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Abstract  Wildfires are a major environmental 
problem that have both economic and ecological 
impacts. Wildfires typically spread in a particular pat-
tern, determined by factors such as the elements on 
the ground that catch fire or their geographic loca-
tion. This study reports and discusses how wildfires 
in the Valencian Community, Spain, have been spa-
tially grouped in recent years (from 2016 to 2020). 
It also characterizes each cluster in terms of loca-
tion and land cover. An exploratory analysis of the 

environmental variables associated with wildfires has 
been conducted using finite Gaussian mixture models 
in R (R package mclust). The primary findings can be 
used to better understand the types of wildfires that 
occur in individual spatial zones. Some interesting 
cluster patterns in specific geographical areas, such as 
river basins, have also been reported. The method can 
identify clusters of fires by detecting areas with simi-
lar characteristics at the land use level. It also allows 
for the implementation of measures aimed at reducing 
the impacts of wildfires and can help in the extinction 
of wildfires based on the characteristics of all the fires 
grouped using spatial and land cover dimensions.
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Introduction

Wildfires are one of the environmental hazards posing 
significant threats to wildlife and forests worldwide. 
According to Quílez Moraga (2019), the area cov-
ered by forests is growing, and the number of wild-
fires is decreasing. However, every year in the Valen-
cian Community in Spain, a few wildfires account for 
most of the forest area burned. It is worth mention-
ing that even though the use of fire in agriculture is 
controlled and forest firefighters are quite efficient, 
in some cases, a few fires that started under adverse 
weather and land use conditions gave rise to sig-
nificant wildfire incidences (de Rivera et  al., 2020). 
Many scientific studies have analyzed the occurrence 
of wildfires in spatial domains aiming to understand 
the process and physical and biological factors that 
influence their incidence. For example, some studies 
have shown a strong relationship between the inci-
dence of forest fires and climatic and meteorological 
variables in European countries (Hoinka et al., 2009; 
Moreno et  al., 2014; Tedim et  al., 2013; Venäläinen 
et al., 2014). A similar study by Aragó et al. (2016) 
investigated the incidence of forest fires in the prov-
ince of Castelló, Spain, to identify risk factors associ-
ated with wildfires from 2001 to 2006.

Other studies (Carmo et  al., 2011; Moreira et  al., 
2011; Nunes et  al., 2016; Sebastián-López et  al., 
2007) have reported that human factors commonly 
linked to fire ignition are forest-agricultural or forest-
urban interface constraints related to land use manage-
ment. Thus, the characterization of wildfire events is 
necessary to model wildfire occurrence and to relate 
it to the spatial distribution of spatial varying factors, 
such as demographic indicators, land cover, and the 
presence of agricultural areas (Koutsias et al., 2010). 
Díaz-Avalos et al. (2016) explored and fitted statistical 
models using Bayesian statistics to identify relevant 
factors associated with the spatial variation of wildfire 
sizes using spatial marked point process methods.

On the other hand, recent research has shown that 
cluster analysis is a successful method for detecting 
regularities and can be used to design hybrid predic-
tive models (Dong et  al., 2016), as well as to study 

existential frequencies (Parente et  al., 2016; Strauss 
et al., 2013). Many existing studies in the broader lit-
erature have examined the application of clusteriza-
tion algorithms to explore and analyze the cause and 
spatial distribution of wildfire incidences. A research 
study (Castro et al., 2020) applied cluster analysis to 
review the spatial characterization of the distribution 
of wildfire events in mainland Portugal between 1996 
and 2015. The research examined the breakdown of 
the causes of these fires over this period. A similar 
study reviewed the use of clustering techniques to 
assess wildfire impacts in storm activity conditions, 
especially lightning (Nikolay et al., 2016). Along the 
same line, Parente et al. (2016) proposed space–time 
clustering analysis techniques that correctly identify 
wildfire clusters in terms of their number and location 
despite eventual splitting of the datasets according to 
space and/or time.

Although some authors have conducted studies 
that examine spatial patterns and possible clusters 
in the domain of wildfire instances, this problem is 
still insufficiently explored. Moreover, most of the 
research published to date rarely analyzes the spa-
tial distribution of wildfires concerning the type of 
land cover (Koutsias et al., 2010) and other mete-
orological parameters such as temperature and 
precipitation. Good knowledge of the causes of 
wildfires and their spatial–temporal distribution is 
crucial to produce reliable predictions of the num-
ber of fires and where and why they are expected 
to occur (Castro et  al., 2020). This work aims to 
explore these little-studied aspects to understand 
the strategic measures required for preventing 
wildfires under the hypothesis that they are con-
centrated in specific areas according to land use. 
Accordingly, the patterns produced by wildfire 
incidents in the Valencian Community are ana-
lyzed with the aim of classifying wildfires based 
on associated covariables, such as land cover, 
causes, altitude, temperature, precipitation, and the 
area burned. The main objective is to test whether 
cluster analysis could be used as a tool to classify 
and separate wildfires based on the above men-
tioned covariables, to provide information useful 
to forest fire prevention authorities. Graphically, a 
specific accumulation of fires in different areas of 
the Valencian Community has been observed, with 
cluster analysis being the ideal tool to understand 
why those groups are formed. The methodological 
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framework for analyzing wildfires in the Valen-
cian Community consists of key stages: prepara-
tion (defining objectives and identifying the study 
area), data collection (wildfire incidents from 
2016 to 2020 and environmental covariates such as 
land cover, causes, and meteorological data), and 
data processing (ensuring cleanliness and compat-
ibility for analysis). Subsequently, cluster analysis 
is applied using finite Gaussian mixture models 
(GMM) through the R package mclust to identify 
and categorize wildfire patterns. Each cluster is 
then characterized based on its spatial distribution, 
land use type, and annual temporal variations. The 
analysis is validated with statistical tests to ensure 
the reliability of results. Finally, findings are inter-
preted within the context of wildfire management, 
with suggested future directions for research that 
include adapting the methodology for other regions 
and studying wildfire causes, including methods 
for detecting arsonists. The current study contrib-
utes to the relatively small amount of literature 
on cluster analysis methods to monitor wildfires 
in a broader picture. The proposed methodology 

is dynamic and can be effectively adapted and 
applied to other locations worldwide. The current 
analysis is based on finite GMM, implemented 
using the open-source R package mclust.

Materials and methods

Study site

The study area consisted of the Valencian Commu-
nity, located on the eastern coast of the Iberian Penin-
sula. The region is bordered by Catalonia to the north, 
the Iberian Mountain System range to the west, and 
the Mediterranean Sea to the east. It is a region with a 
surface area of 2,324,500 ha, representing 4.6% of the 
Spanish national territory. The Valencian Community 
can be divided into a coastal zone, where fires have 
become a common tool for the management of agri-
cultural biomass waste, and an inland zone, character-
ized by the presence of natural forest and rural areas, 
where the abandonment of farming areas is leading to 
the increase in forest land (Fig. 1).

Fig. 1   Geographical location of the study area—Valencian Community, Spain—and locations of wildfires in the study area from 
2016 to 2020



	 Environ Monit Assess (2025) 197:619619  Page 4 of 23

Vol:. (1234567890)

Data settings

Data for this paper were obtained from the “Sistema 
integral de gestió d’incendis forestals” [Integrated 
wildfire management system] (Generalitat Valenci-
ana, Spain). The data set includes the coordinates at 
which fire ignitions occurred, as well as information 
about the fire type, distinguishing between shrub and 

grassland fires, and wildfires. The elevation and mete-
orological variables values, such as annual average 
temperature and precipitation, were retrieved as raster 
files at a spatial resolution of 30 s using the R pack-
age raster (Hijmans & van Etten, 2012). These values 
were attached to the fire ignition data using GIS func-
tions in R. The annual number of wildfire incidents in 
the study area was 341 in 2016, 346 in 2017, 375 in 

Fig. 2   Annual spatial distribution of fires from 2016 to 2020, and all 5 years together throughout the Valencian Community

Table 1   Statistics of the covariates

Burned area (tree) Burned area 
(not tree)

Burned area (total) Altitude Tem-
perature 
(mean)

Tempera-
ture (max)

Tempera-
ture (min)

Precipitation

Minimum 0 0 0  − 2 0 0  − 2 0
Maximum 1425.33 6146 6146 1385 18.3 32.8 6.9 671
Quartile 1 0 0 0.05 66.5 14.3 28.4 2.5 433
Quartile 3 0.2 1 3 621 17.3 30.4 5.9 501
Mean 6.18 18.63 23.30 357.24 15.42 28.75 4.04 454.82
Median 0 0 0.36 261 16.1 29.4 4.6 456
Stdev 55.52 201.23 210.77 324.72 2.92 4.38 2.11 90.42
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2018, 272 in 2019, and 251 in 2020. The spatial dis-
tribution of the wildfires in the data set is shown in 
Fig. 2. The last plot represents a total of 1587 wildfires 
for the entire study period (2016–2020), which will be 
analyzed as a whole set as well as in individual years.

The globally interpolated climate data were obtained 
as raster images from NASA’s Shuttle Radar Topog-
raphy Mission (SRTM) database (Farr et  al., 2007). 
Table  1 reports the summary statistics of the covari-
ates for the complete data set. It provides information 
about four variables: (1) the burned area, distinguish-
ing between shrub and grassland wildfires (not trees), 
wildfires (trees), and the total burned area in hectares; 
(2) wildfire altitude; (3) the annual temperature, differ-
entiating between its mean value, the maximum, and 
the minimum, all in degrees Celsius; and (4) the annual 
precipitation in millimeters. The statistics shown in this 
table are the minimum and maximum values, the first 
and the third quartiles, the mean, the median, the vari-
ance, and the standard deviation of each covariate.

Methodology

Background of the method

GMM is a probabilistic generative model that 
assumes the data is a mixture of multiple Gaussian 
distributions of the form:

, each of which represents a latent cluster or 
group within the data. The mixture satisfies the 
restriction:

The model estimates the parameters of the Gauss-
ian distributions, such as mean and covariance, 

p(x|�) =
M∑

i=1

wig(x|�i,
∑

i
)

M∑

i=1

wi = 1

Fig. 3   Ellipses of isoden-
sity for each of the 14 
Gaussian models obtained 
by eigen-decomposition in 
the case of three groups in 
two dimensions, mclust 

Table 2   Number of events 
by year

Cluster

Year 1 2 3 4 5 6

2016 48 45 51 104 55 34
2017 52 138 32 89 31 -
2018 167 38 69 40 61 -
2019 60 39 46 76 31 19
2020 52 76 22 42 58 -
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through maximum likelihood estimation or Bayes-
ian inference (Reynolds, 2009). GMM is commonly 
used for cluster analysis and for other applications 
such as density estimation, anomaly detection, and 
dimensionality reduction. One of its advantages is 
its flexibility in modeling complex data distribu-
tions while offering a probabilistic interpretation of 
the results.

GMM can be used to analyze and predict the occur-
rence of wildfires. It can also be used to analyze the spa-
tiotemporal patterns of wildfire occurrence, as well as 
the frequency, intensity, and size of wildfires (Chunyu 
et al., 2009; Han et al., 2017; Qian et al., 2018; Torabian 
et al., 2021; Yoon & Min, 2013; Zhao et al., 2011). By 
modeling the probability distribution of these patterns 
(Velizarova & Alexandrov, 2021; Zhang et  al., 2017), 

Fig. 4   Elevation, slope, and aspect by cluster, for 2016

Fig. 5   Clusters 1 to 3 (elevation, slope, and aspect) for 2017

Fig. 6   Clusters 4 to 6 (elevation, slope, and aspect) for 2018
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GMM can be used to predict the likelihood of future 
wildfires in a particular region. Moreover, it can be used 
to identify the factors contributing to the occurrence of 
wildfires, such as weather conditions, topography, and 
human activities (Camarero et al., 2018; Shenoy et al., 
2011; Wang et al., 2021; Ying et al., 2018). The insights 
from GMM analysis can be used to develop more effec-
tive wildfire prevention and management strategies.

The R-package mclust 5 (Fraley & Raftery, 2003; 
Scrucca et al., 2016) has been utilized in the current 
study, with the GMM approach being implemented. 
The results obtained allow to detect forest fire clusters 
based on input variables such as elevation, slope, and 
aspect. Little research has been conducted in which 
mclust 5 has been used in forest fire prediction and 
analysis. Nonetheless, a study by Saxe et  al. (2018) 

Fig. 7   Boxplot of annual 
precipitation (2016–2020) 
per individual cluster. From 
clusters 1–6 (2016), from 
clusters 7–11 (2017), from 
clusters 12–16 (2018), from 
clusters 17–22 (2019), and 
from clusters 23–27 (2020)

Fig. 8   Boxplot of annual 
temperature (2016–2020) 
per individual cluster. From 
clusters 1–6 (2016), from 
clusters 7–11 (2017), from 
clusters 12–16 (2018), from 
clusters 17–22 (2019), and 
from clusters 23–27 (2020)
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Fig. 9   BIC values for the different models according to the 
model applied and the number of clusters considered from 
2016 to 2020, and all 5  years together, using the function 

densityMclust. The different symbols represent events within 
each individual cluster detected
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characterized and evaluated controls on post-fire 
streamflow response across western US watersheds. 
The mclust 5 package has been selected for applica-
tion in the present study to predict the likelihood of 
fire ignition in specific areas based on the input vari-
ables, which facilitates proactive wildfire risk man-
agement and mitigation through cluster identification.

In a model-based clustering approach, each com-
ponent of a finite mixture density is usually associated 
with a group or a cluster. Most applications assume that 
all component densities arise from the same parametric 
distribution family, although this does not always have 
to be the case. For data xi, …., xn in a D-dimensional 
space, a popular model is the GMM, a type of cluster-
ing algorithm that assumes a D-dimensional multivari-
ate Gaussian distribution:

for each component i, giving ellipsoidal clusters 
(Banfield & Raftery, 1993; Celeux & Govaert, 1995). 
It could be used for different possibilities, like the 
analysis included in Androniceanu et  al. (2020). As 
its name implies, each cluster is modeled according 
to another Gaussian distribution. GMM is a probabil-
istic model that assumes all the data points are gener-
ated from a mixture of a finite number of Gaussian 
distributions with unknown parameters. These are 
used to represent normally distributed subpopula-
tions within an overall population. The advantage of 
mixture models is that they do not require knowledge 
of which subpopulation a data point belongs to, but 
instead they allow the model to learn the subpopula-
tions automatically (McLachlan et  al., 2019). There 
are just two models in one dimension: E for equal 
variance and V for varying variance. The volume, 
shape, and orientation of the covariances in the multi-
variate setting can be constrained to be similar or var-
iable across groups. Hence, 14 possible models with 
different geometric characteristics can be specified 
and are presented in Fig. 3. The dimensions consid-
ered in the analysis include elevation, slope, aspect, 
and combustible class. The use of GMMs to detect 
wildfires is a novelty from the last few years (Munshi, 
2021) that can be further developed in future work 
with new methodologies. An integrated approach 
to finite mixture models is provided, with functions 
that combine model-based hierarchical clustering, the 

g
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expectation–maximization (EM) algorithm for mix-
ture estimation, and several tools for model selection. 
In particular, the EM algorithm is an affordable and 
numerically stable algorithm to implement, which has 
reliable global convergence under general conditions. 
However, the likelihood surface in mixture models 
tends to have multiple modes. Thus, initialization 
of EM is crucial because it usually produces sensi-
ble results based on reasonable starting values (Wu, 
1983). This can be carried out using model-based 
hierarchical agglomerative clustering (MBHAC), 
which allows the underlying probabilistic model to 
be shared by both the initialization and model fitting 
steps. In addition, MBHAC is computationally effi-
cient, as a single run provides the basis for initializing 
the EM algorithm for any number of mixture compo-
nents and component-covariance parameterizations. 
There are different R packages to analyze clusters, 
for instance, Mixtools (Benaglia et al., 2009) or Flex-
mix (Leisch, 2004). The current analysis has been 
based on finite GMMs performed using the R pack-
age mclust (Fraley et al., 2014), which provides many 
functions to discover clustering. This software is a 
popular R package for model-based clustering, classi-
fication, and density estimation based on finite GMM.

Methodology followed

In this study, the mclust package was used to apply 
GMM for wildfire prediction and analysis as it pro-
vides a comprehensive strategy for clustering, den-
sity estimation, and discriminant analysis, which is 
the most important objective of the present study and 

Table 3   Best BIC values from 2016 to 2020

Year VII,14 VVE,6 VEI,12

2016  − 613.08  − 617.93  − 618.95
2017 VEV,6 VEV,5 VII,14

 − 720.71  − 733.24  − 734.49
2018 EII,8 EEE,8 EII,7

 − 846.57  − 848.09  − 851.45
2019 VII,6 EEV,5 VVE,6

 − 592.87  − 597.47  − 600.22
2020 VVE,5 VVI,7 VEV,5

 − 537.80  − 541.59  − 541.79
2016–2020 VEI,27 VEE,27 VEI,28

 − 2645.31  − 2651.23  − 2671.84
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Fig. 10   Cluster dispersion from 2016 to 2020, and all 5 years together, using the function Mclust over the surface area of the Valen-
cian Community (different symbols represent events within individual clusters detected and each color represents unique clusters)
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Fig. 11   Distribution of wildfires from 2016 to 2020 and 2016–2020 according to cluster analysis (each color represents unique 
clusters)
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has been applied in other studies on topics other than 
wildfires (Garcia-Rudolph et al., 2020; Zhang & Di, 
2020). A variety of covariance structures obtained 
through eigenvalue decomposition are available. 
Functions for performing single E and M steps and 
for simulating data for each available model are also 
included. The functions included in the mclust pack-
age provide a data matrix from which the optimal 
number of components and the covariance param-
eterization are selected according to the Bayesian 
information criterion (BIC) for all the models and 
years considered (Scrucca et  al., 2016). Hence, a 
good way to determine the final number of clusters 
is to consider the BIC value, which rises as the com-
plexity of the model increases and decreases as the 
probability increases. So, the model with the lowest 
BIC is preferred. In the current study, the BIC value 
has been calculated for parameterized GMMs fitted 
by the EM algorithm initialized by model-based hier-
archical clustering.

Additionally, within the mclust package, it is pos-
sible to visualize the cluster structure and the geomet-
ric characteristics (elliptic, spherical, etc.) induced by 
the estimated finite GMM. The data can also be pro-
jected onto a suitable dimension reduction subspace 
using the function MclustDR(), which implements the 
methodology introduced in Scrucca (2010).

Finally, mclust also provides GMMs with a sim-
ple interface for univariate and multivariate density 
estimation, which is very important as density esti-
mation plays an important role in applied statistical 
data analysis and theoretical research. Finite mixture 
models provide a flexible semi-parametric model-
based approach to density estimation, thereby making 
it possible to accurately approximate any given prob-
ability distribution using the densityMclust() function 
(Scrucca et al., 2016). Of the 14 potential models, as 
shown in Fig. 3, the standard models applied to ana-
lyze the data are as follows:

•	 VII,m: spherical and varying volume type of model 
with m clusters

•	 VEI,n: diagonal and equal shape type of model 
with n clusters

•	 VEE,p: ellipsoidal, equal shape and orientation 
type of model with p clusters

•	 VEV,q: ellipsoidal and equal shape type of model 
with q clustersFig. 11   (continued)
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•	 EEV,r: ellipsoidal, equal volume and shape type of 
model with r clusters

•	 EVI,s: diagonal, equal volume and varying shape 
type of model with s clusters

•	 EII,t: spherical, equal volume type of model with t 
clusters

•	 EEI,x: diagonal, equal volume and shape type of 
model with x clusters

Results

Cluster analysis groups spatially occurring events 
based on similarity or distance measures. GMM clas-
sify observations by likelihood, assuming clusters 
exist a priori. Table 2 shows the number of fires per 
cluster from 2016 to 2020. Figure  1 illustrates the 
geographical location of wildfire occurrences in the 
Valencian Community. In our analysis, clusters are 

formed in covariate space, meaning they do not nec-
essarily exhibit a spatially clustered pattern. Cluster 
labels are arbitrary, and therefore, they are not con-
sistent across years; for example, conditions for Clus-
ter 1 in 2016 may differ from Cluster 1 in 2018. Nev-
ertheless, our interest is on the characteristics of the 
clusters formed for each year, as they provide insight 
regarding the conditions for wildfire occurrence.

Figures 4, 5, 6, 7 and 8 present boxplots of clus-
ter characteristics (elevation, slope, and aspect) for 
2016, 2017, and 2018, respectively. Fires in Clusters 
1, 2, and 5 occurred at low elevations and low to 
moderate slopes, with cluster 5 at the lowest eleva-
tions. Cluster 1 fires occurred on east-facing slopes, 
Cluster 2 on west-northwest-facing slopes, and 
Cluster 5 on slopes with a wider aspect range (east, 
southeast, south, and southwest). The wide range of 
aspect values for Cluster 5 suggests that those fires 
occurred on flat areas.

Fig. 12   Distribution of clusters in zoomed zone for 2016 and 2017 (each color represents unique clusters)
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Most fires occurred in areas with Combustion 
Model Category 2, corresponding to grass and shrub 
stands, prevalent in Mediterranean regions during 
summer or drought periods. These areas are often 
found in agro-forestry systems or uncultivated fields.

For 2017, Clusters 1, 2, and 4 grouped most fires, 
primarily in Combustion Model Category 2 (grass 
height > 1 m). Cluster 2 also included fires in Cate-
gories 6 and 7. Clusters were geographically distinct, 
with Cluster 3 in the north and Cluster 4 in the south. 
Fires in Clusters 1 and 4 occurred at low elevations, 
low slopes, and east, southeast, west, and southwest-
facing hills (Fig. 11).

For 2018, fires were classified into five clusters, 
with Clusters 1, 3, and 5 having the most member-
ships. Cluster 1 fires occurred in Combustion Model 
Categories 2, 6, 7, and 8 (grass and shrubs) at eleva-
tions of 500–800 m, mid-slopes, and south-facing 
hills. Clusters 3 and 5 corresponded to low-eleva-
tion, low-slope areas with east-to-south-facing hills.

For 2019, six clusters were identified, with most 
fires in Clusters 1 and 4. Fires in Clusters 4 and 5 
ignited in Combustion Model Categories 6, 7, and 8, 
while others were primarily in Category 2 (Fig. 11).

For 2020, five clusters were identified, with most 
fires in Combustion Model Categories 2, 6, 7, and 
8. Cluster 3 fires occurred in Categories 2, 3, and 5 
(grass and slash). Fires in Clusters 1–4 occurred at 
elevations of 100–900 m, while Cluster 5 fires were 
at low elevations and nearly flat terrains (Fig. 11). For 
this year, there were no significant differences regard-
ing aspect.

The spatial distribution can be observed by exam-
ining all wildfires that occurred during the study 
period (Fig. 1) and by analyzing the annual ignition 
points of these wildfires (Fig.  2). More specifically, 
looking at Fig.  2, although there are differences in 
the distribution of wildfires according to the year of 
occurrence, a certain grouping pattern is observed in 
specific parts of the study area. Some outbreaks with 

Fig. 13   Distribution of clusters in zoomed zone for 2019 and 2020 (each color represents unique clusters)
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higher wildfire density are observed in the southern 
part of the Valencian Community, which has less for-
estry area but more borders between agriculture and 
forest. However, wildfires are primarily concentrated 
in the northern and central-western parts of the study 
area. This phenomenon could shed light on determin-
ing which factors related to the type of terrain or the 
cause of ignition are relevant for wildfires. The BIC 
influences the choice of cluster numbers and models 
by balancing model fit (how well the model explains 
the data) and model complexity (number of param-
eters). Lower BIC values indicate a better trade-off, 
guiding the selection of the optimal number of clus-
ters and model type (e.g., VII, VVE, VEI). Varia-
tions in optimal models across years occur due to 
changes in data distribution, complexity, sample size, 
and noise levels. BIC values for the different models 
applied are shown in Fig.  9 for each year, accord-
ing to the number of clusters considered. This figure 

shows that the best model is the one that reaches the 
maximum of the curve. In addition, Table 3 provides 
information about the BIC value, specifying the three 
models that perform the best every year and the opti-
mum number of clusters, based on the BIC values 
(the minimum value being an absolute value). For 
example, simpler models like VII may suffice for 
years with less complex data, while more flexible 
models like VEI are preferred for years with intri-
cate patterns. These variations reflect the dynamic 
nature of the data and its alignment with different 
model assumptions. Therefore, the VEI,12 model 
emerges as the best overall option for the period from 
2016 to 2020, as it has the lowest cumulative BIC 
value (− 2671.84). This indicates that it provides the 
best balance of fit and complexity across the 5-year 
dataset, effectively capturing the underlying struc-
ture of the data while avoiding overfitting. While 
the optimal model varies by year depending on data 

Table 5   CORINE Land 
Cover wildfire distribution 
by cluster in 2017

Clusters

Type of land cover 1 2 3 4 5 6 Grand total Percentage

Rice fields 5 5 1
Coniferous forest 18 15 26 19 1 79 23
Broad-leaved forest 4 4 1
Sparsely vegetated areas 1 2 3 1
Fruit trees and berry plantations 7 4 44 1 10 66 19
Marshlands 1 1 0
Transitional woodland-shrub 4 2 3 4 2 15 4
Complex cultivation patterns 3 3 4 4 14 4
Olive groves 1 1 5 1 8 2
Natural grasslands 9 4 8 18 6 6 51 15
Beaches, dunes, sand 1 3 1 5 1
Pastures 1 2 3 1
Salt marshes 1 1 0
Continuous urban fabric 3 3 1
Discontinuous urban fabric 2 1 1 4 1
Land mainly devoted to agriculture, 

with significant areas of natural 
vegetation

1 1 6 14 9 31 9

Permanently irrigated land 2 2 1
Non-irrigated arable land 1 1 0
Sclerophyllous vegetation 1 15 6 18 5 45 13
Vineyards 2 2 1
Industrial or commercial units 1 1 2 1
Urban green zones 1 1 0
Total fires 40 57 60 137 10 42 346 100
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characteristics, VEI,12 is the most robust choice for 
the entire period. The selected models differ accord-
ing to the year, which means that the clusters and the 
shapes of these clusters in the Valencian Community 
during this period, 2016 to 2020, are different. This is 
the expected behavior due to the structure of wildfires 
and the burned zones. The best model and the opti-
mal number of clusters for each year are reported in 
the first column of Table  3. The number of clusters 
in 2020 is lower than in all the previous years. This is 
because of the nationwide lockdown situation brought 
about by the ongoing global pandemic.

Figure 10 illustrates cluster density and dispersion, 
with circle size indicating ignition point dispersion. 
Cluster shapes and structures varied annually, reflect-
ing diverse fire behaviors and characteristics.

As already depicted in the graphs in Fig.  2, the 
highest density is observed in the southeastern part 
of the study area. The last figure represents the spatial 
clusters for all five study years together. As mentioned 
in the Introduction section and represented in Fig. 11, 
fires are located from south to north throughout the 
study area. The maps in Fig. 11 show the same distri-
bution as Fig. 2, but now consider the cluster analysis. 
Therefore, each color represents the fires that belong to 
the same cluster. In addition, to better understand these 
maps concerning the type of land use, forestry areas 
are represented in green, rivers are identified with blue 
lines, and urban areas are shown in purple (Fig. 12).

Regarding the distribution of wildfires in clusters, it 
is observed that, except for 2016, wildfires are clearly 
distributed in groups throughout the entire territory, 

Table 6   CORINE Land Cover wildfire distribution by cluster in 2018

Clusters

Type of land cover 1 2 3 4 5 6 7 8 Grand total Percentage

Rice fields 1 1 0
Mixed forest 1 1 2 1
Coniferous forest 16 8 6 12 12 1 14 8 77 21
Broad-leaved forest 2 1 3 1
Sparsely vegetated areas 1 1 0
Fruit trees and berry plantations 3 3 32 8 2 1 10 59 16
Inland marshes 1 1 0
Marshlands 3 1 4 1
Transitional woodland-shrub 5 1 2 2 3 1 2 1 17 5
Complex cultivation patterns 3 1 3 4 3 7 21 6
Olive groves 3 5 2 10 3
Natural grasslands 16 4 3 11 10 5 3 2 54 14
Beaches, dunes, sand 1 1 2 1
Pastures 2 1 3 6 2
Bare rocks 1 1 0
Continuous urban fabric 1 1 0
Discontinuous urban fabric 1 1 2 2 1 2 9 2
Land mainly devoted to agriculture, with 

significant areas of natural vegetation
8 2 1 8 8 2 1 4 34 9

Permanently irrigated land 1 1 4 6 2
Non-irrigated arable land 1 1 2 1
Sclerophyllous vegetation 12 2 1 13 6 6 3 9 52 14
Vineyards 10 10 3
Industrial or commercial units 1 1 0
Burned areas 1 1 0
Total fires 70 29 13 92 57 27 40 47 375 100
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especially in 2018 and 2019. For 2016, wildfires do 
not seem to share the same pattern, as no well-defined 
group distribution appears throughout the study area. 

The southern forested area, therefore, has a very well-
represented group. Moving to the central part of the 
study area, from 2017 to 2019 wildfires went from east 

Table 7   CORINE Land 
Cover wildfire distribution 
by cluster in 2019

Clusters

Type of land cover 1 2 3 4 5 6 Grand total Percentage

Rice fields 1 1 0
Coniferous forest 22 1 11 5 4 6 49 18
Broad-leaved forest 2 1 2 5 2
Sparsely vegetated areas 1 1 0
Fruit trees and berry plantations 20 30 7 1 3 4 65 24
Inland marshes 1 1 0
Coastal lagoons 2 2 1
Transitional woodland-shrub 3 1 3 4 11 4
Complex cultivation patterns 5 4 1 2 6 18 7
Olive groves 6 1 7 3
Natural grasslands 5 1 10 1 8 5 30 11
Beaches, dunes, sand 1 1 2 1
Pastures 1 1 1 1 1 5 2
Bare rocks 2 2 1
Continuous urban fabric 1 2 3 6 2
Discontinuous urban fabric 2 1 3 1
Land mainly devoted to agriculture, 

with significant areas of natural 
vegetation

9 1 5 1 1 17 6

Permanently irrigated land 2 1 1 4 1
Non-irrigated arable land 1 1 2 1
Sclerophyllous vegetation 8 2 8 1 9 5 33 12
Vineyards 1 7 8 3
Total fires 90 37 53 19 30 43 272 100

Table 8   Types of land use 
in CORINE Land Cover

Code CLC 09 Land use

10 Urban and suburban areas
20 Temporary rainfed crops
30 Temporary irrigated crops
40 Forest
50 Heathlands and sclerophyll vegetation
60 Prairies
70 Areas of sparse vegetation
80 Areas of low vegetation and soil regularly flooded
90 Bare areas
100 Complex crops
110 Agro-forestry systems
120 Mosaic of natural vegetation (herbaceous, bushes and trees)
200 Water bodies
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Fig. 14   Altitude, aspect, and slope figures
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to west. By looking at the center of the map in the prov-
ince of Valencia, reveals the following locations of clus-
ters: one in the southeast, another in the northeast, and 
finally another in the western area (inland). In the north, 
basically two clusters (2018–2019) divide this area into 
two parts, one further north and one further south of 
this northern part of the study area. In contrast, for this 
same area (the north), in 2017, the wildfires divided this 
area between coastline and inland. Records for 2020 
show similar wildfire patterns to those of 2019, but with 
fewer wildfires in each cluster (Fig.  13). This cluster-
ing division changes from year to year, and therefore, a 
further analysis should be performed to have a relation 
between spatial distribution, weather and causes.

Table  1 summarizes covariate distributions, show-
ing wide variation in burned area, with many small 
fires and few large ones. Precipitation (Fig. 7) and tem-
perature (Fig. 8) varied across clusters (Fasullo et al., 
2018). Supplementary Figures S1 and S2 show precip-
itation and temperature trends for 2016 and 2020.

Land use analysis (Tables 4, 5, 6, 7 and 8) revealed 
that wildfires primarily burned scrub/herbaceous veg-
etation, permanent crops, and forests. In 2019, perma-
nent crops slightly outnumbered scrub/herbaceous veg-
etation. Heterogeneous agricultural areas accounted for 
~ 13% of burned land. Clusters differed between natu-
ral and agricultural land uses, with some clusters (e.g., 
2017 Clusters 8 and 12) burning no forest land.

Discussion

Cluster analysis confirmed that wildfires with shared 
characteristics group together, providing robust insights 
into spatial and environmental patterns. The method-
ology validated intuitive observations and highlighted 
the heterogeneity of wildfires over time. Clusters were 
strongly influenced by orographic features, such as 
mountains and river basins, dividing the region into flat 
and mountainous areas (Júnior et al., 2022; Sarala et al., 
2022; Saxe et al., 2021).

The distribution of wildfires varied annually, with 
2016 showing less defined clustering compared to 
2018 and 2019. Southern forested areas exhibited 
clear clustering, while central areas showed east-to-
west wildfire spread. Northern areas were divided 
into coastal and inland clusters in 2017 and further 
subdivided in 2018–2019. The 2020 patterns resem-
bled 2019 but with fewer fires.

Land use played a significant role in wildfire distri-
bution, with scrub/herbaceous vegetation and perma-
nent crops being the most frequently burned. Clusters 
near rivers, particularly in areas with Arundo donax 
L., highlighted the continued use of fire for land man-
agement despite its illegal status and associated risks 
(Jiménez-Ruiz et al., 2021).

The study underscores the importance of considering 
environmental covariates (e.g., elevation, slope, aspect, 
precipitation, temperature) and land use in wildfire 
analysis. The findings provide a foundation for targeted 
wildfire management strategies, particularly in high-
risk areas identified through cluster analysis. The BIC 
values and model selections (Zhang & Di, 2020) further 
support the robustness of the clustering methodology.

Human management of land cover and the tra-
ditional use of fire are closely related (Badia et  al., 
2019). In this study, we explore the identification of 
land cover across wildfire clusters. While factors such 
as aspect, altitude, and slope can help explain wildfire 
behavior, land cover—particularly human-influenced 
land cover—offers valuable insights into the social 
dynamics surrounding wildfire events (Fig. 14).

The use of GMM in this study was driven by their 
flexibility and ability to model complex, multi-modal 
data distributions. GMMs allow for the estimation of 
clusters based on probabilistic distributions, making 
them particularly well-suited for identifying hidden 
structures within the wildfire data. The application 
of the mclust package for clustering was chosen due 
to its robust set of tools for model-based clustering, 
density estimation, and discriminant analysis, which 
align with the study’s objective of understanding the 
spatial distribution and characteristics of wildfires 
over time. Moreover, GMMs were validated through 
the BIC, which provides a statistical measure to assess 
the trade-off between model fit and complexity. By 
selecting the model that minimizes the BIC, we ensure 
that the clustering solution reflects both the underlying 
data distribution and avoids overfitting. The iterative 
process of selecting the optimal number of clusters 
and the appropriate model (e.g., VII, VEI) across mul-
tiple years highlights the dynamic nature of the data 
and ensures that the clustering methodology remains 
adaptable to the changing characteristics of wildfires.

A limitation of the current study is the exclusive 
focus on GMMs for clustering. In future research, it 
would be valuable to expand upon the findings by con-
ducting a comparative analysis with other clustering 



Environ Monit Assess (2025) 197:619	 Page 21 of 23  619

Vol.: (0123456789)

techniques, such as k-means or hierarchical cluster-
ing, to better understand their relative strengths and 
limitations in the context of wildfire prediction. This 
study focused on exploring the applicability of GMMs 
as a robust and well-established method for identify-
ing spatial and temporal wildfire patterns. The use of 
GMMs, supported by the mclust package and BIC, 
serves as an initial step in demonstrating the feasibil-
ity of this approach. A more comprehensive compari-
son with alternative methods could provide additional 
insights and refine the clustering process in future 
work, building on the foundation established here.

Conclusions

This work shows the results obtained thanks to the 
application of statistical techniques that have been lit-
tle used up until now in the literature in the field of 
wildfires. The package of functions used, the mclust 
library implemented in R, has made it possible to 
characterize and analyze the spatial distribution of 
wildfires, creating clusters that share common char-
acteristics and, therefore, can help better understand 
their wildfires. Thus, in this paper, the finite GMM 
methodology has been presented to analyze the 
behavior of fires in terms of clustering in order to 
know how fires are grouped in the Valencian Com-
munity according to their spatial arrangement. The 
results show that fire occurrences in the study area 
are closely linked to the same set of covariates along 
years but that the way those covariates influence fire 
occurrences varies along years. The most relevant 
covariates associated to clustering of fire occurrences 
were topography and land cover. Temperature and 
precipitation did not play a significant role in cluster-
ing, probably because most of the fires occur during 
hot summer months. Cluster analysis proved to be 
useful to understand the main particularities of fire 
occurrences in areas with similarities in terms of land 
cover, providing key information for improvements of 
wildfire management policies. Our results are shown 
graphically in two maps of spatial coordinates to give 
a clear and comprehensive message to fire manag-
ers. In the specific case of the Valencian Community, 
located in the Mediterranean area of Spain, a clear 
clustering pattern is observed and helps to understand 
which areas are potentially prone to occurrences of 
scrub fires, wildfires, or fires related to agriculture.

The current study shows a clear pattern of wildfire 
clusters near the paths followed by rivers. This can be 
an interesting domain for exploration by future spa-
tial researchers. It is worth noting that fewer wildfire 
clusters were reported in 2020 because of the pan-
demic lockdown.

The methodology can be used in future studies to 
understand which variables favor ignition in specific 
areas and can also shed light on a smaller scale, that 
is, to work on elements of the fires in municipalities 
or districts where fire outbreaks occur. The study 
helps to depict how wildfires are grouped, whether 
due to negligence or arson. All this will be addressed 
in future studies in which other variables of inter-
est are available that help understand the behavior 
of these environmental phenomena. Moreover, if 
the analysis includes the cause of the wildfire, it can 
help detect regions in which an arsonist may act. 
In this way, it can become possible to detect areas 
with similar characteristics of forest ignition, allow-
ing the implementation of improvements in wildfire 
prevention strategies, and provides a baseline to help 
researchers understand wildfire behavior with empha-
sis on the type of land cover and other covariates 
using cluster analysis techniques.

Another aspect to consider is that, while this study 
primarily applied GMM as a robust methodology for 
wildfire analysis, future research will explore com-
parisons between GMMs and other clustering tech-
niques to further refine and validate the findings.

Author contributions  Conceptualization, P.J.; Data cura-
tion, P.A.; Formal analysis, P.J. C.D-A  and L.S.; Methodol-
ogy, S.T., P.J. S.C. and L.S.; Project administration, S.T.; 
Resources, P.A. and S.C.; Software, S.T.; Validation, P.J. and 
L.S.; Writing – original draft, P.J. and L.S.; Writing – review 
& editing, P.J., L.S., P.A., S.C., C.D-A. and S.T.

Funding  Open Access funding provided thanks to the 
CRUE-CSIC agreement with Springer Nature.

Data availability  The data that support this study are avail-
able in Estadística i investigació d’incendis forestals at https://​
agroa​mbient.​gva.​es/​va/​web/​preve​ncion-​de-​incen​dios/​estad​
istica-​de-​incen​dios-​fores​tales/ 25.02.2022.

Declarations 

Ethical responsibilities of authors  All authors have read, 
understood, and have complied as applicable with the statement 
on “Ethical responsibilities of Authors” as found in the Instruc-
tions for Authors.

https://agroambient.gva.es/va/web/prevencion-de-incendios/estadistica-de-incendios-forestales/
https://agroambient.gva.es/va/web/prevencion-de-incendios/estadistica-de-incendios-forestales/
https://agroambient.gva.es/va/web/prevencion-de-incendios/estadistica-de-incendios-forestales/


	 Environ Monit Assess (2025) 197:619619  Page 22 of 23

Vol:. (1234567890)

Competing interest  The authors declare no competing inter-
ests. 

Open Access  This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/.

References

Androniceanu, A., Kinnunen, J., & Georgescu, I. (2020). E-gov-
ernment clusters in the EU based on the Gaussian mixture 
models. Administratie Si Management Public, 35, 6–20.

Aragó, P., Juan, P., Díaz-Avalos, C., & Salvador, P. (2016). 
Spatial point process modeling applied to the assess-
ment of risk factors associated with forest wildfires inci-
dence in Castellón, Spain. European Journal of Forest 
Research, 135, 451–464.

Badia, A., Pallares-Barbera, M., Valldeperas, N., & Gisbert, 
M. (2019). Wildfires in the wildland-urban interface in 
Catalonia: Vulnerability analysis based on land use and 
land cover change. Science of the Total Environment, 
673, 184–196.

Banfield, J. D., & Raftery, A. E. (1993). Model-based Gauss-
ian and non-Gaussian clustering. Biometrics, 49(3), 
803–821.

Benaglia, T., Chauveau, D., Hunter, D. R., & Young, D. 
(2009). mixtools: An R package for analyzing finite 
mixture models. Journal of Statistical Software, 32, 
1–29.

Camarero, J. J., Sangüesa-Barreda, G., Montiel-Molina, C., 
Seijo, F., & López-Sáez, J. A. (2018). Past growth sup-
pressions as proxies of fire incidence in relict Mediter-
ranean black pine forests. Forest Ecology and Manage-
ment, 413, 9–20.

Carmo, M., Moreira, F., Casimiro, P., & Vaz, P. (2011). Land 
use and topography influences on wildfire occurrence in 
northern Portugal. Landscape and Urban Planning, 100, 
169–176. https://​doi.​org/​10.​1016/j.​landu​rbplan.​2010.​11.​017

Castro, A. C. M., Nunes, A., Sousa, A., & Lourenço, L. (2020). 
Mapping the causes of wildfires in Portugal by cluster-
ing analysis. Geosciences, 10, 53. https://​doi.​org/​10.​3390/​
geosc​ience​s1002​0053

Celeux, G., & Govaert, G. (1995). Gaussian parsimonious clus-
tering models. Pattern Recognition, 28, 781–793.

Chunyu, Y., Yongming, Z., Jun, F., & Jinjun, W. (2009, Octo-
ber). Texture analysis of smoke for real-time fire detection. 

In 2009 second international workshop on computer sci-
ence and engineering (Vol. 2, pp. 511–515). IEEE.

de Rivera, O. R., López-Quílez, A., Blangiardo, M., & 
Wasilewska, M. (2020). A spatio-temporal model to 
understand wildfire causality in Europe.  Environmental 
and Ecological Statistics, 27(3), 431–454. https://​doi.​org/​
10.​1007/​s10651-​020-​00453-5

Díaz-Avalos, C., Juan, P., & Serra-Saurina, L. (2016). Mod-
eling fire size of wildfires in Castellon (Spain), using spa-
tiotemporal marked point processes. Forest Ecology Man-
agement, 381, 360–369.

Dong, L., Wang, L., Khahro, S. F., Gao, S., & Liao, X. 
(2016). Wind power day-ahead prediction with cluster 
analysis of NWP. Renewable and Sustainable Energy 
Reviews, 60, 1206–1212. https://​doi.​org/​10.​1016/j.​rser.​
2016.​01.​106

Farr, T. G. et  al. (2007). The shuttle radar topography mis-
sion. Reviews of Geophysics, 45. https://​doi.​org/​10.​1029/​
2005r​g0001​83

Fasullo, J. T., Otto-Bliesner, B. L., & Stevenson, S. (2018). 
ENSO’s changing influence on temperature, precipita-
tion, and wildfire in a warming climate. Geophysical 
Research Letters, 45(17), 9216–9225.

Fraley, C., Raftery, A. E., & Scrucca, L. (2014). mclust: Nor-
mal mixture modeling for model-based clustering, clas-
sification, and density estimation (Version 4) [Computer 
software]. https://​CRAN.R-​proje​ct.​org/​packa​ge=​mclust

Fraley, C., & Raftery, A. E. (2003). Enhanced model-based 
clustering, density estimation, and discriminant analy-
sis software: MCLUST. Journal of Classification, 20(2), 
263–286.

Garcia-Rudolph, A., Garcia-Molina, A., Opisso, E., & Muñoz, 
J. T. (2020). Personalized web-based cognitive rehabilita-
tion treatments for patients with traumatic brain injury: 
Cluster analysis. JMIR Medical Informatics, 8(10), 
e16077.

Han, X. F., Jin, J. S., Wang, M. J., Jiang, W., Gao, L., & Xiao, 
L. P. (2017). Video fire detection based on Gaussian Mix-
ture Model and multi-color features. Signal, Image and 
Video Processing, 11, 1419–1425.

Hijmans, R. J., & van Etten, J. (2012). raster: Geographic anal-
ysis and modeling with raster data (Version 2.0-12) [R 
package]. https://​CRAN.R-​proje​ct.​org/​packa​ge=​raster

Hoinka, K. P., Carvalho, A., & Miranda, A. I. (2009). 
Regional-scale weather patterns and wildland fires in cen-
tral Portugal. International Journal of Wildland Fire, 18, 
36. https://​doi.​org/​10.​1071/​wf070​45

Jiménez-Ruiz, J., Hardion, L., Del Monte, J. P., Vila, B., & 
Santín-Montanyá, M. I. (2021). Monographs on invasive 
plants in Europe N° 4: Arundo donax L. Botany Letters, 
168(1), 131–151.

Júnior, J. S., Paulo, J. R., Mendes, J., Alves, D., Ribeiro, L. M., 
& Viegas, C. (2022). Automatic forest fire danger rating 
calibration: Exploring clustering techniques for regionally 
customizable fire danger classification. Expert Systems 
with Applications, 193, 116380.

Koutsias, N., Martínez-Fernández, J., & Allgöwer, B. (2010). 
Do factors causing wildfires vary in space? evidence from 
geographically weighted regression. GIScience & Remote 
Sensing, 47, 221–240. https://​doi.​org/​10.​2747/​1548-​1603.​
47.2.​221

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.landurbplan.2010.11.017
https://doi.org/10.3390/geosciences10020053
https://doi.org/10.3390/geosciences10020053
https://doi.org/10.1007/s10651-020-00453-5
https://doi.org/10.1007/s10651-020-00453-5
https://doi.org/10.1016/j.rser.2016.01.106
https://doi.org/10.1016/j.rser.2016.01.106
https://doi.org/10.1029/2005rg000183
https://doi.org/10.1029/2005rg000183
https://CRAN.R-project.org/package=mclust
https://CRAN.R-project.org/package=raster
https://doi.org/10.1071/wf07045
https://doi.org/10.2747/1548-1603.47.2.221
https://doi.org/10.2747/1548-1603.47.2.221


Environ Monit Assess (2025) 197:619	 Page 23 of 23  619

Vol.: (0123456789)

Leisch, F. (2004). FlexMix: A general framework for finite 
mixture models and latent class regression in R. Jour-
nal of Statistical Software, 11, 1–18. https://​doi.​org/​10.​
18637/​jss.​v011.​i08

McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). 
Finite mixture models. Annual Review of Statistics and 
Its Application, 6, 355–378.

Moreira, F., et al. (2011). Landscape–wildfire interactions in 
southern Europe: Implications for landscape manage-
ment. Journal of Environmental Management, 92, 2389–
2402. https://​doi.​org/​10.​1016/j.​jenvm​an.​2011.​06.​028

Moreno, M. V., Conedera, M., Chuvieco, E., & Pezzatti, G. B. 
(2014). Fire regime changes and major driving forces in 
Spain from 1968 to 2010. Environmental Science & Policy, 
37, 11–22. https://​doi.​org/​10.​1016/j.​envsci.​2013.​08.​005

Munshi, A. (2021). Fire detection methods based on various color 
spaces and gaussian mixture models. Advances in Science 
and Technology Research Journal, 15(3), 209–219.

Nikolay, B., Svetlana, K., Marina, B., & Anton, P. (2016). 
WWLLN data cluster analysis methods for lightning-
caused wildfires monitoring. International Journal of 
Electrical and Computer Engineering (IJECE), 6, 3112. 
https://​doi.​org/​10.​11591/​ijece.​v6i6.​12780

Nunes, A., Lourenço, L., & Meira, A. C. (2016). Exploring 
spatial patterns and drivers of wildfires in Portugal (1980–
2014). Science of The Total Environment, 573, 1190–
1202. https://​doi.​org/​10.​1016/j.​scito​tenv.​2016.​03.​121

Parente, J., Pereira, M. G., & Tonini, M. (2016). Space-time clus-
tering analysis of wildfires: The influence of dataset charac-
teristics, fire prevention policy decisions, weather and cli-
mate. Science of The Total Environment, 559, 151–165.

Qian, J., Fu, J., Qian, J., Yang, W., Wang, K., & Cao, P. (2018). 
Automatic early forest fire detection based on gaussian mix-
ture model. In 2018 IEEE 18th International Conference on 
Communication Technology (ICCT) (pp. 1192–1196). IEEE.

Quílez Moraga, R. (2019). Los incendios forestales en la comu-
nitat valenciana en el contexto del cambio climático. 
In III Congreso forestal de la CV: Gestión de incendios 
forestales en el contexto del cambio climático (p. 8). Uni-
versitat de València.

Reynolds, D. A. (2009). Gaussian mixture models. In S. Z. 
Li, & A. Jain (Eds.),  Encyclopedia of biometrics  (pp. 
659–663). Springer. https://​doi.​org/​10.​1007/​978-1-​4899-​
7488-4_​196

Sarala, P., Lunkka, J. P., Sarajärvi, V., Sarala, O., & Filzmoser, 
P. (2022). Timing of glacial-non-glacial stages in Finland: 
An exploratory analysis of the OSL data. Arctic, Antarc-
tic, and Alpine Research, 54(1), 428–442.

Saxe, S., Hogue, T. S., & Hay, L. (2018). Characterization and 
evaluation of controls on post-fire streamflow response 
across western US watersheds. Hydrology and Earth Sys-
tem Sciences, 22(2), 1221–1237.

Saxe, S., Hogue, T. S., & Hay, L. (2021). Characterization of 
post-fire streamflow response across western US water-
sheds.  Hydrological Processes, 35(10),  e14339. https://​
doi.​org/​10.​1002/​hyp.​14339

Scrucca, L. (2010). Dimension reduction for model-based clus-
tering. Statistics and Computing, 20, 471–484.

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). 
mclust 5: Clustering, classification and density estimation 
using gaussian finite mixture models. The R Journal, 8, 289.

Sebastián-López, A., Salvador-Civil, R., Gonzalo-Jiménez, J., 
& SanMiguel-Ayanz, J. (2007). Integration of socio-eco-
nomic and environmental variables for modelling long-
term fire danger in southern europe. European Journal of 
Forest Research, 127, 149–163. https://​doi.​org/​10.​1007/​
s10342-​007-​0191-5

Shenoy, A., Johnstone, J. F., Kasischke, E. S., & Kielland, K. 
(2011). Persistent effects of fire severity on early succes-
sional forests in interior Alaska. Forest Ecology and Man-
agement, 261(3), 381–390.

Strauss, C., Rosa, M. B., & Stephany, S. (2013). Spatio-temporal 
clustering and density estimation of lightning data for the 
tracking of convective events. Atmospheric Research, 134, 
87–99. https://​doi.​org/​10.​1016/j.​atmos​res.​2013.​07.​008

Tedim, F., Remelgado, R., Borges, C., Carvalho, S., & Mar-
tins, J. (2013). Exploring the occurrence of mega-fires in 
Portugal. Forest Ecology and Management, 294, 86–96. 
https://​doi.​org/​10.​1016/j.​foreco.​2012.​07.​031

Torabian, M., Pourghassem, H., & Mahdavi-Nasab, H. (2021). 
Fire detection based on fractal analysis and spatio-tempo-
ral features. Fire Technology, 57(5), 2583–2614.

Velizarova, E., & Alexandrov, A. (2021). Informatics approaches 
for forest fire spread prediction. Research in Computer Sci-
ence in the Bulgarian Academy of Sciences, 493–501.

Venäläinen, A., et al. (2014). Temporal variations and change 
in forest fire danger in Europe for 1960–2012. Natural 
Hazards and Earth Systems Sciences, 14, 1477–1490. 
https://​doi.​org/​10.​5194/​nhess-​14-​1477-​2014

Wang, M., Gao, G., Huang, H., Heidari, A. A., Zhang, Q., 
Chen, H., & Tang, W. (2021). A principal component 
analysis-boosted dynamic Gaussian mixture clustering 
model for ignition factors of Brazil’s rainforests. IEEE 
Access, 9, 145748–145762.

Wu, C. J. (1983). On the convergence properties of the EM 
algorithm. The Annals of Statistics, 11(1), 95–103. https://​
doi.​org/​10.​1214/​aos/​11763​46060

Ying, L., Han, J., Du, Y., & Shen, Z. (2018). Forest fire character-
istics in China: Spatial patterns and determinants with thresh-
olds. Forest Ecology and Management, 424, 345–354.

Yoon, S. H., & Min, J. (2013). An intelligent automatic early 
detection system of forest fire smoke signatures using 
Gaussian mixture model. Journal of Information Process-
ing Systems, 9(4), 621–632.

Zhang, W., & Di, Y. (2020). Model-based clustering with 
measurement or estimation errors. Genes, 11(2), 185.

Zhang, R. T., Ma, T., Lin, J., Huang, Y., & Li, Y. Q. (2017). 
Analysis of fire incidents and characteristics of spatio-
temporal distributions for serious fires from 2007 to 2016 
in China. J Xi’an Univ Sci Technol, 6, 829–836.

Zhao, J., Zhang, Z., Han, S., Qu, C., Yuan, Z., & Zhang, D. 
(2011). SVM based forest fire detection using static and 
dynamic features. Computer Science and Information Sys-
tems, 8(3), 821–841.

Publisher’s Note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

https://doi.org/10.18637/jss.v011.i08
https://doi.org/10.18637/jss.v011.i08
https://doi.org/10.1016/j.jenvman.2011.06.028
https://doi.org/10.1016/j.envsci.2013.08.005
https://doi.org/10.11591/ijece.v6i6.12780
https://doi.org/10.1016/j.scitotenv.2016.03.121
https://doi.org/10.1007/978-1-4899-7488-4_196
https://doi.org/10.1007/978-1-4899-7488-4_196
https://doi.org/10.1002/hyp.14339
https://doi.org/10.1002/hyp.14339
https://doi.org/10.1007/s10342-007-0191-5
https://doi.org/10.1007/s10342-007-0191-5
https://doi.org/10.1016/j.atmosres.2013.07.008
https://doi.org/10.1016/j.foreco.2012.07.031
https://doi.org/10.5194/nhess-14-1477-2014
https://doi.org/10.1214/aos/1176346060
https://doi.org/10.1214/aos/1176346060

	Classification of wildfires in relation to land cover types and associated variables by applying cluster analysis: a case study in the Iberian Peninsula
	Abstract 
	Introduction
	Materials and methods
	Study site
	Data settings
	Methodology
	Background of the method
	Methodology followed


	Results
	Discussion
	Conclusions
	References


