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A B S T R A C T

In recent years, the growing frequency and severity of wildfires, influenced by both human activities and climate 
change, have posed significant challenges worldwide. Among the regions most affected by wildfires in Mexico is 
the state of Jalisco, which has the largest accumulated burned area in the last five decades. In this paper, we 
present an in-depth analysis of the spatio-temporal patterns of wildfire occurrence and size in the state of Jalisco, 
spanning the period from 2001 to 2020. Our approach included modeling the spatial distribution of the area 
burned by wildfires, employing Bayesian methodology with Integrated Nested Laplace Approximation (INLA) 
and Stochastic Partial Differential Equations (SPDE). Our findings highlight the critical roles of vegetation, 
temperature, and human activities in shaping wildfire behavior. Additionally, our model suggests four distinct 
wildfire-prone regions within the state. The insights gained from this study can serve as a foundation for future 
research and localized studies, aiding in the development of more targeted and effective wildfire management 
strategies in Jalisco.

1. Introduction

Fire is a natural phenomenon present on Earth for millions of years 
(Bowman et al., 2009); its occurrence has varied over time due to 
changes in climate, vegetation, geology, and more recently, anthropo
genic influence. Fire has also played a crucial role in the functioning and 
dynamics of many terrestrial ecosystems, acting as one of the primary 
forces of natural selection, influencing the evolution of various species 
and promoting biological diversity (Pyne et al., 1996; Jardel-Peláez 
et al., 2014).

A wildfire may be defined as the uncontrolled and unrestricted 
spread of fire in forested or wildland areas, such as those covered by 
forests, shrubs, natural grasslands, and other combustible vegetation 
(Pyne et al., 1996). Although wildfires play a central role in the 
composition, structure, and functioning of diverse ecosystems, the 
alteration of fire regimes, which includes disrupted historical patterns in 
fire frequency, intensity, and spatial distribution, poses a significant 

threat to biodiversity and ecosystem health. Beyond their ecological 
impact, wildfires have gained recognition as a significant societal 
concern, representing a threat to human settlements and economic ac
tivities across the globe (Reid et al., 2016; Zhang and Biswas, 2017). 
Wildfires also contribute to environmental challenges by emitting 
greenhouse gasses, primarily carbon dioxide (CO2), and releasing 
harmful particulate matter into the atmosphere (Wiedinmyer and Neff, 
2007; Corona-Núñez et al., 2020)

In recent years, there has been an increase in the frequency and 
severity of wildfires in many regions of the world, often influenced by 
human activities and climate change (Flannigan et al., 1998; Jolly et al., 
2015; Balch et al., 2017; Abatzoglou et al., 2019). This is also true for 
Mexico, where the total burnt hectares between 2011 and 2021 repre
sented an increase of 123.72 % compared to the previous decade 
(Nacional Forestry Commission (Conofar, 2022). One of the regions 
most affected by wildfires in Mexico is the state of Jalisco which, ac
cording to Conafor (2022), has the largest accumulated burned area in 
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the last 50 years; the high forest coverage, particularly of pine and oak 
forests (both highly flammable), combined with the climatic and topo
graphic conditions, increases the state’s susceptibility to forest fires. 
Additionally, human factors such as large-scale agricultural production, 
urbanization, poor practices involving the use of fire, and the cultivation 
of illicit crops raise the risk of wildfire occurrence (Jardel et al., 2006; 
Semadat, 2021).

Fire is a spatio-temporal process driven by controls acting across a 
range of scales (Falk et al., 2011). At a local scale, fire behavior is the 
result of complex interactions between fuel conditions, weather, 
topography, and ignition sources (Heyerdahl et al., 2001; Falk et al., 
2011). On the other hand, regional climate is the dominant factor 
affecting wildfires at broader scales (Yin et al., 2020; Zhao et al., 2021). 
Climate can directly influence wildfires by controlling the moisture 
content of fuel, and indirectly by influencing coarse-scale spatial vari
ation in vegetation composition and structure, which in turn determines 
the size, quantity, and arrangement of fuel load (Heyerdahl and Alvar
ado, 2003). Moreover, recent research (Corona-Núñez and Campo, 
2023) sheds light on the intricate interplay between climate, socioeco
nomic drivers, biomass burning, and carbon emissions, offering insights 
into global wildfire controls.

Understanding the drivers behind wildfire incidence is crucial for 
effective management and mitigation strategies, and even though there 
is extensive research on the relationship between wildfires and multi
scale environmental factors (Heyerdahl et al., 2001; Gill and Taylor, 
2009; Falk et al., 2011; Parks et al., 2012; Zhao et al., 2021) there is 
limited information about the effect of anthropogenic and biophysical 
controls on the burned area and number of wildfires in Jalisco.

Studying the spatial distribution of wildfire size and occurrence is 
also relevant as it provides insight into high-risk areas, which enables 
the prioritization of resources and the assessment of ecological impacts, 
including changes in vegetation composition, species diversity, and 
habitat structure. Modeling the spatial incidence of wildfires, along with 
their final size, is an efficient way to detect trends in their spatio- 
temporal patterns and to identify spatial clustering, which could indi
cate the presence of high-risk factors (Serra et al., 2014a). Spatial models 
also help to disentangle the relative roles of different controls on fire 
behavior and offer an understanding of wildfire predictability (Pimont 
et al., 2020; Castel-Clavera et al., 2022), which is of increasing impor
tance, especially in the context of ongoing global warming and climate 
change (Zhao et al., 2021).

Previous studies have used statistical methods to model wildfire risk, 
considering risk as the probability that a wildfire ignites at some location 
inside the study area (e.g. Díaz-Avalos et al., 2001; Amatulli et al., 2007; 
Hering et al., 2009; Yang et al., 2012; Serra et al., 2014a, b); however, 
most of these studies have not examined the burned area caused by each 
wildfire (Díaz-Avalos et al., 2016). Additionally, little work has been 
done to investigate the spatio-temporal distribution of wildfires in 
Jalisco at a regional scale. Most research has focused either on analyzing 
wildfire patterns and drivers at a local extent, commonly inside natural 
reserves (Balcázar, 2011; Cerano-Paredes et al., 2015; Ibarra-Montoya 
and Huerta-Martínez, 2016; Jardel et al., 2006) or at the national 
scale (Rodríguez-Trejo, 2008; Jardel-Peláez et al., 2014; Corona-Núñez 
et al., 2020; Neger et al., 2022; Montoya et al., 2023). Our study ad
dresses this critical research gap through the analysis of wildfire inci
dence at the state level, providing a comprehensive perspective that 
bridges the gap between local and national wildfire studies.

In this paper, we present an in-depth analysis of the spatio-temporal 
patterns of wildfire occurrence and size in the state of Jalisco, Mexico, 
spanning the period from 2001 to 2020. Our approach included 
modeling the spatial distribution of the area burned by wildfires, with 
the final size of each wildfire serving as the response variable (Aragó 
et al., 2016; Díaz-Avalos et al., 2016). Under this approach, observed 
patterns of fire ignition are viewed as realizations of a spatio-temporal 
point process, where points correspond to the starting locations and 
times of wildfires, and the total burnt surface is used as a mark for the 

points (Pimont et al., 2020). Our purpose was to find and fit statistical 
models, employing Bayesian methodology, that could provide a 
comprehensive analysis of wildfire size, spatial distribution, and insights 
into the principal drivers influencing fire dynamics.

Specifically, our study aimed to achieve the following objectives: 1) 
Describe the temporal and spatial patterns of wildfires in Jalisco, 
including their number, size, interannual variation, and impact on 
vegetation cover during the 2001–2020 period; 2) Analyze the influence 
of key factors, including climatic variables, topography, fuel charac
teristics, land cover, and human activities, on wildfire occurrence, size, 
and spatial distribution within the state; 3) Identify high-risk areas 
within the study site, to enhance our understanding of wildfire 
vulnerability.

To achieve our objectives, we utilized remote sensing and geospatial 
analysis techniques. Data analysis and point pattern modeling were 
performed using the R software (R Core Team, 2021). We employed the 
Integrated Nested Laplace Approximation (INLA) methodology in 
combination with the Stochastic Partial Differential Equation (SPDE) 
framework (Rue et al., 2009; Lindgren et al., 2011; Díaz-Avalos et al., 
2016; R-INLA Project, 2020) to fit parametric models to observed 
wildfire patterns, incorporating relevant available covariate 
information.

2. Methods

2.1. Study area

The state of Jalisco, depicted in Figure S1 in the supplementary 
material, is located on the central western coast of Mexico (18◦58’ ~ 
22◦45’N, 101◦28 ~ 105◦43’W), and it extends approximately 
78,596 km2, which represents 4 % of the Mexican territory (National 
Institute of Statistic and Geography (Inegi, 2013). The state’s topog
raphy varies significantly, with an elevation range from 0 to 4300 m 
above sea level (Cuevas-Arias et al., 2008). Most of the state has a 
temperate climate with tropical humid summers; rainfall is strongly 
seasonal from June to October, and there is a dry, hot period from March 
to May (Cuevas-Arias et al., 2008). The mean annual temperature is 
20.5◦C, with the lowest values occurring in January and the highest in 
May (INEGI, 2013). The mean annual precipitation is around 850 mm 
per year although, in coastal areas, it can exceed 1000 mm (INEGI, 
2013). The geographical location, heterogeneous relief, and climatic 
gradient of Jalisco favor the establishment of diverse vegetation types. 
According to the National Forestry Commission (CONAFOR) the pre
dominant vegetation covers in the region are agricultural land (30.3 %), 
tropical dry forest (19.2 %), oak forest (18.6 %), coniferous forest 
(11.6 %), induced vegetation (6.5 %) and natural grasslands (5.7 %). 
Notably, both oak and pine forests produce highly flammable litter, and 
wildfires are widespread in grasslands (Stavi, 2019). Furthermore, the 
role of fire in tropical dry forests stands out as a critical factor influ
encing biodiversity and carbon emissions (Corona-Núñez and Campo, 
2023).

2.2. Wildfire burned area data

This study used satellite-based burned area observations derived 
from the product Fire-CCI v5.1, the latest burned area dataset of the 
European Space Agency’s Climate Change Initiative (CCI) program. The 
pixel product comprises maps of global burned area at a 250 m resolu
tion, generated from the MODIS red (R) and near-infrared (NIR) re
flectances, together with thermal anomalies data (Chuvieco et al., 
2018). The product is released monthly as a GeoTIFF file with three 
layers indicating the date of detection, the confidence level, and the land 
cover in the pixel detected as burned (Pettinari and Otón, 2020).

The database was accessed with a yearly resolution spanning from 
2001 to 2020, utilizing the Google Earth Engine platform. Given that the 
Fire-CCI v5.1 product provides monthly burned area data, we integrated 
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the maximum burned area within each 0.25-degree cell of the product 
grid; this approach allowed us to capture the largest wildfires that 
occurred within a year, considering that a single pixel might undergo 
multiple burn events throughout this period.

To enhance the analysis, we converted the GeoTIFF files to a vector 
format in a Geographic Information System (GIS), enabling us to 
represent individual fires as burned polygons instead of individual 
burned pixels. To consolidate multiple polygons into a single fire event, 
we employed two criteria: (a) if they shared borders and (b) if they 
occurred within a maximum of three days apart, considering the Julian 
day associated with each polygon from the original product. It is 
important to note that there is a margin of error associated with this 
procedure, as it is possible for the same wildfire to be dispersed across an 
area rather than occurring as a continuous event; furthermore, it is 
conceivable for a single fire to spread for longer than three days, espe
cially if it is of significant magnitude. Nevertheless, it is unlikely for both 
scenarios to happen frequently (Hawbaker et al., 2008).

The final product consisted of vector files that included the largest 
fire episodes detected for each year of the study period (Fig. 1). Each 
vector file was accompanied by its attribute table, providing information 
regarding the day of fire detection, the centroid coordinates, and the 
corresponding burned area.

2.3. Environmental data

2.3.1. Land cover
Landcover plays a crucial role in wildfire occurrence, size, and dis

tribution. The type, amount, and arrangement of vegetation not only 

impact the availability and continuity of fuel, but different vegetation 
types also exhibit varying levels of flammability. To obtain land cover 
data, we utilized the Land Use and Vegetation Map of the state of Jalisco. 
This map was generated by the National Forestry Commission together 
with the Ministry of Environment and Territorial Development (Conafor 
and Semadat, 2020), utilizing satellite imagery captured by Landsat 8 
from the year 2016; it is available in a vector format at a scale of 1:75, 
000 and offers detailed information on 19 distinct classes of land use and 
vegetation (see Figure S2). To enhance model interpretability 
(Díaz-Avalos et al., 2001) and reduce complexity, we grouped vegeta
tion types with similar fuel characteristics, following established clas
sifications used in previous studies exploring spatio-temporal wildfire 
variability at a national scale in Mexico (Rodríguez Trejo, 2008; Coro
na-Núñez et al., 2020; Montoya et al., 2023). The final land cover 

Fig. 1. Largest fire episodes detected for select years during the study period in the state of Jalisco. Burned area polygons illustrate individual fire events, high
lighting the overlap of multiple fires in those years. Color-coded distinctions emphasize the cumulative impact of fires over time.

Table 1 
Landcover classes employed in the analysis, derived from the Land Use and 
Vegetation Map of the state of Jalisco. The classification was based on fuel 
characteristics and follows established criteria used in previous wildfire studies.

Land Cover Class Land Cover Type

1 Pine-oak forests
2 Tropical dry forests
3 Tropical evergreen forests
4 Arid and semi-arid scrublands
5 Natural grasslands
6 Wetlands
7 Agricultural lands and Induced grasslands
8 Urban zones or no vegetation
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categories selected for the study are presented in Table 1, and the 
reclassified land cover map illustrating these categories is available in 
Figure S3. Refer to Table S1 for a more comprehensive overview of the 
key attributes associated with different land cover types in the study 
area.

2.3.2. Topography
Topographic factors, including elevation, aspect, and slope, play a 

significant role in shaping the type, amount, arrangement, and conti
nuity of fuels by indirectly influencing the distribution of vegetation 
(Gill and Taylor, 2009; Falk et al., 2011). Moreover, topography directly 
influences fire by affecting its local behavior. To incorporate these fac
tors into our analysis, we obtained elevation data from a Digital Eleva
tion Map available for the study area, provided in a raster format with a 
15-meter resolution (INEGI, 2012). Utilizing a GIS, we derived slope and 
aspect maps from the elevation raster, maintaining the same resolution. 
Slope refers to the steepness or incline of a surface and is expressed in 
degrees, while aspect indicates the orientation of the slope, measured in 
degrees from 0 to 360 in a clockwise direction; specifically, 0 degrees 
corresponds to a north-facing slope, 90 degrees to an east-facing slope, 
180 degrees to a south-facing slope, and 270 degrees to a west-facing 
slope (Serra et al., 2014b). To simplify model interpretation and avoid 
excessive coefficients, we categorized both variables, as shown in the 
supplementary section (Tables S2 and S3).

2.3.3. Human activities
Human activities are a primary ignition source that significantly 

affects wildfire occurrence worldwide. Due to limited information on 
specific wildfire causes, we employed proxies to incorporate the influ
ence of human factors and capture the proximity to potential ignition 
sources. We generated a distance to roads and highways raster (human- 
caused fires tend to ignite in areas close to roads) by employing an Urban 
Roads and Highway Map of Jalisco (Inegi, 2011), available in a vector 
format at a 1:50,000 resolution. Similarly, we derived a distance to 
agricultural land raster from the previously produced land cover map; 
this variable holds particular relevance, as agricultural burns are 
frequently reported as one of the main causes of wildfires in the region 
(Semadet, 2021). These variables not only exhibit a correlation with 
human ignitions but are also likely associated with the demand for 
firefighting and suppression efforts.

2.3.4. Temperature, precipitation, and NDVI
We used remote sensing MOD11A1 product to obtain daily per-pixel 

Land Surface Temperature and Emissivity data at a 1-kilometer spatial 
resolution. To assess precipitation, we accessed the Climate Hazards 
Group InfraRed Precipitation with Station Data (CHIRPS), which in
corporates daily 5-kilometer resolution satellite imagery and in-situ 
station observations (Funk et al., 2015). It is important to note that in 
this study, temperature and precipitation data reflect the weather con
ditions at the approximate time and location of wildfires rather than 
long-term climatic patterns; therefore, their primary impact is on the 
moisture content of fuel.

While weather indices that aggregate meteorological factors are 
often used in fire studies (e.g., Castel-Clavera et al., 2022), we opted for 
raw temperature and precipitation data to take advantage of its higher 
spatial and temporal resolution, which is critical given the variability in 
weather conditions across Jalisco. Many available indices are based on 
coarser-resolution data or rely on local weather station data 
(Villers-Ruiz et al., 2012), which is often sparse or incomplete across the 
study region; by using raw satellite weather variables, we were able to 
better capture local-scale variations and benefit from the extensive 
coverage that satellite data offers. Moreover, the use of precipitation and 
temperature data has been successfully applied in studies using INLA to 
model wildfire behavior (Natário et al., 2013; Díaz-Avalos et al., 2016).

The Normalized Difference Vegetation Index (NDVI) is a widely used 
index derived from satellite imagery that measures the health and 

density of vegetation. We included NDVI as a proxy for local fuel con
ditions, as it can help estimate the amount and distribution of vegetation 
biomass in an area. Higher NDVI values indicate denser vegetation and 
potentially higher fuel loads, which can influence fire behavior and in
tensity (Chuvieco et al., 2004). Conversely, low NDVI values are linked 
to heightened vegetation dryness and water stress, making such areas 
more susceptible to ignition. The NDVI dataset was acquired from the 
MOD13Q1 product, which provides a vegetation index value at a 
per-pixel basis, generated every 16 days at 250-meter spatial resolution 
(Didan, 2015)

To handle the dynamic nature of these three variables and obtain a 
more comprehensive representation of the data, we summarized daily 
produced information by computing the mean monthly pixel values for 
each geospatial dataset. This resulted in 12 raster files per year for each 
variable (temperature, precipitation, and NDVI), covering the period 
from 2001 to 2020.

2.4. Association between wildfires and environmental factors

To ensure consistency and comparability, we standardized the 
environmental data for analysis by processing it in a GIS. This process 
included converting all data to raster format, standardizing resolution to 
250 m for spatial uniformity, and selecting an appropriate coordinate 
system for accurate georeferencing. The final maps are shown in Fig. 2.

It is worth noting that while most environmental covariates had a 
native spatial resolution of 250 m or higher, the temperature and pre
cipitation data used in our study had a coarser resolution (refer to Sec
tion 2.3.4). To match the resolution of the remaining datasets, we 
applied a resampling process to the temperature and precipitation ras
ters, adjusting them to 250 m. Although this resampling did not enhance 
the intrinsic accuracy of these datasets, it allowed for spatial consistency 
across all variables.

To integrate wildfire data, we overlaid the burned area polygons 
onto the stacked layer of environmental rasters. Our aim was to capture 
the environmental variables at the location of centroids of each fire 
polygon, thereby extracting relevant pixel values from the raster data. 
For dynamic factors (temperature, precipitation, NDVI), we specifically 
selected the layers that matched the month and year of the recorded fire 
episode. This approach facilitated the association of environmental 
conditions with individual fire incident attributes.

It is worth mentioning that fire events associated with agricultural 
land and induced grasslands pixels were classified as agricultural burns, 
while events occurring in any other type of vegetation cover, such as 
grassland, forest, or scrubland, were considered wildfires.

In our analysis, we predominantly focus on wildfires, with a selective 
approach to fires occurring in agricultural lands and induced grasslands. 
Specifically, in the initial stages of our exploratory analysis aimed at 
understanding general fire patterns across the state of Jalisco, we have 
included agricultural burns to provide a comprehensive overview of fire 
activity. However, in the detailed covariate-wildfire association analysis 
and subsequent modeling processes, we concentrate solely on wildfires. 
This approach ensures that our modeling accurately captures the dy
namics specific to uncontrolled natural fires within the study area, while 
still acknowledging the broader context of fire occurrence in the region.

2.5. Statistical methodology

To gain insights into the spatial distribution of the area burned by 
wildfires and identify the relevant factors contributing to the variation 
in fire size within our study site, we employed statistical models utilizing 
a Bayesian probabilistic approach. By associating wildfires with their 
spatial coordinates (longitude and latitude of their centroid), along with 
variables such as size and ignition time, we were able to identify them 
through a spatio-temporal stochastic process (Serra et al., 2014a). In this 
approach, we treated observed patterns of fire occurrences as re
alizations of a spatio-temporal point process, where points correspond to 
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Fig. 2. Environmental wildfire-influencing factors in the state of Jalisco, Mexico. The maps depict six continuous variables (NDVI, elevation, precipitation, tem
perature, distance to roads, and distance to agricultural lands) and three categorical variables (land use, slope, and aspect) that were incorporated into the analysis. 
For illustrative purposes, the maps for temperature, precipitation, and NDVI represent aggregated mean values for a randomly selected month and year. The land 
cover map is coded as follows: 1-Pine-Oak Forest, 2-Scrublands, 3-Tropical Evergreen Forests, 4-Wetlands, 5-tropical dry forests, 6-Grasslands, 7-Agricultural lands, 
8- Urban or no vegetation, 9-Water Bodies. The slope map is coded as follows: 1-Gentle, 2-Moderate, 3-Moderately Steep, 4-Steep, 5-Very Steep. The aspect map is 
coded as follows: 1-North, 2-East, 3-South, 4-West.
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locations and times of ignition of a fire, and the burnt area is used as a 
mark for the points (Serra et al., 2014a; Díaz-Avalos et al., 2016; Pimont 
et al., 2020). Considering that the size of a wildfire is strongly associated 
with spatially varying factors such as vegetation, topography, weather, 
and ignition sources, which in turn influence the type, amount, dryness, 
and continuity of fuels (McKenzie et al., 2011), we incorporated these 
factors as covariates in the modeling process.

We modeled the burned area in the state of Jalisco using a hierar
chical framework (Díaz-Avalos et al., 2016), treating wildfire size as a 
strictly positive random variable. Accordingly, we employed a Gamma 
distribution to capture the variability in wildfire size. The model’s 
log-linear structure incorporates a Gaussian spatial error term to account 
for spatial autocorrelation in the data: 

yi|xi, β, ui, θ ∼ Gamma(ai, bi);E[yi] = μi =
ai

bi
; var(yi) =

ai

b2 i
(1) 

log(μi) = β0 +
∑J

j=1
βjmij +

∑L

l=1

fl(mil)+ ui (2) 

ui ∼ GMRF
(
0, λ− 1Σ

)
(3) 

Where yi is the observed final size of the i-th wildfire at site xi, modeled 
as a random variable following a Gamma distribution (Fig. 3) with shape 
parameter ai and rate parameter bi.

The logarithm of the mean wildfire size (μi) is linked to a linear 
combination of parameters. Specifically, we have β0 as a random 
intercept and β = (β1, … , β J) as a vector of unknown co
efficients quantifying the linear effect of covariates (see Fig. 2 for details 
on covariates) on the response variable. Additionally, we incorporate a 
collection of functions denoted as f = {f1( • ), … , fL( • )}. These 
functions can assume various forms, such as smooth and nonlinear ef
fects of covariates, allowing us to account for spatial correlation, tem
poral effects and the randomization of indexed wildfire events.

Finally, ui represents the Latent Gaussian Markov Random Field 
(GMRF), which accounts for spatial dependencies among wildfire 
events. It follows a GMRF distribution with zero mean and precision 
parameter λ− 1Σ.

2.6. Model fitting and assessment

2.6.1. INLA and SPDE framework
For model fitting, we used the Integrated Nested Laplace Approxi

mation (INLA) (Rue et al., 2009). INLA can handle large datasets by 
employing sophisticated hierarchical structures and has proven to be a 
computationally efficient alternative to Markov Chain Monte Carlo 
(MCMC) (Díaz-Avalos et al., 2016; Martino, Riebler, 2019). It allows 
nonlinear responses to explanatory variables to be estimated through 
flexible Gaussian prior distributions for spline functions in combination 
with spatial models (Pimont et al., 2020).

Because wildfires often exhibit spatial dependence or correlation (e. 
g., wildfires can modify the landscape in ways that affect future fire 
behavior), we incorporated a discrete approximation based on Sto
chastic Partial Differential Equation (SPDE), which provides a frame
work to model spatial dependence by describing the underlying 
continuous spatial process and its behavior over space (Lindgren et al., 
2011). SPDE consists in representing a continuous spatial process, such a 
Gaussian field (GF), using a discretely indexed spatial random process, 
such as a Gaussian Markov Random Field (GMRF) (Chaudhuri et al., 
2023a, Chaudhuri et al., 2023b).

To estimate the joint posterior distribution, we applied the INLA- 
SPDE method proposed by Lindgren et al. (2011). The SPDE frame
work represents a continuous spatial process via a discretized GMRF, 
with the spatial process U(.) modelled as a zero-mean Gaussian process 
with a Matérn covariance function (Matérn, 1960): 

Cov
(
U(xi),U

(
xj
) )

=
σ2

2ν− 1Γ(ν)
(
κ ‖ xi − xj ‖

)ν Kν
(
κ ‖ xi − xj ‖

)
(4) 

where Kν(.) represents the modified Bessel function of the second kind, 
Γ is the Gamma function, and ν > 0 and κ > 0 are the smoothness and 
scaling parameters, respectively. The INLA approach constructs a 
Matérn SPDE model characterized by a spatial range r and a standard 
deviation parameter σ.

The parameterized model is formulated as: 
(
κ2 − Δ

)(α/2)
(τS) = WonRd (5) 

where Δ =
∑d

i=1
∂2

∂x2
i 

is the Laplacian operator, α = (ν+d/2) is the 

smoothness parameter, τ is inversely proportional to σ, W is Gaussian 

Fig. 3. Frequency histogram of wildfire size in the state of Jalisco during the period 2001–2020. The asymmetric shape of the gamma distribution is a characteristic 
feature of the burned area caused by wildfires (Alvarado, 1992). It is characterized by a high percentage of small and medium-sized fires, with a low number of larger 
fires at the tail end of the distribution.
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white noise and κ > 0 is the scale parameter associated with the 
spatial range r. The range r is defined as the distance at which the spatial 
correlation becomes negligible, given by r =

̅̅̅̅̅
8ν

√
/κ for each ν, where r is 

the distance at which the spatial correlation is approximately 0.1. Note 
that we have d = 2 for a two-dimensional process, and we fix ν = 1, so 
that α = 2 in this case (Blangiardo and Cameletti, 2015).

In this study, we used the default priors provided by INLA-SPDE. 
Specifically, for the Gamma distribution used to model wildfire sizes, 
we applied the default Gamma prior with shape a = 1 and rate b =
0.00005, providing weakly informative priors for the precision pa
rameters. Similarly, for the spatial random effects modeled using a 
GMRF, we used the default log-Gamma prior for the precision with a = 1 
and b = 0.00005. The default prior distributions for all parameters in R- 
INLA were selected based on commonly used priors in previous studies 
(Martins et al., 2013; Blangiardo and Cameletti, 2015; Rue et al., 2017; 
Moraga et al., 2021). We tested alternative prior specifications and 
consistently obtained similar results, indicating that our findings are 
robust.

The INLA-SPDE and modeling approach were implemented in the R 
software package ‘INLA’ (R Core Team, 2021; Rue et al., 2009)

2.6.2. Mesh construction
The INLA-SPDE requires a triangulation or mesh structure to inter

polate discrete event locations for estimating a continuous spatial pro
cess (Rue et al., 2017). In our case, we used the centroid coordinates of 
each wildfire as the target locations to construct the mesh, with the 
boundary defined by the natural limits of Jalisco. This ensured that the 
mesh followed the actual geographical limits of the study area.

A two-dimensional triangulation was applied, with varying mesh 
resolutions to optimize both spatial accuracy and computational effi
ciency. A finer mesh was employed in the core areas to capture greater 
detail, while a coarser mesh was used toward the boundary to reduce 
computational load without sacrificing overall precision. Additionally, 
the offset parameter was adjusted to extend the mesh 0.2–0.4 units from 
the boundary, minimizing boundary effects and preventing extrapola
tion beyond the study area. This approach effectively balances the need 
for accuracy with computational efficiency.

The triangulation of the study site utilized for estimation is illus
trated in the results section (see Fig. 7).

2.6.3. Temporal and random effects
In addition to the spatial term, a temporal effect was modeled using a 

random walk of order one, which captures temporal correlation by 
allowing fire occurrences and sizes to vary over time (Serra et al., 
2014b). We also included a random effect, which was applied to indexed 
wildfire events to capture unexplained variability not associated with 
spatial or temporal dimensions. This randomization introduces vari
ability into the data that accounts for unknown factors influencing 
wildfire size, providing a more comprehensive model (Chaudhuri et al., 
2023a)

Note that model [2] assumes spatial and temporal separability, 
which simplifies the modeling process by reducing complexity while 
maintaining interpretability. This assumption implies that the spatial 
distribution of wildfire sizes retains a consistent pattern over the years, 
with the overall scale of the process varying over time. In other words, 
the proportion of expected wildfire sizes between two locations, x_i and 
x_j, remains constant across different years, as both are scaled by the 
same time-varying factor.This approach offers several advantages. First, 
it leads to a more parsimonious model, which is crucial given the time 
resolution used in this study. Second, the separable model allows for 
easier interpretation, particularly when the primary objective is to assess 
the significance of environmental and human factors influencing the 
spatial distribution of wildfire sizes. While this assumption may limit the 
model’s ability to capture intricate space-time interactions, it is a 
practical and effective choice in cases like ours, where screening for key 

drivers of wildfire activity is the primary goal.

2.6.4. Model selection and assessment
Model components were trained with data from 2001 to 2017 

(training sample), while the years 2018–2020 were used for evaluating 
its predictive performance (validation sample). To find the optimal 
model and avoid overfitting (Xi, 2019), we estimated several models, 
starting with the simplest ones that included only one covariate and 
gradually progressing to a complete model encompassing all the cova
riates plus the spatial term (Table 2). For model selection, we employed 
the Deviance Information Criterion (DIC) and the Widely Applicable 
Information Criterion (WAIC), which are generalizations of the 
well-known Akaike Information Criterion (AIC) for Bayesian models 
(Pimont et al., 2020). Additionally, we calculated the Coefficient of 
Determination (R2) and the Root Mean Squared Error (RMSE). Among 
these criteria, WAIC was given priority as it is known to better capture 
the posterior uncertainty in model predictions compared to DIC, which 
can occasionally favor overfitting (Vehtari et al., 2017; Pimont et al., 
2020).

3. Results

3.1. Fire occurrence and burned area across the State of Jalisco

The frequency of fires in each year of the study period is illustrated in 
Fig. 4. Wildfires occurred at an average rate of 192 events per year, 
while agricultural burns had an average of 94 events annually. Although 
wildfires were more frequent than agricultural burns, both exhibited 
high interannual variability. In either scenario, the years 2005, 2011, 
and 2017 stood out as the most affected, whereas 2014 and 2015 
experienced below-average number of fire episodes.

Over the study period, a total of 1434,831 ha were affected by 
wildfires, amounting to approximately 30 % of the forest vegetation 
cover in Jalisco. These results indicate that Jalisco is among the Mexican 
states most affected by fire, as supported by findings from Conafor 
(2023). On an annual basis, wildfires consumed an average of 71, 
742 ha, with an average size of 372 ha per event. In contrast, agricul
tural burns were smaller in scale, averaging 218 ha per event, and 
accounted for only 22 % of the total estimated burned area.

Large-scale events were defined as fires with a final size exceeding 
2000 ha. Throughout the study period, a total of 137 wildfires and 14 
agricultural burns of such magnitude were documented. Agricultural 
burns of this scale are relatively uncommon, suggesting that these ig
nitions may have originated from agricultural lands that unintentionally 
or deliberately spread into forest vegetation, potentially for the purpose 

Table 2 
List of different models fitted to the wildfire burned area data in the state of 
Jalisco during the period 2001–2020. The term ‘spatial’ refers to the incorpo
ration of the SPDE approach, which accounts for the spatial correlation among 
wildfire sizes. The term ‘temporal’ indicates the inclusion of a random walk of 
order one, capturing the temporal effects on wildfire size. The term ‘random’ 
denotes a variability component applied to the indexed wildfire events, which 
introduces variability unrelated to the spatial or temporal dimensions and ac
counts for additional unexplained variation in wildfire size. Finally, the term 
‘covariates’ represents the environmental factors influencing wildfire patterns, 
which were previously linked to each fire event.

Model Terms

M1 a M9 Model for each covariate
M10 All covariates
M11 Spatial effect
M12 Temporal effect
M13 Covariates + Random effect
M14 Covariates + Spatial effect
M15 Covariates + Temporal effect
M16 Covariables + Temporal + Spatial effect
M17 Covariables + Temporal + Spatial + Random effect
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of land cover change (Balcázar, 2011).
Our analysis also revealed distinct wildfire behavior patterns across 

various vegetation covers within the state (see Table 3). Pine-oak forests 
exhibited the highest incidence of wildfire occurrences, accounting for 
67.3 % of all recorded events, and presented the largest extent of burned 
area, encompassing 78.4 % of the total. Furthermore, out of the 137 
large-scale wildfires documented during the study period, a significant 
majority of 121 (88.32 %) originated in pine-oak forests. Notably, these 
forests also experienced the largest individual events, with an average 
wildfire size of 433.62 ha.

Tropical dry forests are ecosystems characterized by marked sea
sonality, with distinct wet and dry seasons (Sutomo and van Etten, 
2023). In our study area, these ecosystems emerged as the second most 
affected vegetation type, accounting for 30.7 % of all recorded wildfire 
events and 20.3 % of the total burned area. Although most wildfires 
within these forests were small to medium in scale, extending less than 
400 ha (83.05 % of cases), we documented 15 large-scale episodes.

Scrublands experienced the second-largest average wildfire size, at 

270.8 ha per event. Conversely, Grasslands recorded a slightly lower 
average size of 201 ha per event but notably hosted one large-scale 
wildfire. Combined, these two vegetation covers accounted for approx
imately 2 % of the total number of fire occurrences and the overall 
burned area.

Lastly, tropical evergreen forests and wetlands exhibited the lowest 
levels of wildfire activity, accounting for less than 0.5 % of both wildfire 
occurrences and the total burned area throughout the study period.

Fig. 5 illustrates the annual proportion of burned area relative to the 
total surface area of each vegetation cover in the state of Jalisco. The 
boxplot reveals that pine-oak forests experience the highest average 
annual burn percentage, with 2.41 % of their total area affected by 
wildfires each year. This is followed by tropical dry forests, with an 
average of 0.74 %, and agricultural lands (including induced grasslands) 
at 0.70 %. Scrublands and natural grasslands show a lower average 
percentage, with 0.43 % and 0.39 % respectively, while tropical ever
green forests and wetlands register the least proportion of burned area 
annually, at 0.11 % and 0.002 %, respectively.

It is important to emphasize that these percentages may represent 
areas subjected to repeated burning; hence, they do not imply that new, 
previously unburned sections of vegetation are affected each year.

3.2. Covariate values associated with wildfire occurrence

Fig. 6 shows the frequency histogram for the covariate values asso
ciated with wildfire occurrences. The color code indicates the corre
sponding vegetation cover where the wildfire event was recorded. It is 
important to note that the actual distribution of burned pixels may 
differ, as wildfires can spread into areas with distinct covariate values 
than those of the ignition location (Díaz-Avalos et al., 2016).

Elevation values associated with wildfire occurrence exhibited a 
distinct grouping corresponding to the elevation ranges where different 
vegetation types are typically established (Fig. 6-A). For instance, 
wildfires originating in pine-oak forests were most frequently observed 
at elevations ranging from 1500 to 2500 m, which coincides with the 
prevalent location of these forests within the study site (Jardel-Peláez 
et al., 2012). In contrast, wildfires in tropical dry forests spanned an 
elevation range from 0 to 2000 m; this wider range can be attributed to 
the presence of low and medium tropical dry forests, two distinct 

Fig. 4. Annual wildfire and agricultural burning occurrence in the state of Jalisco during the period 2001–2020.

Table 3 
Wildfire behavior across different vegetation covers in the state of Jalisco. These 
results highlight the differentiated impact and frequency of wildfires, under
scoring the variable susceptibility and fire dynamics of each vegetation type 
during the study period.

Vegetation 
Type

Total Fire 
Occurrence

Total Burned 
Area (ha)

Average 
Size per 
Event (ha)

Fire Events 
> 2.000 ha

Pine-Oak 
Forest

2595 1,125,231.36 433.62 121

Scrubland 32 8665.40 270.79 0
Tropical Dry 
Forest

1180 291,160.68 246.75 15

Tropical 
Evergreen 
Forest

6 1130.34 188.39 0

Natural 
Grassland

43 8643.53 201.01 1

Wetland 2 11.66 5.83 0
Agricultural 
Land

1885 412,250.69 218.70 14
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vegetation communities that combined, encompass a broader altitudinal 
distribution (Pennington et al., 2009). Similarly, scrublands and grass
lands in Mexico are commonly found at medium altitudes, aligning with 
the elevation values associated with ignitions in these ecosystems 
(Challenger, Soberón, 2008).

The remaining covariates showed a similar distribution pattern 
across all vegetation covers, suggesting a constant relationship with 
wildfire occurrence regardless of the ecosystem type. In other words, 
these environmental factors seem to exert a comparable influence on 
wildfire incidence across various vegetation covers within the state of 
Jalisco.

The frequency histogram of NDVI (Fig. 6-B) reveals that wildfires 
were more prevalent in values falling within the lower range of the index 
interval. Lower NDVI values typically indicate reduced photosynthetic 
activity and heightened water stress, both of which contribute to drier 
fuel conditions that are more prone to ignition. Additionally, we 
observed a strong association between wildfire occurrences and pre
cipitation values near zero (Fig. 6-C). Conversely, wildfire frequency 
exhibited a positive correlation with temperature, with the highest 
incidence observed during periods of elevated temperatures (Fig. 6-D).

Fig. 6-E illustrates the distribution of wildfires across various slope 
categories. Notably, we found a higher frequency of wildfires in mod
erate (10◦ to 15◦) and moderately steep (15◦ to 25◦) terrains. In Fig. 6-F, 
we observe that wildfires were more frequent in south and east-facing 
slopes. At this latitude, southerly and easterly-facing slopes generally 
receive more direct sunlight and higher solar radiation throughout the 
day (Méndez-Toribio et al., 2016), which could translate into dryer 
environmental conditions.

Fig. 6-G and Fig. 6-H demonstrate a notable declining trend in the 
occurrence of wildfires as the distance to the nearest road and agricul
tural land increases. This pattern suggests that roads and agricultural 
areas, which are often associated with human activities such as dis
carded items like cigarettes, intentional burns, or agricultural practices, 
could act as potential sources of fire ignition.

3.3. Wildfire size modeling

Fig. 7 illustrates the triangulation employed across the state of 
Jalisco for the period 2001–2020, with finer spatial resolution within 

state boundaries to accurately capture wildfire locations, depicted as red 
dots. This mesh forms the basis for interpolating discrete event locations 
and estimating a continuous spatial process, crucial for our wildfire size 
modeling. The mesh configuration ensured alignment between the 
centroids of wildfire occurrences and the vertices of the triangulation, 
facilitating an accurate spatial representation for subsequent modeling 
efforts.

Following the establishment of the spatial framework, we evaluated 
the performance of various models fitted to the wildfire size data. The 
information criteria for the five best models fitted to the wildfire size 
data are reported in Table 4. The best-performing model based on the 
WAIC (Watanabe-Akaike Information Criterion) criterion was the full 
model (M19), which exhibited the lowest WAIC value. Additionally, 
Model M19 showed the smallest DIC (Deviance Information Criterion), 
an R2 value closest to one, and the lowest error among all the models. 
Overall, our observations revealed a trend of improved model perfor
mance with increasing complexity, particularly when incorporating the 
spatial effect, implying a spatial association among the wildfires 
analyzed within the study site (Díaz-Avalos et al., 2016).

In our model development process, we systematically explored 
various combinations of covariates to simulate a variable selection 
process. Initially, we assessed models based on simple sets of covariates, 
and progressively introduced more sophisticated ones. To optimize the 
model, we also experimented with excluding specific environmental 
covariates from these configurations, aiming to evaluate the impact of 
simplification on model performance. However, this approach invari
ably led to increased values of WAIC and DIC, indicating a deterioration 
in model efficiency. This pattern suggested that the omission of any 
covariates, irrespective of their nature, compromised the model’s ability 
to accurately reflect the complexities of wildfire dynamics, emphasizing 
the critical role of including a full spectrum of covariate information in 
the model fitting process.

In Table 5, we present the coefficient estimates for the significant 
covariates of model M19, our best-performing model. Each coefficient is 
displayed alongside its standard deviation, and statistical significance 
was assessed using extreme quantiles, indicating significance when 
these do not encompass zero.

Two land cover classes, wetlands and tropical deciduous forests, 
exhibited significant coefficients. In the context of categorical variables, 

Fig. 5. Boxplot of the mean annual burned area as a percentage of total vegetation cover. The median is marked by the line within each box, the interquartile range 
by the box itself, and outliers by the dots. This visualization provides a comparative perspective on the relative impact of fires across different vegetation covers in 
Jalisco, indicating not only average burn proportions but also the variability within each vegetation type. Note that percentages may reflect areas that have 
experienced repeated burning over the study period. Total coverage for each vegetation class was derived from the previous Land Use and Vegetation Map of the state 
of Jalisco.
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it is common to designate a specific category as the ’reference category’ 
for coefficient interpretation. Consequently, the model intercept be
comes the estimated effect for the dropped category, while the co
efficients for the remaining categories represent deviations from its 
mean effect (Starkweather, 2018). As the reference category for land 
cover was pine-oak forests, the negative sign associated with both 

wetlands and tropical deciduous forests indicates that wildfires in these 
vegetation types tend to be smaller when compared to fires in pine-oak 
forests, which is consistent with previous findings (Table 3).

To interpret these coefficients, we exponentiated the values to ex
press the expected fire size relative to pine-oak forests, the reference 
category. The exponentiated coefficient for wetlands indicates that the 

Fig. 6. Frequency histograms for the covariate values associated with wildfire occurrence in the state of Jalisco during the period 2001–2020, segmented by 
vegetation type. The color code for these histograms represents distinct vegetation types with recorded wildfire incidents: blue for pine-oak forests, red for tropical 
dry forests, green for natural grasslands, blue for scrublands, purple for tropical evergreen forests, and pink for wetlands. For categorical variables, slope is encoded as 
follows: 1-Gentle, 2-Moderate, 3-Moderately Steep, 4-Steep, 5-Very Steep; aspect is categorized as: 1-North, 2-East, 3-South, 4-West.

C. Toledo-Jaime et al.                                                                                                                                                                                                                          Forest Ecology and Management 573 (2024) 122349 

10 



expected fire size in these areas is approximately 7.49 % of that in pine- 
oak forests, highlighting a substantially smaller fire size. Similarly, the 
coefficient for tropical dry forests suggests that the expected fire size is 
73.6 % of what would be expected in pine-oak forests, indicating that 
while fires in tropical dry forests are also smaller than those in pine-oak 
forests, they are considerably larger compared to wetlands. This com
parison remarks the significantly higher susceptibility of pine-oak 

forests to larger wildfires, as opposed to the other vegetation types 
analyzed.

All aspect or hillside exposure coefficients demonstrated statistical 
significance. The negative coefficients associated with easterly, south
erly, and westerly-facing slopes indicate a smaller expected burned area 
in these categories compared to the northerly aspect, which served as 
the reference category. Exponentiating these coefficients, they reveal 
that easterly slopes are expected to have 48.9 % of the burned area 
compared to northerly slopes, while southerly and westerly-facing 
slopes are expected to have 52.1 % and 47.5 %, respectively. This 
finding contrasts with the observed pattern of wildfire occurrence in 
Fig. 6-F, where most ignitions were associated with southerly and 
easterly-facing slopes.

Among the continuous variables, temperature, NDVI, distance to the 
nearest road, and distance to the nearest agricultural land showed sta
tistically significant and positive coefficients. These findings suggest 
that as the values of these variables increase, so does the extent of 
burned area caused by wildfires. Notably, NDVI displayed the highest 
positive significant coefficient of the model (0.997), reflecting a strong 
correlation with fire size.

It is important to highlight that coefficient estimates for NDVI and 
the nearest distances to roads and agricultural land diverge from the 
observed patterns of wildfire occurrence. While lower NDVI values were 
associated with a higher number of ignitions (Fig. 6-B), larger wildfires 
tended to occur in areas characterized by higher NDVI values. Similarly, 
although ignitions were more frequent near roads or crop fields (as 
depicted in Fig. 6 G-H), the majority of these resulted in small or 
medium-sized wildfires; in contrast, the largest wildfires within the 
study site tended to ignite in remote regions, where firefighting efforts 
require more time and resources.

3.4. Model validation

Fig. 8 displays the residual plots derived from the validation sample. 
Overall, a strong correlation was found between the observed and pre
dicted values. Across the analyzed years, the residual plots displayed a 
random dispersion of data points without any discernible trend or 
pattern. The residual points formed a consistent-width band around the 
identity line y=0, indicating a reliable fit for the burned area data.

Notably, in 2018 and 2020, the residuals showed symmetrical dis
tribution around the origin. However, in 2019, there was a higher 
number of atypical points located above the identity line, suggesting a 
slight underestimation of wildfire size at specific locations and a larger 
prediction error. Model fitting results removing those extreme values 
showed that the outlying observations had little effect on the inferences 
about the covariate effects and that the changes in the goodness of fit 
statistics changed only slightly. Despite the changes in RMSE and AIC, 
the conclusions about the best model selected remained the same.

The higher error observed in 2019 can be attributed to the occur
rence of larger wildfire events during that year. While the model effec
tively estimated the final extent of small and medium-sized fires, its 
predictability was lower for events of greater magnitude. Furthermore, 
the model’s ability to accurately predict large-scale events was limited, 
as its burned area estimates per event did not exceed 3000 ha. Consid
ering future research within the study area, it would be advisable to treat 
large-scale events separately from the rest of the wildfires and develop 
independent models specifically tailored to predict their behavior.

To further assess the model’s performance, the distribution of 
observed versus estimated burned area values for each validation year is 
illustrated in the histograms of Figure S4 in the Supplementary Material. 
These histograms show a similar pattern where the best predictions were 
made for 2018, followed by 2020, and 2019, which experienced more 
fire activity than average.

Fig. 7. Mesh configuration used in the INLA-SPDE method for the state of 
Jalisco, during the period 2001–2020. The triangulation provides finer spatial 
resolution within the state boundaries, while wider triangles cover the sur
rounding area. Red dots represent the locations of the wildfire’s centroids, 
coinciding with triangle vertices.

Table 4 
Information criteria for the five best models fitted to the wildfire size data in the 
state of Jalisco during the period 2001–2017. For detailed descriptions of the 
terms included in each model, please refer to the methodology section.

MODEL TERMS DIC WAIC R2 RMSE

M19 Covariates + Spatial +
Temporal + Random

10535.24 11426.45 0.94 4.28

M18 Covariates + Spatial +
Temporal

10566.28 11467.02 0.93 4.61

M16 Covariates + Spatial 10590.56 11475.13 0.93 4.58
M17 Covariates + Temporal 12932.90 13020.46 0.30 8.50
M12 Covariates 13063.83 13096.71 0.21 8.69

Table 5 
Coefficient estimates for the significant covariate effects of model M19 fitted to 
the fire size data in the state of Jalisco during the period 2001–2017. Each co
efficient is presented along with its standard deviation, and its statistical sig
nificance was assessed using extreme quantiles.

Covariates Mean Standard 
deviation

q0.025 q0.975

Intercept − 0.616 0.609 − 1.830 0.583
Wetlands − 2.591 1.261 − 5.068 − 0.117
Tropical Dry Forest − 0.307 0.082 − 0.467 − 0.146
Easterly aspect − 0.715 0.285 − 1.274 − 0.156
Southerly aspect − 0.652 0.282 − 1.204 − 0.099
Westerly aspect − 0.743 0.285 − 1.302 − 0.185
Temperature 0.045 0.012 0.021 0.070
NDVI 0.997 0.443 0.128 1.866
Distance to road 0.249 0.038 0.175 0.323
Distance to agricultural 
land

0.124 0.056 0.014 0.235
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Fig. 8. Model residuals for the validation period 2018 (top-left), 2019 (top-right), and 2020 (bottom). The red line in each plot represents the identity line (y = 0), 
indicating where the estimated values align with the observed ones.

Fig. 9. Estimated burned area in the state of Jalisco for the years 2018 (top-left), 2019 (top-right), and 2020 (bottom). Regions exhibiting hotter shades of red 
indicate higher burned area values. The critical wildfire zones identified for the region are 1) the northern region 2) the southern coast 3) the southeast, and 4) the 
central region.
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3.5. Spatial patterns of burned area in the State of Jalisco

To visually represent the spatial distribution of wildfires across the 
state of Jalisco, we focus on the period 2018–2020 (Fig. 9) as our 
model’s validation phase. This period was specifically chosen to assess 
the predictive accuracy of our model outside the range of data used for 
its development. The maps highlight regions with the highest concen
tration of burned hectares, where burned area density reflects both the 
occurrence of a few large wildfires and the cumulative impact of 
numerous smaller ones, resulting in significant overall burned area 
coverage. Regions exhibiting hotter colors (represented by shades of 
red) denote areas with higher burned area values. To facilitate a com
plete evaluation of our model’s predictive accuracy in relation to actual 
fire events, we refer readers to the Supplementary Material. There, we 
provide maps (Figure S5) of the actual burned area records for the 
validation years, allowing for a direct visual comparison between the 
model’s estimates and real-world observations.

The spatial distribution of hotspots during the validation years re
veals that certain regions within the state of Jalisco consistently 
exhibited a high density of large burned areas. These findings suggest 
the presence of areas where the risk of wildfires is persistently higher. 
Based on the state’s administrative zonation provided by Ramírez et al. 
(2013), we identified four distinct fire-prone regions: the northern re
gion, the southern coast, the southeast, and the central region, which 
includes densely populated areas such as Guadalajara, Zapopan and 
Tlajomulco (Fig. 9 A-C).

Within the scope of our spatial model analysis using the SPDE 
approach, we also estimated the nominal range, a parameter that 
characterizes the spatial correlation structure of a random field (Rue 
et al., 2009; Blangiardo and Cameletti, 2015). Our analysis revealed a 
nominal range of 3.736 km; this value suggests that there is a tendency 
for wildfires in our study site within approximately 3.736 km of each 
other to exhibit some level of correlation in terms of their sizes. In other 
words, wildfires within this distance are more likely to have a similar 
extent compared to those that are further apart.

4. Discussion

4.1. Wildfire dynamics and vegetation cover in Jalisco

Over the study period, wildfires occurred at a higher rate than 
agricultural burns, evidenced in both their frequency and total burned 
area. These findings are consistent with national-level reports, including 
those from the National Forestry Commission (Conafor, 2022) and 
Corona-Núñez (2020), which indicate a higher prevalence of wildfires 
compared to burns originating in agricultural lands. This alignment 
underscores the broader trend of wildfires as a primary concern for fire 
management and mitigation efforts in Mexico.

Significant interannual variability was noted in wildfire and agri
cultural burn occurrences, with 2005, 2011, and 2017 marking years of 
heightened activity and 2014 and 2015 seeing fewer incidents. This 
pattern aligns with Conagua (2023) data indicating intense droughts 
during the peak years and above-average rainfall in the quieter ones. 
Such variability emphasizes the influence of climatic extremes on fuel 
conditions and fire ignition rates in Jalisco.

Land cover influences the risk of wildfires by altering the spatial 
arrangement of fuels and interacting with weather conditions 
(Heyerdahl et al.,2001). In our study, different land cover types were 
found to be associated with varying levels of fire occurrence. Pine-oak 
forests emerged as the most fire-prone vegetation type, exhibiting 
both higher frequency and larger extent of wildfires. Furthermore, these 
forests registered the highest average annual percentage of burned area 
relative to their total extent within the study region. This observation is 
consistent with Montoya et al. (2023), who noted a comparable pattern 
at the national level, with pine-oak forests annually experiencing burns 
across an average of 2.7 % of their total area, suggesting a consistent 

wildfire behavior for this forest type across broader scales.
These findings also coincide with previous global studies indicating 

that wildfires are not uncommon in pine-oak forests, which maintain a 
fire regime characterized by frequent, low-intensity surface fires (Fule, 
Covington, 1996; Rodríguez-Trejo, Fulé, 2003; Heyerdahl and Alvarado, 
2003; Jardel-Peláez et al., 2012). A substantial proportion of species in 
pine-oak forests have developed adaptations or resistance to wildfires, 
enabling them to not only survive but thrive and dominate in fire-prone 
environments (Keeley and Zedler, 1998).

However, the prevalence of large-scale fire events in these ecosys
tems, documented throughout our study, points to increased fire in
tensity, likely exacerbated by anthropogenic factors like fire suppression 
practices, which lead to fuel accumulation, and illegal burning activities, 
enhancing fire frequency and intensity. Additionally, the effects of 
climate change may further aggravate the severity of fires, disrupting 
established fire regimes (Jardel et al., 2006; Moreno-Ruiz et al., 2013; 
Bárcenas-Pazos et al., 2018). Such altered fire regimes in pine-oak for
ests could result in shifts in vegetation composition, biodiversity loss, 
and disruptions to key ecosystem processes (Gallardo-García et al., 
2016), underscoring the critical need for understanding these dynamics 
to devise effective wildfire management and conservation approaches. 
For instance, controlled burning, recognized as a viable management 
strategy in fire-adapted ecosystems, allows for the maintenance of nat
ural fire dynamics and prevents excessive fuel build-up (Jardel-Peláez 
et al., 2014).

Tropical dry forests ranked as the second most affected vegetation 
cover in Jalisco, which, along with pine-oak forests, accounted for 
approximately 98 % of the total area burned during the study period. 
This finding is in line with research conducted at the national level, 
which has consistently identified tropical dry forests as having a high 
incidence of wildfires (Rodriguez Trejo, 2008; Corona-Núñez et al., 
2020; Montoya et al., 2023).

Globally, there is also evidence that wildfires are becoming more 
frequent and severe in many tropical dry forests, a trend documented in 
recent studies (Yin et al., 2020; Hartung et al., 2021; Corona-Núñez, 
Campo, 2023). Although these forests rank among the ecosystems most 
vulnerable to fire, their long-term response to frequent wildfires remains 
largely unknown (Hartung et al., 2021).

Rodriguez Trejo (2008) suggests that in Mexico, these forests’ sus
ceptibility to fire can be attributed to practices such as logging and 
intentional burning. Furthermore, the presence of secondary forests and 
human-induced disturbances, such as fragmentation, can intensify their 
vulnerability (Michael-Fuentes et al., 2010).

In the state of Jalisco, tropical dry forests are often located in prox
imity to agricultural land and serve as rangeland for cattle (Balcázar, 
2011). Consequently, the use of fire to convert forest to farmland areas 
can be considered a contributing factor to the occurrence of wildfires in 
these ecosystems. Our analysis revealed that both tropical dry forests 
and agricultural land/induced grasslands experienced a similar annual 
burn percentage of their total surface area (approximately 0.7 %), sug
gesting a link between these land cover types. Additionally, the char
acteristic dry periods in these ecosystems can amplify their vulnerability 
to fire, especially under conditions of climatic uncertainty.

Despite most wildfires in tropical dry forests in Jalisco being smaller 
than 400 ha, their impacts can still be significant. These forests harbor 
fire-sensitive species that are not adapted to the presence of fire, making 
them more vulnerable to higher levels of damage and altered succession 
patterns (McKenzie et al., 2004; Jardel-Peláez et al., 2012).

4.2. Environmental factors driving wildfire behavior

4.2.1. Topography
The quantification of topographic effects on wildfire behavior posed 

a challenging task, primarily due to the intricate interplay of topography 
with various landscape elements.

In our exploratory analysis, elevation emerged as the only 
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environmental factor where wildfire frequency exhibited variation 
based on the vegetation type associated with each fire event. This 
variation underscores elevation’s important role in delineating the range 
of different vegetation types and, by extension, influencing wildfire 
distribution across elevational gradients.

Despite this, the size of wildfires did not exhibit a significant corre
lation with elevation in our model, diverging from recent findings that 
report elevation significantly affecting both the frequency and intensity 
of wildfires (Mansoor et al., 2022; Alizadeh et al., 2023). This suggests 
that the influence of elevation on wildfire behavior in Jalisco may be 
more complex, primarily exerting its impact indirectly by shaping the 
establishment and distribution of vegetation communities. This in turn, 
influences the availability and characteristics of fuel loads, affecting 
wildfire risk and behavior.

Our analysis indicated that moderate and moderately steep terrains 
exhibit a higher frequency of wildfires, though significant activity was 
also noted in the gentler topographies of tropical dry forests. Slope 
inclination directly facilitates fire spread by enhancing radiative heat 
transfer (Rothermel, 1983) and increasing both the rate of spread and 
fire intensity (Falk et al., 2011). Additionally, slope affects fire ignition 
indirectly by altering fuel moisture and density (Holden et al., 2009).

The decrease in fire activity within steep and very steep terrains 
observed in our study may stem from their relative inaccessibility 
compared to gentler areas, which favor denser road networks and are 
more habitable (Bountzouklis et al., 2021). This accessibility makes 
gentle to moderately sloped areas more susceptible to anthropogenic 
ignition sources, such as agriculture and intentional burning, thus 
elevating wildfire occurrence rates in these terrains (Balcázar, 2011).

On the other hand, our model did not identify a significant rela
tionship between slope and wildfire size. Previous studies, such as the 
work by Parks et al. (2012), have reported that the influence of slope on 
wildfires could range from negligible to highly significant, depending on 
the specific characteristics of the study area. McKenzie et al. (2006)
further noted that topography, particularly in rugged landscapes, plays a 
more critical role in shaping fire regimes than in areas of milder relief. 
Much like with elevation, the apparent lack of slope’s direct impact on 
wildfire patterns in our study might be explained by the nuanced, in
direct effects of landscape features on fire dynamics. Factors such as fuel 
availability, moisture, and continuity vary with slope inclination, 
potentially masking slope’s direct influence on fire spread. Moreover, 
the scale of our analysis may limit our ability to accurately assess the 
localized effects of slope on specific fire events.

The complex role of topography in determining fire occurrence and 
size was further evidenced by our exploration of the effects of aspect on 
wildfire patterns. During the exploratory phase, it was noted that 
wildfires occurred more frequently on south and east-facing slopes. In 
the northern hemisphere, southerly and easterly-facing slopes generally 
receive more direct sunlight and higher solar radiation throughout the 
day (Méndez-Toribio et al., 2016). This increased sun exposure leads to 
higher temperatures, drier conditions, and greater evaporation rates, 
creating a more favorable environment for fire ignition and spread 
(Westerling et al., 2006; Díaz-Avalos et al., 2016).

Following this logic, it was anticipated that wildfires would be larger 
on southerly and easterly slopes. Surprisingly, our model’s significant 
coefficients indicated that northerly slopes were associated with the 
most extensive wildfires in our study area. This apparent contradiction 
could stem from several factors: a) the less frequent ignition events on 
north-facing slopes might allow for more fuel accumulation, increasing 
the potential for larger fires; b) existing research on aspect and wildfire 
behavior primarily focuses on northern latitudes, with limited insights 
into subtropical climates like those in our study area; c) the relatively 
scarce presence of northerly slopes in Jalisco may lead to a data 
imbalance, affecting model precision (Agresti, Caffo, 2002). Further
more, the interconnected nature of topographic features such as slope, 
elevation, and aspect adds another layer of complexity to their rela
tionship with wildfire dynamics. Specifically, aspect’s influence is 

heavily modulated by slope; in gentle terrain, solar energy input does 
not vary significantly across space, suggesting that gentle northerly 
slopes could receive nearly as much solar energy as southerly ones 
(Heyerdahl et al., 2001).

Overall, these observations suggest that the intricate ways in which 
topography affects wildfire occurrence and size—and its interaction 
with other landscape characteristics—were not fully captured by our 
modeling approach.

4.2.2. Temperature and precipitation
In our exploratory analysis, we observed a strong association be

tween wildfire frequency and precipitation values near zero, irrespective 
of the originating vegetation cover. It is well established in the literature 
(e.g. Littell et al., 2009; Holden et al., 2018; Neger et al., 2022) that lack 
of precipitation or prolonged dry periods can lead to drought conditions, 
which significantly increase the risk of wildfires.

Conversely, our analysis found that wildfire frequency positively 
correlates with temperature, demonstrating the highest occurrences 
during periods of elevated temperatures. This observation was further 
supported by significant model coefficients indicating a direct rela
tionship between temperature and the size of fires. The positive corre
lation between temperature and both the frequency and magnitude of 
wildfires can be attributed to higher temperatures’ role in accelerating 
vegetation drying, thereby increasing fuel availability for fire propaga
tion (Donat et al., 2013).

Temperature’s crucial role in estimating wildfire dynamics has been 
consistently supported by previous research (Flanningan et al., 2009; 
Yang et al., 2014; Castel-Clavera et al., 2022), and it is widely recog
nized as a key driver of heightened wildfire activity (Westerling, 2016; 
Abatzoglou et al., 2019; Gutierrez et al., 2021). Temperature as a critical 
driver of wildfire behavior is particularly relevant in the context of 
climate change. One of the most significant consequences of climate 
change is global warming, resulting in a long-term increase in average 
temperatures worldwide (Keeley, Syphard, 2016). As temperatures 
continue to rise, environmental conditions become increasingly 
conducive to wildfires, leading to more frequent and severe events.

Moreover, climate change-driven alterations in weather patterns, 
including more intense precipitation events, can lead to increased 
biomass growth (Westerling, 2016). This dynamic, combining more 
intense precipitation with extended dry periods and higher tempera
tures, is likely to enhance fuel availability, creating conditions favorable 
to larger and more severe fires in many regions of the world (Donat 
et al., 2013; Pachauri et al., 2014).

Given its geographical location, Mexico stands as one of the countries 
most susceptible to the impacts of climate change (Murray-Tortarolo, 
2021). This situation remarks the critical need for proactive measures to 
mitigate climate change effects and to enhance wildfire management 
strategies nationwide, with particular emphasis on Jalisco—a state 
notably vulnerable to these challenges.

4.2.3. Land cover
Land cover plays a crucial role in explaining the spatial variation of 

wildfire behavior, as it determines the distribution of fuels and interacts 
with prevailing weather conditions (Jardel-Peláez et al., 2012; Turner 
et al., 2015; Diaz-Avalos et al., 2016).

Our model effectively captured the impact of vegetation and land 
cover on wildfire size, aligning with the observed general patterns in our 
study. It demonstrated that different vegetation types exhibit distinct 
susceptibilities to fire, with certain types more likely to burn and 
contribute to wildfire occurrence.

The model fitted gave negative but significant coefficients for wet
lands and tropical dry forests, indicating that wildfires tend to be smaller 
in these ecosystems compared to fires occurring in pine-oak forests. This 
asserts the pivotal role of pine-oak forests in shaping both the spatial 
distribution and magnitude of wildfires within the study area. Moreover, 
considering that tropical dry forests had the second-highest wildfire 
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incidence among the vegetation covers in Jalisco, their significant as
sociation with wildfire size is not unusual. In contrast, wetlands typi
cally experience minimal fire occurrence, meaning their spatial 
distribution strongly influences wildfire size by hindering fire spread.

4.2.4. NDVI
Numerous global studies have utilized NDVI to assess vegetation 

response and recovery post-wildfire events (e.g., Leon et al., 2012; Ba 
et al., 2022). Our findings, however, highlight NDVI’s utility as a good 
indicator of both wildfire occurrence and size, suggesting its potential as 
a predictive tool for fire behavior.

Areas with low NDVI values are indicative of water-stressed vege
tation, which can serve as easily ignitable fuel sources (Safyan et al., 
2017). Our study revealed a strong relationship between low NDVI 
values and a higher frequency of wildfires. The latter could have im
plications for fire management practices and mitigation strategies. For 
instance, besides temperature and precipitation records, NDVI can serve 
as an early warning indicator of potential wildfire risk - lower NDVI 
values being indicative of increased flammability of vegetation - and 
managers and firefighters can prioritize resources and interventions. 
This could be particularly relevant during pronounced droughts and in 
ecosystems characterized by marked seasonal variations, such as oak 
and tropical dry forests (Jardel-Peláez et al., 2012)

In contrast, the association between higher NDVI values and larger 
wildfires in the model estimates suggests that regions with more abun
dant vegetation, leading to increased fuel availability, can experience 
more extensive wildfire episodes. This finding underscores the potential 
of implementing targeted fuel management practices in areas with high 
NDVI values. By continuously monitoring NDVI, authorities can identify 
areas with dense vegetation that are at potentially heightened risk, 
facilitating timely and strategic interventions. Employing methods such 
as controlled burns and mechanical thinning can effectively reduce fuel 
loads, thereby mitigating the likelihood of large-scale wildfires 
(Jardel-Peláez et al., 2014).

Utilizing NDVI as an indicator for targeted fuel management presents 
a cost-effective and efficient alternative to traditional methods 
commonly employed in Mexico, such as in situ observations by fire 
brigades (Balcázar, 2011). While the latter approach is valuable, it can 
be costly and time-consuming, often limited by the logistical challenges 
of covering extensive and potentially inaccessible areas. In contrast, 
satellite-based NDVI data offers an advantage due to its accessibility, 
comprehensive spatial coverage, and high temporal resolution 
(Chuvieco et al., 2004)

4.2.5. Proximity to roads and agricultural land
Mexico’s National Forestry Commission reports that 31 % of wild

fires in the country are intentional, with an additional 22 % originating 
from agricultural and farming activities (Conafor, 2023). In Jalisco, 
human activities have been identified as the source of up to 98 % of total 
wildfires (Semadet, 2021). This trend underscores the urgent need for 
comprehensive information on the causes of ignition and the integration 
of social factors into effective wildfire prevention strategies. However, in 
Mexico, and particularly in Jalisco, the determination of wildfire causes 
often remains inconclusive or is labeled as unknown. This issue largely 
arises from the challenge of identifying a cause when a fire is detected 
well after its ignition, a common scenario encountered by fire brigades 
(Michel-Fuentes, 2010). The prevalent ambiguity and lack of reliability 
in existing data highlight the critical necessity for enhancing databases 
and methodologies. Furthermore, it emphasizes the importance of 
adopting new technologies to refine the accuracy and comprehensive
ness of wildfire cause identification.

In our study, we encountered the same challenge as the exact cause 
of individual fire events could not be discerned solely from satellite 
imagery. However, our analysis revealed a notable decrease in wildfire 
frequency with increasing distance from the nearest road and agricul
tural land. This pattern implies that roads and agricultural areas, often 

associated with human activities such as discarded cigarettes, inten
tional burns, or agricultural practices, act as potential sources of fire 
ignition. While our data does not explicitly differentiate between 
human-induced and natural wildfires, the higher concentration of 
ignition sources near roads and agricultural areas correlates with an 
increased number of wildfires, indicative of the significant role human 
activities play in wildfire occurrences at the regional scale. This aligns 
with previous studies, such as Castel-Clavera et al. (2022), who identi
fied roads as having the strongest influence on fire occurrence among 
human-related factors, underscoring the role of accessibility in facili
tating wildfires. They also emphasized the importance of interfaces be
tween forests and agricultural lands as hotspots for fire activity, 
reinforcing our findings that human activities in these zones are key 
drivers of wildfires in Jalisco. This highlights the need for enhanced fire 
prevention strategies, particularly at the interface of human settlements 
and wildland areas.

Although Mexico has legal frameworks designed to regulate burns 
associated with agricultural activities, challenges arise when fires are 
intentionally set to convert forests into grasslands or croplands—a 
practice driven by the desire for land-use change (Balcázar, 2011). 
Addressing this issue necessitates tackling the underlying causes, which 
stem from intricate socioeconomic dynamics.

On the other hand, the prevalence of large wildfires in remote 
forested regions, as indicated by our model coefficients, emphasizes the 
challenges in responding to and controlling fires in areas where fire
fighting activities are more difficult. These findings underscore the 
importance of efficient detection systems, rapid response mechanisms, 
and adequate resources for managing wildfires in remote terrains. 
Crucially, this situation calls for the integration of technological ad
vancements beyond traditional firefighting brigades, such as the 
implementation of early warning systems based on satellite imagery and 
remote sensing techniques.

Additionally, understanding the origins of these extensive wildfires is 
essential. For instance, in Jalisco’s Natural Reserve Sierra de Manantlán, 
it has been reported that illegal agricultural activities are a significant 
contributor to the largest wildfires and areas burned (Balcázar, 2011). 
Illegal agriculture, often conducted in secluded forest regions to evade 
detection by authorities, results in fires that are harder to identify and 
manage due to their distance from human settlements. Addressing these 
underlying issues requires confronting the root causes of complex so
cioeconomic processes.

4.3. Spatial distribution of wildfires in Jalisco

4.3.1. Model validation and enhancement for wildfire prediction
Overall, a strong correlation was observed between real burned area 

values and those predicted by the model. Among the validation period 
years, 2018 exhibited the lowest percentage of error, followed by 2020, 
and then 2019. This pattern is attributed to the fact that, unlike 2018, 
which had a total burned area within the average, the burned surfaces in 
2019 and 2020 were lower (2020) or higher (2019) than expected. 
Specifically, the notably larger error in 2019 was linked to the extensive 
scale of the fires that occurred that year.

Although the model was effective in estimating the burned area of 
small and medium-sized fires, its predictability was lower for larger 
events. Likewise, it was found that the maximum burned area estimates 
per episode did not exceed 3000 ha, indicating that the model did not 
predict the incidence of larger-scale wildfires.

To enhance the model’s predictability, incorporating a term that 
considers the temporal dimension would be necessary. This means that 
the data should be defined by a process indexed in both time and space 
(Blangiardo and Cameletti, 2015). This interaction would allow for the 
inclusion of the effect of large-scale climatic variations. Moreover, given 
that the model was primarily calibrated with small and medium-sized 
fire data, its capacity to predict larger magnitude events was limited. 
Enhancing its accuracy could involve developing two distinct models: 
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one tailored for small-scale fires and another for larger fires. This tar
geted approach would better align predictions with the unique dynamics 
of each fire category. However, in this study, we found it critical to 
include all fire sizes to maintain the integrity of the spatial analysis at a 
regional scale. This approach ensures that our findings reflect the full 
extent of wildfire activity in Jalisco, as both small and large wildfires 
play a crucial role in shaping spatial patterns and fire dynamics across 
the landscape.

4.3.2. Wildfire’s spatial patterns and causal factors
Based on model estimations, we identified four distinct fire-prone 

regions in the state of Jalisco, characterized by consistently higher 
concentrations of burned areas. The heightened fire activity within these 
regions is primarily attributed to the prevalence of pine-oak forests and 
tropical dry forests, vegetation covers observed to be more susceptible to 
burning throughout the study period.

The notable concentration of burned areas within these regions may 
also suggest an influence of anthropogenic activities on fire ignitions. 
While fires caused by lightning or other natural factors often exhibit a 
more random distribution (Krawchuk et al., 2009; Syphard et al., 2008), 
the observed clustering of fire-affected areas raises questions about the 
potential for human-induced wildfire incidents in these areas.

As previously stated, a vast majority of fires in Jalisco are attributed 
to human causes. Specifically, within the zones highlighted by our 
model, wildfires are commonly associated with intentional burning, 
agricultural clearing, and illegal activities (Semadet, 2021). These areas 
not only support significant agricultural activity—crucial for the local 
economy—but also harbor substantial forested lands. Furthermore, the 
central region, noted for its high population density, includes major 
urban centers like Guadalajara and Zapopan, amplifying the interface 
between human settlements and natural landscapes (Semadet, 2021).

The nominal range estimated by the model (approximately 3.74 km), 
indicates that wildfires occurring within this proximity tend to have 
similar sizes. This suggests that wildfires within this range can influence 
each other’s behavior, potentially due to shared fuel sources; the spread 
of fire within a few kilometers affects the availability of fuel for subse
quent events (Jardel-Peláez et al., 2014). This spatial correlation has 
practical applications, especially in planning prescribed burns or 
controlled fires. Fire managers can use this information to allocate re
sources strategically and implement prescribed burns more effectively. 
This approach is crucial for reducing fuel loads and minimizing the risk 
of larger, uncontrolled wildfires, particularly in ecosystems with a his
torical regime of frequent fire events, such as the forest ecosystems 
present in Jalisco (Jardel-Peláez et al., 2014).

While our modeling approach has opportunities for further 
enhancement, this study marks a significant milestone in wildfire 
research within the state of Jalisco. It provides a comprehensive regional 
overview of burned area distribution, offers insights into the overall 
pattern of wildfire risk across the state, and establishes a foundation for 
future research. Particularly, it highlights the identified fire-prone areas 
as prime candidates for localized studies and the implementation of 
tailored management strategies.

Additionally, within the context of Mexico, at the time this study was 
conducted, we are aware of only one other research project 
(Villar-Hernández et al., 2022) that has applied the INLA methodology 
to wildfire analysis in the country. Unlike our study, their approach did 
not incorporate the spatial component SPDE in the modeling process, 
underscoring the uniqueness and potential impact of our research in 
advancing the understanding of wildfire dynamics and management in 
Mexico.

4.3.3. Study limitations and future directions
We believe the chosen approach effectively met the objectives of this 

regional study, establishing a solid baseline for future research to build 
upon. As a regional-scale approach, this work lays the groundwork for 
more localized studies, particularly in the high-risk areas identified in 

our findings. However, we acknowledge certain limitations inherent in 
this approach, which may affect some aspects of the results.

One limitation of our study is the use of a single land cover layer from 
2016. This choice ensured spatial consistency with our burned area data, 
as both shared high saptial resolution. Additionally, the dataset pro
vided detailed, context-specific information on local vegetation, making 
it highly relevant for management and decision-making in Jalisco. 
However, incorporating multi-year land cover data would allow for the 
analysis of land cover changes over time, offering valuable insights into 
the relationship between land cover dynamics and wildfire activi
ty—particularly regarding transitions from natural vegetation to 
anthropogenic landscapes. Future research could benefit from exploring 
this relationship, especially in localized studies where more detailed 
land cover data may be available. It’s also essential that any land cover 
data remains specific to Jalisco and Mexico to ensure its relevance for 
local management and policy decisions.

In addition to land cover, another key variable that could enhance 
wildfire studies is the incorporation of fuel beds. Fuel beds provide a 
more accurate representation of the state of combustible material, of
fering insights into factors such as fuel availability, moisture content, 
type, arrangement, and quantity. These aspects play a fundamental role 
in influencing fire behavior and severity. While vegetation and land 
cover data offer valuable information, fuel beds reflect the actual con
ditions and risks driving fire events more precisely. In regional-scale 
studies like ours, quantifying fuel beds presents significant challenges 
due to data availability and scale. Nonetheless, for more localized 
studies, incorporating fuel beds would provide a deeper understanding 
of fire dynamics and allow for more targeted fire risk assessments. 
Integrating this data could enhance the precision of fire models and 
inform more effective management and mitigation strategies.

We also acknowledge that the meteorological variables used in our 
study, specifically precipitation and temperature, could be further 
refined in future research. Although remote sensing data provided 
comprehensive spatial coverage, enabling us to capture broad weather 
patterns affecting wildfire behavior across Jalisco, the datasets were 
resampled to match the resolution of our covariates and fire data, which 
did not improve their intrinsic accuracy. For more localized studies, 
incorporating meteorological station data would provide more precise 
weather information and enhance the understanding of wildfire 
behavior at finer scales. Additionally, using indices that integrate in situ 
observations with remote sensing data, such as drought indices, could 
simplify the interpretation and aggregation of weather variables. Future 
research could benefit from these approaches, particularly as more 
comprehensive datasets become available.

Regarding the model, a key limitation is the assumption of inde
pendence between the spatial and temporal dimensions. By treating 
these components separately, we may have overlooked potential spatio- 
temporal interactions. This simplification was necessary to reduce 
model complexity and computational demands, but it could limit the 
model’s ability to fully capture dynamic processes. Addressing this 
limitation in future studies by integrating spatio-temporal models would 
provide a more comprehensive understanding of the relationship be
tween space and time in wildfire behavior.

Despite these limitations, we are confident that our findings provide 
valuable insights into wildfire behavior and dynamics, laying a solid 
foundation for future research and informing management strategies in 
Jalisco. Addressing these limitations in subsequent studies will help 
refine the understanding of wildfire risk, ultimately contributing to 
more effective prevention and mitigation efforts in the region.

5. Conclusions

This study represents a significant advancement in understanding 
wildfire dynamics within Jalisco, highlighting the pivotal roles of cli
matic variability, land cover, and human activities in shaping wildfire 
patterns. Through our modeling approach, we’ve delineated fire-prone 
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regions, identified key factors influencing wildfire behavior, and pro
posed improvements for future predictive modeling.

Our findings confirm that wildfires are more prevalent and expansive 
than agricultural burns, with specific vegetation types like pine-oak and 
tropical dry forests showing higher susceptibility to wildfires. These 
results are aligned with national trends and underscore the importance 
of integrated fire management strategies that consider both ecological 
and anthropogenic factors.

Temperature emerged as a critical factor, with our model reflecting 
how variations in this element correlate with changes in wildfire fre
quency and size. This relationship underscores the escalating impact of 
climate change on wildfire regimes, necessitating robust strategies to 
mitigate its effects and enhance resilience against future wildfire risks in 
the region.

Quantifying the effects of topography on wildfire behavior presented 
significant challenges, primarily due to the complex interactions be
tween topographic features and various landscape elements, such as 
microclimate variations, fuel availability, and human activities. 
Conversely, NDVI emerged as a reliable indicator of wildfire behavior, 
emphasizing its potential as a predictive tool for assessing fire risk. This 
utility is enhanced by NDVI’s accessibility, extensive spatial coverage, 
and high temporal resolution, making it valuable for fire management 
strategies.

The INLA-SPDE methodology has proven to be an innovative statis
tical tool, particularly within the context of wildfire research in Mexico, 
where its application remains relatively scarce. This analysis thus marks 
a significant contribution to wildfire modeling in the country. Addi
tionally, the identification of specific fire-prone regions in Jalisco 
highlights the need for targeted fire management strategies that 
consider both ecological characteristics and human impacts in these 
areas.

Ultimately, this research not only sheds light on the current state of 
wildfire dynamics in Jalisco but also provides a solid foundation for 
future research. Furthermore, our findings confirm that Jalisco is among 
the Mexican states most affected by wildfires, highlighting the urgent 
need for policies focused on reducing wildfire risks and safeguarding 
both natural ecosystems and human communities.
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Corona-Núñez, R.O., Li, F., Campo, J.E., 2020. Fires represent an important source of 
carbon emissions in Mexico. Glob. Biogeochem. Cycles 34 (12) e2020GB006815. 

Cuevas-Arias, C.T., Vargas, O., Rodríguez, A., 2008. Solanaceae diversity in the state of 
Jalisco, Mexico. Rev. Mex. De. Biodivers. 79 (1), 67–79.

Díaz-Avalos, C., Peterson, D.L., Alvarado, E., Ferguson, S.A., Besag, J.E., 2001. Space- 
time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Can. J. 
For. Res. 31 (9), 1579–1593.

Díaz-Avalos, C., Juan, P., Serra-Saurina, L., 2016. Modeling fire size of wildfires in 
Castellon (Spain), using spatiotemporal marked point processes. For. Ecol. Manag. 
381, 360–369.

Didan, K., 2015. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN 
grid V006. NASA eosdis Land Process. daac 10 (730), 415.

Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R., Dunn, R.J., Kitching, S., 2013. 
Updated analyses of temperature and precipitation extreme indices since the 
beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res.: 
Atmospheres 118 (5), 2098–2118.

Falk, D.A., Heyerdahl, E.K., Brown, P.M., Farris, C., Fulé, P.Z., McKenzie, D., Van 
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