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Abstract

Plumes of mineral dust in East Asia deleteriously impact the health and livelihoods of hundreds
of millions of people in Mongolia, China, Korea, and Japan and perturb Earth’s energy balance
and climate. However, the sources of this dust are not well-documented, limiting understanding
of dust emissions. Here, we systematically quantify dust source activation frequency (DSAF)
across East Asia (80—130°E; 27-52°N) between January 2016 and December 2023. Our data
reveal a vast dust-active area extending from the Tibetan Plateau in the southwest to the Huin
Bair Sandy Land in the northeast, but two regions dominate: southern sources centred on the
margins of the Taklimakan Desert and northern ones centred on the valleys of the Gobi Desert.
East Asia is most dust-active in boreal spring (46% of all recorded events). This seasonal peak
is pronounced in northern sources where snow cover, vegetation and orographic/topographic
influence on winds are clear controls on DSAF. The main southern sources are active year-
round with DSAF-hotspots attributable to desiccated lakes and riverbeds. The Tibetan Plateau,
commonly considered a sink for in-bound windblown dust, is also a dust source, particularly
in winter, with emissions controlled by precipitation patterns, snow cover and wind funnelling
through deep river gorges. Contrary to suggestions, our data show that the Loess Plateau is not
a major dust source. We document a marked increase in dust source activation during the 2020
extreme heat wave on the overgrazed Mongolian Plateau grasslands. Our data provide a
framework to study past variability in the two-way climate interactions that control dust
emissions on historical and geological timescales and a baseline from which to measure future
change.

1. Introduction

The deserts of East Asia (figure 1) are a major supplier of mineral dust to the atmosphere
(Ginoux et al., 2004), emitting between 400 and 1,000 teragrams (Tg) of dust annually (Kok et
al., 2021), with serious impacts on the health and livelihoods of hundreds of millions of people
in Mongolia, northern China, Korea, and Japan (Shao and Dong, 2006). Dust from East Asia
is also transported vast distances to the North Pacific Ocean (Pye and Zhou, 1989), North
America (Zdanowicz et al., 2006), and Greenland (Huang et al., 2015), influencing cloud
physics, regional radiation budgets and climates (Huang et al., 2014). Yet the sources of this
dust and the frequency of their activation have received less attention than atmospheric dust
plumes and their transportation. Early studies of dust storm activity in East Asia used data from
meteorological stations (Kurosaki and Mikami, 2003; Qian et al., 2002; Sun et al., 2001; Wang
et al., 2005), the Total Ozone Mapping Spectrometer Absorbing Aerosol Index (TOMS Al)
(Prospero et al., 2002) and dust emission modelling (An et al., 2018; Xuan and Sokolik, 2002).
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Moderate Resolution Imaging Spectroradiometer (MODIS) data, with twice-daily observations,
have been employed to study dust activity in the Taklimakan and Gobi deserts (Nobakht et al.,
2021; Zhang et al., 2008, 2015a) and stereo imaging from the Multi-angle Imaging Spectro
Radiometer (MISR) has been used to trace East Asian dust plume motion every 6-7 days (Yu
et al., 2019). However, in data sets of such limited temporal resolution, dust transport in the
atmosphere obscures the sources of these emissions and their activation frequency, thereby
hindering assessment of mechanistic forcing.

" Taklimakan

Figure 1. Study region with place names and geographic features mentioned in the text. Dust
source active regions are labelled in brown, and highland/lowland regions are highlighted in
bold black. Key locations include the Mongolian Plateau, the Alashan Plateau, the Loess
Plateau, the Tibetan Plateau, and the Northeast Plain. The two primary dust source activation
centres, the Taklimakan and the Gobi Deserts, are highlighted in brown. Secondary dust source
regions include the Great Lake Basin (GLB), the Gurbantunggut Desert (Gbt), the Hulun Buir
Sandy Land (Hul Br), the Onqin Daga Sandy Land (Oq Dg), the Horqin Sandy Land (Hqn),
the Kumtag Desert (Ktg), the Baidan Jaran Desert (Bdn Jn), the Tengger Desert (Tg), the
Qaidam Basin (Qd B), the Hobq Desert (Hbq), and the Mu Us Sandy Land (Mus). The base
map is sourced from Google Earth ®.

A key advance in pinpointing dust sources was provided by the thermal infrared radiance data
from the Metaset Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager
(SEVIRI), which offers 15-minute temporal resolution and has been used to track dust
emissions to their sources across North Africa (Schepanski et al., 2007), the Arabian Peninsula
(Hennen et al., 2019), and the Horn of Africa (Kunkelova et al., 2024). For East Asia, the new-
generation geostationary meteorological satellites Himawari-8/9 provide similar capabilities.
The potential of this approach is demonstrated by studies of individual dust events originating
from the Gobi Desert and northeastern China (Altausen et al., 2019; Kai et al., 2021) and the
Taklimakan Desert (Yumimoto et al., 2019). However, a comprehensive assessment of dust
source activity across East Asian is lacking.
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Here, we utilize high-spatiotemporal-resolution dust RGB imagery from the Himawari-8/9
satellites to (i) present the first detailed high-resolution DSAF record of East Asia (80—-130°E,
27-52°N); (i1) examine the seasonality of East Asian dust source activations; and (iii) evaluate
the land surface conditions that promote dust source activation.

2. Methodology

High-resolution spatiotemporal remote sensing satellite data from Himawari-8/9 were used to
identify dust source activation from January 2016 through December 2023 (8 years).
Himawari-8/9 is a new-generation geostationary meteorological satellite launched by the Japan
Meteorological Agency (Bessho et al., 2016). Himawari-9 began its backup operations for
Himawari-8 in March 2017 and officially took on the primary operational role in December
2022. The Advanced Himawari Imager (AHI) sensor aboard these platforms features 16
wavelength bands (channels): channel 1-3 image in the visible part of the spectrum, channel
4—6 the near-infrared, and channel 7-16 the far-infrared wavelength bands. The geospatial
monitoring range of Himawari-8/9 is from 85°E to 160°W and from 60°N to 60°S. The spatial
resolution is 2 km x 2 km (up to 0.5 km per pixel in the visible spectrum), and the temporal
resolution is 10 minutes over East Asia.

We applied the Dust RGB method to convert Himawari-8/9 far-infrared channels to dust
composite images (Akihiro, 2020). This method takes advantage of the difference in reflection
and transmission characteristics between atmospheric dust and other substances (e.g.,
low/mid/high-level cloud, and cold/warm deserts). Three infrared channels, i.e., 11, 13, and 15
are processed as follows: red (BT15-BT13), green (BT13-BT11), and blue (BT13). Areas with
bright magenta or pinkish shading are recorded as dust, tan—brown colours as clouds, and light
cyan or light green as warm or cold deserts (supplementary figure 1). Smoke is not detected by
dust RGBs because they use only IR bands. While dust and volcanic ash may appear similar in
RGB, our study region is not an active volcanic zone or under the influence of advected
volcanic ash plumes. Areas that emit dust were identified visually and marked as dust source
activation events on a 1° x 1° gridded record covering East Asian deserts, spanning 80—130°E,
27-52°N. We generated 420,768 dust composite images covering an 8-year period (January
2016 to December 2023) and grouped them into 2,922 daily animations to enable rapid manual
identification of dust plumes. We tracked 21,829 individual dust plumes (pinkish shading in
the animation) back to their points of origin. Manual identification and calculations of DSAF
follow the method of Schepanski et al. (2007):

N,
04) = (*'s
DSAF (%) = /ND) x 100
Ns = total number of days with at least one dust event in 1° x 1° grid cell within a given
interval,
Np = number of days of available satellite observation within the same interval.

Note that DSAF indicates the timing and frequency but not mass flux of dust emissions. Dust
source identification is not possible under optically thick clouds or atmospheric dust layers.
The pink shading of dust varies with surface emissivity, atmospheric moisture, atmospheric
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dust concentration and dust layer altitude (Banks et al., 2019). Manual dust source
identification necessarily introduces the potential for human error but, while we anticipate
future improvements in automated algorithms, for now, skilled humans introduce fewer
inconsistencies in their analyses of DSAF (AlNasser and Entekhabi, 2024). To minimize
subjective bias, we followed the protocol of Schepanski et al. (2012) wherein all dust plumes
were recorded but the modest subset (~3% of total events) with an obscured source (e.g.,
because of cloud cover), were classified as uncategorized and excluded them from our analysis
to ensure a conservative and reliable estimate of dust activations.

3. Results and Discussion

3.1 Spatial and Seasonal Characteristics of East Asian Dust Source Activation
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Figure 2. (a) Average annual dust source activation frequency (DSAF) from 2016 through 2023.
The intensity of the colour represents the DSAF percentage (darker shades = higher DSAF
values). The small red (solid-line) boxes around areas of high DSAF indicate the full extent of
the land surface images shown in panels b-g.

Our data reveal a vast area that is dust-active, extending from the Tibetan Plateau in the
southwest to the Hulun Buir Desert in the northeast, and we identify two primary regions: a
northern one, centred on the Gobi Desert and a southern one, centred on the Taklimakan Desert
(figures 1 and 2(a)). This result supports some interpretations from smaller data sets and model
simulations (Ginoux et al., 2012; Kim and Lee, 2013; Prospero et al., 2002; Xuan et al., 2004;
Zhang et al., 2008), but the spatial and temporal granularity in our data permits precise
identification of sources and mechanistic insight into dust generation. East Asia is most dust
active in spring (46% of all events recorded) and least active in summer (14%) (figure 3(a-b)).
We divide these two main source regions along 43 °N, roughly corresponding to the southern
limit of Mongolian Plateau (figure 3). The northern region is most-active in spring (figure 3(d))
while the southern one, sandwiched between the Tibetan Plateau and Mongolian Plateau,
36°N—43°N (figure 3(e)), is dust-active year-round (figure 3(f)). We also identify the Tibetan
Plateau (figure 3(g)) as a dust source, mostly active in winter and early spring (figure 3(h)).
However, contrary to many suggestions (Xuan and Sokolik, 2002; Xuan et al., 2004) and in
support of the opposing view (Kurosaki and Mikami, 2003; Lim and Chun, 2006), we show
that the Loess Plateau is not an active present day dust source (figures 4 and 5).
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Figure 3. Monthly distribution of dust source activation (counts) for (a) East Asia (80—130°E;
27-52°N), (b) the northern source region (north of 43°N), (c) the southern source region
(36°N—43°N), and (d) the Tibetan Plateau (TP, 27°N-36°N).

A seasonal and latitudinal shift in atmospheric dust in East Asia has been inferred based on data
from sparsely distributed meteorological stations (Han et al., 2008). Our data show that, for
half of the year (summer and autumn), the East Asia dust activation belt is centred on ~40°N,
in the southern source region (figure 4). In spring, high DSAF values extend to higher latitudes
incorporating northern sources (figure 4(b)) where regional wind speeds also peak in spring
(Shao and Dong, 2006). In winter, the highest DSAF values are found at lower latitudes
including the Tibetan Plateau (figure 4(h)), implying the influence of the prevailing westerly
jet over the Tibetan Plateau (Schir et al., 2009).

In spring, in addition to the Taklimakan and Gobi deserts, other northern sources, such as the
Great Lake Basin, the northern Mongolian grasslands, and the Northeast Plain, also contribute
to dust emissions (figure 4(a)). The Great Lake Basin on the northwestern Mongolian Plateau,
home to one of the largest dune fields on the Mongolian Plateau, interconnected lakes, wetlands,
and semi-arid landscapes (Lehmkuhl et al., 2024), produces dust on ~3% of spring days (figure
4(a)), a contribution that has not been clearly quantified before. Eastern Kazakhstan and the
Gurbantunggut Desert also peak in dust source activation during spring, serving as minor
contributors (figure 4(a)). This finding is consistent with the analysis of Nobakht et al. (2021)
who used twice-daily MODIS imagery, but we document more dust events in East Kazakhstan
and the Gurbantunggut Desert during non-spring months. In summer, the highest DSAFs are
observed around the margins of the Taklimakan Desert (figure 4(b)), and the Alashan Plateau
is a secondary source (figure 4(c)). During autumn, the Taklimakan Desert and the Alashan
Plateau remain the dominant dust sources, but activation frequencies are lower (figure 4(e)). In
winter, dust source activation events are primarily concentrated on the Tibetan Plateau,
followed by the Taklimakan Desert, the Alashan Plateau, the Qaidam Basin and the Ordos
Plateau, which includes the Hobq Desert and the Mu Us Sandy Land (figure 4(g)).
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Figure 4. Seasonal latitudinal distribution of dust source activation frequency: (a-b) Spring
(MAM, March, April, May), (c-d) Summer (JJA, June, July, August), (e-f) Autumn (SON,
September, October, November), and (g-h) Winter (DJF, December, January, February). These
frequencies are calculated from the recorded years between 2016 and 2023. Dust source regions
labelled in black including: the Taklimakan Desert (TK), the Gobi Desert, the Great Lake Basin
(GLB), the Gurbantunggut Desert (Gbt), the Hulun Buir Sandy Land (Hul Br), the Onqin Daga
Sandy Land (Oq Dg), the Qaidam Basin (Qd B), the Hobq Desert (Hbq), the Mu Us Sandy
Land (Mus), the Alashan Plateau (AP), the Tibetan Plateau (TP) and Northeast Plain (NP). The
Loess Plateau (LP) is also indicated (in white because our data show that it is largely inactive,
also see Figure 5).

3.2 Land Surface Drivers of Dust Source Activation
3.2.1 Dust Hotspots in the Taklimakan and Gobi Deserts

The highest DSAFs in East Asia occur in the southern source region, in the northeastern
Taklimakan Desert (figure 1), especially around Lake Lop Nur (figure 2(b), 89°E, 40°N), where
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dust activation occurs on ~19% of days (figure 2(a)). This result is consistent with findings
derived from the twice-daily MODIS imagery Nobakht et al. (2021). While the date and cause
of Lop Nur's desiccation are debated (Dong et al., 2012), our data show that it is a hotspot of
dust activity (figure 2(b)). The Tarim River and associated floodplains, located on the northern
rim of the Taklimakan Desert (figure 2(c), 80—90°E, 40-41°N) is also a significant dust source
with activation on ~7% of days (figure 2(a)). Glacial- and snow-melt from the Tianshan
Mountains are responsible for nearly 50% of annual river flow in the region (Chen et al., 20006).
The sediment transported during peak flow (summer ablation season) accumulates in loose,
dry soils along the riverbanks making them highly susceptible to wind erosion when river levels
fall prior to the next summer ablation season (Rittner et al., 2016). Our data also show notable
dust source activation along the southern rim of the Tarim Basin (80—85°E, 36-37°N, ~6% of
days), including the Hetian River (80—82°E, 36—41°N, ~4% of days), which has not been
clearly identified as an active dust source before (figure 2(a)). These rivers, fed by glacial- and
snow-melt from Kunlun Mountains, deposit sediment in alluvial fans, terminating in the central
basin, where they desiccate during the dry season (Rittner et al., 2016).

The most active area in the northern dust source region of East Asia is the southwestern
Mongolian Plateau in the Gobi Desert (figure 1, 98—105°E, 42—45°N) where dust activation
averages about 3% of days annually (figure 2(a)). The valleys of the Gobi-Altai Mountain
ranges (figure 2(e), 100—103°E, 43—45°N) exhibit the highest DSAF, reaching ~6% of spring
days (figure 4(a)) across a landscape rich in lakes and paleolake remnants (Lehmkubhl et al.,
2018), which serve as abundant sources of fine-grained particles, readily mobilized by strong
winds. This region is also characterized by orographic convergence and topographic funnelling
of synoptic winds, triggering dust events associated with the passage of Mongolian cyclones
(Kai et al., 2021).

3.2.2 The Alashan Plateau: A Year-Round Dust-Active Source

The Alashan Plateau (98—106°E, 38—42°N) and its adjacent regions, in western Inner Mongolia
(northern China) (figure 1), is reportedly a source of dust storms (Sun et al., 2001; Wang et al.,
2011; Xuan and Sokolik, 2002) but, until now, its complex landscape with altitudes ranging
from 820 m to around 1,500 m, deserts including the Badain Juran Desert, the Tengger Desert
and the Ulan Buh Desert, degraded oases and dried riverbeds (figure 5) made it challenging to
discriminate dust sources (Wang et al., 2019). Our data show that the Alashan Plateau is dust-
active throughout the year (figure 5). Dust activation occurs on ~3% of days (figure 5), peaking
in spring (~9% of spring days) (figure 3(c-d)) and desiccated water bodies are a key control.
The southern side of the Altai Mountains, particularly dry riverbeds in the Heihe Alluvial Plain
(figure 5, 100-102°E, 41-42°N) and desiccated lakes such as Gashun Nor (dried in 1961) and
Sugu Nor (dried in 1992) are suggested to be dust-active (Kurosaki and Mikami, 2003;
Natsagdorj et al., 2003; Wu et al., 2016; Zhang et al., 2008). Our data reveal that Gashun Nor
(figure 2(d), 100 °E, 42°N) is the most dust-active source anywhere on the Alashan Plateau and
the second most active source in all of East Asia, with ~14% of days being dust-producing
(figure 5) including ~23% of spring days (figure 4(a)). The oasis areas along the Hexi Corridor
(97-102°E, 38—41°N) are also important contributors with dust activation on ~4% of days
(figure 5) and ~8% of spring days (figure 4(a)). Detrital materials from the Qilian Mountains
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are transported by fluvial systems to the Hexi Corridor, supplying sediments that are well-
suited for dust activation (Zhang et al., 2022). Spring ploughing of croplands in these oasis
regions leads to bare land with loosened surface sediments, reducing the threshold frictional
velocity needed to trigger dust emission (Shen et al., 2005).
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Figure 5. Annual dust source activation frequency (DSAF) on the Alashan Plateau and adjacent
regions (see inset for location). DSAF for individual grid squares is shown as coloured mini
pixels. Dust active regions (i.e., deserts, sandy land, dry lakebeds) are labelled in yellow.
Mountains (Mts.) and plateaus are labelled in white. The underlying image is from NASA's
Blue Marble: Shaded Relief.

The sandy deserts on the Alashan Plateau (e.g., the Badain Jaran Desert and the Tengger Desert)
and the Ordos Plateau (e.g., the Hobq Desert and the Mu Us Sandy Land) are much less dust-
active (<1% of days) (figure 5). This result (i) suggests that interpretations from detailed case
studies (Luo et al., 2020; Wang et al., 2021) are regionally applicable and (i1) is consistent with
findings from North Africa (Schepanski et al., 2007) and Arabia (Hennen et al., 2019;
Kunkelova et al., 2022). We attribute it to a paucity of fine-grained sediments in these
landscapes. Famously, the Chinese Loess Plateau is a sink for windblown dust transported from
elsewhere, but its role as a dust source is debated (Kurosaki and Mikami, 2003; Xuan et al.,
2004). Our data show it to be a negligible modern day dust source (figure 5), a result we
attribute to dense vegetation coverage and soils with high clay contents that promote
aggregation and clodding (Xuan and Sokolik, 2002).

3.2.3 The Mongolian Plateau and Northeast Plain
Spring Snow Cover and Vegetation

The Mongolian Plateau and adjacent regions (90—125°E, 43-52°N) exhibit pronounced
seasonal variation in dust storms, vegetation and snow cover (Lee and Kim, 2012). Vegetation
increases surface roughness, reducing wind speeds and roots bind soil particles, making them
less likely to be entrained (Zender et al., 2003). Snow inhibits dust emissions by blanketing
potential dust source areas, by increasing the threshold wind velocity required for dust emission
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and by enhancing soil moisture after snowmelt (Kurosaki and Mikami, 2004; Tanaka et al.,
2011). Our direct identification of dust sources enables a more precise evaluation of the role of
snow cover and vegetation in modulating the spatiotemporal evolution of dust activation.

(a) DSAF (b) Snow Cover
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Figure 6. Dust source activation frequency (DSAF, left), snow cover (middle), and leaf area
index (LAI right) for the transition from winter to spring: February (FEB, a-c), March (MAR,
d-f), April (APR, g-i), and May (MAY, j-1). Snow Cover and LAI index are reconstructed from
European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERAS) data (average for
2016-2023).

The Mongolian Plateau experiences a pronounced dust storm season that begins in February,
intensifies during March and April, and diminishes by May (Hao et al., 2024). Our data show
that DSAF is minimal in February (<3% the month’s days) across the Mongolian Plateau
especially on its northern margin where extensive snow cover persists (figures 6(a-b)).
Vegetation is limited in spring, but as snow gradually melts and retreats northward from
February to April, DSAF increases significantly, peaking at 5-7% of days in the month (figures
6(c-1)). In May, despite the absence of snow cover, the resurgence of vegetation in the northern
and northeastern parts of the Mongolian Plateau leads to a significant decline in DSAF down
to 1-3% of the month’s days (figures 6(j-1)). From 2016 to 2023 (February—May), Dust source
activation events (>1%) occurred when LAI ranged from 0.5 to 1.0, with snow cover below
20% (Supplementary figure 2).

Human Land Use Change

Global dust mass loading is suggested to have increased by ~55% since pre-industrial times,
with Asian dust contributing significantly to this change (Kok et al., 2023). However, current
climate models fail to reproduce this increase, at least in part because they underestimate the
influence on dust emissions of human-induced land use change which has been extensive in
East Asia, especially on the Mongolian Pleau and the Northeast Plain (Ginoux et al., 2012).
Today, the Mongolian Plateau and adjacent regions are characterized by three main land cover
types: bare lands in the southwest, grasslands in northeast and croplands in the east (figure 7).
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Our data show that the highest DSAFs are observed on bare lands on the southern Mongolian
Plateau (activation on 3~5% of days during the first half year) (figure 7(a)). The grasslands that
lie immediately to the north, in central-eastern Mongolia, are also recognized as both a natural
dust source area (Shinoda et al., 2010) and, increasingly, as an area experiencing frequent
droughts, leading to a reduction in vegetation cover and soil moisture (Nandintsetseg et al.,
2021) and grassland degradation driven by overgrazing by growing livestock populations
(Nandintsetseg and Shinoda, 2015). Our data show a spike in DSAF in this region during the
first half of 2020 (figures 7(b-c)), the time of the record-breaking Siberian heatwave when the
Verkhoyansk weather station recorded a daytime maximum of 38°C on June 20th, the highest
temperature ever recorded north of the Arctic Circle with abnormally warm temperatures
extending onto the Mongolian Plateau (Ciavarella et al., 2021). Furthermore, areas exhibiting
a 2020-heatwave positive DSAF anomaly show higher livestock numbers compared to those
with a negative 2020-heatwave DSAF anomaly (p-value = 0.037, Figure 7(d)). These
observations strongly suggest a human-induced land-surface control on the DSAF anomaly
during the first half year of 2020 involving grazing-induced grassland degradation during
extreme heatwave conditions.

Land use on the Northeast Plain is a mix of sandy lands (e.g., the Horqin Sandy Land, the
Ongin Daga Sandy Land and Hulun Buir Sandy Land, figure 1), grasslands and croplands
(figure 7a). Cropland extent has grown rapidly in northeast China in recent decades (Li et al.,
2004) and field studies suggest that these black soil croplands are a source of dust storms
(Zhang et al., 2015b). Our data support this suggestion, showing dust activation on ~7% of
spring days (figure 4(a)), presumably driven by strong winds in the ploughing season.

Land Cover Types
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Figure 7. Response of Dust Source Activation Frequency (DSAF) to the extreme Siberian
heatwave from January to June 2020. DSAF is shown in color (our data) and overlain with the
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average land cover (symbols) derived from MODIS MCD12C1 Version 6.1 data. Panel (a)
displays DSAF from 2016-2023, panel (b) shows the 2020 anomaly (2020 minus the mean for
2016 through 2023), panel (¢) shows livestock numbers in Mongolia for 2020 (the National
Statistical Office of Mongolia, https://www.1212.mn/), panel (d) compares livestock numbers
to the 2020 DSAF anomaly, with the t-test p-value shown in black. All panels use DSAF data
for the January-June period, the time frame during which the 2020 heatwave was most strongly
developed.

3.2.4 The Tibetan Plateau: A Winter-Early Spring Dust Active Source

The Tibetan Plateau is commonly regarded as a sediment sink for dust transported from
elsewhere, but it is also suggested to act as a dust source (Zhang et al., 2023), such as the
Yarlung Zangbo River Valley (Yang et al., 2025). Recently, however, dust emissions from
interior sources on the Tibetan Plateau have been suggested to be comparable to those of
northern China, with both areas suggested to produce approximately 130 Tg of dust annually
(Du et al., 2022). In our data, the Tibetan Plateau accounts for approximately 15% of all
recorded dust events across East Asia, with average activation rates <1% of days with the
remaining 85% of dust events occurring in northern China (i.e., our northern and southern
source regions), with average activation rates of 1% and 3% of days, respectively (figure 2(a)).

Our data show that winter into earliest spring (i.e., December—March) is the primary dust
season on the Tibetan Plateau (figure 3(g-h)). We identify three principle Tibetan Plateau dust
sources (figures 8(a-b)): (i) the northern Tibetan Plateau (80-94°E, 35-37°N, covering the
northern part of the Changtang Plateau, the Hoh Xil Plateau, and the Qaidam Basin), with dust
activation average at ~5% of winter days; (ii) the central Tibetan Plateau (80—93°E, 31-35°N,
including the Ali Valley between Changtang Plateau and Gangdise Mountains), with activation
average at ~3% of winter days; and (iii) the southern Tibetan Plateau (82-93°E, 28-30°N,
especially the Yarlung Zangbo River Valley), with an activation on ~8% of winter days.
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Figure 8. Controls on winter dust source activation frequency (DSAF) on the Tibetan Plateau.
(a) Topography with mountain ranges and valleys labelled in white. (b) winter DSAF, (c)
winter wind speed distribution and (d) winter snow cover distribution with annual precipitation
in purple contour, all averaged over the study period (2016-2023). Snow cover, wind speed
and precipitation are reconstructed from European Centre for Medium-Range Weather
Forecasts Reanalysis 5 (ERAS) data (average for 2016-2023).

One exceptionally dust-active hotspot in the northern Tibetan Plateau source is Zonag Lake
(figure 2(f)) on the Hoh Xil Plateau (activation on ~27% of winter days) (figure 8(b)). Here,
extreme precipitation in 2011 triggered a flood that led to extensive erosion and deposition of
a large sediment-rich area that is now exposed and an active dust-source (Lu et al., 2020b). The
flood also caused thermal alteration of the freeze-thaw cycle, the melting of ground ice, and
the destabilization of soil in the downstream region (Lu et al., 2020a). These processes
accelerated permafrost degradation and increased the potential for dust emissions.

The topography of the Tibetan Plateau influences DSAF, with high DSAFs observed in low-
elevation depositional environments such as the Ali valley (activation on ~3% of winter days)
and Yarlung Zangbo River Valley (activation on ~8% of winter days) (figures 8(a-b)) because
these basins generally act as depositional environments (Zender et al., 2003). From northwest
to southeast, winds weaken while precipitation and snow cover both increase (figures 8(c-d)),
leading to decreasing DSAF from the Changtang Plateau (figure 8b) toward the southeast,
closely resembling the modelled dust flux distribution (Du et al., 2022). Extreme topographic
variation in the Yarlung Zangbo River Valley, one of the world's deepest river gorges with
depths reaching up to 5,000 meters, also contributes to the very high DSAF values recorded
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here. During winter, river levels fall, exposing sandbanks and floodplains (Yang et al., 2025)
and the narrow and deep morphology of the valley helps channel winds, lifting loose soil and
fine particles from the exposed areas of the valley floor (Zhang et al., 2018).

Permafrost has been suggested to reduce the susceptibility of the land surface to deflation
through ice cementation of mineral particles in soil pores, thereby increasing the threshold wind
velocity required for sediment entrainment (Bullard et al., 2016). Permafrost is extensively
developed across the Tibetan Plateau, particularly on the Changtang Plateau (supplementary
figure 3). However, our winter DSAF data indicate that Changtang Plateau is a DSAF hotspot
with activation on ~4% of winter days (figures 8(a-b)). We infer that the extremely dry and
windy conditions on the Changtang Plateau (annual precipitation 200 to 400 mm) lead to
extremely low soil moisture levels and permafrost characterized by limited pore-ice, making
deflation of mineral dust still possible in winter (figures 8(c-d)).

4. Conclusions

Dust storms in East Asia affect the health and livelihoods of hundreds of millions of people.
We present the results of a systematic study of their sources and activation frequency for a
region spanning 80—130°E and 27-52°N from January 2016 to December 2023 based on skilled
human analysis of over 420 thousand satellite images. We draw the following conclusions:

(1) East Asia shows striking seasonal changes in both overall dust source activation frequency
and in the latitudinal distribution of these events.

(2) There are two primary dust source regions in East Asia: a southern source region centred
on the margins of the Taklimakan Desert and a northern source region centred on the valleys
of the Gobi Desert. The presence of lakes and paleolake remnants in both regions, especially
in the Taklimakan Desert (e.g., the Lop Nur, and the Tarim River, the Hetain River) promote
DSAF hotspots.

(3) The Alashan Plateau (in the southern source region) is dust-active throughout the year. In
this area and its adjacent regions, dry lakes, such as Gashun Nor, exhibit the highest DSAF,
followed by oasis areas and croplands along the Hexi Corridor. The sandy deserts in this region
are much less dust-active and the Chinese Loess Plateau is almost completely inactive as a dust
source.

(4) The Tibetan Plateau is not only a sink for windblown dust supplied from elsewhere; it is
also an active dust source in winter and earliest spring. Here, precipitation patterns, snow cover
and funnelling of winds through steep river gorges all control activation.

(5) The Mongolian Plateau (in the northern source region) is a significant dust source in spring.
Snow cover limits the northernmost extent of dust emissions in February. Vegetation suppresses
dust emissions across the Mongolian Plateau, particularly in its northeastern region from April
through May. The bare lands, grasslands and croplands of the region are all susceptible to dust
source activation. The record-breaking Siberian heatwave of 2020 was associated with a spike
in DSAF on the Mongolian Plateau over grasslands where livestock overgrazing is well
documented.
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The seasonal and latitudinal signals in our data, together with the anomaly associated with the
2020 heatwave, illustrate the power of our data set for quantifying modern dust source
activation on observed human timescales. Our data also offer a framework to help evaluate past
variabilities that have undoubtedly occurred on historical and geological timescales and to
assess future change.
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