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Abstract 

Background

Peatlands are globally-important carbon sinks at risk of degradation from climate 

change and direct human impacts, including drainage and burning. Peat accumulates 

when there is a positive mass balance between plant productivity inputs and litter/

peat decomposition losses. However, the factors influencing the rate of peat accumu-

lation over time are still poorly understood.

Methodology/Principal Findings

We examine apparent peat accumulation rates (aPAR) during the last two millennia 

from 28 well-dated, intact European peatlands and find a range of between 0.005 and 

0.448 cm yr-1 (mean = 0.118 cm yr-1). Our work provides important context for the com-

monplace assertion that European peatlands accumulate at ~0.1 cm per year. The 

highest aPAR values are found in the Scandinavian and Baltic regions, in contrast to 

Britain, Ireland, and Continental Europe. We find that summer temperature is a signif-

icant climatic control on aPAR across our European sites. Furthermore, a significant 

relationship is observed between aPAR and water-table depth (reconstructed from 

testate-amoeba subfossils), suggesting that higher aPAR levels are often associated 

with wetter conditions. We also note that the highest values of aPAR are found when 

the water table is within 5–10 cm of the peatland surface. aPAR is generally low 

when water table depths are < 0 cm (standing water) or > 25 cm, which may relate to 

a decrease in plant productivity and increased decomposition losses, respectively. 

Model fitting indicates that the optimal water table depth (WTD) for maximum aPAR 

is ~ 10 cm

Conclusions/Significance

Our study suggests that, in some European peatlands, higher summer temperatures 

may enhance growth rates, but only if a sufficiently high water table is maintained. 

In addition, our findings corroborate contemporary observational and experimental 

studies that have suggested an average water-table depth of ~10 cm is optimal to 

enable rapid peat growth and therefore carbon sequestration in the long term. This 

has important implications for peatland restoration and rewetting strategies, in global 

efforts to mitigate climate change.

Introduction

Peatlands comprise only ~3% of the global landmass but are globally important 
habitats, carbon (C) stores and valuable archives of past environmental and climatic 
change [1–3]. European peatlands contain approximately half of the continent’s total 
soil organic carbon, and five times more carbon than its forests [4,5]. Peatlands 

and reproduction in any medium, provided the 
original author and source are credited.

Data availability statement: All relevant data 
are within the manuscript and its Supporting 
Information files.

Funding: We acknowledge all the organiza-
tions that have funded the data used in this 
analysis: Academy of Finland; Department for 
Employment and Learning (Northern Ireland); 
European Commission (Fifth Framework); 
INTERACT (European Community’s Seventh 
Framework Programme); Irish Discovery 
Programme; Leverhulme Trust; National 
Science Centre (Poland); Natural Environment 
Research Council (UK); Natural Sciences and 
Engineering Research Council of Canada; 
Netherlands Organization for Scientific 
Research; Polish National Science Centre; 
Quaternary Research Association; Swiss 
Contribution to the enlarged European Union; 
Swiss Federal Office for Education and Science; 
Swiss National Science Foundation; World 
University Network; Wüthrich Fund (University 
of Neuchâtel); and Yorkshire Water. T.G.S. was 
funded by the Leeds–York Natural Environment 
Research Council (NERC) Doctoral Training 
Partnership (grant no. NE/L002574/1). T.E.T. 
acknowledges NERC Doctoral Training Grant 
no. NE/G52398X/1. JMGs contribution rep-
resents NRCan contribution number/Numéro de 
contribution de RNCan: 20230392. This paper 
is a contribution to the PAGES C-PEAT group. 
PAGES is supported by the Swiss Academy 
of Sciences and Future Earth. This research 
was supported by a grant to G.T.S from the UK 
Leverhulme Trust (Grant No. RPG-2021-354).

Competing interests: The authors have 
declared that no competing interests exist.



    

PLOS One | https://doi.org/10.1371/journal.pone.0327422  July 23, 2025 3 / 16

accumulate peat when plant inputs exceed peat losses through decomposition. Peat accumulation can therefore be con-
sidered a mass balance where net growth or loss is dependent on the difference between inputs and outputs of organic 
carbon [6,7]. Natural peatlands exhibit a near-surface water table, which slows down C losses from microbial catabolic 
activities and enables peat accumulation [8]. Vegetation composition is a strong control on peat accumulation rates, with 
Sphagnum-dominated bogs often the fastest peat accumulators [e.g., 9–11].

Many European peatlands have been damaged in recent centuries through human activities including burning, drain-
age, peat extraction, forestry, nutrient pollution and land-use changes [12]. In addition, climate change may have nega-
tive consequences for some peatland ecosystems as warmer temperatures and shifts in precipitation patterns may lead 
to deepening water tables, that could in turn lead to greater peat decomposition and loss of soil organic carbon [13], 
although climate change may also increase peat accumulation in certain regions [1,14].

Major efforts are underway to conserve and restore degraded peatlands across Europe (e.g., LIFE Peat Restore). The 
primary method for restoring peatlands involves “re-wetting” or re-establishing the natural flow of water and soil saturation 
to the peatland ecosystem, which may include blocking artificial drains or canals [15]. The anticipation is that drain block-
ing will lead to restoration of a healthy peatland ecosystem, and in time, the ‘stabilised’ peatland will begin to accumulate 
peat and/or act again as a long-term carbon store [16]. There is also evidence to suggest that damaged peatlands can 
self-repair, including the spontaneous recovery of degraded peatlands where an ecological regime shift from erosion to 
renewed carbon accumulation has been observed [17,18]. Peatlands can thus be considered complex adaptive systems, 
demonstrating the capacity to self-regulate in terms of vegetation and hydrological functioning [19,20].

However, there are many gaps in scientific understanding of the factors behind peat formation and what causes the 
peatland carbon sink capacity to destabilise and re-stabilise. If the key processes involved can be elucidated, researchers 
will be better placed to model how peatlands respond to ongoing climate changes and to advise how to manage peatland 
carbon stocks more effectively. Current efforts to restore peatlands are only partly based on scientific evidence and, without 
process-based understanding, it is difficult to predict the long-term outcome of management approaches – including the 
possibility that restoration may be ineffective in transforming peatlands into carbon sinks [see 21]. This study uses palaeoen-
vironmental data from 28 well-dated, intact European peat bogs (Fig 1) to determine the climatic and hydrological controls on 
the apparent rates of peat accumulation (aPAR) (Table 1, Fig 1). An understanding of how fast peatlands grow vertically (i.e., 
aPAR) may also have important implications for: i) robust determination of carbon (C) accumulation rates; ii) determining the 
temporal resolution of palaeoenvironmental profiles; and iii) validation of peatland development models.

Results

Peat-core chronologies were determined using Bayesian age models (S1) and used to calculate temporal changes in aPAR 
at a 1-cm resolution for each core. Trends in aPAR data were then analysed against hydrological (water-table depth) and 
climatic (gridded reanalysis) datasets. We find that aPAR in our European sites range from 0.005 to 0.448 cm yr-1 (Fig 2) and 
the average of the inter-site means (n = 28) is 0.118 cm yr-1 (average of all sample depths (n = 1732) is 0.140 cm yr-1).

To reveal long-term trends that reflect the typical functioning of each site, we consider the site-based aPAR averages, 
maxima and minima for further statistical analysis against climatic and WTD data (Table S7 in S1 File). We find that higher 
summer temperatures (June, July, August; JJA) are generally associated with higher aPAR values, a pattern evident in 
both contemporary and palaeo-climatic datasets. For the contemporary data, the Theil-Sen slope estimates indicate posi-
tive associations between summer temperature and aPAR (average aPAR: β = 0.30; maximum aPAR: β = 0.33; Table S8 in 
S1 File Fig 3). Spearman’s rank correlation supports this trend, showing a weakly significant relationship between average 
aPAR and JJA temperature (p = 0.0875), and a more robust association for minimum aPAR (p = 0.0123; S2).

Using the palaeo-climate dataset, the relationship is even stronger, with Theil-Sen β of 0.52 for average aPAR and 
0.55 for maximum aPAR. Spearman’s rank correlation confirms the significance of these associations (minimum aPAR: 
p = 0.0101; maximum aPAR: p = 0.0025; average aPAR: p = 0.0004). In contrast, relationships between aPAR and other 
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climatic variables are ambiguous (Table S8 in S1 File, Fig 3, S2,5 & 6 in S1 File). We find that the highest aPAR values 
are found in the Scandinavia and Baltics region (S3) and that there is no discernible difference in aPAR between notable, 
continent-wide climate phases of the late Holocene, including the Little Ice Age (~1500– ~ 1850 cal. yr. CE), Medieval 
Warm Period (~950– ~ 1250 cal. yr. CE) and Roman Warm Period (~1– ~ 400 cal. yr. CE) (S4).

We observe a weak negative relationship between average aPAR and average WTD (Theil-Sen beta = −0.31) (Fig 3). 
Spearman’s rank correlation confirms a weakly significant relationship (p = 0.0854) (S2). aPAR is generally lower under 
deeper water tables (higher WTD), although a degree of non-linearity is suggested through the presence of the highest 
aPAR in the 5–10 cm WTD range (Fig 3). It is notable that none of our sites has high average aPAR when WTD is deeper 
than ~11 cm, suggesting a hydrological threshold. To explore this relationship in greater detail we re-examined the data 
from the 1-cm thick layers. Fig 4 shows there is a clear distribution of accumulation rates in relation to WTD – the highest 
box median values of AR occur when the reconstructed WTD is in the 5–10 cm range, which is in alignment with the site 
average-based analysis (Fig 3). Application of a Loess Smoothing Model indicates an optimal WTD range between 7 and 

Fig 1.  Location of study sites.  Site descriptions are provided in Table 1.

https://doi.org/10.1371/journal.pone.0327422.g001

https://doi.org/10.1371/journal.pone.0327422.g001


    

PLOS One | https://doi.org/10.1371/journal.pone.0327422  July 23, 2025 5 / 16

Table 1.  European sites analysed in this study.

Site number Site name Region Country Latitude Longitude Reference

1 Cloonoolish Britain & Ireland Ireland 53.1865 −8.2569 Blundell et al. (2008) Journal of Quaternary 
Science 23, 59–71.

2 Ballyduff Britain & Ireland Ireland 53.0807 −7.9925 Swindles et al. (2013) Earth Science Reviews 
126, 300–320.

3 Derragh Britain & Ireland Ireland 53.7667 −7.4083 Langdon et al. (2012) Quaternary International 
268, 145–155.

4 Ardkill Britain & Ireland Ireland 53.3653 −6.9532 Blundell et al. (2008) Journal of Quaternary 
Science 23, 59–71.

5 Dead Island Britain & Ireland Ireland 54.8862 −6.5487 Swindles et al. (2010) Quaternary Science 
Reviews 29, 1577–1589.

6 Slieveanorra Britain & Ireland Ireland 55.0848 −6.1921 Swindles et al. (2010) Quaternary Science 
Reviews 29, 1577–1589.

7 Butterburn Britain & Ireland England 55.0875 −2.5036 Mauquoy et al. (2008) Journal of Quaternary 
Science 23, 745–763.

8 Malham Britain & Ireland England 54.0964 −2.1750 Turner et al. (2014) Quaternary Science Reviews 
84, 65–85.

9 Keighley Britain & Ireland England 54.4253 −2.0369 Blundell et al. (2016) Palaeogeography, Palaeo-
climatology, Palaeoecology 443, 216–229.

10 Praz-Rodet Continental 
Europe

Switzerland 46.5667 6.1736 Mitchell et al. (2001) The Holocene 11, 65–80.

11 Combe des 
Amburnex

Continental 
Europe

Switzerland 46.5397 6.2317 Sjögren & Lamentowicz (2008) Vegetation His-
tory and Archaeobotany 17, 185–197.

12 Mauntschas Continental 
Europe

Switzerland 46.4900 9.8544 van der Knaap et al. (2011) Quatermary Science 
Reviews 30, 3467–3480.

13 Lille Vildmose Scandinavia Denmark 56.8391 10.1896 Mauquoy et al. (2008) Journal of Quaternary 
Science 23, 745–763.

14 Izery Continental 
Europe

Poland 50.8519 15.3602 Kajukało et al. (2016) European Journal of Proti-
stology 55, 165–180.

15 Słowińskie Continental 
Europe

Poland 54.3619 16.4785 Lamentowicz et al. (2009) Boreas 38, 214–229.

16 Bagno Kusowo Continental 
Europe

Poland 53.8078 16.5872 Lamentowicz et al. (2015) Palaeogeography, 
Palaeoclimatology, Palaeoecology 418, 261–277.

17 Åkerlänna 
Römosse

Scandinavia Sweden 60.0167 17.3667 van der Linden et al. (2008) Palaeogeography, 
Palaeoclimatology, Palaeoecology 262, 1–31.

18 Jelenia Wyspa Continental 
Europe

Poland 53.5918 17.9821 Lamentowicz et al. (2007) The Holocene 17, 
1185–1196.

19 Stążki Continental 
Europe

Poland 54.4244 18.0833 Lamentowicz et al. (2011) Studia Quaternaria 28, 
3–16.

20 Linje Continental 
Europe

Poland 53.1880 18.3098 Marcisz et al. (2015) Quaternary Science 
Reviews 112, 138–152.

21 Stordalen I Scandinavia Sweden 68.3568 19.0484 Gałka et al. (2017) Permafrost and Periglacial 
Processes 28, 589–604.

22 Stordalen II Scandinavia Sweden 68.3568 19.0484 Gałka et al. (2017) Permafrost and Periglacial 
Processes 28, 589–604.

23 Lappmyran Scandinavia Sweden 64.1647 19.5828 van der Linden et al. (2008) Palaeogeography, 
Palaeoclimatology, Palaeoecology 258, 1–27.

24 Gązwa Continental 
Europe

Poland 53.8726 21.2201 Gałka et al. (2015) The Holocene 25, 421–434.

25 Mechacz Continental 
Europe

Poland 54.3314 22.4419 Gałka et al. (2017) Quaternary Science Reviews 
156, 90–106.

26 Kontolanrahka NE Europe Finland 60.7833 22.7833 Väliranta et al. (2007) The Holocene 17, 
1093–1107.

(Continued)
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9 cm. Fitting a Gaussian Response Curve and Generalized Additive Model to the data suggest that the optimal WTD for 
the highest aPAR is 10.0 cm for both models (Fig 5). However, the Generalized Additive Model was not statistically signif-
icant, and it is worth noting that the estimated optimal water table depth (WTD) is close to the overall mean of the WTD 
data (10.4 cm). aPAR is generally low when water table depths are < 0 cm (standing water) or > 25 cm.

Site number Site name Region Country Latitude Longitude Reference

27 Tăul Muced Continental 
Europe

Romania 47.5739 24.5450 Feurdean et al. (2015) The Holocene 25, 
1179–1192.

28 Männikjärve NE Europe Estonia 58.8667 26.2500 Väliranta et al. (2012) Quaternary International 
268, 34–43.

https://doi.org/10.1371/journal.pone.0327422.t001

Fig 2.  Boxplot showing aPAR for each site.  Blue triangles indicate the mean values for each site. The blue line indicates the average of site means 
(0.118 cm yr-1).

https://doi.org/10.1371/journal.pone.0327422.g002

Table 1.  (Continued)

https://doi.org/10.1371/journal.pone.0327422.t001
https://doi.org/10.1371/journal.pone.0327422.g002
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Discussion

Peatlands exist because of an imbalance between plant productivity and decomposition. However, the mechanisms 
behind peatland growth, stability and degradation have been debated for many years [19,22]. The role of restoration and 
management in maximising peatland carbon sequestration and storage potential – to maintain and enable their contribu-
tions as nature-based climate solutions to the climate crisis – is increasingly recognised in public and policy narratives. 
However, to optimise the benefits and minimise undesirable or ineffective outcomes, the driving mechanisms of peatland 
C accumulation need to be better understood. It is known that peatlands can self-regulate to a steady state [e.g., 23], but 
there is a concern that the magnitude of recent climate and land use degradation/changes can lead to peatlands being 
pushed beyond a threshold, leading to loss of their carbon sink function and ultimately their carbon stock [13]. Although 
our findings support the common assertion that peat accumulates at ~0.1 cm yr-1, they also suggest that aPARs vary 
widely from ~0.005–0.448 cm yr-1 within Europe.

We use contemporary and palaeo- climatic data to quantify the relative difference in climatic space between our sites. 
Significant relationships between peat accumulation rates and climate variables have been found in previous studies 
[24–26]. In our study, the sites experiencing warmer temperatures – in particular, warmer summers – are associated gen-
erally with greater peat accumulation rates (Fig 3 & Table S8 in S1 File). This finding aligns with previous research that also 
indicated a positive association between elevated summer temperatures and increased peat accumulation rates [27], albeit 
with variations in temporal resolution. In high- to mid-latitude peatlands with adequate moisture, productivity is sometimes 
regarded as a more dominant driver of carbon accumulation than decomposition [28,29]. Warmer temperatures are well 
known to increase plant productivity, resulting in a greater input of organic matter into peat formations [1,4,30]. While micro-
bial activity may also rise with increasing temperatures, increased productivity commonly outpaces decomposition, resulting 
in a net increase in peat accumulation [31]. However, for net peat accumulation there must still be adequate moisture in the 
summer months or elevated temperatures can lead to negative effects on Sphagnum structure and moisture holding capac-
ity, desiccation, and even loss of peat [11,32]. In terms of the Köppen climate classification, the three sites with the highest 
aPAR values (Lille Vildmose, Mechacz and Åkerlänna Römosse) are in the warm-summer humid continental climate (Dfb), 
whereas the two sites with the lowest aPAR values (Stordalen I and II) are in the subarctic classification with cool summers 
and year-round rainfall (Dfc) and dark winter months with minimal insolation.

Fig 3.  Theil–Sen robust regression scatterplot of aPAR versus climatic data and reconstructed water-table depth (WTD).  Palaeo-climatic 
data are derived from CHELSA-TraCE21k [63], while contemporary data are sourced from the NOAA–CIRES–DOE 20th Century Reanalysis Version 3 
[61,62].

https://doi.org/10.1371/journal.pone.0327422.g003

https://doi.org/10.1371/journal.pone.0327422.g003
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However, our findings suggest a lack of consistent or statistically significant correlations between peat accumu-
lation and precipitation or GDD, as shown in Fig 3, S2 and S8 Tables in S1 File. While deglaciated regions have 
previously not shown a clear correlation with peat initiation and effective precipitation [e.g., 27], there may also be 
a degree of non-linearity, with an apparent optimum around 950 mm annual precipitation and 90 mm JJA precipita-
tion (S5, S6). In such cases, overly wet conditions may reduce plant productivity by causing the expansion of open 
water areas within peatlands. This expansion can limit plant growth owing to reduced oxygen availability [11,33]. In 
waterlogged conditions, anaerobic decomposition processes dominate, which are much slower and less efficient, 
further favouring peat accumulation via decreased decomposition [33]. It is particularly intriguing in the case of GDD 
where previous studies [1,27,29] have intuitively indicated that a longer growing season leads to increased long-term 
carbon accumulation in northern peatlands. The apparent absence of a strong correlation between aPAR and GDD 
in this study may be explained by the need for more substantial variations in GDD values to establish a statistically 

Fig 4.  Boxplot of peatland accumulation rates separated into 5-cm bins across the water-table depth gradient.

https://doi.org/10.1371/journal.pone.0327422.g004

https://doi.org/10.1371/journal.pone.0327422.g004
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significant relationship with peat accumulation rates. This limitation could be attributed to the relatively limited 
seasonal distinctions within our study areas, which might not encompass the full range of GDD values necessary to 
establish a connection with peat accumulation definitively.

Our research represents the first study using long-term peat accumulation data to examine the correlation between 
water-table depth and peat growth rates. We observe that the highest aPAR values occur when the water table is between 
5 and 10 cm below the peatland surface. In contrast, aPAR tends to be low when the water table is above the surface 
(< 0 cm/ standing water) or deeper than 25 cm, likely reflecting reduced plant productivity and increased decomposition 
losses, respectively. It is interesting that previous studies in peatland research have consistently identified an optimal 
WTD of approximately 10 cm, albeit with vastly contrasting approaches to this study, and over shorter timescales. Various 
studies focusing on the rewetting of peatlands suggest that maintaining a WTD of 10 cm optimally mitigates greenhouse 

Fig 5.  Hexagonally binned point density plots of accumulation rate against mean water-table depth (width  = 5 cm on the x-axis). The Loess 
Smoothing Model (green), Gaussian Response Model (red) and Generalized Additive Model (blue) are illustrated. The dashed line represents a 
water-table depth of 10 cm. ‘Rugs’ are shown along the axes to illustrate data density.

https://doi.org/10.1371/journal.pone.0327422.g005

https://doi.org/10.1371/journal.pone.0327422.g005
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gas emissions. Studies include [34,35], drawing from earlier research [36–38], and [39], who refer to an ‘optimal rewet-
ting scenario’. Furthermore, palaeoecological records from Polish peatlands suggest a plant community tipping point at 
approximately 11.7 cm WTD [40]. This WTD value represents a hydrological threshold where marked shifts in the dom-
inant peat-forming species (vascular plants and mosses) occur, leading to changes in peat accumulation patterns and 
potentially increased carbon loss [40,41]. Indeed, increasing vascular plant cover usually promotes C loss by increasing 
heterotrophic respiration and decomposition of peat carbon owing to rhizosphere priming effects [41–43]. Independently of 
vascular plants, a drop in WTD can accelerate the growth and activity of microbial communities, causing a rise in hetero-
trophic respiration and decomposition rates [44]. [45] also demonstrated that peat formation rates peak when the acro-
telm thickness is approximately 10 cm, while [46] found that photosynthesis reaches its maximum efficiency at a WTD of 
around 11 cm. A water-table depth value of 10 cm appears to also be an important hydrological threshold for the functional 
traits of testate amoebae [47].

Although [34,35,39] specifically mention an optimal peatland WTD of approximately 10 cm, their analyses are based on 
short-term observations, likely indicative of immediate peatland responses. Our approach provides information regarding 
the optimum WTD for long-term mean peat accumulation over millennia across multiple European sites. This approach 
provides valuable insights into the underlying process mechanisms that sustain the long-term stability of peatlands. While 
the accumulation rate may vary over time in individual sites due to factors such as climate and disturbances, our findings 
reveal a consistent regional pattern in European peatlands that has been sustained for millennia. This pattern highlights 
the presence of a common WTD that precedes optimal peatland growth – a phenomenon observed in both short-term 
experiments and our long-term palaeoenvironmental records. In other words, there is a numerical attractor in the peat-
lands where they tend to maintain a particular WTD that is conducive to the accumulation of peat and the overall stability 
of the ecosystem over millennia [e.g., 45, 48, 49].

The implications of our findings depend on the intended management objectives. If the aim is to maximise vertical 
peatland growth and thereby enhance carbon sequestration in the short term, the focus should be on evaluating whether 
previous peatland restoration programmes have adequately considered WTD position necessary to achieve those out-
comes. In some cases, peatland restoration efforts may cause excessive waterlogging, which may be detrimental to 
peat accumulation and in turn lead to elevated CH

4
 emissions [e.g., 50]. Thus, simply attempting to raise WTD without a 

scientifically-informed understanding of peatland mechanisms may not yield the desired transformative results.
We acknowledge the potential limitations of our approach, especially regarding the determination of aPAR. We 

eliminated the potential problem of incomplete decomposition of the uppermost peats (the ‘acrotelm effect’) highlighted 
by [51] through removal of data from the period 1850 cal. yr. CE to present from our analysis, following [29]. However, 
a recent article has suggested instances where apparent carbon accumulation rates (aCAR) may contradict the true 
behaviour of the peatland [52]. The authors highlight the “ageing problem” – which stipulates that the use of aCAR 
from peatlands is erroneous because of slow, long-term decomposition of peat in the catotelm over millennia. This 
issue is also highly relevant for peat accumulation rates (aPAR) as discussed here, in that the thickness of the peat 
layer measured at the time of coring reflects its current state rather than what necessarily accumulated initially [52]. We 
note, however, that our peat core profiles for the past 2,000 years do not exhibit a long-term decay trend nor do they 
show statistically significant increases in bulk density downcore, suggesting that the ageing effect is unlikely to be a 
major problem in this study. Furthermore, [52] discuss how accumulation rates lower in the peat profile may have been 
affected by what happened later in time as water tables fluctuate (the ‘secondary decomposition’ problem). However, 
our use of a sufficiently large number of sites, and a single time period (the last two millennia), should allow the detec-
tion of a signal from the noise inherent to these systems (including a degree of secondary decomposition). Another 
potential criticism is the use of absolute reconstructed water-table measurements (cm) rather than directional shifts 
[53]. However, the transfer function used here has been shown to provide accurate mean annual water table predic-
tions [54].
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Despite these potential limitations, the consistent patterns observed in the accumulation rate data suggests that useful infor-
mation may remain in peat archives. Our results may prove useful for parameterisation and testing of peatland development 
models such as Millennia [55], Holocene Peat Model [56] and Digibog [57]. Such models are becoming increasingly important 
for understanding the impacts of future climate and land use change on peatland ecosystems. Our results may support a grow-
ing body of research based on contemporary monitoring and palaeoecological investigation that the optimal WTD for maximum 
peat accumulation is ~ 10 cm in European peatlands, and to steer away from simply ‘rewetting’ without prior knowledge of opti-
mal WTD for each specific system. This provides a better-informed target condition that can be used in the restoration process if 
the main priority is to encourage maximum peat accumulation and therefore carbon sequestration in the long term.

Materials and methods

Data processing

We analysed the European network of sites presented in [3] with each dataset spanning the last 2000 years (Table 1, 
Fig 1). A flexible Bayesian age–depth modelling approach [58] was used to generate an age model for each site (S1), 
using radiocarbon, 210Pb, tephra and spheroidal carbonaceous particle-based dating techniques. aPAR was calculated by 
dividing depth of peat accumulated (in cm) by time (years). [51] showed that recently formed peat cannot be compared to 
older, deeper peats as decomposition means that most of the newly added material will not become part of the long-term 
carbon store (the ‘acrotelm effect’). We therefore removed aPAR data from the period AD1850-present from our analysis 
(following [29]) as this will contain uppermost peats where rapid aerobic decay is still taking place (the ‘acrotelm’ – [59]).

Water-table reconstruction

WTDs were reconstructed from subfossil testate amoebae with the pan-European transfer function of [54] using a 
weighted averaging tolerance-downweighted model with inverse deshrinking (S9). Sample-specific errors of prediction 
(maximum and minimum reconstruction ranges) were generated through 1,000 bootstrap cycles. The pan-European 
transfer function model has been shown to generate accurate mean annual water table predictions for surface samples 
with associated automated instrumental mean annual and summer WTD measurements [54]. Therefore, we used the 
absolute reconstructed water-table values rather than standardised values in this study. Reconstructions were carried out 
on the subfossil testate amoeba datasets following the removal of weak silicic idiosomic tests (Corythion-Trinema type, 
Euglypha ciliata type and Euglypha rotunda type) [60].

Climate analysis

Daily mean temperature and precipitation data were taken from the NOAA-CIRES-DOE 20th Century Reanalysis V3 data-
set covering the period 1836–2015 [61,62]. The dataset is the first ensemble of sub-daily global atmospheric conditions 
spanning over a century, making it ideal for climate analyses extending as far back as the 19th century. We downloaded 
these data from KNMI Climate Explorer (https://climexp.knmi.nl/), focusing on the 1° longitude x 1° latitude grid box within 
which each of the 31 study sites is located. Growing degree days (GDD) were calculated for base temperatures above 
0°C (GDD0) and 5°C (GDD5). Mean temperature, GDDs and precipitation totals were then aggregated to annual and 
northern hemisphere summer (June, July, August) temporal resolution for the entire record.

Mean monthly and annual palaeo-climate simulation data were taken from the CHELSA-TraCE21k long-term climatology 
covering the period 100 B.C.E to 1990 C.E. [63]. The data are available at 100-year timesteps at high spatial resolution. We 
downloaded these data from: https://chelsa-climate.org/chelsa-trace21k/. Mean annual temperature (°C) and total annual 
precipitation (mm yr-1) data were taken directly from the variables bio1 and bio12. Mean monthly temperature was calculated 
from the mean of tasmin and tasmax. Mean monthly temperature and precipitation totals were then aggregated for northern 
hemisphere summer (June, July, August) for each 100-yr timestep. For GDD0 and GDD5, we multiplied mean monthly tem-
peratures by the days of each month and summed these values relative to thresholds of 0 °C and 5 °C respectively.

https://climexp.knmi.nl/
https://chelsa-climate.org/chelsa-trace21k/
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Statistical analysis

Relationships between site-based aPAR (average, highest, lowest), climate variables and reconstructed WTD were explored 
for each site using Theil-Sen robust regression in the R package deming v.1.4 [64]. Theil-Sen regression coefficients were 
then standardised to produce beta coefficients. Spearman’s rank correlation was used to further clarify relationships among 
variables because it is a non-parametric method that does not assume a linear relationship or normally distributed data. This 
makes it particularly suitable for exploring monotonic associations between ecological and climatic variables, especially when 
dealing with reconstructed or heterogeneous datasets that may include outliers or non-linear trends. The climatic variables 
analysed for each site included both contemporary (NOAA-CIRES-DOE 20th Century Reanalysis V3) and palaeo-climate 
(CHELSA-TraCE21k) datasets. These comprised annual and summer (JJA) temperature, annual and summer (JJA) precipi-
tation, and growing degree days above 0 °C (GDD0) and 5 °C (GDD5). Water table depth (WTD) variables were represented 
by average, maximum, and minimum values from each reconstruction, based on bootstrapped error estimations.

To determine relationships between aPAR and WTD, a Loess Smoothing Model [65,66], a Gaussian Response Model 
[67], and a Generalized Additive Model (GAM) [68] were utilised. The GRM calculates an initial estimation of optimum and 
tolerance based on the weighted average, followed by a nonlinear optimization by the Levenberg-Marquardt method. All 
statistical analyses were carried out in either PAST v. 4 [69] or R v. 4.2.1 [70]. Graphics were produced using the ggplot2 
R package v. 3.4.4 [71]. The GAM was calculated using the mgcv R package v. 1.9.0 [72].
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