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Accelerating fragment-based drug discovery
using grand canonical nonequilibrium
candidate Monte Carlo
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Fragment-based drug discovery is a popular approach in the early stages of
drug development. Computational tools are integral to these campaigns,
providing a route to library design, virtual screening, the identification of
putative small-molecule binding sites, the elucidation of binding geometries,
and the prediction of accurate binding affinities. In this context, molecular
dynamics-based simulations are increasingly popular, but often limited by
sampling issues. Here, we develop grand canonical nonequilibrium candidate
MonteCarlo (GCNCMC) to overcome these limitations. GCNCMCattempts the
insertion and deletion of fragments to, or from, a region of interest; each
proposed move is subject to a rigorous acceptance test based on the ther-
modynamic properties of the system. We demonstrate that fragment-based
GCNCMC efficiently finds occluded fragment binding sites and accurately
samples multiple binding modes. Finally, binding affinities of fragments are
successfully calculated without the need for restraints, the handling of multi-
ple binding modes, or symmetry corrections.

Fragment-based drug discovery (FBDD)1 is becoming increasingly
popular in industry to identify hits in the early stages of a drug dis-
covery program,with 180 fragment-to-lead studies published between
2015 and 2022, and 7%of all clinical candidates published in the Journal
of Medicinal Chemistry between 2018 and 2021 originating from a
fragment screen2–4. Fundamental to FBDD is screening small libraries
of diverse fragment molecules optimized to cover a large portion of
chemical space. Typically, fragment libraries generate more, but less
potent, hits compared to libraries of larger, more complex,
molecules1,5. Although fragment hits tend to be weak binders, they
generally provide a more useful starting point for hit-to-lead optimi-
zation compared to larger drug-like molecules owing to their simpli-
city, low molecular weight, rigidity, and numerous potential growth
vectors1,2,6. Owing to their small size, fragments have very low binding
affinities with dissociation constants (KD) typically in the millimolar
range7. Even with specialized biophysical techniques, these binding
events are difficult, and sometimes impossible, to detect5.

X-ray crystallography (XRC) can serve as hit detection while
also providing a detailed structural picture of fragment binding7,8.
However screening by XRC requires a reliable, high-throughput,
and system-agnostic method of producing high-quality crystals of
protein–ligand complexes. Unfortunately, for some protein targets
(e.g. membrane and disordered proteins), producing such crystals
can be difficult and costly. Furthermore, resolving the binding
modes of small fragments can be tricky owing to unclear electron
density, particularly for molecules with a high degree of symmetry
or disorder9–12. Finally, XRC does not provide any information on
how tightly a molecule is bound to a target, although one could, in
principle, infer a limit for the binding affinity from the crystal-
lization conditions7. Binding affinity data is desirable in drug
discovery campaigns to rank hits based on how strongly they
interact with a target, thus providing an additional critical compo-
nent in deciding which fragments are the most promising for
development.
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Computationalmethods arewell-placed to enhance the fragment-
based drug discovery pipeline and complement experimental meth-
ods. Awealth of in silicomethods are routinelyused to identify binding
sites, fragment hits, and tooptimize hits to leads6. Evenwider adoption
of computational methods in FBDD is expected as they become
more efficient and accurate, further accelerating drug discovery
processes6,13–15.

Docking is a computationally inexpensive technique that can be
used to quickly generate a large variety of ligand-bound configurations
and to rank these poses based on a scoring function16. However, many
docking algorithmsneglectprotein dynamics, andflexibility, andoften
yield many false positives owing to inadequate scoring functions13,16–18.
Moreover, it has been shown that many docking algorithms are opti-
mized for larger, more drug-like molecules and perform much better
when using crystal structures with bound analogues19.

Molecular dynamics-based simulations explicitly capture protein
dynamics but come with their own set of limitations. Spontaneous
binding events from the solvent often occur over longer timescales
(milliseconds) than can be simulated in a reasonable time frame
(microseconds) and are therefore rarely observed20–22. Ligands that
bind in multiple configurations can become restricted to only one, or
two, modes with large energy barriers that prevent exchange between
binding modes within the timescale of a typical MD simulation23,24.
Many recent enhanced sampling methods have been developed to
tackle such issues and have been applied in the context of FBDD25–28.

Mixed solvent MD (MSMD) is a flavor of classical MD simulation
that aims to identify binding sites and favorable interactions in protein
systems using small organic probe molecules14. While MSMD has had
some success in identifying binding sites and hotspots14, it is plagued
by time scale issues, particularly if the binding event requires a large
protein conformational change, or if the binding site is particularly
occluded from the solvent14,27,29,30. The choice of organic probe adds
another level of complexity; ideally a range of probes would be
selected to cover a variety of interaction types, however, some probes
can aggregate, leading to the formation of clusters or even phase
separation, limiting sampling at the protein interface by reducing the
effective concentration of the system31,32. Some protocols make use of
artificial repulsion forces between ligand pairs to maintain a well-
mixed solution in simulation; however, this introduces artifacts and in
theory could prevent cooperative binding31,33. Others use fullymiscible
probes, thereby avoiding the issue altogether, but this limits the probe
set available and thus restricts the chemical space that can be
sampled29.

Similarly to XRC, structure-based computational methods also
generate information on how a ligand binds in terms of its atomic
positions. Ligands that bind in multiple configurations often produce
ambiguous electron densities, and simulation methods can help to
resolve these binding modes and generate an ensemble of stable
configurations. Binding Modes of Ligands Using Enhanced Sampling
(BLUES)28 is one such method that aims to identify different stable
binding modes within a binding site. Similar to the present study,
BLUES uses nonequilibrium candidate Monte Carlo (NCMC) to fully
decouple a bound ligand from a binding site before applying random
translational, rotational, and dihedral adjustments to the ligand, fol-
lowed by recoupling. While some degree of prior knowledge of the
binding site is required, BLUES has successfully identified multiple
known binding modes of fragments in T4-lysozyme and soluble
epoxide hydrolase28,34.

Finally, when a binding mode is known, alchemical free energy
calculations35–38 may be used to predict the affinity of the molecule to
its target. Affinity prediction is very important and, when performed
correctly, is an accurate and reliable way to rank a series of ligands39,40.
Relative binding free energy (RBFE) calculations provide a means of
predicting the free energy difference between two closely related
ligands by perturbing one or two functional groups into another.

Absolute binding free energy (ABFE) calculations, on the other hand,
calculate the overall binding affinity of a molecule to a target and are
generally more useful when ranking ligands with different scaffolds; a
retrospective study by Alibay et al. shows the applicability of this
method in the context of FBDD41. However, for both methods, there is
a requirement for high-quality structural data from either experiment
or computation, prior knowledge of the binding modes, and, in the
case of ABFEs, a series of user-defined restraints to maintain the
integrity of the complex as the ligand is decoupled42,43. These restraints
may require a degree of user input and the wrong choice can notice-
ably affect simulation convergence and even lead to simulation
crashes41,44. Inour experience,weaklybound fragments, thatmay try to
unbind or swap biding modes, even in fully interacting states, test the
robustness of these restraint protocols. Automated methods to gen-
erate ABFE restraint parameters exist41,44–49 and these usually depend
on running short preliminary simulations to identify stable restraint
atoms. For highlymobile ligands the identification of a stable restraint
may be difficult for the reasons outlined. Finally, sampling limitations,
including the movement of protein side chains and tightly bound
water molecules, have continued to be the source of further
development25,26,38,50,51.

Grand Canonical Monte Carlo (GCMC) simulations have been
routinely used in recent years to simulate the grand canonical (μVT)
ensemble, allowing the number ofmolecules in the system to fluctuate
while keeping the overall chemical potential (μ) of the system
constant52–55. In practice, GCMC uses trial ‘insertion’ and ‘deletion’
moves to vary the number of molecules in the system; these trial
moves are then subjected to a Monte Carlo test and are accepted or
rejected according to the equilibriumproperties of the system. Various
applications of GCMC include sampling buried water molecules in
protein-ligand binding regions, to validate crystal water positions,
predict favorable water sites, and calculate the free energies of water
networks30,32,53,55–61. Furthermore, water-based GCMC simulations are
now also commonplace in free energy calculations, such as in the
popular FEP+ software, as a means of improving water sampling while
an alchemical change is applied to a molecule of interest51,62.

A more recent study investigated the application of none-
quilibrium candidate Monte Carlo (NCMC) to GCMC. In the context of
GCMC, the addition of NCMC means that the insertion or deletion of
molecules can occur gradually over a series of alchemical states such
that the molecule binds with an induced fit mechanism allowing the
system to respond to the proposedmoves. When applied to water, the
acceptance rate of this combined “Grand Canonical nonequilibrium
candidate Monte Carlo” (GCNCMC) method was found to be sig-
nificantly higher than ‘instantaneous’ GCMC, while also indirectly
improving protein and ligand sampling during the move proposal63,64.
Implementing GCNCMC moves into a regular MD simulation means
that sampling of these binding sites is improved while also propagat-
ing the dynamics of the system through time.

Until now, our overarching goal of GCMC and GCNCMC has been
to sample the binding and unbinding of tightly boundwatermolecules
in buried protein regions where regular MD may otherwise struggle
within a reasonable time scale. In much the same vein, simulations of
ligand binding are also hampered by the relative time scales over
which ligands exchange between a protein and solvent. To this end, we
have further extended GCNCMC to sample the binding of small
molecules to proteins where the induced fit mechanism is even more
crucial. Note that by default we use the combined GCNCMC method
for the sampling of small molecules as the acceptance rates of
instantaneous GCMC moves are prohibitively low. We aim to demon-
strate the application of GCNCMC to FBDD, addressing three of the
aforementioned goals of in silico structure-based drug design: finding
potential binding sites, identifying fragment binding modes, and pre-
dicting binding affinities. Conceptually, themethod is almost identical
to GCNCMC water sampling with few modifications, and for more
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details, we refer the reader to the “Methods" section, and Supple-
mentary Information, where the theoretical basis is outlined in depth.

Figure 1 gives a high-level overview of the GCNCMC protocol. In
summary, the entire protocol involves running regular MD to propa-
gate the system, with GCNCMC moves interspersed. An insertion or
deletion move is selected with equal probability, and, for an insertion
move, a non-interacting molecule is randomly placed into a user-
defined GCMC region and ‘switched on’. For a deletion move, a fully
interactingmoleculewithin theGCMCregion is selected randomly and
then ‘switched off’. These switches are governed by a series of
alchemical perturbations and a small amount of MD between each
perturbation such that the entirety of the switch is performed out of
equilibrium, or in other words, the simulation does not have time to
equilibrate during the move. At the end of the GCNCMC move, a
Monte Carlo acceptance test is performed and the move is either
accepted or rejected based on the thermodynamic properties of the
system including the excess chemical potential, and the desired con-
centration of the molecule being switched. Conceptually, higher con-
centrations would drive the acceptance of insertion moves and vice
versa for deletion. If the move is accepted, the simulation continues
from this state, and, if the move is rejected, the simulation restarts
from the state prior to the attempted move.

In this work, we present the application of GCNCMC to the
simulation of fragment-protein binding. We first provide a validation,
by verifying that GCNCMC simulations accurately reproduce a simple
ensemble property - bulk concentration of a solute in water. This is
critical in ensuring themethod, and its implementation, are working as
intended. Second, we apply the method alongside MSMD simulations
to enhance the binding of organic probe molecules in occluded
binding pockets. We study two systems with occluded binding pock-
ets, T4-lysozyme (T4L99A) and major urinary protein 1 (MUP1).
Simulation studies of the former show that the binding of benzene

requires multi-microsecond long simulations which are unfeasible in a
realworld setting20. UsingGCNCMC,wecanovercome these time scale
limitations by insertingmolecules directly into the binding site; we can
do this in a prospective manner by assuming that benzene could bind
anywhere on the protein and setting the region in which GCNCMC
moves can occur accordingly. We compare the sampling between our
GCNCMC-enhanced MSMD simulations to classical MSMD simula-
tions. We then focus our sampling on just binding sites, where we first
establish whether GCNCMC can sample multiple binding modes cor-
rectly. Owing to the rigorous acceptance criteria for the GCNCMC
moves, only the move proposals that generate a plausible configura-
tion for a given concentration will be accepted. Through constant
insertion and deletion move proposals, the resulting binding modes
should be reproduced with appropriate populations. To confirm, we
look at the bindingmodes in simulations of amodel host-guest system
(β-cyclodextrin) and for toluene binding to T4L99A. The latter has
been shown to bind in two distinct orientations along with their sym-
metric equivalents, giving a total of four binding modes28. Finally, we
then exploit the concentration dependence in the acceptance criteria
to apply a titration protocol (Fig. 1) to calculate the binding affinities
for small fragment molecules in the aforementioned systems. This
method, unlike ABFE, does not require prior knowledge of binding
modes, artificial restraints, and symmetry corrections. The results are
compared to a more traditional ABFE calculation, which is often
regarded as the gold standard in the field of computational free energy
prediction. The protocols used are described in both the “Methods"
section and the Supplementary Information. Thus, in this Commu-
nication, we show that GCNCMC: (1) can be used to accurately identify
fragment binding sites within a protein structure; (2) identify multiple
binding modes with correct populations without any a priori knowl-
edge; (3) predict binding affinities which are in excellent agreement
with more complex alchemical free energy methods.

Fig. 1 | High level overview of the GCNCMC protocol. (1) Insertion and deletion
moves occur within a user-defined region (gray sphere). (2) Moves are performed
using anonequilibrium switch occurringover a short time scale and are accepted or
rejected according to the work done on the system over the move, w(X∣Λp), the
excess chemical potential of the molecule, μ0

sol, the concentration of the molecule,
cL, the number ofmolecules already in the region,N, and the volume of the defined

GCMC region, VGCMC. (3) The resulting simulation is a regular MD simulation with
GCNCMC moves interspersed. If a move is rejected (red dashed lines) the simula-
tion restarts from the state prior to the move. (4) Binding affinities may be calcu-
latedby titrating theAdams value,Beq, and thereby concentration.More details can
be found in the “Methods” section.
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Results and discussion
GCNCMC simulations accurately reflect fragment
concentrations in water
In previous work, we have validated our GCMC and GCNCMC
methods by reproducing the mass density of TIP3P water boxes59,63.
For fragment–water mixtures it is more appropriate to measure the
bulk concentration of each fragment in water. We selected solutions
of 0.5 M acetone and 0.1 M pyrimidine for this test as they do not
aggregate in water at these concentrations. The starting concentra-
tions for these tests were equilibrated boxes of pure water contain-
ing no other species, and boxes containing solutions of 1 M acetone
and 0.5 M pyrimidine. To perform these simulations, we set the
GCNCMC parameters appropriate for the target concentrations (see
Methods).

Figure 2 shows the variation in concentrationover simulation time
for both fragments. In each case, after an appropriate equilibration
period, the concentration fluctuates around the target value, demon-
strating that not only can GCNCMC simulations maintain a defined
concentration but also rapidly equilibrate the system. The final mean
concentration for acetone was 0.55 ± 0.02M and 0.56 ± 0.02Mwhen
starting from 0M and 1 M, respectively. While slightly higher than the
desired concentration of 0.5 M, the consistency between the two
systems is reassuring and indicates that the values of the excess che-
mical potential of either the ligand or water may not be sufficiently
accurate to sample 0.5 M exactly. In the case of pyrimidine, a lower
concentration of 0.1 M was selected and well reproduced. Further
discussion of these results is available in the Supplementary
Information.

GCNCMC rapidly and accurately identifies occluded
binding sites
A popular in silico method of finding potentially druggable sites is
through MSMD simulations, whereby a protein is solvated in water
with a high concentration of organicprobemolecules14. Regionswhere
probes are observed to spend a large amount of simulation time are
deemed potentially druggable. These simulations generally work well
for protein binding sites that are solvent exposed or are located on the

surface of proteins, but for binding sites occluded from the solvent or
more deeply buried, the simulation times required to overcome con-
formational energy barriers exceed what can be conveniently
simulated30,33.

Using GCNCMC, the limitations associated with diffusion times
can be negated by performing insertion and deletion moves into or
from the immediate vicinity of the protein. Setting the GCMC region
to cover the whole, or parts, of the protein means that sampling can
be focused only on these areas. This protocol is essentially a tradi-
tional MSMD simulation with enhanced sampling by GCNCMC.
Here, we have applied this approach to find the occluded binding
pockets of T4L99A and MUP1. To do this, we set our GCMC region
to cover the whole protein by anchoring it to a central protein
residue.

T4L99A is an extensively studied test system with a wealth of
experimental data, commonly used in the development of free energy
methods20,65–69. A point mutation (L99A) results in a protein cavity
which binds a range of small aromatic ligands. The T4L99A system,
while relatively simple, does have some complexities that make it
particularly interesting for the testing of enhanced samplingmethods.
For example, as the binding site is completely occluded from the sol-
vent, MSMD simulations struggle to map the site using classical MD
owing to the timescales required for diffusion30,33,70. Secondly,
some ligands, such as toluene, bind to T4L99A inmultiple orientations
with a significant kinetic barrier preventing them from readily
interchanging28. Here, using benzene as a probe, we first test GCNCMC
as a site finding tool and compare its ability to map the occluded
binding pocket to classical MSMD simulations.

Across our six repeats, simulated at 0.5 M probe concentration,
the benzene binding site was readily found within an average of 34
GCNCMC moves. For context, we ran 700 moves per repeat in 24
hours of wall time on a GTX1080 GPU. Once the site was found, the
ligand remained for the rest of the simulation as every deletion pro-
posal was deemed unfavorable at this concentration. By binning the
coordinates of sampled benzene heavy atoms onto a grid with 0.5 Å
resolution, we can count the number of frames a benzene atom was
present at each grid point and then average based on the total number
of frames. By contouring this grid to represent an occupancy of at least
90% of our frames (Fig. 3), we see a clear signal around the crystal-
lographic binding pose indicating that a benzene molecule was pre-
sent in this site for at least 90% of our simulation. Further, as no other
grid points are occupied at such high percentages, the binding site is
clear with a lack of false positives.

These results are compared to a basic MSMD simulation of
T4L99A in a 0.5M solution of benzene and are shown in Fig. 3. TheMD
grid is contoured at 30% indicating the grid points where a benzene
atom had resided for 30% or more of the simulation frames, showing
that the benzene binding site was not sampled at all. Turning this
contour level down to 1% still reveals no binding. This grid-based
analysis could be exploited to give a rough estimate of free energy by
comparing its occupancy to that of bulk solvent, in a fashion similar to
other MSMD methods14.

Various computational studies of benzene binding to T4L99A,
including long MD simulations, have shown that the binding of ben-
zene can take tens of microseconds70. In an industrial research and
development setting, simulations of this time scale are impractical and
expensive, further highlighting the benefits of the GCNCMC approach,
namely its efficiency: An average of 34 moves at 150 ps switching time
is equivalent to approximately 5 ns of simulation time (accounting for
the MD steps between each GCNCMC trial).

Like T4L99A, MUP1 is another protein system with an occluded
binding pocket and has been used as a test system for relative
binding free energy calculations37,71. Again, we perform GCNCMC
enhanced MSMD simulations using three different fragment mole-
cules that are known to bind toMUP1,07, 08, and 14 Supplementary

Fig. 2 | Fragment concentrations as a functionof time.Top: GCNCMCsimulation
concentrations of acetone starting from a pure water box and a 1 M solution.
Bottom: GCNCMC simulation concentrations of pyrimidine starting from a pure
water box and a 0.5 M solution. Data points represent the mean concentration at
each step over 8 (acetone) or 4 (pyrimidine) repeats. The shaded regions represent
the standard error of the mean. Histograms are binned mean concentrations from
after the equilibration point, indicated by the green dashed line. Equilibration was
judgedby eye as thepointwhere systematic changes in theobserved concentration
were no longer apparent. Source data are provided as a Source Data file.
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Fig. 23. As for T4L99A, we are attempting to predict the known
binding sites starting from an unbound structure. In Fig. 4 the MD
and GCNCMC occupancy grids are presented. Immediately, it is
clear that basic MD fails to sample the binding pocket, and even
setting the contour level of theMD occupancy grids to 1% still shows
no binding. As for T4L99A, this lack of binding can be attributed to
two factors: first, the binding site is completely occluded from the
bulk solvent and, second, at 0.5 M, all three fragments aggregated,
severely impacting the level of sampling that is achievable in the
simulation.

These results have positive implications for structure-based drug
design in locating binding pockets for protein targets that may not be
amenable to x-ray crystallography. Our method enhances traditional
MSMD approaches which struggle to find occluded pockets. We will
expand this simple use case of GCNCMC in the future.

GCNCMC automatically captures multiple binding modes
without prior knowledge
Once a binding site is known, it is useful to understand all the possible
ways in which a fragment can bind in that site. Experimental data,

Fig. 3 | Occupancy grids of MD (left) and GCNCMC simulations (right) contoured at a value of 0.30 and 0.90, respectively. Grids represent a minimum of 30% and
90% of the frames for which a benzene atom visited a given grid point. The benzene crystal pose is shown in magenta (PDB: 181l).

Fig. 4 | Occupancy grids of MD (left) and GCNCMC simulations (right) con-
toured at a value of 0.30 and 0.90, respectively. Grids represent a minimum of
30% and 90% of the frames for which a grid point was occupied by a ligand. The

grids for all three MUP1 ligands (07, 08, and 14) are shown together. Repre-
sentative crystal structures for each ligand are shown in cyan (PDB: 1i06), magenta
(1znd), and yellow (1qy2).
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including crystal structures and binding affinities, are ensemble
averages over all these possible configurations. However, in MD
simulations, the kineticbarrier associatedwith changing bindingmode
can be very high making this process challenging to sample. If med-
icinal chemists do not fully understand how a fragment binds,
crucial information on how to optimize or exploit certain binding
interactions may be lost. Here, we explore the ability of GCNCMC to
sample multiple binding modes without any prior knowledge of their
existence.

Host-guest systems, such as β-cyclodextrin (βCD), are convenient
and tractable complexes that are often used to test new simulation
methods, and notably exhibit many of the same characteristics as
fragment binding to proteins. Owing to their small size, simulations of
host-guest systems generally converge quickly72–76.

It has been reported that guests with a single polar group bind to
βCD in two distinct orientations with the polar group pointing out of
each end of the host, with ligands binding more favorably in the sec-
ondary alcohol orientation (Fig. 5)72. To check if these binding modes
are observed in our GCNCMC simulations, we pull frames from titra-
tion studies (Section “GCNCMC titrations can accurately rank binding
affinities”) for two representative fragments, benzonitrile (Fig. 5) and
para-cresol (Supplementary Fig. 10). Specifically, we look at simula-
tions with B values that gave approximately a 50% occupancy (B50), as
these are the B values corresponding to the dissociation constant, KD

(see “Methods"), and result in the maximum number of binding and
unbinding events. We overlay these frames and see that the polar
group for both ligands, as expected, preferentially points out thewider
secondary alcohol opening of βCD (Fig. 5).

In amorequantitative studyofmultiplebindingmodes,we look at
toluene binding to T4L99A, which has previously published simulation
data from Gill et al.28 In that study, two toluene binding poses were
identified: the crystal pose (denoted A1/A2) and a secondary pose (B1/
B2). Our own absolute binding free energy calculations of both poses
revealed a free energy difference of 0.79 kBT, which translates to a
population ratio of 69:31 at 298 K for poses A and B, respectively
(Fig. 6). This is in line with the ratio of 65:35 at 300 K reported by
Gill et al.28 Note that A1/A2 corresponds to the symmetrically equiva-
lent poses of A and likewise for B, owing to the C2 symmetry axis of
toluene.

Using the dihedral angle identified by Gill et al. to distinguish
between the bound configurations A and B, the populations obtained
from GCNCMC simulations are shown in Fig. 7. We observed a ratio of

67:33 between poses A and B, which is in remarkably good agreement
withour free energy estimates (69:31) and thatof 65:35 reportedbyGill
et al. Reassuringly, we also observe population ratios of 33:34 between
symmetry-equivalent poses A1/A2, and 17:16 between B1/B2, indicating
thorough sampling. An interesting distinction between these results
and those published by Gill et al. is that when using GCNCMC, we did
not have to define a transformation between the poses (taken as
center-of-mass rotation byGill et al. whenusingBLUES28). Further,with
GCNCMC, no prior knowledge of the multiple binding modes is
required, as we have shown that these are naturally sampled by the
method giving accurate populations.

In an alternative analysis, using CLonE77, we have clustered the
pairwise RMSD of the ligand positions throughout the simulation. The
data are then projected onto a latent spaceusing Principal Component
Analysis. The populations of the four binding modes are in good
agreement with those obtained using the dihedral histograms (Fig. 7,
inset). This analysis is more general, as knowledge of a dihedral angle
that discriminates between the binding mode is not required. This
clustering analysis is used later to identify multiple binding modes in
GCNCMC titrations Supplementary Fig. 14.

These results provide further validation that all binding modes,
and their symmetry equivalents, are sampled within a GCNCMC
simulation. Consequently, this means that binding modes are inher-
ently sampled in our titration calculations (Section “GCNCMC Titra-
tions can Accurately Rank Binding Affinities”), and thus are accounted
for in thefinal free energy estimates,meaning there is noneed for prior
knowledge of the binding modes nor separate calculations for
each mode.

GCNCMC titrations can accurately rank binding affinities
Finally, now that we have validated the ability of GCNCMC, without
prior knowledge, to predict binding sites and relative binding mode
populations in a given site, we can apply our titration protocol to
calculate the binding affinities of different fragment series to β-cyclo-
dextrin, T4L99A, andMUP1. The structures of the fragments are shown
in the Supplementary Information.

Using a pre-calculated excess chemical potential for each ligand,
aswould be necessary for any free energy calculation,we simulate over
a range of ligand concentrations via Adams value scanning (see
Methods section). We then measure the average occupancy of the
simulation at each value of Beq and fit a logistic function, Eq. (18), to
these data. The fragment concentration for which the corresponding

Fig. 5 | Overlaid frames fromGCNCMCsimulations of benzonitrile binding toβ-
cyclodextrin. GCNCMC simulations show a preference for the polar group of the
benzonitrile guest (blue spheres) to point out the wider opening composed of
secondary alcohols. Note, that the depiction of the host is that of the first
frame only.

Fig. 6 | The two bindingmodes of Toluene to T4L99A. The crystal pose, A1/A2, is
shown in magenta (PDB: 4w53) and the meta-stable pose, B1/B2, is in cyan. The
dihedral angle between the three Toluene atoms highlighted in yellow, and the CA
atom of Arg119 is used to distinguish between the binding modes.
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average occupancy is 50% is the dissociation constant, KD, which is
easily related to the free energy of binding (Eq. (13)).

Individual titration curves for 22 guests binding to βCD can be
plotted together, giving a quick and easy indication of the strongest
(far left) and weakest (far right) binding fragments (Fig. 8). These plots
give valuable information concerning the binding process and are
readily interpreted.

Figure 8 depicts the host-guest binding free energies extracted
from the GCNCMC titrations, compared to experimental data and a
basic ABFE approach which uses a flat bottom restraint to keep the
guest bound as it is decoupled. In general, a slight overestimation of
the binding affinities relative to experiment was observed, prompting
speculation that the forcefield parameters used may not be optimal,
with similar trends having been reported previously72. Despite this, the
calculations gave amean absolute error (MAE) and rootmean squared
error (RMSE) with respect to the experiment of 0.7 and 0.6 kcal mol−1,
with almost all the data points falling within 1 kcal mol−1 of the
experimental value. Furthermore, the correlation (R2 = 0.94) and
ranking (τ = 0.84) with respect to experiment shows that the method
can reliably and accurately rank fragments in terms of their binding
affinities. An almost perfect correlation with themore well-established
FEP approach gives promising validation.

Titration curves for the two protein systems, T4L99A and MUP1,
can be found in the Supplementary Information. Figure 9 shows the
calculated affinities versus experimental data and ABFE calculations.
For T4L99A, the correlation with experiment (R2 = 0.562) is compar-
able to other methods66 and on par with our FEP protocol (R2 = 0.552,
Supplementary Information). However, the average error and RMSE
with respect to experiment are particularly high, highlighting the
added complexity of a protein system compared to a simple host-
guest test case. Phenol and 2-Fluorobenzaldehyde were included as
negative controls. GCNCMC titrations of Phenol, which is thought to
predominantly bind to the unfolded state of T4L99A, predicted a
slightly negative binding free energy (KD = 0.21M). It is possible that
this weak binding is masked in the thermal shift assay by preferential
binding to the unfolded protein78. Crucially, the titration results are in
good agreement with those obtained using FEP (R2 = 0.812) which
implies that the simulation methods are consistent. As with the
host–guest system, GCNCMC titrations effectively sample themultiple

binding modes of T4L99A ligands as highlighted in Supplemen-
tary Fig. 14.

Finally, titrations of MUP1, which binds a diverse set of fragments,
returned a good correlation with experimental data and an almost
perfect correlation with FEP results. Interestingly, some of the frag-
ments that bind to MUP1, such as octanol, have many degrees of
freedom, and it is reassuring to see these sampled sufficiently.

Crucial to these results is that, as distinct and symmetrically
equivalent binding modes are sampled naturally by GCNCMC, there is
no need to perform more than one set of GCNCMC calculations, or to
apply post-hoc symmetry corrections, as is required in ABFE
methods43,79. Second, thismethodof calculating free energies does not
require the use of artificial restraints, which can become problematic
and may require some degree of user input42,44. However, it should be
noted that when ligand binding induces a side chain movement, for
example, the rotamer flip of Val111 upon binding of para-xylene to
T4L99A, then to obtain accurate nonequilibriumwork values, and thus
free energies, this side chain movement must be sampled during the
insertion and deletion moves. Unfortunately, in line with many similar
methods, these side chain movements are difficult to sample, parti-
cularly over the timescales used in non-equilibrium switching66,80,81. Of
course, it is possible to couple these side chain movements into the
insertion and deletion move proposal but this would require prior
knowledge of the system and modifications to the code. Alternative
possibilities include sampling the valinedihedral usingother enhanced
sampling methods, such as BLUES50 or FAST26, in between GCNCMC
moves. This case is discussed further in the Supplementary
Information.

Summary
In this Communication, we have further developed and applied our
grand canonical nonequilibrium Monte Carlo method63 to sample the
binding of small molecules to protein systems with the goal of pro-
viding a tool which can help in the discovery of new fragment leads.
The method has been successfully applied to detect binding sites,
elucidate binding geometries, and calculate binding affinities.

We have validated the method by reproducing a simple ensemble
property, namely fragment concentration in water. We showed that
our GCNCMC implementation accurately recreates user-defined

Fig. 7 | Distribution of Toluene binding modes observed in GCNCMC/MD
simulations. Dihedral angles between −π to −1.5 and 0 to 1.5 were assigned to
bindingmodes A1 and A2, respectively. B1/B2 were assigned to angles between −1.5

to 0 and 1.5 to π. Inset: Pairwise RMSD between ligand poses projected onto PCA
space and colored by the four clustered binding modes. Source data are provided
as a Source Data file.
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fragment concentrations, although, at high concentrations, the
results become sensitive to the value of the excess chemical poten-
tial used.

We applied the method to two protein-fragment systems,
T4L99A and MUP1, to enhance traditional MSMD simulations. In
both cases, we assumed no prior knowledge of the binding region
and subsequently ran GCNCMC simulations to generate a set of
possible binding sites. We conducted a comparative analysis
between GCNCMC and a basic MSMD protocol, revealing that
GCNCMC readily identified experimental binding sites in both sys-
tems, whereas MSMD did not.

We then demonstrated that, as expected, themethod reproduced
fragment binding modes. We found that GCNCMC sampled the two

binding modes of simple fragments in a host–guest system with our
simulations showing the guest molecules binding in an orientation in
line with experimental and other reported data72. A more detailed
examination of Toluene binding to T4L99A showed that the method
successfully replicated the four binding modes with populations con-
sistent with previously published studies34.

GCNCMC titrations were then used to calculate the binding
affinities of a series of small molecules to the host molecule, β-
cyclodextrin, and the protein systems T4L99A and MUP1. We
found that for the relatively simple βCD test case, a good corre-
lation with experimental data, and an orthogonal computational
method (ABFE calculations with restraints), was observed. This
agreement with a well-established method provides solid

Fig. 8 | Binding free energy data for the 22 tested fragment molecules binding
to βCD. Top: Titration curves (left) and binding free energy (right), the latter
derived from the mean KD from four simulation repeats, each fitted to a sigmoid
curve, and is reported in units of kcal mol−1. The error is the standard error of the
mean of the four KD values obtained from these fits. Bottom: Calculated absolute

binding free energies from titration calculations vs. experiment and FEP results, the
latter obtained using a flat bottom restraint. The error on the ABFE results are the
standard error of the mean of 4 individual repeats (2 starting from each binding
mode). The shaded blue region symmetric around the y=x line represents 1-2 kcal
mol−1 deviations from the y=x line. Source data are provided as a Source Data file.
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validation and is important to demonstrate when developing a
new free energy approach. Likewise, similar behavior was seen in
both protein systems.

Owing to their small size, fragments have a propensity to
bind in multiple orientations, making ABFE calculations in this
context problematic. Given that GCNCMC samples binding modes
naturally, affinity calculations using GCNCMC titrations eliminate
the need for binding mode prediction, artificial restraints, and
symmetry corrections, all of which are necessary in ABFE calcu-
lations, and may require some degree of user input. Crucially,
unlike ABFE, there is no need to perform more than one set of
calculations per molecule.

The initial goal of expanding the applicability of GCNCMC to
small molecules was to improve the sampling of binding in
occluded pockets, in much the same way as for water63. While this
goal has been achieved, some caveats should be recognized. As
noted here and elsewhere, alchemical free energy calculations are
hampered by a number of sampling challenges38,51. Some of these
issues - notably knowledge and treatment of multiple binding
modes - are addressed by GCNCMC. However, other sampling
challenges remain - in particular, when the alchemical transfor-
mation (in this case, fragment insertion/deletion) requires the
concomitant binding or displacement of solvent molecules, or
protein conformational change. For example, if a fragment

Fig. 9 | Calculated binding free energies from titration calculations vs.
experiment and FEP results, using Boresch restraints. Top: T4L99A, Bottom:
MUP1. Titration free energies are derived from the mean KD values of four simu-
lation repeats, eachfitted to a sigmoid curve, and are reported in units of kcalmol−1.
The error is the standard error of the mean of the four KD obtained from these fits.
In both T4L99A andMUP1, ABFE calculations used appropriately weighted binding
free energies derived from independent simulations of all populated binding
geometrieswith a greater than 10%observedoccupancy inGCNCMCtitrations. The

error on the ABFE results are the standard error of themean of 3 individual repeats.
For the comparisonwith experimental ligand binding free energies in T4L99A, data
are only presented for compounds with experimental ITC data. Phenol and
2-Fluorobenzaldehyde are shown in blue and have a minimum experimental
binding free energy of −2.74 kcal mol−1. These compounds are not included in the
reported statistics and line of best fit data. The shaded blue region symmetric
around the y = x line represents 1–2 kcal mol−1 deviations from the y=x line. Source
data are provided as a Source Data file.
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insertion move fails to displace bound water molecules, the move
will likely either fail to be accepted at an appropriate con-
centration, or fail to sample the correct fragment binding mode.
Future work will therefore seek to combine fragment GCNCMC
with other enhanced sampling techniques to address these
limitations.

This study offers robust validation and establishes a proof of
concept for the use of fragment GCNCMC in the context of fragment-
baseddrugdiscovery. GivenGCNCMC’s dual capability as a free energy
estimator and a rapid and accurate pocket detection tool, fragment
GCNCMC holds significant promise. As the method matures and
evolves, we will apply it to more interesting and pharmaceutically
relevant targets, particularly those that requireprotein conformational
change and/or water displacement.

Methods
Theory
Grand canonical nonequilibrium candidate Monte Carlo. Ligand-
based grand canonical nonequilibrium candidate Monte Carlo
(GCNCMC) builds on the work of Samways et al. and Melling
et al.59,63,82–84 The final result is presented here with a full derivation in
the Supplementary Information.

The acceptance probabilities of GCNCMC insertion and deletion
moves occurring within a cubic system are given (using the Adams
formulation)52,63:

Pinsert = min 1,
1

N + 1
eBeqe�βwðX jΛpÞ

� �
ð1Þ

Pdelete = min 1,Ne�Beqe�βwðX jΛpÞ
h i

ð2Þ

where w(X∣Λp) is the work done in generating the trajectory X by the
protocol Λp, or in other words, the work done by the nonequilibrium
switch, N is the number of molecules in the initial state immediately
prior to themove, andBeq is theAdamsvalue. For a particular fragment
concentration Beq(c) is given by

BeqðcÞ= βμ0
sol + ln

VGCMC

V ðcÞ

� �
ð3Þ

where μ0
sol is the excess chemical potential of the ligand molecule

which is usually approximated as the infinitely dilute standard solva-
tion free energy of the molecule. c is the concentration of the mole-
cules in the reference solutionwithwhich the protein is in contact,V(c)
is the average volume per molecule in the solution at the specified
concentration, and VGCMC is the volume of the GCMC region.

For a given reference concentration, the average volume per
molecule can be trivially calculated as

V ðcÞ= 1
cNA

ð4Þ

where NA is Avogadro’s constant.
Finally, the length of a nonequilibrium move is governed by the

total number of perturbation steps, npert, between the two end states
(λ = 0 and λ = 1), and the number of MD propagation steps between
each perturbation, nprop. Together this gives an equation for the
switching time, τ, as

τ = ðnpert + 1Þnpropδt ð5Þ

where δt is the integrator time step. Tomaintain detailed balance, each
GCNCMC move starts and ends with a propagation step.

The GCMC Sphere. To improve sampling of a particular region of
interest, the user can target GCNCMC moves by defining a spherical
“GCMC region” to cover this region. For example, this could be a
known binding site or the whole protein For example, this could be a
known binding site or the whole protein (Supplementary Fig. 2).
However, the useof a sphere forGCNCMCmoves requires special care,
in that molecules can potentially diffuse into or out of the sphere
throughout the switch, meaning that the acceptance ratios defined
previously must be adjusted:

Pinsert = min 1,
1
NT

eBeqe�βwðX jΛpÞ
� �

ð6Þ

Pdelete = min 1,N0e
�Beqe�βwðX jΛpÞ

h i
ð7Þ

where N0 is the number of GCMC molecules in the sphere at the
start of a move and NT is the number of molecules at the end. It
should be noted that if the molecule being switched lies outside
the sphere by the end of the move, the move must be auto-
matically rejected since the reverse process cannot be proposed,
breaking the condition for detailed balance. Depending on the
characteristics of the binding site, this can sometimes lead to a
high number of moves being rejected.

The Adams Value. In the previous section, we introduced the
Adams value, Beq. This is the controlling parameter in GCNCMC
and ultimately determines whether a GCNCMC move is to be
accepted or rejected. It therefore requires some care in its
definitions.

In our previous publications ofwater GCMC andGCNCMC59,63, the
Adams value is defined as

ð8Þ

where μ0
sol is the excess chemical potential of the molecule and is

the standard state volume of the molecule of interest. The standard
states for water and small molecules are well defined as 55 M and 1 M,
respectively, however, in many cases, simulating a molecule, such as a
fragment, at a concentration that is not the standard state is more
experimentally relevant. For example, fragment-likemolecules tend to
bind to their targets in the micromolar to millimolar range. In
situations where the molecule in a reference solution (the solution
with which our simulated system is in equilibrium) deviates from
the standard state, we define the Adams value with a specific
concentration dependence:

BeqðcÞ= βμ0
sol + ln

VGCMC

V ðcÞ

� �
ð3Þ

where V(c) is now the average volume occupied by a molecule at
concentration, c. This equation can also be written in terms of con-
centration directly:

Beq = βμ
0
sol + lnðNAcLVGCMCÞ ð9Þ

where

cL =
1

NAV ðcÞ
ð10Þ

The excess chemical potential of a molecule is defined as the
free energy of adding a molecule to a given solution and is crucial
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in determining whether a given fragment would prefer to be in
solution, or a binding site. For the binding studies this work, we
approximate the excess chemical potential of a given fragment to
be equal to the “infinite dilution” hydration free energy of that
fragment, or in other words, the free energy of adding a fragment
molecule to a box of water. However, it should be emphasized that
the value of μ0

sol can also be influenced by interactions with other
molecules of the same type and in theory also has a concentration
dependence85. Nevertheless, for sufficiently dilute concentrations
such as those used in these studies, it is assumed that the impact
of these interactions is negligible and that μ0

sol is independent of
concentration. As a result, for a given molecule, only one value
of μ0

sol requires calculation, and this value can be applied to
any dilute concentration of that molecule. A full discussion on
this point, with data, can be found in the Supplementary
Information.

With μ0
sol fixed, the Adams value is dependent only on the con-

centration of fragment in the reference solution. It is now intuitive to
say that a higher reference solution concentration would lead to more
binding in the GCMC region of the protein, as shown in Fig. 10. As
explained in the next section and Supplementary Information, the
concentration of fragment which leads to 50% occupancy in a binding
site is equivalent to the dissociation constant, KD. We define the cor-
responding Adams value as B50:

B50ðKDÞ=βμ0
sol + ln

VGCMC

V ðKDÞ

� �
ð11Þ

It is clear that simulations performed at B50 will result in the max-
imum number of accepted insertion and deletion moves to maintain
a 50% occupancy thus resulting in maximal binding and unbinding
events.

Free energies of binding from GCNCMC titrations. To calculate
binding affinities using GCNCMC we exploit the concentration
dependence in Beq to perform titrations over a range of Adams values,
Beq, and thus the range of concentrations withwhich our GCMC region
is in equilibrium55,60. The bindingprocess of a ligand to a protein canbe
defined by the following equilibrium:

L + P"LP

where the equilibrium constant for the unbinding process, known as
the dissociation constant, KD, is given as a ratio of the concentrations
of the species:

ð12Þ

where [P], [L] and [LP] are the molar concentrations of the protein,
ligand, and complex, respectively, and is the standard state con-
centration, taken to be 1Mby convention for a ligand in solution. In the
simple, and most common case, of one ligand binding in one binding
site, we can calculate KD as the dimensionless ligand concentration,

, at the point at which the concentration of the bound protein is
equal to the concentration of the free protein, [LP] = [P].

This corresponds to the concentration of the ligand that
binds half of the receptor and manifests itself in a GCNCMC
simulation as the ligand concentration required so that the
receptor is bound for half of the simulation (50% occupancy). This
is also the concentration that gives equal acceptance probabilities
for both insertion and deletion moves, resulting in maximal
binding and unbinding. We refer to the corresponding Adams
values as B50 throughout.

Given the concentration dependence of Beq, it follows that by
titrating the Adams value, binding affinities can be calculated by
finding the ligand concentration at which 50% of the protein is
bound. This results in the ligand dissociation constant, KD, and is
then easily related to the standard Gibbs free energy change of
binding using Eq. (13)55,60.

ð13Þ

A simple rearrangement of Eq. (3) and (4) shows howtheB value canbe
related to a species’ concentration in solution:

cL =
eBeq�βμ0

sol

NAVGCMC

ð14Þ

As mentioned previously, the value of μ0
sol here needs to be pre-

calculated via a hydration free energy calculation of the ligand of
interest.

In our previous work55, it was shown that the binding of a single
water molecule can be described by a logistic function in terms of the
Adams value:

NðBeqÞ=
1

1 + exp½kðB50 � BeqÞ�
ð15Þ

where N(Beq) is the average number of molecules in the GCMC region
as a function of Beq. B50 is the Adams value required to return a 50%
bound occupancy and is a parameter to be fitted. Finally, k is a fitting
parameter. It is shown in the Supplementary Information that the value
of B50 is also equal to the dimensionless free energy of transfer from
gas phase to the binding site, βΔFtrans. From here, it is trivial to calcu-
late the Gibbs binding free energy as the difference between the
transfer free energy, the solvation free energy, μ0

sol, and the standard

Fig. 10 | Schematic of GCNCMC titrations. Simulations are performed at multiple
B values, and the final average binding site occupancy of each simulation is plotted
such that B50 can be calculated using Eq. (15). A simple transformation allows the

same data to be plotted on the concentration scale (right) such that KD can be
calculated using Eq. (18).
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state correction, :

ð16Þ

The error on , is therefore calculated as

ð17Þ

It follows that a different logistic function can be fitted to the
titration data versus concentration, to directly calculate the dissocia-
tion constant, KD, and thus :

Nðlog10ðcÞÞ=
1

1 + exp½kðlog10ðKDÞ � log10ðcÞÞ�
ð18Þ

where Nðlog10ðcÞÞ is the average number of molecules in the GCMC
region as a function of the log of the concentration being simulated,
log10ðcÞ is the log of the simulation concentration, and k and KD are
parameters to be fitted. Figure 10 depicts this protocol graphically and
a more in-depth derivation can be found in the Supplementary
Information.

Summary of the GCNCMC protocols. In summary, the entire proto-
col involves running regular MD to propagate the system, with
GCNCMC moves interspersed. An insertion or deletion move is selec-
tedwith equal probability. For an insertionmove, a “ghost”molecule is
randomly placed into the GCMC region while for a deletion move, a
fully interacting molecule within the GCMC region is randomly selec-
ted. The intermolecular nonbonded interactions of the selected
molecule are then scaled appropriately throughout the switch. To
avoid numerical instabilities as a result of the nonphysical states
sampled during a move, a soft-core Lennard Jones potential is used as
described previously63. For an insertion move, the Lennard Jones
interactions are fully switched on before the electrostatics and vice
versa for a deletionmove to avoid any naked charges. At the end of the
NCMC move, the acceptance test is performed according to Eqs. (6)
and (7) and, if the move is accepted, the new state is added to the
Markov chain. If the move is rejected, a copy of the previous state is
added to the chain and the simulation continues.

Simulation details
All simulations were performed using OpenMM 7.4.2 (or OpenMM8.0
in the case of MUP1). All GCNCMC and free energy calculations, were
performed using the grandlig pythonmodule, a plugin to OpenMM, to
set up the custom forces and run these calculations.

Simulations were performed at 298 K and all MD was performed
using the Langevin86,87 BAOAB integrator with a friction coefficient of 1
ps−1 and a time step of 2 fs or, for MUP1, 4 fs with hydrogen mass
partitioning (Hydrogen mass = 2 Da). Where appropriate, a Monte
Carlo barostat is used to maintain a system pressure of 1 bar. The cut-
off for nonbonded interactions was 12 Å with a switching function
applied at 10 Å for the Lennard-Jones interactions. Particlemesh Ewald
(PME) was used to calculate the effect of the long-range
electrostatics88. Owing to software limitations, the long-range disper-
sion correction is neglected, as per our previous work59.

The proteins T4L99A and MUP1 were modeled using the AMBER
ff14SB forcefield89. TheQ4MD-CD90 forcefield, designed specifically for
cyclodextrins, was used for the host βCD. All simulations use TIP3P91,92

waters and all ligands are parameterized using GAFF93 with AM1-BCC
charges94. Ions,wherever present,weremodeledwith Joung-Cheatham
parameters95,96.

Calculation of the excess chemical potential. The various ligands
used in this study are shown in Supplementary Fig. 8, Supplementary

Fig. 11, and Supplementary Fig. 23. A pre-requisite for GCNCMC
simulations is to calculate the excess chemical potential, μ0

sol, for the
ligand in question. These values were calculated using a basic hydra-
tion free energy FEP calculation. The molecule of interest is placed in
the center of a 40 × 40 × 40 Å box containing 2135 water molecules.
The system is then equilibrated for 3 ns in the NPT ensemble at 298 K.
The ligand is then decoupled from the box over 30 lambda values with
the first 10 turning off the electrostatics and the final 20 the Lennard-
Jones interactions. At each lambda value, the system is equilibrated for
0.5 ns before being run for a further 2 nswith potential energy samples
collected every 1000 timesteps. Free energies were calculated using
the multistate Bennett acceptance ratio (MBAR) as implemented in
pymbar97. Generally, four repeats per ligand are performed with the
mean average taken forward. The standard error of the mean of these
four repeats is also calculated and accounted for in all binding free
energy calculations. A comparison of the calculated μ0

sol for ligands
with experimental hydration free energies can be found in the Sup-
plementary Information.

Bulk concentration systems. In these tests, as the target concentra-
tions (0.5 M Acetone and 0.1 M Pyrimidine) are no longer sufficiently
dilute to approximate the excess chemical potential using an infinitely
dilute hydration free energy calculation, we require a rigorous para-
metrization of the excess chemical potential of these species at these
specific concentrations. A full discussionon thismatter canbe found in
Section 2 of the Supplementary Information. Using the same protocol
as above, we decouple amolecule of acetone or pyrimidine from a box
already containing 0.5 M or 0.1 M of acetone or pyrimidine, respec-
tively. Further, in order to fully control the concentration of our test
systems, we must also perform GCNCMC moves of the water mole-
cules in the box, and therefore we also parameterize the excess che-
mical potential of water in these two solutions, althoughwe found that
it does not differ from that of bulk water since it is still the dominant
species in the solution.

For 0.5M acetone in water, the calculated μ0
sol values were −3.25 ±

0.03 and −6.09 ± 0.01 kcal mol−1 for acetone and water, respectively.
The average volume per acetone and water molecule was 3360 ± 0.9
and 31.5 ± 0.01 Å3. For 0.1 M pyrimidine, the μ0

sol values were −4.49 ±
0.02 for pyrimidine and −6.09 ± 0.01 kcal mol−1 for water. The average
volume per pyrimidine and water molecule was 16,312 ± 9 and 30.6 ±
0.01Å3. The average volumeper ligandwas calculated by recording the
ratio of the number of ligands to box volume throughout a 5 ns NPT
simulation at the appropriate concentrations.

The starting points for these tests were equilibrated boxes of
pure water containing no other species, and also boxes containing
solutions of 1 M acetone and 0.5 M pyrimidine. We then alternate
between GCNCMC moves of the ligand and water to control the
concentration of the system in the grand canonical ensemble (μVT).
For every 20 ps of MD, one ligand move and three water moves were
performed. The switching times for the ligand and water moves were
50 (npert = 499, nprop = 50) and 10 (npert = 99, nprop = 50) picoseconds,
respectively. The volume of the GCMC region was the volume of the
system: 62 nm3.

Eight and four repeats for acetone and pyrimidine from each
starting point were performed. The data plotted in the timeseries in
Fig. 2 are the mean averages across all 10 repeats at a given move
with standard error of the mean shown in the shaded regions. Full
details of the simulations performed including the initial con-
centrations, parameters and final results can be found in Supple-
mentary Table 2.

Host-guest system. The coordinates of the host, βCD,were taken from
a review by Mobley et al.65 and solvated in TIP3P91 water with an 8 Å
buffer. GCNCMC/MD titrations were performed with a switching time
of 50 ps (npert = 499 and nprop = 50). The GCMC region was defined as a
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sphere with a 5 Å radius centered in the host cavity midway between
two carbon atoms on either side of the host. A total of 22 ligands, from
twodifferent studies,with experimental binding affinitieswere selected
for titration and are shown in Supplementary Fig. 2372,98. Excess che-
mical potentials for the ligands were calculated as described above and
are reported in the Supplementary Information. Titration B values (n =
20) were chosen to loosely surround the experimental dissociation
constant. 1700 cycles of GCNCMC/MDwere performed at each B value
with the first 200beingdiscarded as equilibration. In these simulations,
each cycle consisted of a GCNCMC move attempted for every 1 ps of
MD. Each B value was simulated for four repeats. Titration calculations
are compared to ABFE calculations using a flat bottom restraint and are
described in the Supplementary Information (Section 3.1)

T4L99A. The apo structure of T4L99A (pdb: 4w51) was protonated
according to a pH of 7.0 and missing loops were added where
appropriate using PDBFixer99. Protein termini were capped using
N-methyl and acetyl caps. Each system was then solvated in a box of
TIP3P92 water with a buffer of 12 Å around the protein. NaCl ions were
added toneutralize the systemandup to a salt concentrationof0.15M.

In enhanced MSMD simulations looking for the benzene binding
site, the protein was solvated in a 0.5 M benzene and water solution.
The GCMC sphere was centered on the middle of the protein at the
midpoint between the CA atoms of Phe104 and Glu11 with a radius of
26.5 Å to cover the whole protein. The infinitely dilute excess chemical
potential of benzene was taken to be −0.68 kcal mol−1 calculated as
described above. The average volume per ligand was taken as 3321 Å3

to define a concentration of 0.5 M (Eq. (4)). Using a switching time of
50 ps, we ran six repeats of 700GCNCMC/MD cycles (1move per 50ps
of MD) with the first 200 cycles discarded as equilibration, giving a
maximumsimulation timeof 50ns (25 ns ofMDwith 25 ns of switches).
For a fair comparison, GCNCMC simulations were compared to 50 ns
simulations of conventional NPT MD on the same system.

We perform GCNCMC/MD simulations with T4L99A and toluene
using the B value which gives a 50% bound occupancy (determined
from titrating the B value, see below) as this maximizes the number of
insertion/deletion moves that are accepted, maximizing binding and
unbinding events. The GCMC sphere was centered on the binding site
at the midpoint between the CA atoms of Leu85 and Ala100 with a
radius of 8 Å. The Adams value, B, was taken to be -7.34 as determined
from the titration curves to give 50% ligand occupancy. The dihedral
angle between the CA of Arg119 and three toluene atoms was mea-
sured at each frame and binned onto a histogram. Dihedral angles
between − π to -1.5 and 0 to 1.5 were assigned to binding modes the
crystal poses A1 and A2, respectively. The secondary poses, B1/B2were
assigned to angles between -1.5 to 0 and 1.5 to π.

Titrations were performed over 20 B values loosely centered
around the experimental binding free energy, although knowledge of
the experimental binding affinity is not necessary and the titration
could be performed over any B range. B values were calculated using
Eq. (3) with a fixed μ0

sol value for each ligand calculated using a basic
hydration free energy calculation as described above. Insertions and
deletions were performed with a switching time of 150 ps. In each
cycle, a GCNCMC move was attempted for every 1 ps of MD. 1700
cycles were performed, with the first 200 discarded as equilibration,
giving a maximal production time of 76.5 ns per B value. It should be
noted that this protocol is far from optimized. Titration calculations
are compared to ABFE calculations which are described in the Sup-
plementary Information (Section 3.1)

MUP1. All simulationsofMUP1 start fromaprotein-ligandcomplexwith
PDB code 1I06. The crystal ligand was removed but crystallographic
waters were retained. The protein was protonated according to a pH of
7.0 using PDBFixer99.Missing loopswere addedwhere appropriatewith
PDBFixer and the protein termini were capped using N-methyl and

acetyl caps. The systemwas then solvated in a box of TIP3P92 waterwith
a buffer of 12 Å around the protein. NaCl ions were added to neutralize
the system and further added to a concentration of 0.15 M.

To find the occluded binding site, GCNCMC simulations (5
repeats) with systems containing 0.5 M of ligands 07, 08, and 14
(Supplementary Fig. 23) were run as these are the smallest ligands in
their series. Simulations were run for 25 ns with 500 GCNCMCmoves
interspersed every 50 ps for a maximum simulation time of 50 ns. The
GCMC regionwasdesigned to cover thewhole protein anchored to the
CA atom of Gly136 with a radius of 22 Å. The simulations were com-
pared to 50 ns conventional MD simulations of the same systems.
Insertions and deletions for these simulations were performed with a
switching time of 50 ps.

In this study, we perform titration calculations for 14 structurally
diverse small molecules binding to MUP1 shown in Supplementary
Fig. 23. Titrations were performed over 17 B values between −25 and
−12, loosely corresponding to a concentration range of nanomolar to
millimolar. In each cycle, a GCNCMC move was attempted for every 1
ps of MD. The GCMC sphere for titration calculations was defined
between Phe74 and Leu123 with a radius of 5.5 Å to cover the binding
site. In the simulations of MUP1, to avoid wasting computational time
at the high and low concentrations, where moves are rarely accepted,
the simulations were terminated after 200 consecutive rejected
moves. We aim to provide a more rigorous solution for identifying
convergence in the future. Titration calculations are compared to
ABFE calculations which are described in the Supplementary Infor-
mation (Section 3.1).

Data analysis
Occupancy grids. To analyze classical andGCNCMC enhancedMSMD
simulations we perform a basic grid analysis similar to previously
reportedMSMD studies14,30. After trajectory alignment, a fictitious grid
is built in the systemwith grid voxels spaced0.5Å apart. Then, for each
frame of the trajectory we loop over all the heavy atoms of all the
probes in the system (note: for GCNCMC simulations we only loop
over the non-ghost probes). If a probe heavy atom is within 1.6Å of any
voxel, that voxels occupancy for that frame is assigned the number 1.
The total occupancy of each voxel is then calculated by summing the
number of frames where a probe was present. The final summation is
then divided by the total number of frames to provide an ‘average
occupancy’ for each voxel:

<O> xyz =

PNframes
i Oi

xyz

Nframes

ð19Þ

where <O > xyz is the average occupancyof a voxel at positions x, y and
z. Oi

xyz is the occupancy of a voxel at frame i and Nframes is the total
number of frames in the simulation.

Titration curves. For titration calculations, simulations are performed
individually at various values of Beq. Four repeats at each Beq, and
thereby ligand concentration, are performed. The curve described in
Eq. (15) is then fitted to each repeat to obtain values of B50. Note, in
principle occupancy data can fitted on either the B scale (Eq. (15)) or
the concentration scale (Eq. (18)). Generally, we find it simpler to cal-
culate B50. The mean and standard error of KD, derived from each B50
value, over the four repeats are used to calculate according to Eq.
(13). The reported Kendall tau values, indicating the quality of the
occupancy data, are calculated from all the occupancy data across the
four repeats.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Input files required to reproduce the results of this paper, and output
files containing raw andprocesseddata, are available at: https://github.
com/essex-lab/grandlig-paper and Zenodo (https://doi.org/10.5281/
zenodo.15310689). Source data are provided with this paper.

Code availability
The grand-lig Python module is available at https://github.com/essex-
lab/grand-lig and on Zenodo (https://zenodo.org/records/15261461).
Scripts to reproduce the results of this study are found at https://
github.com/essex-lab/grandlig-paper.
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