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Abstract. Dualising the construction of a polyhedral product, we introduce the notion of a

polyhedral coproduct as a certain homotopy limit over the face poset of a simplicial complex. We

begin a study of the basic properties of polyhedral coproducts, surveying the Eckmann–Hilton

duals of various familiar examples and properties of polyhedral products. In particular, we show

that polyhedral coproducts give a functorial interpolation between the wedge and cartesian product

of spaces which differs from the one given by polyhedral products, and we establish a general loop

space decomposition for these spaces which is dual to the suspension splitting of a polyhedral

product due to Bahri, Bendersky, Cohen and Gitler.

1. Introduction

Polyhedral products are natural subspaces of cartesian products defined as certain colimits over

the face poset of a finite simplicial complex K. This construction generalises and unifies into a

common combinatorial framework many familiar methods of constructing new topological spaces

from given ones—for example, products, wedge sums, joins, half-smash products and the fat wedge

construction are all special cases. Since their introduction by Bahri, Bendersky, Cohen and Gitler

in [BBCG1], the topology of polyhedral products has become a growing topic of investigation within

homotopy theory and has made fruitful contact with many other areas of mathematics. Notable

examples include toric topology, following Buchstaber and Panov’s [BP] formulation of moment-angle

complexes and Davis–Januszkiewicz spaces as polyhedral products; commutative algebra, where

polyhedral products give geometric realisations of Stanley–Reisner rings and their Tor algebras; and

geometric group theory, where polyhedral products model the classifying spaces of right-angled Artin

and Coxeter groups. For more on the history and far-reaching applications of polyhedral products,

we recommend the excellent survey [BBC] and references therein.

Motivated by the ubiquity and utility of polyhedral products, the purpose of this paper is to

propose a definition for the dual notion of a polyhedral coproduct and begin a study of its basic

properties. Before describing the main results, we first review the construction of polyhedral products

more precisely.

Let pX,Aq “ tpXi, Aiqumi“1 be an m-tuple of pointed CW-pairs, SCpxm be the category of sim-

plicial complexes on the vertex set rms “ t1, . . . ,mu with morphisms given by simplicial inclusions,
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and Top˚ be the category of pointed topological spaces. For a simplicial complex K, let catpKq

denote the face poset of K, regarded as a small category with objects given by faces σ P K and

morphisms given by face inclusions τ Ă σ. We denote the initial object of catpKq by ∅, which

corresponds to the empty face of K. The polyhedral product associated to pX,Aq is the functor

pX,Aqp´q : SCpxm Ñ Top˚

which associates to each simplicial complex K the (homotopy) colimit

pX,AqK “ hocolim
catpKq

m
ź

i“1

Yipσq,

where Yi : catpKq Ñ Top˚ is defined for each i P rms by

Yipσq “

$

’

&

’

%

Xi if i P σ

Ai if i R σ.

As has been pointed out in [KL, NR, WZZ], for example, the homotopy colimit above agrees up to

homotopy with the usual colimit
Ť

σPK

śm
i“1 Yipσq since each pXi, Aiq is an NDR-pair. In particular,

each map in the diagram defining the polyhedral product is a cofibration, and the polyhedral product

pX,AqK is a cellular subcomplex of
śm

i“1 Xi for all K. In the case that Ai “ ˚ for all i P rms, this

subcomplex pX, ˚qK naturally interpolates between the wedge
Žm

i“1 Xi (when K consists of m

disjoint vertices) and the product
śm

i“1 Xi (when K “ ∆m´1 is the simplex on m vertices).

Dualising the definition of a polyhedral product as a homotopy colimit of products, we define a

polyhedral coproduct as a homotopy limit of coproducts, as follows.1

Definition 1.1. Let f “ pf1, . . . , fmq be an m-tuple of maps fi : Xi Ñ Ai of pointed spaces. Define

the polyhedral coproduct associated to f as the functor

f p´q

co
: SCpxm Ñ Top˚

which associates to each simplicial complex K with m vertices the homotopy limit

fK

co
“ holim

catpKqop
Dpσq

of a diagram D : catpKqop Ñ Top˚, where Dpσq “
Žm

i“1 Yipσq and

Yipσq “

$

’

&

’

%

Xi if i P σ

Ai if i R σ.

1Since we work only with homotopy limits, we define polyhedral coproducts with respect to any set of maps fi,

rather than insisting on fibrations.
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Note that for a face inclusion τ Ă σ P K, there are maps Yipσq Ñ Yipτq defined for each i P rms

by fi if i P σzτ and by the identity map otherwise, and hence there is an induced map

m
ł

i“1

Yipσq Ñ

m
ł

i“1

Yipτq.

For a family pX,Aq of pairs of spaces, if the maps fi : Xi Ñ Ai are clear from context, we will

sometimes denote fK

co
by pX,AqKco. One example is the case that Ai “ ˚ is a point, and fi is the

constant map for all i P rms. In this case, as we show in Section 2, the polyhedral coproduct pX, ˚qKco

naturally interpolates between
Žm

i“1 Xi (when K “ ∆m´1) and
śm

i“1 Xi (when K is m disjoint

vertices).

For polyhedral products, the relationship between the combinatorics of K and the homotopy type

of the space pX, ˚qK interpolating between the m-fold wedge and m-fold product is made clear after

suspending. By [BBCG2, Theorem 2.15], there is a natural homotopy equivalence

(1) ΣpX, ˚qK »
ł

σPK

ΣX^σ,

where X^σ “ Xi1 ^ ¨ ¨ ¨ ^ Xik for each face σ “ ti1, . . . , iku P K. Notice that this generalises

the well-known splitting of Σ
`

śm
i“1 Xi

˘

when K “ ∆m´1, in which case the wedge above is in-

dexed over all subsets of the vertex set rms. For polyhedral coproducts, we dualise the suspension

splitting (1) by establishing a loop space decomposition for pX, ˚qKco, which similarly generalises a

product decomposition due to Porter [P] for Ω
`

Žm
i“1 Xi

˘

when K “ ∆m´1.

Theorem 1.2 (Theorem 4.3). Let K be a simplicial complex on rms and let X1, . . . , Xm be pointed,

simply connected CW-complexes. Then there is a homotopy equivalence

ΩpX, ˚qKco »

m
ź

i“1

ΩXi ˆ
ź

bPI

ΩΣ

˜

ľ

τPF
ppΩXq^τ q^bpτq

¸

.

As with the splitting (1), the indexing set I above is defined in terms of the faces of the simplicial

complex K, and made explicit in Section 4. The equivalence (1) is a special case of the more general

Bahri–Bendersky–Cohen–Gitler splitting (henceforth, BBCG splitting) which identifies the homo-

topy type of any polyhedral product pX,AqK as a certain wedge after suspending once. In the case

that each Xi is contractible, the authors of [BBCG2] obtain their splitting using a lemma regarding

homotopy colimits of certain diagrams due to Welker, Ziegler and Živaljević [WZZ, Proposition 3.5].

We first dualise the Welker–Ziegler–Živaljević lemma (see Lemma 3.7), and then use this to dualise

the BBCG splitting to obtain the following result. This is a simplified version of the full statement of

Theorem 4.5 where the indexing sets are made explicit in terms of the underlying simplicial complex.

Theorem 1.3 (Theorem 4.5). Let K be a simplicial complex on rms and let fi : Xi Ñ Ai be a map

of pointed, simply connected CW-complexes where Xi is contractible for 1 ď i ď m. Then there is a
3



homotopy equivalence

ΩfK

co
»

ź

bPI

ΩMap˚pΣ|KIb |,ΣΩA
^l1pbq

1 ^ ¨ ¨ ¨ ^ ΩA^lmpbq
m q.

Both Theorem 1.2 and Theorem 1.3 are special cases of a general loop space decomposition of an

arbitrary polyhedral coproduct (see Theorem 4.2), dual to the suspension splitting of a polyhedral

product.

Definition 1.1 is alternate to Theriault’s definition of a dual polyhedral product, which was in-

troduced in [T] and used to identify the Lusternik–Schnirelmann cocategory of a simply connected

space X with the homotopy nilpotency of its loop space ΩX. Although the two notions coincide in

some special cases (see Remark 2.2), the diagrams defining polyhedral coproducts and dual poly-

hedral products are very different in general, and our definition is more suitable for dualising the

BBCG splitting of ΣpX,AqK (see Section 4).

Although we restrict our attention to constructions in Top˚ in this paper, note that polyhedral

(co)products could be defined more generally in any model category C, for example, by replacing the

category of pointed spaces with C in the definitions above. Since any (closed) model category has

an initial object and a terminal object, the polyhedral products and coproducts of the form pX, ˚qK

and pX, ˚qKco can be defined in this setting to yield functorial interpolations between the categorical

product and coproduct in C.
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the wedge lemma of Welker–Ziegler–Živaljević [WZZ]. The authors would also like to thank Stephen

Theriault for reading a draft of this work, and an anonymous referee for valuable comments that

improved the quality of this paper.

2. Basic properties

2.1. Basic examples. We begin by computing some basic examples of polyhedral coproducts, in

each case illustrating the Eckmann–Hilton duality between these constructions and their correspond-

ing polyhedral products.

Example 2.1 (The A “ ˚ case).

(1) Let K be m disjoint vertices. In this case, the polyhedral product associated to the m-tuple

of pairs pX, ˚q “ tpXi, ˚qumi“1 is the wedge

pX, ˚qK » X1 _ ¨ ¨ ¨ _ Xm.
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Dually, if fi : Xi Ñ ˚ is the constant map for each i “ 1, . . . ,m, then by definition the

corresponding polyhedral coproduct is given by

pX, ˚qKco » X1 ˆ ¨ ¨ ¨ ˆ Xm.

(2) On the other extreme, let K “ ∆m´1. The polyhedral product associated to pX, ˚q in this

case is

pX, ˚qK » X1 ˆ ¨ ¨ ¨ ˆ Xm.

Since the diagram defining pX, ˚qKco has an initial object corresponding to the maximal face

of the simplex ∆m´1,

pX, ˚qKco » X1 _ ¨ ¨ ¨ _ Xm.

(3) Let K “ B∆m´1. The polyhedral product pX, ˚qK in this case is precisely the fat wedge of

the spaces X1, . . . , Xm, which is defined as

FW pX1, . . . , Xmq “ tpx1, . . . , xmq | xi “ ˚ for at least one iu.

Dual to the fat wedge is the thin product of X1, . . . , Xm, as defined by Hovey in [Ho,

Definition 1]. This construction is realised by the polyhedral coproduct pX, ˚qKco.

Remark 2.2. The dual polyhedral product, denoted pX,AqKD , defined by Theriault [T] also models

some of the spaces in Example 2.1. In particular, when K is m disjoint points, pX, ˚qKD is equal to

the thin product of X1, . . . , Xm. When K “ B∆m´1, pX, ˚qKD » X1 ˆ ¨ ¨ ¨ ˆ Xm. Outside of these

cases, it is not clear whether there is any correspondence between the dual polyhedral product, and

the polyhedral coproduct. Theriault also used the dual polyhedral product to give a loop space

decomposition of the thin product. An alternate loop space decomposition of the thin product can

be recovered in the context of polyhedral coproducts by Theorem 4.3.

Just like the polyhedral product pX, ˚qK , the polyhedral coproduct pX, ˚qKco interpolates between

the categorical product X1 ˆ ¨ ¨ ¨ ˆ Xm and coproduct X1 _ ¨ ¨ ¨ _ Xm as K interpolates between

a discrete set of vertices and a full simplex. Next, we compute two further examples of fK

co
where

the m-tuple f involves maps other than the constant map Xi Ñ ˚. An important class of polyhe-

dral products (which includes generalised moment-angle complexes pDn, Sn´1qK) is given by those

associated to CW-pairs pCX,Xq “ tpCXi, Xiqumi“1 consisting of cones and their bases. The first

example below dualises this case by replacing the cofibrations Xi ãÑ CXi with path space fibrations

PXi Ñ Xi.

Example 2.3 (Dual of the join). Let K “ B∆1 be two disjoint vertices so that the only faces of

K are ∅, t1u and t2u, and its face poset is given by t1u Ð ∅ Ñ t2u. In this case the polyhedral

product pCX,XqK recovers the join of X1 and X2 as a pushout:

pCX,XqK “ CX1 ˆ X2 YX1ˆX2 X1 ˆ CX2 » X1 ‹ X2.
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For i P t1, 2u, let fi : PXi Ñ Xi be the path space fibration over Xi. Since each PXi is contractible,

the polyhedral coproduct fK

co
“ pPX,XqKco “ holimpPX1 _ X2 Ñ X1 _ X2 Ð X1 _ PX2q agrees

with the homotopy limit of the middle column of the commutative diagram

˚ X1 X1

F X1 _ X2 X1 ˆ X2

˚ X2 X2,

where the vertical maps are inclusions and the rows are homotopy fibrations. The homotopy limit of

the right column is contractible, so by taking homotopy limits of the columns we obtain a homotopy

equivalence pPX,XqKco » ΩF . By [G, p.302], F » ΣpΩX1 ^ ΩX2q, and so there is a homotopy

equivalence pPX,XqKco » ΩΣpΩX1 ^ ΩX2q. This space is known as the cojoin of X1 and X2.

Example 2.4 (Dual of the half-smash). Let K “ B∆1 be two disjoint vertices and let pX,Aq

consist of the CW-pairs tpX1, A1q, pX2, A2qu “ tpCX,Xq, pY, ˚qu. As in the previous example, the

polyhedral product is a pushout pX,AqK “ CX ˆ ˚ YXˆ˚ X ˆY . Since CX ˆ ˚ is contractible, this

is simply the cofibre of the inclusion X ˆ ˚ ãÑ X ˆ Y , which by definition is the half-smash product

pX,AqK » X ˙ Y.

To dualise this example, let f “ pf1, f2q where f1 : PX Ñ X is the path space fibration and

f2 : Y Ñ ˚ is the constant map. Then by definition, the polyhedral coproduct is given by

fK

co
“ holimpPX _ ˚ Ñ X _ ˚ Ð X _ Y q

» hofibpX _ Y
πX

ÝÝÑ Xq,

the expected Eckmann–Hilton dual of the cofibre pX,AqK “ hocofibpX
iX

ÝÝÑ X ˆ Y q above. The

homotopy fibre of the projection onto a wedge summand can be identified using Mather’s Cube

Lemma [Ma], and we therefore obtain that the dual of the half-smash is given by

fK

co
» ΩX ˙ Y.

Moreover, by Mather’s Cube Lemma or [G, Theorem 1.1], there is a homotopy fibration

ΣΩX ^ ΩY Ñ ΩX ˙ Y Ñ Y,

where the right map is the projection map. The projection has a right homotopy inverse, implying

there is a homotopy equivalence

ΩpΩX ˙ Y q » ΩY ˆ ΩpΣΩX ^ ΩY q.

This result can be recovered in the context of polyhedral coproducts by Theorem 4.2.
6



2.2. Functorial properties. The polyhedral product is a bifunctor (see [BBCG2, Remark 2.3]).

Namely, it defines a functor from the category of (m-tuples of) CW-pairs to the category of CW-

complexes, and it also defines a functor from the category of simplicial complexes to the category

of CW-complexes. In this section, we prove that the polyhedral coproduct enjoys similar functorial

properties. First, we show naturality with respect to maps of spaces.

Theorem 2.5. Let K be a simplicial complex on rms. For 1 ď i ď m, let fi : Xi Ñ Ai and

f 1
i : X

1
i Ñ A1

i be maps. If there are maps gi : Xi Ñ X 1
i and hi : Ai Ñ A1

i such that the diagram

(2)

Xi X 1
i

Ai A1
i

hi

fi f 1
i

gi

homotopy commutes, then there is an induced map fK

co
Ñ f 1K

co
.

Proof. Let DK and D1
K be the diagrams defining fK

co
and f 1K

co
respectively. For a face σ P K, define

a map Fσ : DKpσq Ñ D1
Kpσq, defined by

Fσ : DKpσq “

m
ł

i“1

Yi

m
Ž

i“1
ϕi

ÝÝÝÝÑ

m
ł

i“1

Y 1
i “ D1

Kpσq,

where ϕi “ gi if i P σ, and ϕi “ hi if i R σ. By (2), Fσ induces a natural transformation DK Ñ D1
K ,

which in turn induces a map fK

co
Ñ f 1K

co
. □

The definition of fK

co
is also natural with respect to simplicial inclusions.

Theorem 2.6. Let K be a simplicial complex on rms, and let L be a subcomplex of K on rns with

n ď m. Then the simplicial inclusion L Ñ K induces a map fK

co
Ñ fL

co
.

Proof. LetDK andDL be the diagrams defining fK

co
and fL

co
respectively. LetDK

L : catpLqop Ñ Top˚

be the diagram with DK
L pσq “

m
Ž

i“1

Yipσq, where Yipσq “ Xi if i P σ, and Yipσq “ Ai if i R σ. By

definition of fK

co
as a homotopy limit, there are canonical maps fK

co
Ñ DK

L pσq for all σ P L, and so

the inclusion catpLqop Ñ catpKqop induces a map fK

co
Ñ holim

catpLqop
DK

L .

Now define a natural transformation of diagrams DK
L Ñ DL by the pinch map

DK
L pσq “

m
ł

i“1

Yi Ñ

n
ł

i“1

Yi “ DLpσq.

This induces a map holim
catpLqop

DK
L Ñ fL

co
. Therefore, the simplicial inclusion induces the composite

fK

co
Ñ holim

catpLqop
DK

L Ñ fL

co
. □

Remark 2.7. The map fK

co
Ñ fL

co
can be represented as the homotopy limit of a map of diagrams

DK Ñ DL. For each σ P L, we have a pinch map DKpσq “
m
Ž

i“1

Yi Ñ
n

Ž

i“1

Yi “ DLpσq. By computing
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holimDK , one can see that the maps fK

co
Ñ DLpσq for σ P L are the maps described in the proof of

Theorem 2.6.

2.3. Retractions. Let K be a simplicial complex and L a full subcomplex of K. For polyhedral

products, by [DS, Lemma 2.2.3], there is a map pX,AqK Ñ pX,AqL which is a left inverse for the

map pX,AqL Ñ pX,AqK . In the case of polyhedral coproducts, there is an analogous statement.

Theorem 2.8. Let K be a simplicial complex on rms and L be a full subcomplex of K on rns, with

n ă m. Then there is a right homotopy inverse for the map fK

co
Ñ fL

co
induced by the simplicial

inclusion L Ñ K.

Proof. Let DK and DL be the diagrams defining fK

co
and fL

co
respectively. Recall from the proof of

Theorem 2.6 the diagram DK
L indexed by catpLqop, which is defined by DK

L pσq “
m
Ž

i“1

Yipσq, where

Yipσq “ Xi if i P σ, and Yipσq “ Ai if i R σ. Define a natural transformation DL Ñ DK
L by the

inclusion

DLpσq “

n
ł

i“1

Yi ãÑ

m
ł

i“1

Yi “ DK
L pσq

This induces a map fL

co

f
ÝÑ holim

catpLqop
DK

L . Define a functor F : catpKqop Ñ catpLqop by sending σ P K

to the face τ P L, where τ is obtained from σ by removing any instances of the vertices tn`1, . . . ,mu.

Since L is a full subcomplex, F is well defined. The functor F induces a map holim
catpLqop

DK
L

g
ÝÑ fK

co
.

Therefore, we obtain a composite

fL

co

f
ÝÑ holim

catpLqop
DK

L
g

ÝÑ fK

co
.

Now consider the composite

ϕ : fL f
ÝÑ holim

catpLqop
DK

L
g

ÝÑ fK

co

h
ÝÑ holim

catpLqop
DK

L
k

ÝÑ fL

co
,

where the composite k ˝ h : fK

co
Ñ fL

co
is defined as in Theorem 2.6. By definition of the functor F ,

the composite catpLqop ãÑ catpKqop
F

ÝÑ catpLqop is the identity, and so the composite h ˝ g is the

identity. For a face σ, the natural transformation inducing the composite k ˝ f is the identity on

DK
L pσq, and so k ˝ f is the identity. Hence, ϕ is the identity map, and so the composite g ˝ f is a

right homotopy inverse for the map induced by L Ñ K. □

2.4. Homotopy cofibrations. For polyhedral products, if K is a simplicial complex on rms, it was

shown in [DS, Lemma 2.3.1] that there exists a homotopy fibration

pCΩX,ΩXqK Ñ pX, ˚qK Ñ

m
ź

i“1

Xi,

which splits after looping. More generally, it was shown in [HST, Theorem 2.1] that there is a

homotopy fibration

pCY , Y qK Ñ pX,AqK Ñ

m
ź

i“1

Xi,
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where Yi is the homotopy fibre of the inclusion Ai Ñ Xi. Note that the map pX,AqK Ñ
m
ś

i“1

Xi is

induced by the inclusion K Ñ ∆m´1. Moreover, the second homotopy fibration above also splits

after looping, giving a homotopy equivalence

ΩpX,AqK »

m
ź

i“1

ΩXi ˆ ΩpCY , Y qK .

This implies that to understand the loop spaces of polyhedral products, and therefore their homotopy

groups, it suffices to study polyhedral products of the form ΩpCY , Y qK . Loop space decompositions

of certain polyhedral products of this form have been studied, for example, in [PT, S].

For polyhedral coproducts, by considering the map induced by the inclusion K Ñ ∆m´1, one

might hope there is a homotopy cofibration

m
ł

i“1

Xi Ñ pX, ˚qKco Ñ pPΣX,ΣXqKco,

or more generally,
m

ł

i“1

Xi Ñ pX,AqKco Ñ pPY , Y qKco,

where Yi is the homotopy cofibre of fi : Xi Ñ Ai. This would allow us to understand the suspension

of polyhedral coproducts, and therefore their homology. However, if K is two disjoint points, by part

p1q of Example 2.1, the map X1_X2 Ñ pX, ˚qKco is the inclusion X1_X2 Ñ X1ˆX2. The homotopy

cofibre of this map is X1 ^ X2, but Example 2.3 implies that pPΣX,ΣXqKco » ΩΣpΩΣX1 ^ ΩΣX2q.

This is reminiscent of how Ganea’s theorem [G, Theorem 1.1] does not dualise canonically; see [G,

Remark 3.5]. This gives rise to the following problem.

Problem 2.9. For certain classes of polyhedral coproducts, determine a decomposition for their

suspensions.

3. Preliminary Results

3.1. Preliminary decompositions. To decompose the loop space of a polyhedral coproduct,

we will use a result known as the Porter decomposition. Let K be m disjoint points. By [DS,

Lemma 2.3.1], there is a homotopy fibration

(3) pCΩX,ΩXqK Ñ

m
ł

i“1

Xi
i

ÝÑ

m
ź

i“1

Xi.

A result of Porter [P, Theorem 1] identifies the homotopy type of pCΩX,ΩXqK in the case that

each Xi is simply connected. For a pointed space X and k ě 1, let X_k be the k-fold wedge of X.

Theorem 3.1. Let X1, . . . , Xm be pointed, simply connected CW-complexes, and let K be m disjoint

points. There is a homotopy equivalence

pCΩX,ΩXqK »

m
ł

k“2

ł

1ďi1ă¨¨¨ăikďm

pΣΩXi1 ^ ¨ ¨ ¨ ^ ΩXikq_pk´1q.
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Moreover, this homotopy equivalence is natural for maps Xi Ñ Yi. □

There is a special case of the naturality in Theorem 3.1 which will be important. Let n ă m and

let Yi “ Xi for 1 ď i ď n, and let Yi “ CXi for n` 1 ď i ď m. In this case, we obtain the following.

Proposition 3.2. Let n ă m, and let X1, . . . , Xm be pointed, simply connected CW-complexes.

There is a homotopy commutative diagram

m
Ž

k“2

Ž

1ďi1ă¨¨¨ăikďm

ΣpΩXi1 ^ ¨ ¨ ¨ ^ ΩXikq_pk´1q
m
Ž

i“1

Xi

m
ś

i“1

Xi

n
Ž

k“2

Ž

1ďi1ă¨¨¨ăikďn

ΣpΩXi1 ^ ¨ ¨ ¨ ^ ΩXikq_pk´1q
n

Ž

i“1

Xi

n
ś

i“1

Xi,

p πp1

where p and p1 are pinch maps and π is the projection. □

After looping the homotopy fibration (3), there is a natural right homotopy inverse s of the

canonical inclusion i, given by multiplying the inclusions Xi Ñ
śm

i“1 Xi. The naturality of s and

the homotopy fibration in Theorem 3.1 imply the following.

Theorem 3.3. Let X1, . . . , Xm be pointed, simply connected spaces. There is a homotopy equivalence

Ω

˜

m
ł

i“1

Xi

¸

»

m
ź

i“1

ΩXi ˆ Ω

˜

m
ł

k“2

ł

1ďi1ă¨¨¨ăikďm

pΣΩXi1 ^ ¨ ¨ ¨ ^ ΩXikq_pk´1q

¸

.

Moreover, this homotopy equivalence is natural for maps Xi Ñ Yi. □

For a subset I “ ti1, ¨ ¨ ¨ , iku Ď rms and pointed spaces X1, ¨ ¨ ¨ , Xm, define X^I “ Xi1 ^¨ ¨ ¨^Xik .

Remark 3.4. Observe that in Theorem 3.3, the wedge summand in the right-hand product term

can be indexed as
ł

IĎrms,|I|ě2

pΣpΩXq^Iq_p|I|´1q.

Now we recall the Hilton–Milnor theorem. Let L be the free (ungraded) Lie algebra over Z on the

elements x1, . . . , xm, and let B be a Hall basis of L. For a bracket b P B, let kipbq be the number of

instances of xi in b. For a space X and k ě 0, denote by X^k the k-fold smash of X. The following

is from [Mi, Theorem 4], which is a generalisation of [Hi, Theorem A]. We will define the 0-fold

smash of X to be omission of the corresponding term, rather than a trivial space.

Theorem 3.5. Let X1, . . . , Xm be connected topological spaces. Then there is a homotopy equiva-

lence

Ω

˜

m
ł

i“1

ΣXi

¸

»
ź

bPB

ΩΣpX
^k1pbq

1 ^ ¨ ¨ ¨ ^ X^kmpbq
m q.

Moreover, this homotopy equivalence is natural for maps Xi Ñ Yi. □
10



As in the case of the Porter decomposition, there is a special case which will be important. Let

n ă m and let Yi “ Xi for 1 ď i ď n, and let Yi “ CXi for n ` 1 ď i ď m. By contracting out the

CXi terms, we obtain the following.

Corollary 3.6. Let n ă m, let Bn be a Hall basis on the free Lie algebra generated by x1, . . . , xn,

and let Bm be a Hall basis on the free Lie algebra generated by x1, . . . , xm. Then the diagram

ΩΣ

ˆ

m
Ž

i“1

Xi

˙

ś

bPBm

ΩΣpX
^k1pbq

1 ^ ¨ ¨ ¨ ^ X
^kmpbq
m q

ΩΣ

ˆ

n
Ž

i“1

Xi

˙

ś

bPBn

ΩΣpX
^k1pbq

1 ^ ¨ ¨ ¨ ^ X
^knpbq
n q.

»

πΩp

»

homotopy commutes. □

3.2. Preliminary homotopy limit decompositions. In this section, we prove some decomposi-

tions of certain homotopy limits indexed by the opposite of the face category of a simplicial complex.

The first lemma is the dual statement of the “Wedge Lemma” from [WZZ, Proposition 3.5].

Lemma 3.7. Let K be a simplicial complex. Let X be a space and let D : catpKqop Ñ Top˚ be a

diagram with Dp∅q “ X and Dpσq “ ˚ for all σ ‰ ∅. Then

holim
catpKqop

D » Map˚pΣ|K|, Xq.

Proof. Let catpKq
op
ą∅ denote the subposet category consisting of all σ P K where σ ‰ ∅. For a

topological space A, let A : catpKqop Ñ Top˚ be the diagram with constant value A. The opposite

category pcatpKq
op
ą∅qop is the category catpKqă∅ and its geometric realization coincides with the

realization of K as a topological space

|K| » hocolim
catpKqă∅

˚.

Thus there are homotopy equivalences

Mapp|K|, Xq » Mapphocolim
catpKqă∅

˚, Xq » holim
catpKq

op
ą∅

Mapp˚, Xq » holim
catpKq

op
ą∅

X.

Let X : catpKqop Ñ Top˚ be the diagram with X p∅q “ ˚ and X pσq “ X for all σ ‰ ∅. The

diagram D can be written as the (homotopy) pullback

(4) ˚ ÝÑ X ÐÝ X,

where the right-hand map is the constant map to the basepoint for σ “ ∅, and the identity on X

for σ ‰ ∅. The left-hand map is the inclusion of the basepoint for each σ P K.

Let Z be the category with two objects, 1 and 2, and a morphism f : 2 Ñ 1 in addition to

the identity morphisms. Consider the diagram Y : catpKq
op
ą∅ ˆ Z Ñ Top˚, with Ypσ, 1q “ ˚ and

Ypσ, 2q “ X for all σ ‰ ∅. Let F1 : catpKq
op
ą∅ ˆ Z Ñ catpKqop be the functor sending pσ, 1q ÞÑ ∅

11



and pσ, 2q ÞÑ σ. Let F2 : catpKq
op
ą∅ˆZ Ñ catp∆0qop be the functor sending pσ, 1q ÞÑ 1 and pσ, 2q ÞÑ 2

for all σ ‰ ∅. The right Kan extension of Y along F1 is X and the right Kan extension of Y along

F2 is the diagram

Mapp|K|, Xq Ñ Mapp|K|, ˚q.

Since homotopy limits are preserved by right Kan extensions, we obtain the equivalences

holim
catpKqop

X » holim pMapp|K|, Xq Ñ Mapp|K|, ˚qq » Mapp|K|,holimpX Ñ ˚qq » Mapp|K|, Xq.

Recall that the diagram D was equivalent to diagram (4). Using that holim
catpKqop

˚ is contractible and

the previous observations about X yields the homotopy equivalence

(5) holim
catpKqop

D » holim p˚ ÝÑ Mapp|K|, Xq ÐÝ Xq .

The map X Ñ Mapp|K|, Xq is a section for the evaluation map evk : Mapp|K|, Xq Ñ X, where

k P |K|. In particular, there is a homotopy fibration diagram

ΩMap˚p|K|, Xq ˚ Map˚p|K|, Xq

F X Mapp|K|, Xq

X X,

»

evk

where the top right square is a homotopy pullback and F is the homotopy limit of (5). Hence, there

are homotopy equivalences

holim
catpKqop

D » F » ΩMap˚p|K|, Xq » Map˚p|K|,ΩXq » Map˚pΣ|K|, Xq. □

Lemma 3.8. Let K be a simplicial complex on rms. Let I Ď rms, and let D : catpKqop Ñ Top˚

be a diagram. Suppose that all maps induced by σ Ă τ , where σ is obtained from τ by removing a

single vertex not contained in I, are identity maps. Then the homotopy limit of D is equivalent to

the homotopy limit of a diagram D1 : catpKIq Ñ Top˚, where D1pσIq “ Dpσq.

Proof. The inclusion of KI Ă K induces a map of face categories i : catpKIqop Ñ catpKqop. The

diagram D is the right Kan extension of D1 along i. Hence, D and D1 have the same homotopy limit

since right Kan extensions preserve homotopy limits. □

4. Loop spaces of polyhedral coproducts

4.1. A general loop space decomposition. In [BBCG2, Definition 2.2], for a simplicial complex

K, a construction known as the polyhedral smash product is defined and denoted by {pX,Aq
K
. By

[BBCG2, Theorem 2.10], there is a homotopy equivalence

ΣpX,AqK »
ł

IĎrms

Σ {pX,Aq
KI

.

12



In this subsection, we show a dual statement for polyhedral coproducts. Recall that for spaces X

and Y there is a (homotopy) cofibration X _ Y Ñ X ˆ Y Ñ X ^ Y . To dualise this, by [G, p.302],

there is a homotopy fibration ΣpΩX ^ ΩY q Ñ X _ Y Ñ X ˆ Y . This motivates the following

definition.

Definition 4.1. The polyhedral smash coproduct is defined as the homotopy limit

f̂
K

co
“ holim

catpKqop
ΣD̂, where D̂ “

m
ľ

i“1

ΩYi and Yipσq “

$

’

&

’

%

Xi if i P σ,

Ai if i R σ.

For a set of positive integers N “ tk1pNq, . . . , kmpNqu, we define the weighted polyhedral smash

coproduct as

f̂
K

N,co
“ holim

catpKqop
ΣD̂N , where D̂N “

m
ľ

i“1

pΩYiq
^kipNq and Yipσq “

$

’

&

’

%

Xi if i P σ,

Ai if i R σ.

Before stating the result, we set up some notation which will be used throughout the rest of

Section 4. For a subset I “ ti1, . . . , iku Ď rms, let SI be the set

taJ,i | J Ď I, |J | ě 2, 1 ď i ď |J | ´ 1u.

Denote by BI a Hall basis of the free ungraded Lie algebra on the set SI . For a bracket b P BI and

J Ď I, let bpJq be the sum of the number of instances of aJ,i in b for each 1 ď i ď |J | ´ 1. For

1 ď i ď m and a bracket b P Brms, define

lipbq :“
ÿ

IĎrms,iPI

bpIq,

which counts the number of instances of each vertex i in the faces in b. Let Lb “ pl1pbq, . . . , lmpbqq.

For any I Ď rms and b P Brms, define

Ib :“ I X tj | 1 ď j ď m, ljpbq ‰ 0u.

This set contains the elements of I which appear in the subsets in b. To ensure that ΩXi is connected

in order to apply Theorem 3.5, we need the hypothesis that each Xi is simply connected.

Theorem 4.2. Let fi : Xi Ñ Ai be a map of pointed, simply connected CW-complexes for all

1 ď i ď m. There is a homotopy equivalence

ΩfK

co
»

m
ź

i“1

ΩXi ˆ
ź

bPBrms

Ωf̂
KIb

Lb,co
.

Proof. Since loops commute with homotopy limits, ΩfK

co
» holim

catpKqop
ΩD. By Theorem 3.3 and

Remark 3.4, ΩD decomposes as a product

ΩD »

m
ź

i“1

ΩYi ˆ ΩΣ

¨

˝

ł

IĎrms,|I|ě2

ppΩY q^Iq_p|I|´1q

˛

‚.
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We can apply the Hilton–Milnor theorem (Theorem 3.5) to the right-hand product term to obtain

the equivalence

Ω

¨

˝

ł

IĎrms,|I|ě2

ΣppΩY q^Iq_p|I|´1q

˛

‚»
ź

bPBrms

ΩΣ

¨

˝

ľ

IĎrms,|I|ě2

ppΩY q^Iq^bpIq

˛

‚.

Note that for any b P Brms, by definition

Σ

¨

˝

ľ

IĎrms,|I|ě2

ppΩY q^Iq^bpIq

˛

‚“ ΣD̂Lb .

Using the loop space decomposition of D we obtain a new description of ΩfK

co
:

ΩfK

co
» holim

catpKqop
ΩD » holim

catpKqop

¨

˝

m
ź

i“1

ΩYi ˆ
ź

bPBrms

ΩΣD̂Lb

˛

‚

»

m
ź

i“1

ˆ

holim
catpKqop

ΩYi

˙

ˆ
ź

bPBrms

ˆ

holim
catpKqop

ΩΣD̂Lb

˙

.

Fix i P rms and consider the term holim
catpKqop

ΩYi. By Lemma 3.8 in the case I “ tiu, there is an

equivalence

holim
catpKqop

ΩYi » holimpΩXi Ñ ΩAiq » ΩXi.

For any b P Brms and any pair of simplices σ Ă τ where σ is obtained from τ by removing a vertex

not in Ib, the induced maps ΩΣD̂Lbpσq Ñ ΩΣD̂Lbpτq are identity maps. Therefore, Lemma 3.8

implies that

holim
catpKqop

ΩΣD̂Lb » holim
catpKIb

qop
ΩΣD̂Lb » Ωf̂

KIb

Lb,co
. □

4.2. Loop space decompositions of pX, ˚qKco. For polyhedral products of the form pX, ˚qK , by

[BBCG2, Theorem 2.15], there is a homotopy equivalence

ΣpX, ˚qK »
ł

σPK

ΣX^σ.

In this subsection, we prove a dual statement for polyhedral coproducts of the form pX, ˚qKco. Let F

andM be the set of faces and maximal faces ofK on two or more vertices, respectively. The following

result could be shown using Theorem 4.2 by showing that certain polyhedral smash coproducts are

contractible in this case. However, this would require a technical argument involving choices of vector

space bases for free Lie algebras. To avoid these technicalities, and make clearer the connection to

Hall bases, we provide a proof using Corollary 3.6.

Theorem 4.3. Let X1, . . . , Xm be pointed, simply connected CW-complexes. There is a homotopy

equivalence

ΩpX, ˚qKco »

m
ź

i“1

ΩXi ˆ
ź

bP
Ť

σPM
Bσ

ΩΣ

˜

ľ

τPF
ppΩXq^τ q^bpτq

¸

.
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Proof. By definition of the polyhedral coproduct, pX, ˚qKco “ holim
catpKqop

D, where, if σ “ ti1, . . . , iku,

Dpσq “
Žk

j“1 Xij , and for each σ1 Ă σ, the map Dpσq Ñ Dpσ1q is given by the pinch map

p :
Ž

iPσ Xi Ñ
Ž

jPσ1 Xj . Since looping commutes with homotopy limits, we obtain a homotopy

equivalence ΩpX, ˚qKco » holim
catpKqop

ΩD. By Theorem 3.3 and Remark 3.4, there is a natural homotopy

equivalence

(6) Ω

˜

k
ł

j“1

Xij

¸

»

k
ź

j“1

ΩXij ˆ Ω

¨

˝

ł

τĎσ,|τ |ě2

pΣpΩXq^τ q
_|τ |´1

˛

‚.

Under this equivalence, it follows from Proposition 3.2 that for σ1 Ď σ, the maps ΩDpσq Ñ ΩDpσ1q

are given by π ˆ Ωp1 up to homotopy, where π is the projection and p1 is the pinch map.

Applying the Hilton–Milnor theorem to the second factor on the right hand side in (6), we obtain

a natural homotopy equivalence

Ω

¨

˝

ł

τĎσ,|τ |ě2

pΣpΩXq^τ q
_|τ |´1

˛

‚»
ź

bPBσ

ΩΣ

¨

˝

ľ

τĎσ,|τ |ě2

ppΩXqτ q^bpτq

˛

‚.

By Theorem 3.6, for σ1 Ď σ, there is a homotopy commutative diagram

Ω

˜

Ž

τĎσ,|τ |ě2

pΣpΩXq^τ q
_|τ |´1

¸

ś

bPBσ

ΩΣ
´

Ź

τĎσ,|τ |ě2ppΩXqτ q^bpτq

¯

Ω

˜

Ž

τ 1Ďσ1,|τ 1|ě2

´

ΣpΩXq^τ 1
¯_|τ 1

|´1
¸

ś

bPBσ1

ΩΣ
´

Ź

τ 1Ďσ1,|τ 1|ě2ppΩXqτ
1

q^bpτ 1
q

¯

»

Ωp1

π1

»

where π1 is the projection. Summarising, for σ1 Ď σ, there is a homotopy commutative diagram

Ω

ˆ

Ž

iPσ

Xi

˙

ś

iPσ

Xi ˆ
ś

bPBσ

ΩΣ
´

Ź

τĎσ,|τ |ě2ppΩXqτ q^bpτq

¯

Ω

˜

Ž

jPσ1

Xj

¸

ś

jPσ1

Xj ˆ
ś

bPBσ1

ΩΣ
´

Ź

τ 1Ďσ1,|τ 1|ě2ppΩXqτ
1

q^bpτ 1
q

¯

.

»

Ωp
π2

»

Hence ΩpX, ˚qKco » holim
catpKqop

ΩD is the product of each of the distinct factors that appear in the

diagram. For σ1 Ď σ, the product terms appearing in the decomposition for ΩDpσq strictly contain

the product terms in the decomposition for ΩDpσ1q. Therefore, enumerating the distinct factors

that appear for the maximal faces, we obtain the desired equivalence. □

Example 4.4. Let K be a 1-dimensional simplicial complex on rms. In this case, the set M consists

of all the 1-simplices in K. For each σ “ ti, ju P M, Bσ “ tσu. Therefore, Theorem 4.3 implies

there is a homotopy equivalence

ΩpX, ˚qKco »

m
ź

i“1

ΩXi ˆ
ź

σPM
ΩΣpΩXi ^ ΩXjq.
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4.3. Loop space decompositions when the domain is contractible. For a simplicial complex

K, let |K| be the geometric realisation of K as a topological space. For polyhedral products of the

form pCX,XqK , by [BBCG2, Theorem 2.21], there is a homotopy equivalence

(7) ΣpCX,XqK »
ł

IRK

Σp|KI | ^ X^Iq.

In this subsection, we prove a dual statement for polyhedral coproducts of the form fK

co
where the

domain of each fi is contractible.

Theorem 4.5. Let K be a simplicial complex on rms and fi : Xi Ñ Ai where Xi is contractible and

Ai is a pointed, simply connected CW-complex for 1 ď i ď m. Then there is a homotopy equivalence

ΩfK

co
»

ź

bPBrms,IbRK

ΩMap˚pΣ|KIb |,ΣΩA
^l1pbq

1 ^ ¨ ¨ ¨ ^ ΩA^lmpbq
m q.

To prove Theorem 4.5, we will use the following consequence of Theorem 4.2.

Lemma 4.6. Assume that Xi is contractible and Ai is a pointed, simply connected CW-complex for

all i and N P Nm. There is a homotopy equivalence

f̂
K

N,co
» Map˚pΣ|K|,ΣΩA

^k1pNq

1 ^ ¨ ¨ ¨ ^ ΩA^kmpNq
m q.

Proof. By definition, D̂N p∅q “ ΣΩA
^k1pNq

1 ^ ¨ ¨ ¨ ^ΩA
^kmpNq
m and D̂N pσq » ˚ for all σ ‰ ∅ since all

the Xi are contractible. Thus, we may apply Lemma 3.7 to the diagram defining f̂
K

N,co
which yields

the claimed result. □

With the lemma above, it is straightforward to prove Theorem 4.5

Proof of Theorem 4.5. By Lemma 4.6, if Ib P K, then f̂
KIb

Lb,co
is contractible. One can then apply

Lemma 4.6 to the decomposition in Theorem 4.2 to prove the statement. □

Example 4.7. Let K “ B∆m´1. In this case, the only missing face of K is t1, . . . ,mu. By

Theorem 4.5, there is a homotopy equivalence

ΩfK

co
»

ź

bPBrms,Ib“t1,...,mu

ΩMap˚pΣ|KIb |,ΣΩA
^l1pbq

1 ^ ¨ ¨ ¨ ^ ΩA^lmpbq
m q,

where the indexing set of the product consists of brackets b such that for each i P rms, there is a

face σ P K in b which contains i.

In the case of polyhedral products, it is known that the decomposition in (7) desuspends in certain

cases. For example, when K is a shifted complex [GT1, IK1], a flag complex with chordal 1-skeleton

[PT, Theorem 6.4], or more generally, a totally fillable simplicial complex [IK2, Corollary 7.3].

Specialising, polyhedral products of the form pD2, S1qK are known as moment-angle complexes,

which are denoted ZK . In the aforementioned cases, ZK is homotopy equivalent to a wedge of

spheres.
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Consider the case where K is a simplicial complex on rms, and is either a shifted complex, or a flag

complex with chordal 1-skeleton. The dual of the polyhedral product pCX,XqK is the polyhedral

coproduct pPX,XqKco. In the first case, |KI | is homotopy equivalent to a wedge of spheres for all

I Ď rms, and in the second case, |KI | is homotopy equivalent to a set of disjoint points for all

I Ď rms. Therefore, in the case where each Xi is a simply connected sphere, Theorem 4.5 implies

that ΩpPX,XqKco is homotopy equivalent to a product of iterated loop spaces of spheres. Dual to

the polyhedral product case, we give the following conjecture.

Conjecture 4.8. Let K be a shifted complex or a flag complex with chordal 1-skeleton. Then the

decomposition in Theorem 4.5 deloops.

5. Polyhedral coproducts under operations on simplicial complexes

5.1. Joins of simplicial complexes. For any polyhedral product, if K “ K1 ‹K2 is the join of K1

and K2, then pX,AqK – pX,AqK1 ˆ pX,AqK2 . Therefore, we may expect a homotopy equivalence

pX,AqKco » pX,AqK1
co _ pX,AqK2

co . However, this does not hold in general for polyhedral coproducts.

For 1 ď i ď 4, let Xi “ CP8, and let K “ t1, 2u ‹ t3, 4u be the boundary of a square. Since

pCP8, ˚q
t1,2u
co and pCP8, ˚q

t3,4u
co are homotopy equivalent to CP8 ˆ CP8 by Example 2.1, suppose

that pCP8, ˚qKco » pCP8 ˆCP8q_pCP8 ˆCP8q. Since CP8 is simply connected and ΩCP8 » S1,

by Theorem 4.3, there is a homotopy equivalence

ΩpCP8, ˚qKco »

4
ź

i“1

pS1 ˆ ΩS3q.

Now by Theorem 3.3 applied to pCP8 ˆCP8q _ pCP8 ˆCP8q, there is a homotopy equivalence

ΩppCP8 ˆ CP8q _ pCP8 ˆ CP8qq »

4
ź

i“1

S1 ˆ ΩΣ
`

pS1 ˆ S1q ^ pS1 ˆ S1q
˘

.

For spaces X and Y , there is a well-known homotopy equivalence ΣpXˆY q » ΣX_ΣY _ΣpX^Y q.

By shifting the suspension coordinate, we obtain homotopy equivalences

4
ź

i“1

S1 ˆ ΩΣ
`

pS1 _ S1 _ S2q ^ pS1 _ S1 _ S2q
˘

»

4
ź

i“1

S1 ˆ ΩΣ

˜

4
ł

i“1

S2 _

4
ł

i“1

S3 _ S4

¸

.

By Theorem 3.5, ΩΣ
´

Ž4
i“1 S

2 _
Ž4

i“1 S
3 _ S4

¯

decomposes as an infinite, finite type product of

spheres and loops on spheres. However, since ΩpCP8, ˚qKco is homotopy equivalent to a finite product

of spheres and loops on spheres,

ΩpCP8, ˚qKco fi ΩppCP8 ˆ CP8q _ pCP8 ˆ CP8qq,

which implies that

pCP8, ˚qKco fi pCP8 ˆ CP8q _ pCP8 ˆ CP8q.

However, it is possible to say something about certain joins. Let K be a simplicial complex on

rms and for 1 ď i ď m, let pXi, Aiq be CW-pairs. If pXm`1, Am`1q is a CW-pair where Xm`1 is
17



contractible, then there are homotopy equivalences pX,AqK˚tm`1u – pX,AqK ˆ Xm`1 » pX,AqK .

The following dualises this case.

Proposition 5.1. Let K be a simplicial complex on the vertex set rms and let fK

co
be any polyhedral

coproduct. Let K 1 “ K ‹ tm ` 1u where fm`1 : ˚ Ñ Y for some space Y . Then fK1

co
» fK

co
.

Proof. There is an equivalence of categories catpK 1qop – catpKqop ˆcatptm`1uqop and a projection

map p : catpK 1qop Ñ catpKqop. Geometrically, the map p deletes vertex m ` 1 from any simplex

in K 1. Let D1 : catpK 1qop Ñ Top˚ (resp. D : catpKqop Ñ Top˚) be the diagram defining fK1

co

(resp. fK

co
) . By right Kan extending D1 along p, we recover D. Note that had we not placed the

assumption on the domain of fm`1 then the Kan extension would not recover D. Since right Kan

extensions preserve homotopy limits, we get the equivalence fK1

co
» fK

co
. □

5.2. Pullbacks of polyhedral coproducts. Let K1 be a simplicial complex on t1, . . . , nu and K2

be a simplicial complex on tl, . . . ,mu with n ă m and l ď m, and let L be a subcomplex (possibly

empty) of K1 and K2 on tl, . . . , nu. Define K “ K1 YLK2, and for M one of K1, K2 or L, let M be

the simplicial complex considered on the vertex set t1, . . . ,mu. For polyhedral products, by [GT1,

Proposition 3.1], there is a pushout

pX,AqL pX,AqK1

pX,AqK2 pX,AqK .

For polyhedral coproducts, we can prove a dual statement.

Proposition 5.2. Let K1 be a simplicial complex on t1, . . . , nu and K2 be a simplicial complex on

tl, . . . ,mu with n ă m and l ď m, and let L be a subcomplex (possibly empty) of K1 and K2 on

tl, . . . , nu. Define K “ K1 YL K2. Then there is a homotopy pullback of polyhedral coproducts

fK

co
fK2

co

fK1

co
fL

co

where the maps fK1

co
Ñ fL

co
, and fK2

co
Ñ fL

co
are induced by the simplicial inclusions.

Proof. Let C be the category associated to the following diagram

catpK1qop Ñ catpLqop Ð catpK2qop
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where the maps are induced by the inclusions of L into K1 and K2. By Remark 2.7, one may write

the elements of the pullback

fK2

co

fK1

co
fL

co

as diagrams and we are left with a diagram D1 : C Ñ Top˚. For each σ P L, let σK1
(resp. σK2

q

denote the copies in C. The objects of C are the same as catpKqop, but with three copies of each

σ P L. For each σ P L, the maps D1pσK1q Ñ D1pσq and DpσK2q Ñ Dpσq are the identity map.

Let D : catpKqop Ñ Top˚ be the diagram defining fK

co
. There’s a projection map p : C Ñ catpKqop

collapsing the tripled simplices. The right Kan extension of D1 along p recovers the diagram D.

As right Kan extensions preserve homotopy limits, the homotopy pullback diagram has the desired

limit. □

Let K1 and K2 be simplicial complexes and let K “ K1 \ K2. By definition of the polyhedral

product, pX, ˚qK “ pX, ˚qK1 _ pX, ˚qK2 . In the case of a polyhedral coproduct pX, ˚qKco, using

Proposition 5.2, we show that the dual holds in this case.

Theorem 5.3. Let K1 and K2 be simplicial complexes, and let K “ K1 \K2. There is a homotopy

equivalence

pX, ˚qKco » pX, ˚qK1
co ˆ pX, ˚qK2

co .

Proof. By definition, since each Ai “ ˚, pX, ˚q∅ “ ˚, and pX, ˚qKi “ pX, ˚qKi for i P t1, 2u.

Therefore, Proposition 5.2 implies there is a homotopy pullback

pX, ˚qKco pX, ˚qK2
co

pX, ˚qK1
co ˚.

Hence, there is a homotopy equivalence

pX, ˚qKco » pX, ˚qK1
co ˆ pX, ˚qK2

co . □
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