munication data rates across various antenna-to-BS allocation
strategies. Our findings underscore the substantial benefits of



hybrid localization approaches and cooperative resource al-
location, offering a more flexible trade-off between sensing
and communication performance. This work not only deepens
the understanding of ISAC network dynamics but also lays a
foundation for future designs that can better meet the dual
demands of sensing and communication in complex wireless
environments. The joint scheduling of antenna resources for
multiple users and targets constitutes worthwhile future re-
search. Additionally, network resource allocation schemes that
incorporate target scanning or detection as well as antenna
deployment costs will be investigated to optimize performance
trade-offs, thereby enhancing both the theoretical framework and
practical applicability of cooperative ISAC network designs.

APPENDIX A: PROOF OF PROPOSITION 1

For ease of analysis, (18) can be transformed as follows:

o NN | cos6;

tr (FA ) = v 5
N N N
N? (Zi:l af) (Zi:l df) -N? (Zi:l az‘fi)

B Efil cos?0);

N (Zfil E;\;z (sin 6; cos 0;cos26; — sin 0 cos 0;cos20;)*

(61)

where the expectation of the term

(sin 0; cos 91-(:0529]- —sinf; cos 0; coszéi)2 of the denominator
in (61) can be simplified to

(sin 6; cos 0;cos> 0; —sinf; cos0; cos? 9,5) 2
3 (62)

sin (20; — 26,) + sin 260, — sin 26,)° ~ 35

e . =1 . .
By substituting (62) into Eg [tr (F A )}, we arrive at:

Bo [ (F31)] ~ s =y

This thus completes the proof.

(63)

APPENDIX B: PROOF OF PROPOSITION 3

To facilitate the analysis, we transform CRLB, of (23) into

N 2
YLy I
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' ' (64)
where X;; = sin; cos6;cos?0; — sin; cos 0;cos’0;. When

the number of nodes is large, the correlation between the
numerator and the denominator becomes negligible, as the
distances of different nodes are statistically independent under a
PPP distribution. Moreover, when the number of nodes is large,
the variability of the denominator is relatively small compared
to its expected value. Utilizing the approximation in (62), the
expected CRLB can be approximated as

165 Eld)] "

3 0 Eld] PN, ziijE[dir‘”E[djrﬁg’s')

CRLB, =

This thus completes the proof.

APPENDIX C: PROOF OF THEOREM 1
When § = 2, it follows that

32|¢,| 7200, 02
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, This thus completes the proof.

APPENDIX E: PROOF OF LEMMA 2

For the Laplace transform of the interference coming from
the BSs outside the cooperative region, we have

£1(2) =Bay g exp (—2 0 il = Bf Wil

(;) Eo, H

d;€9,\C(0,D)

(i)exp <—27T)\b/ (1 - (]. + Zq;_a)l)xdfli)
D

(c) a1\ |
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D2 2

In (68), (a) follows from the fact that the small-scale channel
fading is independent of the BS locations and that the inter-
ference power imposed by each interfering BS at the typical
user is distributed as I'(1,1). To derive (b), we harness the
probability generating functional of a PPP with a density of
M. To elaborate, (c) comes from the variable y = 2 and the
distribution integral strategies. Then, we have

(1 +zudi\r“)_1dx ‘D

N

(68)
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where (d) follows from the distribution integral strategies,
u = 7, and by setting K = 1 since the interference power
gain is approximately Gamma distributed as T'(1,1). Similarly,
the Laplace transform of useful signals can be expressed by

E[e*Y] :exp<— T Hy (2p°, My — 1, D)>’ (70)



where H; (z,K,a,D) =

D2 (1-(1+2D0-)7") +

25 z 2 2 :
KzsB (W’ 1-2 K+ E)' This completes the proof.
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