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Father’s adolescent body silhouette is
associated with offspring asthma, lung
function and BMI through DNA
methylation
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Francisco Gómez Real5, Andrei Malinovschi6, Anna Oudin7, Bryndis Benediktsdottir8,
Francisco Javier Callejas González9, Leopoldo Palacios Gómez10, Mathias Holm11, Nils Oskar Jõgi6,
Shyamali C. Dharmage12, Svein Magne Skulstad2, Vivi Schlünssen13, Cecilie Svanes 2,14,16 &
John W. Holloway 1,15,16

Boys’ pubertal overweight associateswith future offspring’s asthma and low lung function. To identify
how paternal overweight is associated with offspring’s DNA methylation (DNAm), we conducted an
epigenome-wide association study of father’s body silhouette (FBS) at three timepoints (age 8, voice
break and 30) and change in FBSbetween these times, with offspringDNAm, in the RHINESSA cohort
(N = 339). We identified 2005 differentially methylated cytosine-phosphate-guanine (dmCpG) sites
(FDR < 0.05), including dmCpGs associated with offspring asthma (119), lung function (178) and BMI
(291). Voice break FBS associated with dmCpGs in loci including KCNJ10, FERMT1, NCK2 and
WWP1. Change in FBS across sexual maturation associated with DNAm at loci including NOP10,
TRRAP, EFHD1, MRPL17 and NORD59A;ATP5B and showed strong correlation in reduced gene
expression in lociNAP1L5, ATP5B, ZNF695, ZNF600, VTRNA2-1, SOAT2 andAGPAT2. We identified
24 imprinted genes including: VTRNA2-1, BLCAP, WT1, NAP1L5 and PTPRN2. Identified pathways
relate to lipid and glucose metabolism and adipogenesis. Father’s overweight at puberty and during
reproductive maturation was strongly associated with offspring DNA, suggesting a key role for
epigenetic mechanisms in intergenerational transfer from father to offspring in humans. The results
support an important vulnerability window in male puberty for future offspring health.

Even though the impact of obesity on the individual is clearly under-
stood, the prevalence of childhood obesity is increasing across the globe1.
Recent epidemiological studies from the RHINESSA/RHINE/ECRHS
cohorts and the Tasmanian Longitudinal Health Study (TAHS) have
shown that overweight in boys at the age of voice break (puberty) may
impair not only their own health but also the health of their future
offspring, in terms of higher asthma risk, lower attained stature and lower
lung function2–4.

An exposure-sensitive period during prepubertal years has also been
highlighted by observations from the Överkalix and ALSPAC cohorts,
where excess food supply and smoking in mid-childhood have been linked
to metabolic and cardiovascular health, and risk of obesity in subsequent

generation(s)5–7. Father’s preconception of overweight/obesity has further
been associated with offspring’s obesity and altered metabolism8. Support-
ing a role for intergenerational epigeneticmechanisms in humans, Kitaba et
al.9 found that fathers’ exposure to tobacco smoke, particularly during
adolescent years, was associated with altered epigenetic patterns in their
future offspring.

Efforts in identifyingmolecularmechanisms underlying these findings
have suggested a pre-conceptional influence on epigenetic (re)program-
ming during germ cell development, where the sperm epigenome is
increasingly plastic and responsive to environmental exposures which can
possibly affect epigenetic states and give rise to pleiotropic effects in future
offspring if transmitted to the next generation at fertilisation10–14.

A full list of affiliations appears at the end of the paper. e-mail: cecilie.svanes@helse-bergen.no
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Male obesity has been found to alter spermatocyte DNA methylation
patterns15–17 and non-coding tRNA content18, as well as seminal plasma
composition19,20. Offspring of obese fathers have also been shown to display
altered DNA methylation levels at several regulatory regions of imprinted
genes21,22. Given that fathers’ BMI around conception has also been
demonstrated to be an independent determinant of offspring metabolic
health18 as well as to be associated with offspring birthweight and
epigenome-wide methylation patterns up to the age of 723, this clearly
supports the hypothesis that BMI-related differences in sperm content can
be transmitted to subsequent offspring and impact on their health and
development.

The present study aimed to investigate whether fathers’ body silhou-
ettes (FBS) (as a surrogate measure of body composition) and their trajec-
tory across adolescence and young adulthoodwere associatedwith offspring
DNA methylation patterns and whether identified signals were associated
with offspring phenotypic outcomes in terms of asthma, lung function and
BMI. We hypothesised that differential DNA methylation patterns in off-
spring might reflect the molecular mechanisms underlying the effects of
fathers’ obesity in adolescence on offspring health observed in epidemio-
logical studies2–4. We have previously shown that the use of self-reported
figural body silhouettes provides a valid tool for assessing overweight and
obesity retrospectively24. In a two-generation cohort, we sought to identify
theDNAmethylation pattern inwhole blood of offspring (aged 7–51 years)
associatedwith (1) the father’s preconceptionbody silhouette at ages 8, voice
break and 30 years and (2) trajectory of father’s body silhouette across
adolescence and young adulthood measured as change from age 8 years to
voice break and from voice break to age 30. As previous epidemiological
studies have reported sex-specific health outcomes of paternal obesity on
offspring2, we also wanted to explore whether patterns of association
between fathers’ preconception body silhouette and offspring DNA
methylation were different between sons and daughters.

Methods
Study design and data
Data and samples from offspring were available from the RHINESSA study
(www.rhinessa.net)25. Parental data was retrieved from the population-
based European Community Respiratory Health Survey (ECRHS, www.
ecrhs.org) and/or the Respiratory Health in Northern Europe (RHINE,
www.rhine.nu) studies. In this study, 339 offspring-father pairs with com-
plete data on fathers’ body silhouettes and offspringDNAmethylationwere
included (Table 1). These participants, all of the white European ethnicity,
were from six study centres (Aarhus, Denmark; Albacete/Huelva, Spain;
Bergen, Norway; Melbourne, Australia; Tartu, Estonia). Medical research
committees in each study centre approved the study and all participants
gavewritten consent Ethical permissions were obtained for each studywave
from the local ethics committee in each of the participating centres. Details
of the ethics committees and approval reference numbers for each study
centre are listed on www.rhinessa.net. All ethical regulations relevant to
human research participants were followed.

Definitions of father’s body silhouettes (FBS) before conception
Father’s body silhouette (FBS) was measured using a validated figural
drawing scale of 9 sex-specific body silhouettes at each time point (age 8,
voice break, 30 years)24. The figural drawing scale has been validated against
self-reported height andweight both for current and past body silhouettes24.
We applied a cut-off of Fig. 5 or greater to classify fathers as being over-
weight. This is the same cut-off that a previous validation study identified as
optimal for identifying overweight people (BMI, 25–30 kg/m2)26. Change in
the father’s body silhouette between age 8 and voice break, and voice break
and age 30 were defined according to changes in body silhouette figure
between the two time points. Aspects of change were also investigated
according to whether they switched from being normal weight to over-
weight or vice versa across adolescenceandyoung adulthood, and according
to how many body figures gain or loss in body silhouettes spanned (see
Supplementary Fig. 1).

Offspring outcomes
Adult offspring ever having asthma was based on answers to the question:
“Have you ever had asthma diagnosed by a doctor?”. Lung function (forced
expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)) was
measured at RHINESSA clinical examinations as previously described27.

Methylation profiling and processing
DNA methylation in offspring was measured in DNA extracted from per-
ipheral blood, using a simple salting out procedure28. Bisulfite-conversion
wasundertakenusingEZ96-DNAmethylationkits (ZymoResearch, Irvine,
CA, USA) at the Oxford Genomics Centre (Oxford, UK), and methylation
was assessed using Illumina Infinium MethylationEPIC Beadchip arrays
(Illumina, Inc., CA, USA) with samples randomly distributed on micro-
arrays to control against batch effects.

DNAmethylation quality control and normalisation
Data analysis was undertaken using R v 4.129 and methylation quality was
assessedusingminfi30 andMefil31. To remove technical variationdetectedby
SVDplot32 using champ33, combat fromSVAwas applied for bothbatch and
slide variables34. Cell-type proportions were estimated using Epigenetics
Dissection of Intra-Sample Heterogeneity (EpiDISH)35. Normalisation was
carried out using BMIQ36. Probes were excluded from analysis using the
following criteria: Detection p above 0.01, probes with a beadcount <3 in at
least 5% of samples (N = 1357), non-cg probes (N = 2762), SNPs as iden-
tified by Zhou37 (N = 93,900), aligned to multiple locations as identified in
Nordlund38 (N = 15), probes on the X or Y chromosomes (16,089), and
cross-reactive probes on the EPIC array (2382)39. A total of 730,820 probes
were used for downstream analysis.

Statistical analysis
To identify differentially methylated Cytosine-phosphate-Guanine sites
(dmCpGs), the associations of offspring DNA methylation beta-value as
outcome (continuous outcomes) with paternal body silhouette pheno-
types (normal or overweight/obese, independent variables) were assessed
using robust linear regression models using limma40. Covariates included
offspring age, sex, estimated blood cell proportions (B-cells, Natural
Killer cells, CD4 T-cells, CD8 T-cells, Monocyte, Neutrophils) and socio-
economic class. Eosinophils were not included due to a very low estimate
and to avoid potential multicollinearity41. Grandparents’ education was
used as a proxy for paternal social class in childhood, either as low or
high. Social class was assigned as high for university-level education or if
both grandparents attended high school, otherwise it was assigned as low.
Multiple test correction was applied using the Benjamini and Hochberg
method42 where a false discovery rate (FDR) corrected p ≤ 0.05 was
considered as statistically significant in the covariates corrected
regression model.

The FBS-CpG associations were assessed by running

• EWAS analyses at each of the paternal age time points: Father body
silhouette at age 8 (FBS-8), Father body silhouette at voice break (FBS-
V), and at Father body silhouette at age 30 (FBS-30).

• A sex-stratified EWAS analysis of Father body silhouette at voice break
in females (FBS-Vf) and Father body silhouette at voice break inmales
(FBS-Vm) to investigatewhether epigenetic signals differ betweenmale
and female offspring.

• EWAS analyses of change in paternal body silhouettes based on both
ordinal (Father body silhouette change between age 8 and voice break
(FBS-V8c), Father body silhouette change between voice break and age
30 (FBS-V30c) and categorical scale measures of gradations in body
size (Father body silhouette gain or reduced between age 8 and voice
break (FBS-V8gr)/Father body silhouette gain or reduced between
voice break and age 30 (FBS-V30gr) and Father body silhouette retain
or swap between age 8 and voice break (FBS-V8rs)/ Father body sil-
houette retain or swap between voice break and 30 (FBS-V30rs) to
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explore effects of change in FBS across adolescence/young adulthood
on the offspring epigenome.

• An EWAS analysis to assess the comparability of offspring's current
BMI and body silhouette.

Downstream enrichment analysis and biological interpretation
of dmCpGs
Manhattan plots were generated using qqman43. Inflation from systematic
biases (measured by genomic factor lambda λ) was adjusted using
BACON44. Differentially methylated regions were detected using
DMRcate45 and dmrff 46. Transcription factor binding site prediction was
performed using eFORGE TF47. Gene–disease phenotype associations were
identified using Open Targets48. The EWAS atlas49 was used to assess
dmCpGs for association with known biological traits and the effect of
methylation on gene expression. For dmCpGs mapped to genes, gene
function ontology (GO) terms were identified using String50 and enrichr51.
KEGG pathways were generated and visualised using Cytoscape52,53. The
methylGSA R-package which accounts for the representation of probes per
gene on the EPIC arraywas used to test forGOenrichment54. DMRregional
enrichment was carried out using the goregion function frommissMethyl R
package55. Genes overlappingwith the GWAS catalogue gene set for obesity
traits were identified using FUMAGWAS GENEN2FUNC56 and dbGAP51.
Lookup for the associationof SNPswithmethylation to identifymethylation
quantitative trait loci (mQTL) was carried out using the goDMC57 and the
MeQTL EPIC58 databases. The look-up for overlap of known human
imprinting genesused reference imprinting genes fromhttps://geneimprint.
com/site/genes-by-species.Homo+sapiens. Over-representation of meta-
stable epialleles was compared with CpGs identified by Silver et al.59.

Association dmCpGs and offspring outcomes
The identified dmCpG sites across all EWAS were analysed for association
with offspring clinical phenotypic traits, specifically BMI, asthma and lung
function (FEV1 and FVC) using linear and logistic regression.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
The present analyses included 339 RHINESSA offspring (Table 1), 174
males and 165 females, aged 7–50 years. Of these, 307 had a father who
reported anormal body silhouette at voice break, and32of the offspring had
a father who reported an overweight/obese body silhouette at voice break.
There was a significant sex difference between males and females for BMI
and lung function. Offspring current BMI, sex and age distribution by study
centre are shown in Table 2.

Associations of father body silhouette (FBS) with offspring DNA
methylation
The summary statistics and sample size for each EWAS are shown in
Table 3. Of the three specific preconception age windows, father’s body
silhouette at voice breakwas associatedwith a larger number of differentially

methylated CpGs in offspring compared to father’s body silhouette in
childhoodor young adulthood. Sex-specific EWASanalyses identifiedmore
dmCpGs related to FBS at voice break in female than in male offspring. In
particular, EWAS exploring changes in father’s body silhouette figures
across adolescence, i.e. from a normal weight to an overweight body sil-
houette status or vice versa, were associated with altered DNAmethylation
patterns in the offspring. In total, we identified 2005 (1962unique) dmCpGs
that showed association with father’s normal versus overweight/obese body
silhouette before conception (FDR corrected p ≤ 0.05). Key results for each
EWAS are described below; the full list of dmCpGs and adjusted p for each
EWAS are provided in Supplementary Data 1A.

Father’sbody silhouette at age8 (FBS-8):We identified12dmCpGsites
associated with father’s normal versus overweight/obese body silhouette at
age 8 (FDR < 0.05). These sites were mapped to 7 protein-coding genes and
6 intergenic regions. Eight were hypermethylated and 4 hypomethylated
with association coefficients ranging from −0.04 to 0.03. Eight of the sites
were in the open sea (Supplementary Data 1A: FBS-8).

Father’s body silhouette at voice break (FBS-V, FBS-Vm, FBS-Vf):We
identified 41 dmCpG sites associated with the father’s body silhouette at
voice break; these mapped to 32 genes (29 protein-coding and 3 noncoding
RNA) and 11 intergenic regions as shown in Table 4. The majority of
dmCpGswere hypermethylated in the overweight group (71%) and, relative
to CpG Islands, 66% were located in the open sea. For several of the top 10
dmCpGs (FDR corrected p ≤ 0.05), the methylation distribution showed a
pattern of increasing or decreasing methylation according to increasing
overweight in the father (increasing levels of FBS) (Fig. 1).

Inmale offspring, we identified 32 dmCpGsmapped to 26 genes and 6
intergenic regions. 16were located in open sea (see SupplementaryData 1A:
FBS-Vm). In female offspring, we identified 370 dmCpG sites. Of these, 248
dmCpGs were mapped to coding genes and 122 to intergenic regions
(Supplementary Data 1A: FBS-Vf).

We identified 6 genomic regions that were differentially methylated in
offspring whose fathers had a normal versus overweight/obese FBS status at
voice break. Using DMRcate differentially methylated regional enrichment
analysis at voice break identified a DMR in SLC44A4 (8 sites) which was
enriched for choline metabolism in cancer, glycolysis/gluconeogenesis,
citrate cycle (TCA cycle) and fatty acid metabolism (see Supplementary
Data 2: DMR:FBS-V DMRcate). In the analysis stratified by offspring sex,
we detected 1 DMR in males and 15 DMRs in females. The female DMR
sites included ADAMTS16, RNASE1 and AGAP2 at dmr.p.adjust < 0.05
(Supplementary Data 2).

To identify any overlap between the methylation of dmCpGs and
known transcription factor (TF) binding sites, we interrogated eForgeTF by
selecting CD34_T0 cell line, at https://eforge-tf.altiusinstitute.org (accessed
on 23 August 2023). In the FBS analyses at voice break, we found 17
dmCpGs overlapping with 28 TF binding sites (q-value < 0.05). The
methylation of cg25020933 (B4GALNT4) overlapped with 6 TFs,
cg24420089 (PTDSS2) overlapped with 4 TFs and both cg05509659
(ROBO3) and cg09655253 (MOCS1) overlapped with 2 TFs (Supplemen-
tary Data 3). In sex-stratified analyses of FBS at voice break, we found
overlapping with 30 TFs (q-value < 0.05) in male offspring and with 6 TFs
(q-value < 0.05) in females (Supplementary Data 3).

Table 2 | Characteristics of offspring for Current BMI, age and sex by study centre (N = 724)

Offspring Albacete N = 48a Arhus N = 48a Bergen N = 395a Huelva N = 29a Melbourne N = 75a Tartu N = 129a p-valueb

Sex 0.7

Female 21 (44%) 26 (54%) 180 (46%) 15 (52%) 40 (53%) 63 (49%)

Male 27 (56%) 22 (46%) 215 (54%) 14 (48%) 35 (47%) 66 (51%)

Age 30 (25, 38) 29 (23, 37) 27 (23, 33) 36 (25, 39) 31 (25, 37) 30 (25, 34) <0.001

BMI 23.1 (21.0, 26.0) 22.9 (21.3, 25.8) 23.9 (21.9, 26.6) 23.1 (20.4, 27.5) 23.4 (21.1, 25.8) 23.8 (21.2, 27.0) 0.3
an (%); Median (Q1, Q3).
bPearson’s Chi-squared test; Kruskal–Wallis rank sum test.
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IndmCpGs associatedwithFBSat voice break, sites located toZNF570,
ZNF569, B4GALNT4, LIPG, PTDSS2 and GATA5 showed correlation with
gene expression (Supplementary Data 4: FBS-V). In the female-stratified
analyses of FBS at voice break (n = 123), several of the identified dmCpGs
showed correlation with gene expression and mapped to genes including
MAGI2, GALNT9, SLCO3A1, OR2I1P, GPR153, TBC1D2B, TNFRSF1,
NCAM1 and JAG1 (Supplementary Data 4: FBS-Vf).

The summary of the number of dmCpGs that showed correlationwith
gene expression and full details for both promoter and gene-body associated
dmCpGs across the six tissues are provided in Supplementary Data 4.

Pathway analysis: Enrichrwas used to assess the enrichment of curated
signalling pathways among identified dmCpGs. For FBS at voice break-
related genes, 31 GO terms (p < 0.05) were identified including gastrin
signalling pathway (FOXO3; EGFR; CD44), molybdenum cofactor (Moco)
biosynthesis (MOCS1), insulin-signalling in adipocytes (TBC1D4), NAD
metabolism, sirtuns and aging (FOXO3), metabolic pathway of LDL, HDL
and TG (LIPG), glycerolipids and glycerophospholipids (PTDSS2) and
ferroptosis (LPCAT3). Using methylRR package GSEA we identified GO
terms including cellular response to lipopolysaccharide (GO:0071222) and
with AGSEA-Promotor1, cellular lipid catabolic process (GO:0044242)
(Supplementary Data 5).

Father’s body silhouette at age 30 years (FBS-30): We identified three
dmCpGs mapping to three genes, QSOX2, DLGAP2 and PCDHG (Sup-
plementary Data 1A: FBS-30).

Change in father’s body silhouette between age 8 and voice break: A
total of 277 dmCpGs showed association with change in FBS between age 8
and voice break (λ = 1.17) (Supplementary Data 1: FBS-V8c). The top hit,
cg20668887, mapped to NOP10 (FDR = 1.68e−91); the association coeffi-
cients ranged from −0.34 to 0.42 (Figs. 2, 3). Some genomic loci had
multiple dmCpGs suchasNFYA;LOC22144, PTPRN2 andNAP1L5;HERC3
with the majority (81%) of dmCpGs showing hypermethylation. In the
EWAS model using categorical cut-offs of FBS change, we identified 222
dmCpGs at FDR ≤ 0.05 associated with father´s gain or loss in FBS (Sup-
plementary Data 1: FBS-V8gr). We detected 176 dmCpGs (λ = 1.05) asso-
ciated with father´s switch in normal or overweight/obese FBS status
between age 8 and voice break. The top hit, cg10157663, mapped to
CCDC178 (FDR = 3.91e−21) with 78% of dmCpGs showing hyper-
methylation.Many loci were represented bymore than 1 dmCpG including
PTCH1 (10 sites), GABRG1 (7 sites), BLCAP (6 sites), SORCS1 and
HIST1H2BE (3 sites) (Supplementary Data 1A: FBS-V8rs).

Change in father’s body silhouette between voice break and age 30:We
identified 791dmCpGs associatedwith a change inFBSbetweenvoice break
and age 30 years; 559weremapped to coding genes (SupplementaryData 1:
FBS-V30c). The coefficient of association ranged from −0.53 to 0.82, as

shown by the volcano plot, where 68% showed hypermethylation (Fig. 2).
The genome-wide distribution is shown in Fig. 3. The top hit, cg18950772,
mapped to an intergenic region (FDR= 6.23e−261) followed by SLC25A10
(FDR = 3.21e−205). Some genes were represented by many dmCpGs
including NUP210L and TRPM4, WT1, MIR886, NFYA;LOC221442,
DIP2C and AGPAT2. In the EWAS models investigating categorial classi-
fications of change in FBS from voice break to age 30, we identified 69
dmCpGs associated with the father´s gain or loss in body silhouette, and 12
dmCpGs related to father´s switch in normal or overweight FBS status
between voice break and age 30 (Supplementary Data 1A: FBS-V30gr and
FBS-V30rs).

The change in FBS DMR includes sites from NFYA, LARS2, NAP1L5
and CREBBP for FBS-V8c, BLCAP;NNAT, PTCH1 and GABRG1 for FBS-
V8rs, PM20D, C22orf45, MBP, NUP210L, TRPM4, PACSIN1, ERICH1,
MIR886, IQSEC3, BCL11B, AGPAT2 and NFYA for FBS-V30c, and
NAPRT1, NUP210L and NAPRT for FBS-V30rs. Details of the DMRs are
shown in Supplementary Data 2.

In DMR analysis with DMRCate at FBS-V8c, we identified 13 DMRs
including gene loci FBXO47 (10 sites), CRISP2 (12), UPB1;ADORA2A-AS1
(14)whichwere enriched formanymetabolic pathways (see Supplementary
Data 2 DMR:FBS-V8c). For FBS-V30c, DMRcate analysis identified 81
DMRs including lociWT1 (5 sites), NNAT;BLCAB (37), AURKC (12) and
NUP110L (10). They were enriched for glycerophospholipid metabolism,
vasopressin-regulated water reabsorption, ubiquitin-mediated proteolysis,
glycerolipid metabolism and phospholipase D signalling pathway (see
Supplementary Data 2 DMR:FBS-V30C_DMRcate).

In the EWAS models investigating change in FBS across adolescence
from age 8 to voice break we found overlap with 29 TFs (q-value < 0.05)
while gain/reduction in FBS from voice break to age 30 overlapped with 33
TFs (q-value < 0.05) including PPARG (cg22681255 and cg15965578) and
HOXA3 (cg135272218). The list of TFs for each EWAS is provided in
Supplementary Data 3.

For a change in FBS from voice break to age 30 (FBS-V30c), out of 791
dmCpGs, 329 showedsignificant correlationwithgene expression (p < 0.05)
including VTRNA2-1, TRPM4, GPRC5C, WDR97, ZNF695, NUP210L,
GSE1, DIP2C, RP5-894D12.3, FAM26F, C5orf66, AC098614.2, SOCS1,
SLC24A4, R3HDM4, ZNF600, RP11-715J22.6, BCL11B andMBP. Of these,
218 dmCpGs were associated with promoter regions (Supplementary
Data 4: FBS-V30c). Among the identified dmCpGs in this EWAS analysis,
we also observed a strong correlation with gene expression in ZNF695
(11 sites) and ZNF600 (7 sites). There were 6 sites each for CEP85, SOAT2
andCD52, and 5 sites forZNF334,ZBTB16 andAGAPT2, as shown inFig. 4.

Several of thedmCpGs identified in relation to changes inFBS fromage
8 to voice break (n = 94) showed correlation with gene expression and

Table 3 | Summary statistics of dmCpGs for all EWAS at FDR ≤ 0.05

EWAS on father body silhouette Label N dmCpGs Inflation N persons

Father body silhouette at age 8 years FBS-8 12 1.2 338

Father body silhouette at voice break FBS-V 41 1.3 339

Father body silhouette at voice break in male FBS-Vm 32 1.291 174

Father body silhouette at voice break in female FBS-Vf 370 1.4 165

Father body silhouette at age 30 years FBS-30 3 1.12 345

Father body silhouette change between voice break and age 8 FBS-V8c 277 1.17 334

Father body silhouette gain or reduced between voice break and age 30 FBS-V8gr 222 1.2 334

Father body silhouette retain or swap between age 8 and voice break FBS-V8rs 176 1.05 334

Father body silhouette change between voice break and age 30 FBS-V30c 791 1.176 334

Father body silhouette gain or reduced between age 8 and voice break FBS-V30gr 69 1.4 334

Father body silhouette retain or swap between voice break and age 30 FBS-V30rs 12 1.003 334

Total 2005

dmCpG differentially methylated cytosine-phosphate-guanine site, FDR < 0.05.
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multiple sites mapped to genes including NAP1L5, PTPRN2, CACNA1B,
AJAP1, CREBBP, ERGIC1, KCNB1, TBX5, CFLAR,AMH, FBXO47,DIRC3,
DLL1, APIP, TIMD4, RP1-34B21.6 and GALNT14 (Supplementary Data 4:
FBS-V8c). The effect of methylation located in a promoter region on gene
expression across all tissue types for FBS-V8c is shown in Fig. 4. It shows a
strong correlation for genes NAP1L5 (3 sites), ATF6B (3 sites), RXRG,
CDH22 and LEPROT.

Enrichment for gene ontology terms: To characterise the biolo-
gical function of the dmCpGs, each dmCpG was mapped to the nearest
gene for each EWAS and detailed functional gene ontology terms for

each gene for each EWAS were retrieved from String. The detailed
gene descriptions, related GO terms and lipid-related traits are pro-
vided in Supplementary Data 6. The largest GO terms were for genes
related to dmCpGs identified in the EWAS on change in FBS from
voice break to age 30 (FBS-V30c) n = 106,616. In the look-up for ‘lipid’
related terms, we identified 66 GO terms including lipid metabolic
process with 29 associated genes (ABO, ACSF3, ACSM6, AGPAT2,
AGPAT5, AKR7A2, CDIPT, CHKA, COQ2, CPT1A, DHRS11, FABP5,
GPIHBP1, HSD11B2, KIT, LMF1, LPCAT4, MBTPS1, NFE2L1, PIGT,
PLD3, PRKAG2, SERPINA12, SOAT2, SOCS1, ST3GAL6, SYNJ1,

Table 4 | dmCpGs for father’s body silhouette at voice break (FBS-V) FDR ≤ 0.05

Name Effect size Average methylation Island Gene name Adj. p-value

cg20975419 0.09 0.18 OpenSea 0.000

cg11789449 0.20 0.60 OpenSea KCNJ10 0.000

cg06444433 −0.05 0.84 OpenSea FERMT1 0.015

cg23653826 0.03 0.93 OpenSea NCK2 0.016

cg09655253 −0.09 0.82 OpenSea MOCS1 0.016

cg12026976 −0.01 0.92 OpenSea 0.016

cg12587260 0.02 0.15 N_Shore PAPLN 0.016

cg19430728 0.01 0.94 OpenSea CD44 0.020

cg02157155 0.09 0.54 OpenSea EFCAB9 0.022

cg05144772 −0.02 0.90 OpenSea LOC389602 0.024

cg25020933 0.02 0.08 OpenSea B4GALNT4 0.024

cg21812470 0.06 0.20 N_Shelf CNGA1 0.026

cg25380281 0.03 0.91 OpenSea WWP1 0.026

cg15549838 0.01 0.90 OpenSea FNDC7 0.026

cg22341132 0.04 0.44 Ope nSea 0.026

cg13698153 0.02 0.12 Island VSIG10 0.031

cg05839509 −0.01 0.93 OpenSea KIAA0040 0.033

cg13242924 0.01 0.10 OpenSea 0.035

cg04165857 0.01 0.93 OpenSea 0.035

cg10053674 −0.02 0.89 OpenSea LOC102723544/SLC6A13 0.035

cg11737070 −0.03 0.79 OpenSea TBC1D4 0.035

cg18092219 0.01 0.10 OpenSea 0.035

cg11278727 0.02 0.07 OpenSea 0.036

cg05509659 0.00 0.02 Island ROBO3 0.037

cg06520845 −0.04 0.78 OpenSea EGFR-AS1 EGFR 0.040

cg05357152 0.03 0.23 Island GATA5 0.040

cg02212575 −0.01 0.92 S_Shore 0.044

cg04544017 0.02 0.86 N_Shelf SPATA2L 0.047

cg25361524 −0.02 0.83 OpenSea 0.047

cg24052851 0.00 0.98 Island 0.054

cg16612995 −0.01 0.94 Island ADAMTSL4 0.055

cg24420089 0.02 0.37 N_Shore PTDSS2 0.055

cg11949388 0.03 0.86 OpenSea FOXO3 0.055

cg27113059 0.00 0.02 Island LIPG 0.056

cg18109649 0.05 0.80 OpenSea MRPS28 0.056

cg15673187 0.01 0.04 Island DST 0.056

cg15009114 −0.01 0.94 N_Shore RASL11A 0.056

cg24906129 0.02 0.91 OpenSea 0.056

cg07405570 0.02 0.92 OpenSea LPCAT3 0.056

cg12110395 0.01 0.98 S_Shore ZNF570 0.056

cg11720773 0.04 0.24 OpenSea SYT1 0.056
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Fig. 1 | Box plots showing the distribution of methylation levels (beta-values) of
top 10 dmCpGs (FDR p-value) for FBS at voice break. The distribution of each
dmCpG for the father’s “normal” vs. “overweight” body silhouette, and across the

father’s body silhouette numbers 1–7 is shown. The p-value comparing normal vs.
overweight is shown above the box plot for each dmCpG.
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TPRA1 and VAC14). The top associated GO terms and shared genes
are shown in Fig. 5.

For dmCpG-relatedgenes in theEWASonchange inFBS fromage 8 to
voice break (FBS-V8c) there were 97 ‘lipid’ relatedGO terms, where lipid or
lipoproteinmeasurement was represented by 36 genes (AGPAT3, ATP8A2,
BTNL2, CAMK2B, CAMTA1, CCDC60, CDA, CDC42BPA, CDH13,
COL4A2, CYP2B6, DCLK2, DGCR8, DSCAM, FRMD4A, HERC3, LAMC2,
LEPR, LRP1, MACROD2, MGMT, MORN1, NAV2, NCOR2, PAPPA2,
PHYHIP, PKNOX2, PPP1R13B, PTPRN2, RBMS3, RPA2, SHROOM3,
SLC39A11, SLC44A4, SPTBN2, TIMD4).

For genes linked to dmCpGs associatedwith a change in FBS from age
8 to voice break (FBS-V8c), the KEGG pathway enrichment included:
O-glycan biosynthesis (GALNT14, XXYLT1), Hippo signalling regulation
pathways (CDH13, EPHA2, FGFR2, PRKACA, PRKCH), Adipocytokine
signalling pathway (ACSL1, LEPR, RXRG) and Cholesterol metabolism
(LRP1, LRPAP1) (see Fig. 6 and Supplementary Data 7 : FBS-V8c).

For dmCpG-related genes associated with a change in FBS from voice
break to age 30 (FBS-V30c), the KEGG pathway showed lipid metabolic
associated signalling pathways including NRP1-triggered (AKT3, BCAR1,
CDH5, CHD2, COL1A1, EGFR, MAP2K1, RAC1), HIF-1 (AKT3, EGFR,
IGF1R, IL6R, MAP2K1, MKNK2, NOS2, NOS3, STAT3), Adipocytokine
(AKT3, CAMKK2, CPT1A, PRKAG2, RXRG, STAT3), Leptin (MAP2K1,
NOS3, RAC1, STAT3), Sterol regulatory element-binding proteins (SREBP)
(MBTPS1, MED15, NFYA, PRKAG2), PPAR (CPT1A, FABP5, RXRG),
Sphingolipid (ABCC1, AKT3, GNA12, GNAI1,MAP2K1, NOS3, PPP2R2D,

PPP2R5B, RAC1) and GABAergic synapse (ADCY5, CACNA1C, GABBR2,
GABRP, GNAI1, GNAO1, KCNJ6). KEGG pathway network and shared
genes are shown in Fig. 6. All identified pathways are shown in Supple-
mentary Data 7.

GO terms: To identify the overlap of dmCpG mapped gene lists with
knownobesity-related traits in theGWAScatalogue,weusedFUMAGWAS
(p < 0.05) and Enrichr (dbGAP). For FBS at voice break in the female strata,
we identified 11 traits and 20 genes related to obesity. These include 2 traits,
and 18 obesity-related genes identified in the EWAS on change in FBS from
age 8 to voice break (FBS-V8c) and 31 traits in the EWAS of change in FBS
fromvoicebreak to age30 (see SupplementaryData8: FBS-V30c).The latter
included waist circumference adjusted for body mass index (n = 36), adult
body size (n = 28), apolipoprotein A1 levels (n = 23), waist-to-hip ratio
adjusted for BMI (n = 34), offspring birth weight (n = 11), type-2 diabetes
(n = 25), appendicular lean mass (n = 26) and hip circumference adjusted
for BMI (n = 31). The top look-up from dbGAP for the EWAS model of
difference in FBS from age 8 to voice break (FBS-V8c) was cholesterol and
HDL (RNF157, CHCHD3, BORA, PTPRN2, ERBB4, DEFA3, ROR1,
NPHP4, TACC2, CDC42BPA, RXRG, RBMS3). For the EWASon change in
FBS fromvoice break to age 30 (FBS-V30c) the top look-upwasBMI (ATL2,
XYLT1, AGAP3, ITGAE, LDLRAD4, ASB18, GNAI1, GPR176, ADAMTS2,
IMMP2L, SCML4, MTHFD1L, SCFD2, HAS3, OPCML, NTNG1, KDM4C,
SFMBT1, COG5, LMNTD1, PCGF3, KCNIP4, RASSF8,WNT9A, MRPL52,
NCAPD3,WDFY4, STAM2,NFE2L1).The list ofGWAScatalogue enriched
obesity-related traits is provided in Supplementary Data 8.

Fig. 2 | Volcano plot for regression coefficients of dmCpGs associated with a
change in father’s body silhouettes. A Between voice break and age 8 years (FBS-
V8c) and B between voice break and age 30 years (FBS-V30c). The X-axis shows

regression coefficients, and the Y-axis represents −log10 of the p-values. Positive
coefficients show hypermethylated dmCpGs, while the magnitude shows the
strength of the association.
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Biological interpretation of dmCpGs
EWAS atlas lookup: We interrogated the EWAS atlas (7/02/2025) for
known trait associations and identified 835 dmCpGs showing 2005 known
associations for 217 traits (Supplementary Data 9). The top associated traits
include smoking status (n = 193), aging (n = 188), Down’s syndrome
(n = 123), ancestry (n = 89), asthma (n = 35) and obesity (n = 21).

Correlation between dmCpG methylation and gene expression: For
eachEWAS,usingdmCpGas input,we assessed the knownregulatory effect
of methylation on gene expression across 6 tissue types (testis, stomach,
colon, brain, liver and kidney) using the EWASAtlas (https://ngdc.cncb.ac.
cn/ewas/atlas, accessed 7/02/2025). Out of 2005 dmCpG sites, 776 (38%)
showed significant correlation with gene expression and we identified 2627

Fig. 3 |Manhattan plots showing the genome-wide
distribution of dmCpGs associated with a change
in father’s body silhouette. ABetween age of 8 years
and voice break (FBS-V8c) and B between voice
break and age 30 years (FBS-V30c). The x-axis
shows the position across autosomal chromosomes.
The y-axis represents−log10 of the p-value for each
dmCpG (indicated by dots). The green dots show
loci with more than 1 dmCpG at FDR-corrected
p < 0.05. The top dmCpGs on each chromosome
were annotated to the closest gene. For intergenic
dmCpGs, CpG name was used.
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associations between dmCpGs and gene pairs (see Supplementary Data 4
for each EWAS).

The detailed results are provided for overlap with known transcription
factor (TF) binding sites, association with other traits (Supplementary
results and Supplementary Data 5), KEGG signalling pathway (Fig. 6 and
Supplementary Data 7) and obesity-related traits in the GWAS catalogue
(Supplementary results and Supplementary Data 8).

Lookup for the effect of genetics onmethylation (meQTL): To identify
methylation as a consequence of known genetic variants, we searched for
dmCpGs using goDMC (designed for 450K n = 420,509 CpGs) and the
mQTL EPIC database (n = 724,499 dmCpGs). We found 698 (35%) and

1209 (60%) dmCpGs that showed meQTL association in the goDMC and
meQTLepic database (p < 0.05) respectively. Full details of thedmCpGsand
associated SNPs are provided in Supplementary Data 10A and B.

Look-up for imprinting and metastable epialleles: To investigate
whether the methylation sites associated with father’s preconception body
silhouettes were related to imprinted genes, we used the Geneimprint
database at geneimprint.com (accessed on 17 January 2025). We identified
47 dmCpGs mapped to 24 genes known to be imprinting genes. Some of
these genes were represented by more than one dmCpG, including 6
dmCpGs for BLCAP andWT1, 4 for VTRNA2-1 (MIR886), 3 for NAP1L5
and PTPRN2 and 2 each for MAGI2, MEG3, HOXA2, RASGRF1,

Fig. 4 | Correlation ofmethylation level with gene expression for dmCpGs located
on gene promoters across 6 tissues, as associated with change in father’s body
silhouettes. A Between voice break and age 30 years (FBS-V30c) (4 sites for

VTRNA2-1 and AGPAT2 and 2 sites for IFLTD1, ZNF695, ZNF600 and ZBTB16)
and B between voice break and age 8 years (FBS-V8c) (3 sites for NAP1L5 and
ATP5B). The dot size corresponds to the level of correlation.
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B4GALNT4 and ZFAT. Of these genes, 13, 10 and 1 were known to show
maternal, paternal and isoform-dependent allelic expression, respectively
(Supplementary Data 11).

In the comparison of our unique dmCpGs (n = 1962) with known
human metastable epialleles (n = 2408)59 we identified an overlap of 37
dmCpGs (Supplementary Data 10: metastable epialleles). In the EWAS
Atlas look-up, these dmCpGs showed known associations with paternal
uniparental disomy (n = 10), aging (n = 8) and Down’s syndrome (n = 7)
(Supplementary Data 11: EWASAtlas_metastableEpialelles).

Six dmCpGs were identified by bothmethods, 2 fromNAPL1L5 and 4
from VTRNA2-1; both genes are paternal imprinting genes and metastable
alleles (Supplementary Data 10: metastable imprint). In the EWASAtlas
NAPL1L5 (cg01026744) was linked with paternal uniparental disomy. For
VTRNA2-1, all four dmCpGs (cg00124993, cg06536614, cg25340688 and
cg26896946) were linked with Down’s syndrome, Parkinson’s disease and

breast cancer, while three were linked with gestational diabetes, Clopidogrel
resistance, and glycaemic response to glucagon-like peptide-1 analogue
therapy in type 2 diabetes mellitus (Supplementary Data 11:
ImprintedGene_EWAStraits).

Association of identified dmCpGs with offspring health out-
comes: Asthma, lung function and BMI
Asthma: In total, 119 dmCpGs associated with father´s body silhouette
across adolescence showed an association with offspring asthma (p < 0.05)
(Supplementary Data 12A). The paternal phenotypes showing the largest
number of dmCpGs associated with offspring asthma were in the EWAS
analysis of change in FBS from voice break to age 30 (FBS-V30c) n = 52
(2 sites from BCL11B). Other associations with offspring asthma included
dmCpGs associated with FBS at voice break in female offspring (FBS-Vf)
n = 19anddmCpGs associatedwith change inFBS fromage 8 to voice break

Response to lipid

Lipid metabolic process

Lipid biosynthetic process

Cellular response to lipid

Cellular lipid metabolic process

ZMIZ1
YES1

WNT9A
VAC14
TYMS
TPRA1
SYNJ1
STAT3

ST3GAL6
SOCS1
SOAT2

SERPINA12
RXRG

PRKAG2
PRDX2
PPP5C
PLD3
PIGT
PF4

NOS3
NOS2

NFE2L1
NCOR2
MLC1

MBTPS1
MBP

LPCAT4
LMF1
LBP
KIT

IGFBP7
IGF1R

HSD11B2
GPIHBP1

GNAI1
GJB2
GATA2
FOSL1

FES
FABP5
EGFR

DHRS11
CXCL2

CPT1A

COQ2
COL1A1
CHKA

CDIPT
CCNA2
AQP3

AKR7A2
AGPAT5

AGPAT2
ADCY5
ACSM6

ACSF3
ABO

Fig. 5 | Alluvial plot showing the top 5 lipid-related traits gene ontology terms and gene set for dmCpGs associated with father’s body silhouette between voice break
and age 30 years (FBS-V30c). Additional GO terms and related genes are provided in Supplementary Data 6.
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(FBS-V8c) n = 14 as well as dmCpGs related to switch in normal or over-
weight FBS status fromage 8 to voicebreak (FBS-V8rs) (2 sites fromBLCAP
and HIST1H2BE).

Lung function: Analysis of the 2005 dmCpGs in offspring associated
with father’s body silhouette phenotypes showed that methylation at 982

dmCpGs were associated with different measures of lung function in
offspring including pre-bronchodilator FEV1 (n = 151), FVC (n = 145),
and FEV1/FVC (n = 178), FVC post (n = 73), FEV1 post (n = 154) and
FEV1/FVC post (n = 281). Again, the FBS phenotype dmCpGs showing
the greatest number of associations with offspring lung function were

Fig. 6 | Network plot showing KEGG for dmCpGs. A Between voice break and age 8 years (FBS-V8c). B Between voice break and age 30 years (FBS-V30c). Detailed
pathways are included in Supplementary Data 7.
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with measures of FBS change across adolescence (Supplementary
Data 12B).

BMI: Across all the 2005 dmCpGs identified for all FBS phenotypes,
291 dmCpGs showed an association with offspring BMI (p < 0.05). The
strongest associationswith offspring BMIwere seen for dmCpGs associated
with a change in FBS between voice break and age 30 (FBS-V30c)where 110
dmCpGs showed nominal association including DIP2C (3 sites), NFYA;-
LOC221442 (2 sites) and IQSEC3 (2 sites). For dmCpGs associated with a
change in FBS from age 8 to voice break (FBS-V8c), there were n = 82
dmCpGs includingDIP2C (3 sites),NFYA;LOC221442 (2 sites) and IQSEC3
(2 sites) that were nominally associated with offspring BMI. In female off-
spring dmCpGs associated with FBS at voice break (FBS-Vf), there were
n = 53/370 (2 sites fromFERMT10) thatwere associatedwithoffspringBMI.

When categorising offspring BMI (Normal, Overweight and Obese)
225/2005 dmCpGs showed a nominal association. Detailed information is
provided in Supplementary Data 12C.

Offspring current BMI and current body silhouette
To establish whether offspring DNAmethylation associations with fathers’
body silhouette phenotypes were confounded by shared environmental
exposures, we conducted EWAS of offspring's current BMI and current
offspring body silhouette to compare shareddmCpGsbetween paternal and
child exposures.We found 182 dmCpGs associated with offspring BMI and
1 dmCpG associated with offspring body silhouette at FDR corrected
p < 0.05. The tophit for bothwas cg20217160whichmaps toLACTB.When
we compared the offspring’s top dmCpGs related to current BMI with the
top 100 dmCpGs associated with the current offspring's body silhouette, 31
dmCpGs were shared (Supplementary Fig. 2 and Supplementary Data 13).
We further compared the regression coefficient between current body sil-
houette and current BMI using all dmCpGs at nominal p < 0.05 (n = 24217
dmCpGs). The two regression coefficients showed a correlation r = 0.97
with p < 2.2e−16 (Supplementary Data 13 and Supplementary Fig. 2),
further confirming the validity of the body silhouette approach tomeasuring
offspring adiposity.However, of the 182 dmCpGs identified in the EWASof
offspring BMI only cg19640090 (ETV6) of 1962 unique dmCpGs were also
associated with FBS phenotypes, suggesting the relationship between off-
springDNAmethylation and FBS is not significantly confounded by shared
familial environment leading to high BMI in both generations.

We conducted an overlap look-up for our 1261 genes (mapped from
our 1962 dmCpGs) with obesity-related known genes in open targets
(EFO_001073) (n = 5884) and DiseGeNET (N = 2820) (accessed on 16/07/
2022). We identified overlap with 450 genes in either of the two databases
while 171 genes were reported by both databases. Our 811 genes (64.3% of
1261) are new reports (see Supplementary Fig. 3 and Supplementary
Data 14).

Discussion
In this study of DNA methylation in humans as related to father’s over-
weight body silhouettes during childhood, voice break, and young adult-
hood, we identified >2000 differentially methylated CpG sites and many
differentially methylated regions that were associated with father’s pre-
conception overweight body silhouettes. In particular, changes in the
father’s body silhouette status across voice break, from normal weight to an
overweight FBSor viceversa,were associatedwith alteredDNAmethylation
patterns in the offspring. This adds to the emerging understanding of the
pubertal transitionphase tobe aperiodof increasedvulnerability for lifestyle
influences to drive epigenetic modifications and impact early development
and phenotypic outcomes in offspring. This also lends support to our
previous study of epigenetic effects in offspring of father’s smoking which
was by far most pronounced if the father started smoking before age 15
years9 and by epidemiological studies identifying male prepuberty as a
critical exposure window for phenotypic outcomes in offspring2–7,9.

DmCpGs and DMRs were identified in genes related to insulin-reg-
ulation, glucose metabolism, obesity traits, adipogenesis, fat-metabolism,
diabetes, asthma, lung function, telomere maintenance, body form and

aging. In agreement with this, a number of identified dmCpGs and DMRs
associated with the father’s adolescence overweight were also associated
with phenotypic outcomes in the offspring such as asthma, lung function
and BMI. Our findings thus suggest that epigenetic mechanisms may be
important to explaining the associations of father’s overweight around voice
break with offspring asthma3,4 height2 and lung function2 and, in general, in
the transfer of paternal exposure effects to phenotypic changes in offspring.

Wehave previously established that overweight boys at the age of voice
breakmay impairnot only their ownhealthbut also thehealthof their future
offspring2–4. Supporting a role for DNA methylation driving these pheno-
type associations,methylation at CpGs in offspring associatedwith paternal
preconception body silhouettes was also associated with offspring BMI,
asthma, and lung function. Although, this could potentially reflect a con-
founding effect of shared familial environment or shared genetic suscept-
ibility between fathers and offspring for these health outcomes, only one site
(cg19640090 in ETV6) of the 182 dmCpGs identified in the EWAS of
offspring BMI was also among the 1962 unique dmCpGs associated with
Father’s body silhouette phenotypes. This suggests that the relationship
between offspring DNA methylation and the father’s preconception of
overweight body silhouette is not significantly confounded by shared
familial environment leading to high BMI in both generations. Similarly,
evidence from animal models8,60 where these confounding factors can be
controlled for, suggests a pre-conceptional influence on epigenetic (re)
programming events during gametogenesis may, at least in part, be a bio-
logical mechanism underpinning these associations.

Examining the dmCpGs in offspring associated with paternal pre-
conception body silhouettes may provide biological insight into the
mechanisms linking paternal obesity across puberty with offspring
phenotype.

The dmCpGs associatedwith father’s body silhouette at age 8 included
cg01945624 located to SH3TC1 (a gene known to be associated with low
lipoprotein), cg10366797 in HOXC4 (associated with waist-to-hip ratio
adjusted for body mass index61 and body shape index62) and cg08975641
mapped toTH2LCRR (a gene known to give higher susceptibility to asthma
and allergic disease by impact on Th2 cell activity63). Genomic loci in
SH3TC115 and HOXC417 have previously been shown to be differentially
methylated in the sperm of obese compared to normal-weight men.
Although the sites identified in our study seem to be novel, we suggest this
adds support to the conclusion that the methylation signals detected in our
study are indeed related to overweight.

The top hit for the father’s body silhouette at voice break was
cg11789449 in KCNJ10, which was hypermethylated in offspring whose
fathers had an overweight FBS status at voice break.KCNJ10 is important in
the permeability of pancreatic beta cells which release insulin, and is linked
with diabetes64. Several other dmCpGs associatedwith father’s FBS status at
voice break were also linked to genes with roles in adipogenesis: LIPG locus
(cg27113059) is known to be associated with lipid traits65, HDL cholesterol
level66, cardiovascular risk67 and reduced visceral adiposity68; LPCAT3
(cg07405570) is known to regulate triglyceride secretion69; PTDSS2
(cg24420089) is known to be correlated with fat mass and BMI70; TBC1D4
(cg11737070) regulates insulin-stimulated glucoseuptake71 and is associated
with severe obesity, insulin resistance72 and type 2 diabetes73,74; NCK2
(cg23653826) is involved in regulating adipogenesis75,76 and DNA methy-
lation sites located within NCK2 have also been demonstrated to be asso-
ciated with BMI and body composition in children77; FOXO3 (cg11949388)
regulates lipid accumulation and adipocyte inflammation in adipocytes78.
We also observed that themethylation pattern of cg25380281 in theWWP1
gene showed an increasing trend across body silhouette scales 1–5 (Fig. 1).
WWP1 regulates adipogenesis and metabolism79, enhances glucose
metabolism80 and protects against oxidative stress80. Interestingly, as for
father’s body silhouette at age 8, we also observed that several of the
annotatedgenes related to father’s body silhouette status at voice break, have
previously been reported to be differentially methylated in mature sper-
matozoaof overweightmen, suchas those foundbyDonkin andcolleagues15

(LIPG, PTDSS2, NCK2, FERMT, MOCS1, CD44, FNDC7, SLCGA13,
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ROBO3, GATA5, SPATA2L, B4GALNT4) and in a recent study by Keyhan
et al.17 (B4GALNT4,CNGA1,RASL11A,NCK2,KIAA0040). Our results add
support to the existing literature and to the growing evidence that BMI-
related alterations in spermDNAmethylation indeed can be transmitted to
the offspring11,16.

Many observational studies have shown sex-specific differences in
disease risk and measurement of obesity traits and BMI81. From our sex-
stratified EWAS analysis of the father’s body silhouette at voice break, we
identified different CpG sites for male and female offspring without any
overlap. In male offspring, associated dmCpGs were linked to known
obesity-related genes including B4GALNT4 (cg25020933, cg15762098),
ADCY9 (insulin secretion and thyroid hormone synthesis) (cg00610508),
ADRB1 (cg13848598) and ATP10D (cg14009629). All these genes have
previously been reported toharbour loci that are differentiallymethylated in
obese compared to lean men15,17. In a recent study, the imprinted gene
B4GALNT4 has also been associated with adiposity change, both during
infancy and in childhood years82. In female offspring, out of 308 dmCpGs,
20 genes were known to be related to obesity traits in GWAS catalogues.
FERMT1 (cg06444433, cg16271200 and cg16421850) and ESRRG
(cg03224209) have putative roles in glucose and fat metabolism. These
findings may suggest different underlying molecular mechanisms that can
explain the differences betweenmale and female obesity. TheDMRanalysis
in female offspring showed striking signals in obesity-related genes
including RNASE1 (which regulates feeding habit83 and childhood
obesity84), CPT1A (known to be involved in fatty acid oxidation)85, SSTR1
(growth hormone synthesis)86, DGKZ (lipid metabolism)87 HIF3A (child-
hoodobesity)88 andADAMTS16 (related to anorexia nervosa)89.Aside from,
SSTR1, also in the female strata, dmCpG annotated genes have been found
in sperm samples of overweight men15. HIF3A has also been shown to be
correlated with paternal BMI andDNAmethylation levels in offspring cord
blood, although in opposite directions in male and female offspring16.

Even more pronounced signals of association were identified in the
EWAS models of change in father’s body silhouette status across sexual
maturation.AmongdmCpGs associatedwith a change inFBSbetweenage8
and voice break (FBS-V8c), 3 sites (cg25607226, cg25890575, cg22991232)
mapped to PTPRN2 which is known to be required for normal accumula-
tionof secretory vesicles in thehippocampus, pituitary, andpancreatic islets.
It also plays a role in insulin secretion in response to glucose stimuli and is
known to be associated with both childhood90–93 and adult obesity15,17. Four
sites were located in NFYA (cg09580153, cg04346459, cg02167203,
cg06671660) which is related to pre-adipocyte maintenance and/or com-
mitment to adipogenesis94, energymetabolism, lipidmetabolism95,fatty acid
synthesis95 and leptin gene expression96. The tophit, cg20668887was located
in NOP10 which is involved in ribosomal biosynthesis and telomere
maintenance; shorter telomere length is known to be associated with
childhood obesity97, age-related disease98–100 and BMI101.

In the EWAS model investigating the switch in normal or overweight
FBS status between age 8 and voice break (FBS-V8rs), we identified PTCH1
which is known to have a role in pulmonary function102, adult body height103

and regulating obesity104. We also detected 7 dmCpGs located to GABRG1,
which is a gene known to be linked with childhood obesity, coronary artery
disease105 and adipogenesis106. We have reported many dmCpGs that were
associated with changes in the father’s body silhouette status from voice
break to age30 (FBS-V30c) including cg10460003 inSLC25A10, whichhas a
role in fatty acid synthesis107 and adipocytes insulin sensitivity108. Donkin
and colleagues also found that sperm DNA methylation patterns in these
genes were significantly different in obese men15.

Six dmCpGs were located in NUP210L, which has been shown to be
related to asthma and risk of obesity109 and diabetes110. We also identified 6
dmCpGs inTRPM4whichhas a role in vascular formation111 and is a known
target for diabetes112. Four sites mapped to AGPAT2 (cg15720535,
cg13422804, cg02703247, cg03571320) which is linked with
lipodystrophy113,114 and has a role in the synthesis of triglycerides and
phospholipids115,116. The methylation pattern in the dmCpGs sites
(cg04292615 and cg16848843) in ZNF600, a gene associated with

phospholipid level117,118 is shown in Fig. 4. Some of the dmCpGs associated
with father’s switch in normal or overweight FBS status between voice break
and age 30 (FBS-V30rs) were also linked to genes known to be associated
with regulating adipogenesis (SERPINA12 (cg01207931), ZNF423
(cg25096280) and ADAD2 (cg00225858)). Genomic loci in ZNF423 have
also been shown to be associated with BMI and altered sperm DNA
methylation in obese men15,17.

The DMR genes related to change in FBS are relevant to obesity.
PM20D1 is an enzyme that regulates N-fatty acyl amino acid (NAAs)
synthase/hydrolase by regulating the whole body's energy expenditure119,120.
It converts free fatty acids and free amino acids into NAA. It is a potential
anti-obesity target121 and is associated with cardiovascular risk119. NNAT
regulates metabolic status122 and has been shown to be differentially
methylated in sperm of obese men15,17 and to be correlated with paternal
BMI in offspring cord blood16.

We found that many of our identified dmCpGs were associated with
promoter regions that can influence gene expression, especially in primary
organs associated with lipid processing such as the liver. Some of the genes
that showed a strong correlation to a reduction in gene expression regulate
metabolism in obesity122, growth restriction and obesity123, food intake124

and development of childhood obesity. These include the imprinted genes
VTRNA2-1 (associated with childhood obesity)125NAP1L5 (related to body
fat percentage), andNNAT (linked to hyperglycaemia and obesity), and the
non-imprinted genes LEPROT (fat mass), TIMD4 (total cholesterol mea-
surement), ATF6B (phospholipid measurement), and SOAT2 (LDL, type 1
diabetes, cholesteryl ester measurement, familial lipoprotein lipase defi-
ciency and chylomicron retention disease).

Dysregulation of imprinted genes has been associated with obesity126,
which may also explain why several of the imprinted genes we have iden-
tified as related to father’s preconception body silhouettes have previously
been shown to be differentially-methylated in sperm of overweight/obese
compared to normal-weight men. These include NNAT, RASGRF1,
PTPRN2, CDH13, ZFAT, PAOX, CDA, NTM, CHST8, TACC2, DSCAML,
C10orf91, JPH3, KCNQ1DN15,PTPRN2, NAP1L5, WT1, HOXA2,
B4GALNT, CELF4, DLGAP217,15), MEG3 and NNAT16,21,127). Altered
methylation levels in Altered methylation levels in NNAT have also been
observed in the cord blood of offspring with obese fathers21, which further
supports the idea that epigenetic alterations at imprinted genes in the
gametes might be passed onto offspring.

Epigenetic dysregulation of the imprinting genes identified is not only
related to obesity but also to diseases including paternal uniparental disomy
(BLCAP (cg01466133, cg07156273, cg10981598, cg14469070, cg18433380,
cg23605670), NAP1L5128 (cg11300971, cg01026744),MEG3 (cg08698721),
NNAT (cg11174847) and Down’s syndrome (BLCAP (cg07156273,
cg10981598, cg14469070), VTRNA2-1 (cg00124993, cg06536614,
cg25340688and cg26896946)) in theEWASAtlas (SupplementaryData11).

Intriguingly, evidence suggests that VTRNA2-1 (paternally expressed)
is ametastable epiallele,with stablemethylation levels shown tobepreserved
across populations129. Thus, the mechanism by which DNA methylation
variability inVTRNA2-1 is inherited essentially appears to benon-genetic130.
In this study, 4 dmCpGs (cg26896946, cg25340688, cg00124993,
cg06536614) mapped to the promotor region of VTRNA2-1 showed a
correlation with reduced gene expression across five tissue types (Fig. 4A).
All four have been linked with Down’s syndrome, Parkinson’s disease,
breast cancer and pre- and post-lenalidomide treatment in patients with
myelodysplastic syndrome with isolated deletion (5q). Furthermore,
gestational diabetes, Clopidogrel resistance131, and glycaemic response to
glucagon-like peptide-1 analogue therapy in type 2 diabetes mellitus are
each associated with three of the four dmCpGs in VTRNA2-1132. It is also
known to be associated with BMI and insulin125 and sensitivity to peri-
conceptional environmental exposure133 and glucose metabolism134.

For NAP1L5 (also paternally expressed) 3 dmCpGs (cg19151808,
cg01026744, cg11300971) showed correlation with reduction in gene
expression. Of these, cg01026744 is a metastable allele linked with paternal
uniparental disomy (known to be associated with early-onset of obesity).
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Our gene set analysis identified key pathways known to contribute to
obesity pathogenesis including: Adipocytokine, AKT, PPAR, Wint, adipo-
genesis and lipid metabolism.

Of the dmCpGs (genes) associated with offspring health outcomes,
HIST1H2BE (2 sites) and TBC1D14 (2 sites) are known to be linked with
asthma severity135, PHF19 is linked with childhood asthma and SER-
PINB9P1 is a knownasthmadrug target.NOX3 is also anasthmagene136 and
SH3TC1 is linked with COPD137. Our top hits KCNJ10 and FERMT1 also
showed association with asthma. In the female EWAS, genes well known to
be linked with asthma include MUC1, RASGRF1 and IL9138. The lung
function-associated loci include dmCpGs from PTCH1 (cg22073802 and
cg16581009),MUC1, IL9 known to be related to pulmonary function102 and
SERPINA12139. For dmCpGs associated with offspring BMI, 2 or more sites
fromDIP2C,NFYA andQSEC3were identified both at change FBS-V8 and
FBS-V30.This suggests that theyplay akey role in body composition change
during childhood and adolescence. Furthermore, voice break-related
dmCpGs FERMT1, NCK2 (adipogenesis), MOCS1 and VSIG10 show a
clear separation between normal and overweight FBS, suggesting a linkwith
intergenerational BMI.

Themain strength of this study is that we have been able to specify the
timing of preconception overweight across childhood, voice break and early
adulthood in many fathers and have related this to rich data from their
offspring including DNA methylation measurements. The current and
retrospective body silhouettes have been validated against measured height
and weight at different time points in adulthood. Moreover, when we
compared the regression coefficients between the offspring's current body
silhouette and current BMI in the present study, they showed a correlation
r = 0.97 with p < 2.2e−16, which further confirms the validity of the body
silhouette approach to measure adiposity. Also, remarkably, many of the
annotated genes have previously been linked to obesity and BMI in epige-
netic studies on mature spermatozoa15–17 which adds credibility that the
differentiallymethylated sites identified are truly associatedwith the father’s
preconception body composition and overweight, thus represent potential
candidates for validation in other studies.

Wealso acknowledge that our study faces several limitations.The study
results are yet to be confirmed in an independent cohort; thus, our findings
need further validation. Furthermore, some of the EWASmodels assessing
timepoints and trajectories of FBS in our study have small sample sizes;
despite this, however, significant associations were still identified. Our off-
spring study population had a large age range, and the subjects come from
different study centres and therefore can be considered a heterogenous
population. However, we did include age and study centre as covariates in
the EWAS regression models to mitigate against these effects and in the
RHINESSA cohort. Regarding mothers’ overweight status in different time
periods and other preconception maternal factors, these were not con-
sidered true confounders in the analyses. Previous analyses found thesewere
not associatedwith adult offspring’s asthma3 and there isminimal overlap in
dmCpGs associated with maternal smoking and those associated with
paternal BDS (Supplementary Data 9). Potential reverse confounding can
however not be excluded.

This study reveals important associations between a father’s body sil-
houette across adolescence and offspringDNAmethylation, which strongly
supports the idea that a father’s preconception metabolic status can impact
the epigenome of his future offspring. Further, our study supports the view
that theperiod aroundpubertymaybe aparticularly susceptible agewindow
for such impact, a concept that may be a game-changer in public health
intervention strategies. The identifiedDNAmethylationpatterns are related
to key signalling pathways known to contribute to obesity pathogenesis and
related functions such as insulin regulation, glucose metabolism, adipo-
genesis, body form, telomere maintenance, asthma and lung function. Our
findings showed a 35.7% overlap with previously reported loci linked to
obesity, which suggests that about 64% of our genes are novel associations.
These sites have the potential to serve as predictive biomarkers for popu-
lation studies screening for metabolic and respiratory disease, and as ther-
apeutic targets for intervention.

Data availability
Supplementary Data 1–14 and summary statistics for epigenome-wide
association analyses are available from https://doi.org/10.5258/SOTON/
D3067. The full data cannot be shared openly in order to protect study
participants’ privacy, but an anonymised, de-identified version with limited
data can be made available on request to allow all results to be reproduced.
All requests should be directed to CS, the RHINESSA Study Principal
Investigator.

Code availability
The custom code used to generate graphics are available at GitHub repo-
sitory: https://github.com/negusse2025/EWAS-of-Father-s-adolescent-
body-silhouette-.git.
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