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ABSTRACT

Iterative learning control (ILC) is a well-established technique to successively im-
prove tracking accuracy for systems that repeatedly perform the same task. Most
current literature imposes constraints on the nature of the system, such as requiring
it to be full-rank, or inherently stable. This paper presents a generalised ILC frame-
work that can handle non-linear, unstable, MIMO systems with rank deficiency. This
involves the minimisation of a cost function that balances tracking performance and
input effort, extending previous approaches to include a ’robustness filter’ within
the optimisation. Gap metric analysis is then applied to examine the robustness of
the resulting system, with performance bounds derived for both serial and parallel
ILC architectures. A design procedure is presented that allows the designer to trans-
parently trade-off robustness and convergence properties. The design framework is
illustrated via application to the inverted pendulum problem, a classic example of
a highly nonlinear, unstable, and under-actuated system.

KEYWORDS
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1. Introduction

Iterative learning control (ILC) is a control method designed to enable high track-
ing accuracy when carrying out a task repeatedly over a fixed time interval. This is
achieved by adjusting the input on each iteration using error information gained from
one or more previous trials. First formulated in Arimoto, Kawamura, and Miyazaki
(1984), there now exist a wide breadth of algorithms specific to particular systems and
applications (Chi, Hou, Jin, & Wang, 2013; Hazarika & Swarup, 2020; Q.-y. Xu, Li,
Cheng, & Xiao, 2020; Yu, Hou, & Xu, 2018). A standard assumption of ILC is that
the tracking task is achievable, and dynamics are often constrained to be linear SISO
with relative degree one. Recent research has broadened this to remove the necessity
for the system to have full rank, thereby enabling general MIMO classes with rank
deficiency (Chen, 2022). ILC has been used extensively with non-linear systems, and
a popular approach involves linearising the system about a suitable operating point
and then applying linear ILC design. The use of a model improves convergence speed
when compared to model-free designs (Owens, 2016), however the mismatch between
the model dynamics and those of the true plant can result in instability. The standard
approach used in ILC to tackle modelling error is to introduce a so-called ‘robustness
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filter’ or ‘Q-filter’ which takes the form of a zero-phase filter applied to the control
input at every trial (D. Bristow, Tharayil, & Alleyne, 2006). This is used by the ma-
jority of practitioners, but no attempt to optimise its design (i.e. formulate the filter
design within an optimisation problem involving robust performance) has yet been
proposed.

The robustness of ILC to modelling error has been studied using a variety of tech-
niques (Ahn, Moore, & Chen, 2005; Donkers, van de Wijdeven, & Bosgra, 2008; Free-
man, Lewin, Rogers, & et.al., 2009; Hao, Liu, & Gao, 2019; Owens, Freeman, & Chu,
2014; Qian, Li, Asker, Zhang, & Xie, 2021; J. Xu & Xu, 2013). To avoid the assumption
of highly structured uncertainty, Bradley (2010) employed the gap metric, building on
the framework of Georgiou and Smith (1997). These results precisely bounded the dis-
tance between plant model and the true plant in order to maintain robust performance.
Results were generalised further in Freeman (2017) to include ILC in combination with
a feedback controller. However, these analyses make the assumption that the plant is
inherently stable, preventing their applicability to a wider range of practical appli-
cations. These include the control of quadcopters, as well as the inverted pendulum
problem, which has parallels between the control of both bipedal walking and a rocket
at takeoff.

The inverted pendulum or ‘cart-pole’ problem is a common benchmarking problem
and typically involves controlling a cart with a pendulum attached, by adjusting the
input to the wheels of the cart such that the pendulum remains in the upright position
and the cart tracks a fixed trajectory. This results in a system that is highly nonlinear,
under-actuated, and inherently unstable. There have been various attempts to apply
model-based ILC to the inverted pendulum problem (Binz & Aranovskiy, 2021; Meind],
Campe, Lehmann, & Seel, 2024; Precup et al., 2009; Zhan, 2010), however these rarely
consider control of both the pendulum angle and position. Those that do make use of
linearised models of the system for design without considering the implications that
this may have on system robustness.

This paper makes several contributions to robust ILC design theory and practice:
first it proposes a new design objective that is suitable for a wide class of MIMO, rank
deficient systems. It extends the work of Chen and Freeman (2019) by posing ILC as
an optimisation problem, but relaxes the requirement that tracking error be minimised
in order to yield far more robust solutions. This generalised ILC framework also lifts
restrictions on the form of the learning operator. Furthermore, it establishes that the
ubiquitous ‘Q-filter’ can be transparently formulated as the solution to an optimisation
problem. Secondly, robust performance results are derived by extending the work of
Freeman (2017) and Bradley (2010) to allow for application to unstable plants, and
both forms of ILC architecture (serial and parallel). A principled design procedure
is then proposed which enables the designer to transparently trade robustness with
convergence accuracy and speed for the first time. Finally, the design approach is
demonstrated via application to an inverted pendulum.

This paper is structured as follows. Section 2 introduces a new framework for ILC
convergence analysis which embeds a robustness filter. Section 3 then analyses the
robust performance of the system, before a design procedure is introduced in Section
4. This is then applied to the inverted pendulum system in Section 5, before Section
6 concludes the paper.



2. Problem formulation

Let G* represent the true, possibly non-linear system to be controlled, expressed in
the form of the discrete-time operator

G* 1310, T — 150, T7] : ug > yp. (1)

where ¢ and p are the number of inputs and outputs respectively. In ILC it is assumed
that the system repeatedly performs the same task, over a fixed time duration T < co.
Each iteration is termed a ‘trial’, and its signals are denoted by the subscript k € N,..
It is also assumed that the system is initiated from identical initial conditions. In
contrast to previous studies (Freeman, 2017), no assumption is placed on the stability
of this system, neither is G*(0) = 0 assumed. It is common practice in ILC to apply
a feedback controller around the system to ensure reasonable tracking performance
on the first trial, and mitigate the effects of noise and disturbance. The resulting
arrangement is shown in Figure 1, with feedback controller operator

K :ep — ug, (2)

where e, = yq—yx is the tracking error. It will be assumed that K satisfies G*K(0) = 0
and the closed loop [G*, K] is well-posed.
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Figure 1.: Feedback control system [G*, K.

The standard control problem is for the system output g to track a reference signal
yq € 15]0,T] as k € N, increases. In ILC, this is achieved by successively updating a
feedforward signal v, that is added to the closed-loop system. This can be realised in
one of two standard configurations (D. Bristow et al., 2006), as shown in Figure 2.
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Figure 2.: ILC with conventional a) serial and b) parallel feedback architectures. In
each case the closed loop [G*, K| will be denoted P*.

The standard ILC objective is to design vy, such that the update and output converge

as
lim v = Vo, lim v, = yq
k—o00 k—o00

which implies limg_ oo e = 0. In cases where this objective is feasible, it can be



achieved using the ILC update structure
Vk+1 :Q(Uk—l-Lek), k=0,1,--- vg =10 (3)
in which learning operator L is given by

L:15[0, 7] — 12[0,T) : e > vy, (4)
L2 12[0,T) — &[0, 7] : g, — v, (5)

for the parallel and serial cases respectively, both with L(0) = 0. The differing defini-
tions of L are due to the dimensions of v, being different in each case. Note however
that the generalised results outlined in this paper hold for both definitions of operator
L, and thus we will not explicitly differentiate between the two forms. The operator
Q is a so-called ‘robustness filter’ which is used to trade tracking performance for ro-
bustness. As previously discussed, ILC algorithms are often designed based on a linear
approximation

G 13[0,T] — 1[0, T] : ug, = (6)

to the true plant dynamics G* : I3[0, T] — 5[0, 7] : uy, — yg, as this simplifies conver-
gence properties and allows for the derivation of precise optimality conditions. These
linearisations are designed about a particular operating point, for example making use
of the Jacobian of the system, or using small angle approximations.

The following section now shows how L can be derived as the solution of a general
optimisation problem involving the linearised system G and feedback controller K. It
extends the framework of Chen and Freeman (2019) by adding the feedback controller
and generalising the ILC update law. Note that this section is concerned with the
design of controllers based on the linearised system G. The robustness of this controller
when applied to the true non-linear system G* is examined in Section 3.

2.1. Design framework

As discussed, the standard ILC objective (3) implies that the reference can be tracked
perfectly. Furthermore, existing updates generally assume that the corresponding con-
verged ILC input v, is unique. As a result, standard ILC algorithms cannot be used
with MIMO systems where ¢ # p, or those with restrictive constraints, e.g. non-fully
functional, rank deficient, input-output delayed or non-communicable dynamics. The
most general existing formulation, introduced in Chen and Freeman (2019), addressed
this by defining a generalised ILC objective involving both the tracking error and in-
put signal. The next definition extends this framework to add the feedback controller
K, enabling application to open-loop unstable systems.

Definition 2.1. Consider the configurations shown in either Figure 2a) or b), where
G* is replaced by nominal system G, and K is designed to stabilise the closed-loop
system [G, K|. The Generalised ILC Objective is to design operators L and @ in
the update form (3) such that ILC converges to minimise the tracking error norm, i.e

Jim gy, = v, (7)
—00

y* == argmin{J(yx) | J(y&) = lva — vel*}



In addition, the input signal must converge to the optimal solution

lim vy = v*, (8)
k—o0

v* = argmin{J (vk) | J(vi) = llvelliy, e ="}
where W is a symmetric positive definite weighting operator.

The Generalised ILC Objective allows for a trade-off between tracking performance
and input energy, with the balance depending on the weighting operator W that is
selected by the designer. It makes no assumptions regarding the system rank, allowing
it to be applied to over- or under-actuated systems. The following theorem now defines
the operators L and () that solve the Generalised ILC Objective.
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Figure 3.: ILC with a) serial and b) parallel feedback architectures. In each case the
closed loop [G, K] is denoted P.

Theorem 2.2. Denote the closed-loop system [G, K| by operator P, such that P :=
(I + GK)"'GK, P := (I + GK)™'G for the serial and parallel configurations re-
spectively, as shown in Figure 8. Then the Generalised ILC Objective is satisfied
if Q = I, and L is selected such that PL is symmetric positive semi-definite with
rank(PL) = rank(P) and p(PL) < 2. In particular, properties (7), (8) hold with the
weight W satisfying

L=w"lpT. (9)

Furthermore, the ILC sequence will achieve monotonic reduction in tracking error
norm, i.e.

ler+ill* < llexl® Yk € Ny (10)

Proof. Minimising error norm (7) for arbitrary y, requires that @Q = I. The require-
ment for L follows by adapting Theorem 1 of Chen (2022) and replacing G by each of
the closed loop system P representations. O

2.2. Robust design framework

Theorem 2.2 defines an optimal ILC update for a general class of system. Unfortunately
the requirement that an arbitrary reference y4 be tracked as closely as possible meant
that it was necessary to select ) = I, and it is well known that the resulting ILC



update form
Vg1 = Vg + Leg (11)

has very limited robustness. For example, it cannot tolerate a model phase uncertainty
of over 90 degrees in magnitude without becoming unstable (Freeman et al., 2009).
As previously stated, the common approach in ILC to address this is to choose @) as a
so-called ‘robustness filter’ which typically takes the form of zero-phase low pass filter
(Freeman et al., 2009). While robustness filter ) is routinely used in ILC, its design
has always been ad hoc, and based on the selection of a suitable cut-off frequency.
Its inclusion destroys the optimal tracking accuracy condition of (7). More generally,
the filter has never been incorporated in an optimisation problem which would allow
its selection to rigourously balance the competing demands of tracking, convergence
speed and robustness to model uncertainty.

The next result addresses this limitation by showing that the ILC update form (3)
is the iterative solution to a minimisation problem which balances both (weighted)
tracking accuracy and (weighted) control effort. In particular, it defines a new cost
function which takes the tracking requirement of (7) and adds the (weighted) control
effort term in (8). Since these are now in a single cost function, the minimisation
relaxes the requirement to primarily focus on accuracy. It will be shown in Section 3
that this has a substantial effect on overall robustness to modelling error when applied
to the true nonlinear system.

Definition 2.3. Consider the two possible ILC configurations shown in Figure 3a)
and b), where K is designed to stabilise the closed-loop systems P := (I + GK) 'GK,
P := (I + GK)~'G respectively. The Robust Generalised ILC Objective is to
design operators () and L in the update form (3) such that ILC converges to minimise
the combined tracking error norm and control effort norm, i.e

lim y, = y*, lim v, = v, (12)
k—o0 k—o0
(y*,v*) = arg min{J (y, vi) | J(yx, vk) =

lya — yell% + lvellZ}

where X and Z are symmetric positive definite and positive semi-definite weighting
operators respectively.

The following theorem now outlines how operators () and L can be designed to
satisfy this new robust objective.

Theorem 2.4. The Robust Generalised ILC Objective is satisfied if ILC learning op-
erator L is selected such that PL is symmetric positive semi-definite with rank(PL) =
rank(P), and Q is a multi-channel zero-phase filter satisfying

IQU = LP)|[ = ¢ <1. (13)

In particular, the input and output signals will converge to the optimal solution given



by (12) with the weighting operators Z and X given by

Z =1~ Qv
P'X =QL. (14)

Furthermore, the ILC sequence will achieve monotonic reduction in tracking error
norm, i.e.

leks1ll? < Clléxll? Vi € Ny (15)

where € = yqr — Yi 18 the tracking error with respect to the achievable component of
the reference yq, defined as

k-1

yar =ya— Y _(QU = PL))'(I = Q)(I + P)ya. (16)

i=0
Proof. Consider the serial case: substitute y, = P(v; + y4) and expand (12) as
I Yk ur) =llya — vellx + orllZ
=llya — P(or +ya) lIx + llorll%
Differentiating wrt v; and setting equal to zero yields
0=—P"X((I - P)yq— Puy) + Zuy,
=" =(Z+P'XP)'PTX(I - Py, (17)
Substituting and expanding robust update law (3) gives
U1 =Q(vk + L(ya — P(vk + ya)))
=(QU — LP))*vo+

k-1

S (QU — LP))'QL(I - Py, (18)

i=0
so that, since (13) holds by assumption and vy = 0, we get

v* = lim vy = (I — Q(I — LP)) *QL(I — P)ya. (19)

k—o00

Comparison with (17) then yields the required (14) relations, where existence of L is
guaranteed by the assumption that PL is symmetric positive semi-definite.
The corresponding error evolution is

er+1 = Yd — P(ya + Q(vi + Ley))
= yq — Pyq — PQuy — PQLey



and the structure of @) produces

ekt1 = Yd — Pya — QPvr, — QP Ley,
=ya— (I — Q)Pya — Qu. — QPLey,
=Qya— (I — Q)ya — (I —Q)Pyq — Qur — QPLey,
=Qex — (I = Q)ya — (I — Q)Pya — QPLey,
=Q( — PL)ey, — (I = Q)(I + P)ya. (20)

The achievable reference (16) satisfies the dynamic relation

(Ya = yak+1) = QU — PL)(ya — yar) — (I = Q)(I + P)ya, (21)

and subtracting from (20) gives
Err1 = QU — PL)é. (22)

Applying the triangle inequality and bound (13) gives (15) as required. The proof for
the parallel case is identical but with (v + yi) replaced with (vg + Kyg). O

Remark 1. The output of the closed-loop system converges to

P((I = Q( — LP))"'QL(I — P) + I)ya, (23)
P((I - QU — LP))"'QL(I — PK) + K)ya, (24)

y*
y*

for the serial and parallel case respectively, with corresponding error given by

eoo = (I = P((I — QI — LP))"'QL(I — P) + I))ya,
es = (I = P((I - QU — LP)) ' QL(I — PK) + K))ya. (25)

These solve the minimisation problem (12).

Theorem 2.4 enables the designer to trade ILC accuracy with control effort by
selecting L and @ to generate the required weights in (12). i.e. to realise the desired
weights X, Z, the designer must select

Q =1- 27
L=Q 'PTX. (26)
Remark 2. Setting Z = 0, yields the minimum error solution, with the new ILC

objective (12) reducing to the previous cost function form of (7). This is achieved
using the selection

Q=1,
L=P'X. (27)
If X is chosen as a scalar, § € R, this corresponds to the well-known gradient ILC

algorithm (see. e.g. Chen and Freeman (2019); Freeman et al. (2009)). The plant out-
put (23), (24) then equals y* = PPTy,, where P' is the pseudo-inverse of P (Chen &



Freeman, 2019), which is an orthogonal projection on the range of P. Unfortunately,
the gradient ILC algorithm is well-known to be slow to converge, which can be con-
firmed by inspecting the error convergence expression (15) and noting that the 2-norm
of QI — LP) = I — BPT P is approximately unity for many systems. To understand
why this is the case, the convergence rate at a specific frequency, w, can be ascertained
by computing the magnitude of this operator in the frequency domain for each input-
output pair, i.e. |1 — B|P(w)|?|. Since for most electromechanical systems |P(w)| — 0
as w — 00, it follows that |1 — 8| P(w)|?| — 1 so that convergence tends to zero at high
frequencies.

To increase the convergence rate at higher frequencies, it is therefore sensible
to select the weight X in cost function (12) to amplify high frequencies in inverse
proportion to their attenuation by the plant. This motivates choosing X = (PPT)_l,

1

which has a frequency magnification of 2R This generates the ILC update

term QL = B(I + ¢PPT)™!, which corresponds to inverse ILC (Owens et al.,
2014). Here 5 > 0 has been added to provide additional control over the con-
vergence at all frequencies. Further control over the convergence rate at higher
frequencies is obtained by introducing a parameter ¢ and modifying the weight to
X = (I + qPPT)~!. This has a frequency magnification of W and allows
the designer to reduce the amplification of the high-frequency components, thereby
providing more flexibility over the convergence rate at these frequencies. The ILC
update term QL = BPT(I + ¢qPPT)™! corresponds to the norm-optimal ILC
algorithm (Amann, Owens, & Rogers, 1996; D. A. Bristow, 2008). Again, the param-
eter [ allows for additional tuning of convergence speed over all frequency components.

As well as selecting X based on desired tracking and convergence properties,
the designer may want to choose weight Z to reduce high frequencies in the input
signal, since these are associated with actuator wear and noise corruption. This is
easily done by setting Z to realise a zero phase high-pass filter, with cut-off frequency
selected as the highest frequency component of the reference. This corresponds to Q
taking the form of a low-pass filter, as is traditionally implemented in standard ILC
to obtain improved robustness. Based on these requirements, Table 1 summarises
common design choices for the weights X and Z, together with the resulting operators
@, QL that are needed in the ILC update.

Table 1.: Design choices for weights in Theorem 2.4, with resulting ILC operators.

Desired properties Weights in cost function ILC update terms
Tracking magnifier | Input range X Z Q QL
1 all w 15} 0 1 BPT
W all w B(PPT)~! 0 1 BPT(PPT)~!
W all w B(I+qPPT)=1 |0 I BPT(I +qPPT)~1
1 w € [0, w,] B HPF | LPF | gPT
W w € [0, w] B(PPT)~! HPF | LPF | pPT(PPT)"!
W w € [0, w] B(I 4+ qPPT)~! | HPF | LPF | BPT(I +qPPT)~!

LPF denotes zero-phase low-pass filter, cutoff w,.
HPF denotes zero-phase high-pass filter, cutoff w.



2.3. Alternative robust design framework

Theorem 2.4 demonstrates that the ILC update law (3) converges to an optimal so-
lution of the expanded cost function (12), which comprises the weighted sum of the
norms of the error and the input vy to the closed-loop plant. However, in some cases
the designer may wish to minimise the input to the plant, ug, rather than the ILC
control signal. The following theorem therefore extends the above result to allow the
designer to exchange vy, for ug within cost function (12), hence balancing control effort
against tracking error.

Theorem 2.5. Suppose the plant G is full rank with p > q, and the reference satisfies
Qyda = yq. Then Theorem 2 holds with the cost function (12) replaced by

lim y =y, lim v = 0", (28)
k—o0 k—o0
(y",v") = argmin{J (yx, vk) | J(yk, vx) =

Iy — w5 + lluelliy}

provided the weights Z and W satisfy
Z=PI(G;H)TWG;'P (29)

where Gzl is any left inverse of plant operator G.

Proof. The assumptions on G mean there exists a symmetric operator A =
(G;1)TWG} . Using this operator, we can write W = GT(G;')TWG'G = GT AG.
Substituting this for W in cost function (28) gives

arg min{J (yx, vi.) | J(yk, vi) = llya — el % + lyell4}

since yr = Guyg. In the serial case this equates to

arg min{.J (yx, vg) | J(yg, vg) =
lya — vl X + 1P (v + ya) 3}

Setting Z = PT AP means this is equivalent to

arg min{J (yx, vx) | J(yg, vg) =
lya — will% + llve + vall %} (30)

whose solution is

v* =(I — Q(I — LP))"'QL(I — P)yq
— (I - QI — LP))" (I — Q)ya (31)

If Qyg = ya, then (I — Q)ys = 0 and this equals (17) which is the solution when
applying Theorem 2.4. The parallel case follows using similar steps. O

Theorem 2.5 allows the minimisation term |jv||% in cost function (12) to be ex-
changed for |lug||3, simply by setting Z equal to (29). Note that the condition of

10



Qyq = yq can be ensured through the selection of Z as a high-pass filter with a cut-off
frequency above those frequencies present in the reference, as was proposed in Table
1.

3. Robustness Analysis

The previous section derived performance criteria for ILC update law (3) when ap-
plied to the closed-loop system configurations shown in Figure 3. These involve the
approximate model G and resulting closed loop system [G, K], which was denoted
P. However in practice ILC will be applied to the true system shown in Figure 2, in
which G* is the non-linear plant and the closed loop system [G*, K] is denoted P*.
This section therefore derives conditions on the allowable mismatch that can exist
between P and P* whilst maintaining stability. The results derived in this section
extend those considered in Bradley (2010) and Freeman (2017) since they embed the
feedback controller, multiple configurations, and remove the requirement that G* is
stable.

The gap metric, 5: is used and is a common measure of distance between two
systems that appears widely in robust control (Qiu & Zhao, 2021). The seminal work
in Georgiou and Smith (1997) considered the standard feedback forms shown in Figure
4, in which H* is the true plant and H is a model of H* used to design a feedback
controller C.

a) b)
Uy Yo Ug Yo

M‘% u; o Vi it Vo EL{ M‘T,H Vi _}j}%

N”zcﬁ Mzc,ﬁ

Figure 4.: Closed loop feedback systems used within standard robust control theory:
a) true system [H*,C] and b) model system [H, C].

The framework employs external disturbances represented by signals g and ug, and
external biases represented by gy and u4g. Gap-based robustness analysis is concerned
with determining whether a controller designed for model H will stabilise the true
plant H*. To do this a projection operator is defined as the mapping from external to
internal signals of the model system [H, C], i.e.

ugp + Up Ul
II : _ — 32
Hjje (y0+y0> <y1> (32)
The biased norm! of this projection operator, ||I1j; / /C\\(%@O)T, characterises the per-

formance of the closed-loop [H,C], and the system is said to be gain-stable if it is
bounded. It was shown that the closed-loop system [H*, C] will be stable if

N * —1
6(H7H ) < HHH//C”(aO’gO)T' (33)
IThe biased norm is defined as ||w|ls = ||w — @|| for signal w and bias @

11



To apply this analysis, it is first necessary to add disturbance signals, ug %, Yok, to
the ILC systems shown in Figure 2, giving rise to the systems shown in Figure 5.
However, these systems do not coincide with the forms used in existing robustness
analysis (i.e. Figure 4) since ILC operates in a trial to trial feedforward manner, rather
than as conventional feedback system. This can be addressed however by formulating

a)

Ug i Yok
€ T4 Va
Ve =0(vit+Ley)
_____________ |
Yk I
| G” e
|
ol
P

Figure 5.: a) Serial and b) parallel architectures using true plant G* with disturbances
u0,k» Yo,k of compatible dimension.

the system dynamics so that each trial of the system is treated as a single sample.
It is also necessary to define H and C' to coincide with the two configurations under
consideration. Using these techniques it is then possible to apply the gap analysis to
ILC. The main robustness result is given in the next theorem.

Theorem 3.1. Let K be designed to stablise the nominal closed-loop feedback system
(G, K], which is denoted P. Let ILC operators L, Q be selected to satisfy the conditions
of Theorem 2.4. Suppose the controller is then applied to the true plant G*, in either of
the configurations shown in Figure 5, generating a closed-loop system [G*, K| denoted
P*. Then these systems are BIBO stable if the biased gap satisfies

3(P,P*) < bpy, (34)

where

e = 5)](1+ 1EPLEIRH) -

and the true plant signals are bounded with respect to their ideal values as

-

1+ 6(P, P*)
“1- bp.co (P, P*)

10, 9) "l )™ < Op, (w0, yo) T (36)

Proof. Adding disturbance signals, ug k, Yok, to the ILC updates shown in Figure 2,
results in the system shown in Figure 5. The system must then be arranged to resemble
a standard feedback structure, that operates continually with no resetting. This is done
by packaging each trial ¢ € [0,7] as a single sample k of a higher dimensional ‘lifted’
system. For the serial case, the signals appearing in Figure 5a) are therefore written

12
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as

vp = v(k), wp=wk), ey=e(k),
yr = y(k) € 50, T], uy = u(k) € 5[0, T] (37)

~—

and the corresponding lifted signal spaces are then defined as v, e, w,y € (50, 7] x N.
Define the lifted counterpart of trial-to-trial operator P as

P:B0,T]xN—=B0,T]xN:ww—y
y(k) = Puk) (39)

with P* defined similarly. Then defining the lifted counterpart of the ILC update as

C: 180, T x N—=10,T] xN:er v
cv(k+1) = Q(v(k) + Le(k)), v(0) = 0. (39)

and setting ug = ug ; means that Figure 5a) is equivalently represented as Figure 4a),

where H is substituted by P. Once the system is in this standard form, the results from

Bradley (2010) can be applied, which bound the projection operator HHP//C*H(_yi o)™

by the RHS of (34). Combining this with the bound

5P, P*) < Itp el e (40)
and with the result from Bradley (2010) that
6(P,P*) < 4(P,P") (41)

yields (34) as required.
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From Georgiou and Smith (1997), the projection norm of the true closed-loop system
can be bounded as
1+6(P, P*)

I p /el taa)™ < 1 p/ /6l (yaa)™ = : (42)
[ty OB ) T 6 ) 70 (P, P*)

which is then used to bound the internal signals of the system [P*, C] as

10,9) Ml )™ < 1Mpe el aga 1 (0, 50) T (43)

For the parallel case, the plant and controller of Figure 5b) must be augmented
as shown in Figure 6b) in order to assume the structure of Figure 4b). Stability of
the augmented system guarantees stability of the original since the latter is a special
case (up2 = 0). The augmented signals are wy, = (wlvk,wgyk)—r, v = (va,UZk)T and
uo k= (U0,1,ks uoygvk)—r, with the augmented lifted plant and ILC operators

P3P0, T] x N = B0, T] x N:w > y
Ly(k) = (I + GK) ' G(I, K)w(k),
C: B0, T] x N — l4*P[0,T] x N:ers v

0
culk+1) = ( QU(0, TYv(k) + Le(k)) ) , v(0) =0.

respectively, and P* defined similarly. Applying these signals and operators in relations
(32) - (41) leads to the same overall bound (34) as in the serial case. O

Condition (34) states that the ILC law stabilises a ‘ball’ of plants in the uncer-
tainty space centred about the nominal system model P. The ball’s radius increases
as ||QLPJ, ||QL| and ¢ are reduced, where these quantities each have a direct relation
to weighting operators X and Z through (14). This means Theorem 3.1 provides a
transparent method to design the ILC controller components to weigh performance

against robustness. Computation of the biased gap (P, P*) can be simplified using
the relation

" 7T Jwlloken, [[w]|

(44)

which is adapted from Freeman (2017). Here P*|,,, w := P*(w + wy) — P*(wy) denotes
the dynamics of P* about the operating point used on ILC trial k (where wi = v +yq,
wy = vg + Kyg for the serial and parallel cases respectively). It follows that the right-
hand side of (44) can replace g(P, P*) in (34), to provide a simple bound on the
accuracy of the linearisation used to approximate the true plant dynamics.

Furthermore, the bound (36) explicitly demonstrates the influence of the distur-
bances (as measured by ||(uo,%0) "||) and model uncertainties (as measured by the gap
0) on the tracking performance. Note in particular that the stability of the system, as
determined by (34), is unaffected by the size of the disturbance which purely affects
tracking accuracy.
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4. Design Procedure

The results in the previous sections show the competing demands of maximising
tracking accuracy (12), convergence speed (13) and robustness (34). The following
steps are proposed in order to allow the designer to reach a transparent trade-off.

Step 1 - feedback controller K: Given a desired feedback architecture, design
a feedback controller K to stabilise the true plant G* about an operating point.
Compute the corresponding linear model, G, about the desired operating point, as
well as closed-loop dynamics P.

Step 2 - identify desired properties: Based on the intended application, identify
the desired performance criteria, in terms of the range of frequencies that must
be tracked and how fast convergence must be at each frequency. Also identify the
required range of input frequencies that is permitted.

Step 3 - select weights X, Z: Identify suitable weighting operators that implement
the criteria in Step 2, with examples given in Table 1. Compute QL using (14).
Step 4 - select parameters (3, ¢: Compute the robustness margin (35) which
dictates the amount of model uncertainty that can be tolerated, and also governs
the effect of external disturbance on the tracking via (36). Tune parameter 8 (and ¢
if used) based on knowledge of how well the model approximates the true dynamics.
Larger values increase convergence speed, but reduce robustness.

Step 5 - fine-tuning: Apply ILC update (3) experimentally. If no evidence of in-
stability is observed, increase parameters in Step 4 to improve convergence speed
over all frequencies. Alternatively increase the magnitude of X over higher frequen-
cies where convergence is desirable in Step 3, or increase the range of permissive
inputs by increasing filter cut-off w.. If evidence of instability is observed, make the
opposite changes in Steps 3 and 4.

Implementation of the above procedure is now demonstrated through applica-
tion of the framework to a realistic simulation scenario.

5. Application of Framework

In order to demonstrate the effectiveness of this approach, control algorithms were
implemented on a simulation of the Quanser QUBE servo rotational pendulum, carried
out using MATLAB and Simulink. The full system model is given in Quanser (2014).
This system is highly non-linear, open-loop unstable, and under-actuated, making it
ideal for testing the proposed algorithm. A diagram of the system is shown in Figure 7.
The input u to this system is the voltage V,,, applied to the rotary arm, which actuates
the arm angle ¢; and thus alters pendulum angle g2. These two angles combine to give
the output, i.e. ¥ = [q1,¢2] . All angles are in degrees.

To better replicate real-world conditions, band-limited white noise (noise power
5e~7, SNR;1=37.3, SNR;=12.6) was added to the output angles, and the parameter
values were altered slightly from the nominal values used to construct model G, as
shown in Table 2. Initial conditions of ¢ = 0, ¢ = 0.0873, ¢ = 0.5, go = 0.5
were selected to simulate a slight deviation from the equilibrium position. Note that
the Quanser QUBE rotary encoder takes the initial angle ¢; to be zero regardless of
absolute position, which is reflected in the choice of ¢; = 0.

The intended task was to stabilise the pendulum to the upright position whilst the
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Figure 7.: The rotary inverted pendulum system, with parameters given in Table 2

Table 2.: Pendulum nominal and model parameter values

Parameter Nominal Model

M, Pendulum mass (kg) 0.024 0.026
M, Rotary arm mass (kg) 0.095 0.093
L, Rotary arm length (m) 0.085 0.08
L, Pendulum length (m) 0.129 0.134
J Moment of inertia Ml—g Ml—gz
D, Pendulum damping coefficient 0.0012 0.002
R,, Motor terminal resistance 8.4 9.8
k.,  Motor torque constant 0.042 0.03

rotary arm tracked a periodic sinusoidal signal, as given by

. Tt . Tt T
yalt) = [3o(sm(z) +sin( ). o} , tel0,T] (45)
where T' = 8. This reference contains multiple low-frequency components, and is sim-
ilar to that used in other ILC works, e.g. Zhang, Chu, and Shu (2022). The reference
is shown in Figure 8.

A parallel control structure was used of the form of Figure 2b), with two nested PID
loops acting as the internal stabilising feedback controller K. This control structure
allowed stabilisation of ¢o to be decoupled from tuning the performance of ¢, simpli-
fying the design procedure. The form of K is thus given by K = (K2K;, K1) where
K, Ky are the PID control operators. These controllers were heuristically tuned in
turn to achieve a stable closed-loop response, with resulting parameter values K, 1 =
186, K;1 = 542.7, Kq1 = 11.3, N1 = 100, K2 = 0.0155, K;2 = 0.00185, Kgo =
0.0204, Ny = 8.06. The full system setup is shown in Figure 9.
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Figure 9.: Parallel control implementation for the pendulum
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The non-linear model G was then linearised about the upright position (g2 = 0)
and combined with the feedback controller K (according to the configuration shown
in Figure 9) to generate the stable plant model P. A full summary of the linearisa-
tion procedure and construction of the system matrices is given in the supplementary
material, available at https://doi.org/10.5258/SOTON/D2914.

5.1. ILC design

First the design procedure was implemented without the robustness filter (Q = I), in
order to establish baseline performance. This corresponds to the choice Z = 0 within
Step 3, which therefore means ILC will seek to achieve the minimum possible tracking
error.

To satisfy Step 4, the choice X = (I 4+ ¢PPT)~! is made, where 8 > 0, ¢ > 0 are
scalar. This allows for a transparent trade-off between convergence speed at different
frequencies through parameter q. For large ¢ it follows that X places emphasis on
minimising the tracking error in the cost function (12) and also maximises conver-
gence speed in (13) since PTXP = LP approximates unity and ¢ approximates 0.
Unfortunately the terms ||LP|| and ||L|| in robustness margin (34) are large, so that
the system has a small robustness margin.

To address this, ¢ can be decreased: X then tends towards SI and the convergence
speed reduces while the robustness margin increases. The ILC algorithm produced
using X = B(I +¢qPPT)~! is the well-known norm-optimal ILC (Amann et al., 1996),
which has proven extremely popular within the ILC community for many years. Fur-
thermore, suitable choice of parameter ¢ generates both inverse (¢ > ﬁ) or gra-
dient (¢ = 0) ILC.

Figure 10a) compares the convergence performance for different ¢, with 5 = ¢ selected
to allow convergence rate at lower reference frequencies to be directly tuned.

Increasing ¢ improves the initial convergence, however, large values of ¢ cause in-
stability. This is exacerbated when implementing the algorithm on the system in the
presence of model uncertainty, when the parameter values are altered to those shown
in the right-hand column of Table 2. This is shown in Figure 10a) and b) and directly
confirms the trade-off between robustness and convergence speed (i.e. minimising (13)
and maximising (34)). Recall that larger values of ¢ lead to ¢ > ﬁ, resulting in

an algorithm that closely approximates inverse ILC (i.e. the 2nd row of Table 1 with
B = 1). As such, Figure 10 clearly demonstrates the improved convergence rate of
this parameter choice, as well as the decreased robustness resulting from increased
1L, L], <.

Figure 11 compares convergence when selecting ¢ = 0, with different values of g
(i.e. gradient ILC), in the presence of model uncertainty. Conclusions are the same
as those from Figure 10, in that larger values of § (corresponding to larger | X (w)]
over all frequencies) lead to instability. When comparing this performance to that of
Figure 10, slower convergence is observed with ¢ = 0, which backs up the theoretical
conclusions of Section 2.2.

Having confirmed the design procedure for Z = 0, the use of Z # 0 to improve
robust performance is now illustrated. In Step 3 of the design procedure a range of
cut-off frequencies w, > 7 are selected, with Z being implemented as a high-pass zero-
phase Butterworth filter in each case, consistent with the guidance given in the lower
half of Table 1. This corresponds to ) as a high-pass filter, with a range of frequencies
selected to allow the effectiveness of the approach to be examined. A filter order of 5
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Figure 10.: Convergence when using X = ¢(I + ¢PP")~!, Z = 0 with varying ¢ > 0
and a) no uncertainty, b) parametric model uncertainty (see Table 2)
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Figure 11.: Convergence when using X = (8, Z = 0 with parametric model uncertainty
(see Table 2)
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Figure 12.: a) error and b) input convergence with different filter cutoff frequencies,
using a value of ¢ = 6.7et3 with added model uncertainty

was selected to give a sharp cutoff.
Note that combining ILC update (3) and the expression for L in (14) results in

Vke1 = Qup + QLey, = Qui, + P Xey. (46)

This reveals that @) only operates on the previous control input, and hence filter Q
can be implemented easily using the matlab ‘filtfilt’ command, or using an FFT filter.
For operator X we use the same selection of X = (I + ¢PP")~! as previously, with
B = q = 6.7et3 corresponding to the case of instability for the uncertain system.

Figure 12a) demonstrates the error convergence when using the ILC designs in the
presence of parameter uncertainty. This reveals that lower cutoff frequencies (below
4Hz) are able to stabilise the system, but that these result in a greater steady-state
error, as predicted by (25). Furthermore, Figure 12b) demonstrates convergence of the
input signal to a constant value, as predicted by Theorem 2.5.

The increase in robustness observed when introducing the @ filter demonstrates the
robustness results in Section 3. This can be seen in Figure 13, which shows how the
inverse of the gain margin (i.e. the inverse of the right-hand side of (34)) increases with
increasing cutoff frequency, corresponding to a smaller bound on the gap 5 (P, P*) and
hence decreased robustness to model uncertainty.

6. Conclusions and future work

This paper has introduced a comprehensive new approach to the design of ILC algo-
rithms, allowing trade-off between error convergence and robustness in a systematic
way. This has been achieved by minimising a cost function, and using the non-linear
gap metric framework to analyse the resulting robustness properties. The approach
extended previous cost-function approaches through the inclusion of a feedback con-
troller and a @ filter, and the introduction of a transparent, unified design procedure
to implement the framework.
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The theory was demonstrated by simulation on an inverted pendulum, revealing
an increase in performance and decrease in robustness when increasing the learning
matrix L, with the reverse being true for the robustness filter Q. These findings align
with both the standard ILC literature and the theory presented in this paper. Having
validated the framework in a controlled numerical scenario where all aspects can be
defined and quantified, the next step will focus on implementing it on an experimental
system to demonstrate its practicality and effectiveness in the real-world.

Whilst the new design procedure involves tuning the matrices L and ) sequen-
tially, the framework could be expanded to directly use (12) in a quantitative manner.
Quantifying robustness and performance in terms of the two ILC operators opens
up the possibility of tuning L and ) such that robustness is optimised given certain
performance criteria, or vice-versa.

Longer term future work areas include relaxing the assumptions of a fixed reference
trajectory. Steps have already been made in this direction in the form of point-to-
point ILC and spatial ILC, which relax the tracking objective. These can be extended
and placed in the robustness framework introduced in this paper. Greater flexibility
in the task then allows the range of practical applications of ILC to be extended. A
prominent example is ILC-enabled stroke rehabilitation, where robotics or electrical
stimulation are controlled to assist human motion.
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