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ABSTRACT

Iterative learning control (ILC) is a well-established technique to successively improve tracking accu-
racy for systems that repeatedly perform the same task. Most current literature imposes constraints
on the nature of the system, such as requiring it to be full-rank, or inherently stable. This paper
presents a generalised ILC framework that can handle non-linear, unstable, MIMO systems with rank
deficiency. This involves the minimisation of a cost function that balances tracking performance
and input effort, extending previous approaches to include a ‘robustness filter’ within the optimi-
sation. Gap metric analysis is then applied to examine the robustness of the resulting system, with
performance bounds derived for both serial and parallel ILC architectures. A design procedure is
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presented that allows the designer to transparently trade-off robustness and convergence proper-
ties. The design framework is illustrated via application to the inverted pendulum problem, a classic
example of a highly nonlinear, unstable, and under-actuated system.

1. Introduction

Iterative learning control (ILC) is a control method
designed to enable high tracking accuracy when carry-
ing out a task repeatedly over a fixed time interval. This
is achieved by adjusting the input on each iteration using
error information gained from one or more previous tri-
als. First formulated in Arimoto et al. (1984), there now
exist a wide breadth of algorithms specific to particu-
lar systems and applications (Chi et al., 2013; Hazarika
& Swarup, 2020; Xu et al., 2020; Yu et al., 2018). A stan-
dard assumption of ILC is that the tracking task is achiev-
able, and dynamics are often constrained to be linear
SISO with relative degree one. Recent research has broad-
ened this to remove the necessity for the system to have
full rank, thereby enabling general MIMO classes with
rank deficiency (Chen, 2022). ILC has been used exten-
sively with non-linear systems, and a popular approach
involves linearising the system about a suitable operat-
ing point and then applying linear ILC design. The use
of a model improves convergence speed when compared
to model-free designs (Owens, 2016), however the mis-
match between the model dynamics and those of the
true plant can result in instability. The standard approach
used in ILC to tackle modelling error is to introduce a
so-called ‘robustness filter’ or ‘Q-filter’ which takes the
form of a zero-phase filter applied to the control input
at every trial (Bristow et al., 2006). This is used by the
majority of practitioners, but no attempt to optimise its

design (i.e. formulate the filter design within an optimisa-
tion problem involving robust performance) has yet been
proposed.

The robustness of ILC to modelling error has been
studied using a variety of techniques (Ahn et al., 2005;
Donkers etal., 2008; Freeman et al., 2009; Hao et al., 2019;
Owens et al.,, 2014; Qian et al., 2021; Xu & Xu, 2013).
To avoid the assumption of highly structured uncertainty,
Bradley (2010) employed the gap metric, building on the
framework of Georgiou and Smith (1997). These results
precisely bounded the distance between plant model and
the true plant in order to maintain robust performance.
Results were generalised further in Freeman (2017) to
include ILC in combination with a feedback controller.
However, these analyses make the assumption that the
plant is inherently stable, preventing their applicability to
a wider range of practical applications. These include the
control of quadcopters, as well as the inverted pendulum
problem, which has parallels between the control of both
bipedal walking and a rocket at takeoff.

The inverted pendulum or ‘cart-pole’ problem is a
common benchmarking problem and typically involves
controlling a cart with a pendulum attached, by adjusting
the input to the wheels of the cart such that the pendulum
remains in the upright position and the cart tracks a fixed
trajectory. This results in a system that is highly nonlin-
ear, under-actuated, and inherently unstable. There have
been various attempts to apply model-based ILC to the
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inverted pendulum problem (Binz & Aranovskiy, 2021;
Meindl et al., 2024; Precup et al., 2009; Zhan, 2010), how-
ever these rarely consider control of both the pendulum
angle and position. Those that do make use of linearised
models of the system for design without considering the
implications that this may have on system robustness.

This paper makes several contributions to robust ILC
design theory and practice: first it proposes a new design
objective that is suitable for a wide class of MIMO, rank
deficient systems. It extends the work of Chen and Free-
man (2019) by posing ILC as an optimisation problem,
but relaxes the requirement that tracking error be min-
imised in order to yield far more robust solutions. This
generalised ILC framework also lifts restrictions on the
form of the learning operator. Furthermore, it establishes
that the ubiquitous ‘Q-filter’ can be transparently formu-
lated as the solution to an optimisation problem. Sec-
ondly, robust performance results are derived by extend-
ing the work of Bradley (2010) and Freeman (2017) to
allow for application to unstable plants, and both forms
of ILC architecture (serial and parallel). A principled
design procedure is then proposed which enables the
designer to transparently trade robustness with conver-
gence accuracy and speed for the first time. Finally, the
design approach is demonstrated via application to an
inverted pendulum.

This paper is structured as follows. Section 2 intro-
duces a new framework for ILC convergence analysis
which embeds a robustness filter. Section 3 then analy-
ses the robust performance of the system, before a design
procedure is introduced in Section 4. This is then applied
to the inverted pendulum system in Section 5, before
Section 6 concludes the paper.

2. Problem formulation

Let G* represent the true, possibly non-linear system to
be controlled, expressed in the form of the discrete-time
operator

G*: 100, T] = E[0,T] : u = yp. (1)

where g and p are the number of inputs and outputs
respectively. In ILC it is assumed that the system repeat-
edly performs the same task, over a fixed time duration
T < oo. Each iteration is termed a ‘trial’, and its signals
are denoted by the subscript k € N,. It is also assumed
that the system is initiated from identical initial condi-
tions. In contrast to previous studies (Freeman, 2017),
no assumption is placed on the stability of this system,
neither is G*(0) = 0 assumed. It is common practice in
ILC to apply a feedback controller around the system
to ensure reasonable tracking performance on the first
trial, and mitigate the effects of noise and disturbance.

Ya + €k Uy * Yk
ki K y G >

Figure 1. Feedback control system [G*, K].

The resulting arrangement is shown in Figure 1, with
feedback controller operator

K: e > uy, (2)

where ex = yg — yx is the tracking error. It will be
assumed that K satisfies G*K(0) = 0 and the closed loop
[G*, K] is well-posed.

The standard control problem is for the system out-
put yi to track a reference signal y; € lg [0,T]ask e N1
increases. In ILC, this is achieved by successively updat-
ing a feedforward signal v, that is added to the closed-
loop system. This can be realised in one of two standard
configurations (Bristow et al., 2006), as shown in Figure 2.

The standard ILC objective is to design v, such that
the update and output converge as

lim vy = Voo, lim yx = yg

k— o0 k— o0

which implies limy_, » ex = 0. In cases where this objec-
tive is feasible, it can be achieved using the ILC update

structure

Virr = Qv + Lep), k=0,1,...v9=0 (3)

in which learning operator L is given by
L:E[0,T] = H[0,T] : ex = vk (4)
L:B0,T] = B[0,T] : e > v, (5)

for the parallel and serial cases respectively, both with
L(0) = 0. The differing definitions of L are due to the
dimensions of vk being different in each case. Note how-
ever that the generalised results outlined in this paper
hold for both definitions of operator L, and thus we will
not explicitly differentiate between the two forms. The
operator Q is a so-called ‘robustness filter’ which is used
to trade tracking performance for robustness. As previ-
ously discussed, ILC algorithms are often designed based
on a linear approximation

G:100,T] = Bl0,T] : u > yi (6)

to the true plant dynamics G*: lg [0,T] —» lg[O, T]:
ux > Yk, as this simplifies convergence properties and
allows for the derivation of precise optimality conditions.
These linearisations are designed about a particular oper-
ating point, for example making use of the Jacobian of the
system, or using small angle approximations.
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Figure 2. ILC with conventional (a) serial and (b) parallel feedback architectures. In each case the closed loop [G*, K] will be denoted P*.

The following section now shows how L can be derived
as the solution of a general optimisation problem involv-
ing the linearised system G and feedback controller K. It
extends the framework of Chen and Freeman (2019) by
adding the feedback controller and generalising the ILC
update law. Note that this section is concerned with the
design of controllers based on the linearised system G.
The robustness of this controller when applied to the true
non-linear system G* is examined in Section 3.

2.1 Design framework

As discussed, the standard ILC objective (3) implies
that the reference can be tracked perfectly. Furthermore,
existing updates generally assume that the corresponding
converged ILC input v is unique. As a result, stan-
dard ILC algorithms cannot be used with MIMO sys-
tems where g # p, or those with restrictive constraints,
e.g. non-fully functional, rank deficient, input-output
delayed or non-communicable dynamics. The most gen-
eral existing formulation, introduced in Chen and Free-
man (2019), addressed this by defining a generalised ILC
objective involving both the tracking error and input
signal. The next definition extends this framework to
add the feedback controller K, enabling application to
open-loop unstable systems.

Definition 2.1: Consider the configurations shown in
either Figure 2(a,b), where G* is replaced by nominal
system G, and K is designed to stabilise the closed-loop
system [G, K]. The Generalised ILC Objective is to design
operators L and Q in the update form (3) such that ILC
converges to minimise the tracking error norm, i.e

k— o0
y* = argmin{J(ve) JOx) = lya =y} ()

In addition, the input signal must converge to the optimal
solution

lim v, = v,
k— 00

v = argmin{J(ve) | J(v) = [kl ye =¥} (8)

where W is a symmetric positive definite weighting oper-
ator.

The Generalised ILC Objective allows for a trade-off
between tracking performance and input energy, with the
balance depending on the weighting operator W that is
selected by the designer. It makes no assumptions regard-
ing the system rank, allowing it to be applied to over-
or under-actuated systems. The following theorem now
defines the operators L and Q that solve the Generalised
ILC Objective.

Theorem 2.2: Denote the closed-loop system [G,K] by
operator P, such that P:= (I+ GK)"!GK, P:= (I +
GK)™!G for the serial and parallel configurations respec-
tively, as shown in Figure 3. Then the Generalised ILC
Objective is satisfied if Q = I, and L is selected such that
PL is symmetric positive semi-definite with rank(PL) =
rank(P) and p(PL) < 2. In particular, properties (7), (8)
hold with the weight W satisfying

L=w"lpT. 9)

Furthermore, the ILC sequence will achieve monotonic
reduction in tracking error norm, i.e.

lex+1ll® < llexll* ¥V ke Ny. (10)

Proof: Minimising error norm (7) for arbitrary yy
requires that Q = I. The requirement for L follows by
adapting Theorem 1 of Chen (2022) and replacing G by
each of the closed loop system P representations. |

2.2 Robust design framework

Theorem 2.2 defines an optimal ILC update for a gen-
eral class of system. Unfortunately the requirement that
an arbitrary reference y,; be tracked as closely as possible
meant that it was necessary to select Q = I, and it is well
known that the resulting ILC update form

Vi+1 = Vi + Lek (11)
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Figure 3. ILC with (a) serial and (b) parallel feedback architectures. In each case the closed loop [G, K] is denoted P.

has very limited robustness. For example, it cannot toler-
ate a model phase uncertainty of over 90 degrees in mag-
nitude without becoming unstable (Freeman et al., 2009).
As previously stated, the common approach in ILC to
address this is to choose Q as a so-called ‘robustness fil-
ter’ which typically takes the form of zero-phase low pass
filter (Freeman et al., 2009). While robustness filter Q is
routinely used in ILC, its design has always been ad hoc,
and based on the selection of a suitable cut-off frequency.
Its inclusion destroys the optimal tracking accuracy con-
dition of (7). More generally, the filter has never been
incorporated in an optimisation problem which would
allow its selection to rigourously balance the competing
demands of tracking, convergence speed and robustness
to model uncertainty.

The next result addresses this limitation by showing
that the ILC update form (3) is the iterative solution to
a minimisation problem which balances both (weighted)
tracking accuracy and (weighted) control effort. In par-
ticular, it defines a new cost function which takes the
tracking requirement of (7) and adds the (weighted) con-
trol effort term in (8). Since these are now in a single cost
function, the minimisation relaxes the requirement to
primarily focus on accuracy. It will be shown in Section 3
that this has a substantial effect on overall robustness
to modelling error when applied to the true nonlinear
system.

Definition 2.3: Consider the two possible ILC config-
urations shown in Figure 3(a,b), where K is designed
to stabilise the closed-loop systems P := (I + GK )~IGK,
P := (I + GK)~!G respectively. The Robust Generalised
ILC Objective is to design operators Q and L in the update
form (3) such that ILC converges to minimise the com-
bined tracking error norm and control effort norm, i.e

lim yr =y, lim v =7,
k— o0 k— o0
", v*) = argmin{J (v, vi) | ] (k> vk)
= llya — yell% + llvell 3} (12)

where X and Z are symmetric positive definite and posi-
tive semi-definite weighting operators respectively.

The following theorem now outlines how operators Q
and L can be designed to satisfy this new robust objective.

Theorem 2.4: The Robust Generalised ILC Objective is
satisfied if ILC learning operator L is selected such that
PL is symmetric positive semi-definite with rank(PL) =
rank(P), and Q is a multi-channel zero-phase filter satis-

fying
IQU~—-LP)||:=¢ < 1L (13)

In particular, the input and output signals will converge
to the optimal solution given by (12) with the weighting
operators Z and X given by

Z=1-Q,
PTX =QL. (14)

Furthermore, the ILC sequence will achieve monotonic
reduction in tracking error norm, i.e.

lek+1ll® < Cllekll* Yk e Ny. (15)

where ex = yax — Yk is the tracking error with respect to
the achievable component of the reference y,, defined as

k-1

Yax =ya— D_(QU—PL)'(I = QU +P)ys (16)

i=0

Proof: Consider the serial case: substitute yy = P(v +
y4) and expand (12) as

JO k) = llya — yell% + IvllZ
= [lya — POk + y) % + Ilvill%

Differentiating wrt vy and setting equal to zero yields

0 = —P"X((I — P)yg — Pvy) + Zn;
= Vv'=Z+P'XP)7'PTX(1I - Py, (17)

Substituting and expanding robust update law (3) gives

Vi1 = Q(vk + L(ya — P(vk + y4)))



= (QU - LP))*v
k—1

+ D (QU —LP)'QLU — P)ya  (18)

i=0

so that, since (13) holds by assumption and vy = 0, we get
v* = lim v = (I — QU — LP)) QLU — P)y4. (19)
k— 00

Comparison with (17) then yields the required (14) rela-
tions, where existence of L is guaranteed by the assump-
tion that PL is symmetric positive semi-definite. The
corresponding error evolution is

ect1 = Yd — P(ya + Q(vk + Le))
= y4 — Pyq — PQvr — PQLe
and the structure of Q produces
ek+1 = Yd — Pya — QPvr — QPLey
=ya— I — QPya — Qyr — QPLex
= Qi — I —Qyis— I — QPys— Qyr — QPLe
= Qex — (I — Qya — (I — QPyas — QPLey
= QU —PL)ex — (I = QU + P)ya. (20)
The achievable reference (16) satisfies the dynamic rela-

tion

(Va — yak+1) = QU — PL)(yq — yax)
— (I —-QU+ P)ya, (21)

and subtracting from (20) gives

ex+1 = QU — PL)ey. (22)

Applying the triangle inequality and bound (13) gives
(15) as required. The proof for the parallel case is identical
but with (vk + yi) replaced with (v + Kyj). [ |

Remark 2.1: The output of the closed-loop system con-
verges to

y* =P(I—QU—-LP)'QLU—P) +Dys,  (23)
y* = P((I— QU —LP))"'QL(I — PK) + K)y4, (24)

for the serial and parallel case respectively, with corre-
sponding error given by

e = (I — P((I — QU — LP)) 'QL(I — P) + D)y,

eso = (I — P((I = QU — LP))"'QLU — PK) + K))ya.
(25)

These solve the minimisation problem (12).
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Theorem 2.4 enables the designer to trade ILC accu-
racy with control effort by selecting L and Q to generate
the required weights in (12). i.e. to realise the desired
weights X, Z, the designer must select

Q=I1-2
L=Q'PTx. (26)

Remark 2.2: Setting Z = 0, yields the minimum error
solution, with the new ILC objective (12) reducing to the
previous cost function form of (7). This is achieved using
the selection

Q = I)
L=P'X. (27)

If X is chosen as a scalar, f € Ry, this corresponds to
the well-known gradient ILC algorithm (see. e.g. Chen
& Freeman, 2019; Freeman et al., 2009). The plant out-
put (23), (24) then equals y* = PPTyd, where P' is the
pseudo-inverse of P (Chen & Freeman, 2019), which is
an orthogonal projection on the range of P. Unfortu-
nately, the gradient ILC algorithm is well-known to be
slow to converge, which can be confirmed by inspect-
ing the error convergence expression (15) and noting
that the 2-norm of Q(I — LP) =1 — PP is approxi-
mately unity for many systems. To understand why this is
the case, the convergence rate at a specific frequency, w,
can be ascertained by computing the magnitude of this
operator in the frequency domain for each input-output
pair, i.e. |1 — B|P(w)|?|. Since for most electromechani-
cal systems |P(w)| = 0 as @ — 00, it follows that |1 —
BIP(®)]*| = 1 so that convergence tends to zero at high
frequencies.

To increase the convergence rate at higher frequen-
cies, it is therefore sensible to select the weight X in cost
function (12) to amplify high frequencies in inverse pro-
portion to their attenuation by the plant. This motivates
choosing X = (PPT)~!, which has a frequency magni-

fication of W. This generates the ILC update term

QL = (I + qPPT)~!, which corresponds to inverse ILC
(Owens et al., 2014). Here f > 0 has been added to
provide additional control over the convergence at all fre-
quencies. Further control over the convergence rate at
higher frequencies is obtained by introducing a param-
eter g and modifying the weight to X = (I 4+ qPPT)~L.
This has a frequency magnification of W and
allows the designer to reduce the amplification of the
high-frequency components, thereby providing more
flexibility over the convergence rate at these frequen-
cies. The ILC update term QL = SPT (I + qPP")~! cor-
responds to the norm-optimal ILC algorithm (Amann
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Table 1. Design choices for weights in Theorem 2.4, with resulting ILC operators.

Desired properties

Weights in cost function

ILC update terms

Tracking magnifier Input range X V4 Q QL
1 allw B 0 I pPT
1
- allw (PPT)~T 0 I PT(PPT)~!
P / /
9 Ty-1 T Ty—1
— allw I+ qPP 0 I PT(I+ qPP
TraPWE B+ qgPP") BP (I + qPPT)
1 w e [0,w] B HPF' LPF? pPT
1
— w e [0, w(] BPPTT HPF LPF BPT(PPT)T
[P(w)]
9 Ty-1 T Ty—1
—_ w € [0, w, | + gPP HPF LPF P' (I + gPP
TP [0, wc] B+ qPP") BP (I + qPP")

Note: HPF denotes zero-phase high-pass filter, cutoff w,.

2LPF denotes zero-phase low-pass filter, cutoff w.

etal., 1996; Bristow, 2008). Again, the parameter £ allows
for additional tuning of convergence speed over all fre-
quency components.

As well as selecting X based on desired tracking and
convergence properties, the designer may want to choose
weight Z to reduce high frequencies in the input sig-
nal, since these are associated with actuator wear and
noise corruption. This is easily done by setting Z to
realise a zero phase high-pass filter, with cut-off fre-
quency selected as the highest frequency component of
the reference. This corresponds to Q taking the form
of a low-pass filter, as is traditionally implemented in
standard ILC to obtain improved robustness. Based on
these requirements, Table 1 summarises common design
choices for the weights X and Z, together with the result-
ing operators Q, QL that are needed in the ILC update.

2.3 Alternative robust design framework

Theorem 2.4 demonstrates that the ILC update law (3)
converges to an optimal solution of the expanded cost
function (12), which comprises the weighted sum of the
norms of the error and the input v, to the closed-loop
plant. However, in some cases the designer may wish to
minimise the input to the plant, u, rather than the ILC
control signal. The following theorem therefore extends
the above result to allow the designer to exchange vy
for uy within cost function (12), hence balancing control
effort against tracking error.

Theorem 2.5: Suppose the plant G is full rank with p >
g, and the reference satisfies Qyq = y4. Then Theorem 2
holds with the cost function (12) replaced by

1. = *)
koo £V
", v*) = argmin{J (y, vi) | J (k> vk)

= llya — yllx + lulliy)

lim y = y*,
k— o0

(28)

provided the weights Z and W satisfy

Z =P (G H)TwG,'p (29)

where GL_1 is any left inverse of plant operator G.

Proof: The assumptions on G mean there exists a sym-
metric operator A = (GL_I)—r WGL_I. Using this operator,
we can write W = G (GL_I)TWGL_lG = G AG. Substi-
tuting this for W in cost function (28) gives

argmin{J (v, vi) T (o vi) = llya = yell% + llyell )

since yx = Gug. In the serial case this equates to

arg min{J (v, vi) | ] (V&> vi)
= llya — yell% + 1Pk + ya) 113}

Setting Z = PT AP means this is equivalent to

arg min{J (v, vi) | J 7k vi) = llya — yillx + vk + yall%}
(30)

whose solution is

v = (I— QU —LP))"'QL(I — P)y4

—(I-QUI-LP)'I- Q4 (31)

If Qyzs = y4, then (I — Q)ys =0 and this equals (17)
which is the solution when applying Theorem 2.4. The
parallel case follows using similar steps. |

Theorem 2.5 allows the minimisation term ||vg|| % in
cost function (12) to be exchanged for ||ul|%, simply
by setting Z equal to (29). Note that the condition of
Qy4 = yq can be ensured through the selection of Z as
a high-pass filter with a cut-off frequency above those
frequencies present in the reference, as was proposed in
Table 1.



3. Robustness analysis

The previous section derived performance criteria for
ILC update law (3) when applied to the closed-loop sys-
tem configurations shown in Figure 3. These involve the
approximate model G and resulting closed loop system
[G, K], which was denoted P. However in practice ILC
will be applied to the true system shown in Figure 2,
in which G* is the non-linear plant and the closed loop
system [G*, K] is denoted P*. This section therefore
derives conditions on the allowable mismatch that can
exist between P and P* whilst maintaining stability. The
results derived in this section extend those considered in
Bradley (2010) and Freeman (2017) since they embed the
feedback controller, multiple configurations, and remove
the requirement that G* is stable.

The gap metric, 3, is used and is a common measure
of distance between two systems that appears widely in
robust control (Qiu & Zhao, 2021). The seminal work
in Georgiou and Smith (1997) considered the standard
feedback forms shown in Figure 4, in which H* is the true
plant and H is a model of H* used to design a feedback
controller C.

The framework employs external disturbances rep-
resented by signals yp and u, and external biases rep-
resented by 3, and #g. Gap-based robustness analy-
sis is concerned with determining whether a controller
designed for model H will stabilise the true plant H*.
To do this a projection operator is defined as the map-
ping from external to internal signals of the model system

[H,C],ie
ug + o up
I1 : _ -
/¢ ()/o +)/o) (}’1)

The biased norm! of this projection operator,
||1'[H//c||(ﬁ0’}—,0)r, characterises the performance of the
closed-loop [H,C], and the system is said to be gain-
stable if it is bounded. It was shown that the closed-loop
system [H*, C] will be stable if

(32)

O(H,H") < I Mhy/cllg 5 v (33)

To apply this analysis, it is first necessary to add dis-
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Figure 2, giving rise to the systems shown in Figure 5.
However, these systems do not coincide with the forms
used in existing robustness analysis (i.e. Figure 4) since
ILC operates in a trial to trial feedforward manner, rather
than as conventional feedback system.

This can be addressed however by formulating the sys-
tem dynamics so that each trial of the system is treated
as a single sample. It is also necessary to define H and C
to coincide with the two configurations under considera-
tion. Using these techniques it is then possible to apply
the gap analysis to ILC. The main robustness result is
given in the next theorem.

Theorem 3.1: Let K be designed to stablise the nominal
closed-loop feedback system |G, K], which is denoted P.
Let ILC operators L, Q be selected to satisfy the conditions
of Theorem 2.4. Suppose the controller is then applied to
the true plant G*, in either of the configurations shown in
Figure 5, generating a closed-loop system [G*, K] denoted
P*. Then these systems are BIBO stable if the biased gap
satisfies

O(P,P*) < by, (34)

where
|QLP| + IIQLII) (35)

o= (2] (5

and the true plant signals are bounded with respect to their
ideal values as

14 6(P, P*) T

15 3) Tl yyT < bpc (40 y0)

"1 — bpcd(P, P*)
(36)

Proof: Adding disturbance signals, 1k, Yo k> to the ILC
updates shown in Figure 2, results in the system shown in
Figure 5. The system must then be arranged to resemble
a standard feedback structure, that operates continually
with no resetting. This is done by packaging each trial
t € [0, T] as a single sample k of a higher dimensional
‘lifted” system. For the serial case, the signals appearing
in Figure 5(a) are therefore written as

turbance signals, ug k, ¥o k> to the ILC systems shown in v = v(k), wr=w(k), ex=e(k),
a) b)
Up Yo Uy Yo B
Ug Fy U |y Yi - lf+ Yo Uo +:+ uj H Vi -/{++ Yo
[ U, c V> [ U c V2

Figure 4. Closed loop feedback systems used within standard robust control theory: (a) true system [H*,

Cland (b) model system [H, C].
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a)
Up i

-------- Vie 1=Q(vi+Ley)

Vi =0(vi+Ley)

Figure 5. (a) Serial and (b) parallel architectures using true plant G* with disturbances ug, yo x of compatible dimension.

ye=y(k) € B0, T), we=u(k) el[0,T] (37)

and the corresponding lifted signal spaces are then
defined as v,e,w,y € l‘g[O, T] x N. Define the lifted
counterpart of trial-to-trial operator P as
P:E[0,T] xN— E[0,T] xN:w y
: y(k) = Pw(k) (38)
with P* defined similarly. Then defining the lifted coun-
terpart of the ILC update as
C:B10,T] xN— B[0,T] xN:e— v

:v(k+1) = Q(v(k) + Le(k)), v(0)=0. (39)
and setting up = ug means that Figure 5(a) is equiva-
lently represented as Figure 4(a), where H is substituted
by P. Once the system is in this standard form, the results
from Bradley (2010) can be applied, which bound the
projection operator |11 / /C”&}byd)T by the RHS of (34).
Combining this with the bound

o(P,P") < Iyl v (40)
and with the result from Bradley (2010) that
d(P,P*) < 6(P,P") (41)

yields (34) as required.
From Georgiou and Smith (1997), the projection
norm of the true closed-loop system can be bounded as

M5 /el gy ™ < 1By /2l gy T
14 6(P, P¥)

X — . (42)
1- ||H13//C||(yd,yd)T5(p’P*)

which is then used to bound the internal signals of the
system [P*, C] as

1) i yoy™ < Mg el 100 y0) Tl (43)

For the parallel case, the plant and controller of
Figure 5(b) must be augmented as shown in Figure 6(b)

i Lk
T Upok J

+ i + U,

Ya +% Wak % Ok
‘ v [ Tl |
3 I} !
Vik | i
-------------- h Vi 1=Q(vi-Ley) :

Figure 6. Augmented (a) serial and (b) parallel architectures.

in order to assume the structure of Figure 4(b). Stability
of the augmented system guarantees stability of the orig-
inal since the latter is a special case (19, = 0). The aug-
mented signals are wy = (w4 wz,k)T, vk = (Vg vz,k)T
and ugx = (40,14 uo,z,k)—r, with the augmented lifted
plant and ILC operators

P[0, T] x N— E[0,T] x N:w > y
. y(k) = (I + GK) ™' G(I, K)yw(k),
C:B10,T] xN— [0, T] x N:ewrs v

0

cvk+1) = (Q((O,I)V(k) + Le(k))

) , v(0)=0.
respectively, and P* defined similarly. Applying these sig-
nals and operators in relations (32)-(41) leads to the same

overall bound (34) as in the serial case.
[ ]

Condition (34) states that the ILC law stabilises a ‘ball’
of plants in the uncertainty space centred about the nomi-
nal system model P. The ball’s radius increases as || QLP||,
IQL| and ¢ are reduced, where these quantities each
have a direct relation to weighting operators X and Z



through (14). This means Theorem 3.1 provides a trans-
parent method to design the ILC controller components
to weigh performance against robustness. Computation
of the biased gap 5(P,P*) can be simplified using the
relation

N P*|,, — P
5(b,p7) < sup Il (P* | )WII. (44)
wl#0,keN., Il

which is adapted from Freeman (2017). Here P*|,, w :=
P*(w 4+ wy) — P*(wg) denotes the dynamics of P* about
the operating point used on ILC trial k (where wy =
Vk + Ya» wk = vk + Kyy for the serial and parallel cases
respectively). It follows that the right-hand side of (44)
can replace 5(P,P*) in (34), to provide a simple bound
on the accuracy of the linearisation used to approximate
the true plant dynamics.

Furthermore, the bound (36) explicitly demonstrates
the influence of the disturbances (as measured by
Il (o, yo)T||) and model uncertainties (as measured by
the gap J) on the tracking performance. Note in particu-
lar that the stability of the system, as determined by (34),
is unaffected by the size of the disturbance, which purely
affects tracking accuracy.

4. Design procedure

The results in the previous sections show the competing
demands of maximising tracking accuracy (12), conver-
gence speed (13) and robustness (34). The following steps
are proposed in order to allow the designer to reach a
transparent trade-off.

Step 1 - feedback controller K: Given a desired
feedback architecture, design a feedback controller
K to stabilise the true plant G* about an operating
point. Compute the corresponding linear model,
G, about the desired operating point, as well as
closed-loop dynamics P.

Step 2 - identify desired properties: Based on the
intended application, identify the desired perfor-
mance criteria, in terms of the range of frequen-
cies that must be tracked and how fast conver-
gence must be at each frequency. Also identify the
required range of input frequencies that is permit-
ted.

Step 3 - select weights X, Z: Identify suitable
weighting operators that implement the criteria in
Step 2, with examples given in Table 1. Compute QL
using (14).
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Step 4 - select parameters f, q: Compute the
robustness margin (35) which dictates the amount
of model uncertainty that can be tolerated, and also
governs the effect of external disturbance on the
tracking via (36). Tune parameter § (and q if used)
based on knowledge of how well the model approx-
imates the true dynamics. Larger values increase
convergence speed, but reduce robustness.

Step 5 - fine-tuning: Apply ILC update (3) experi-
mentally. If no evidence of instability is observed,
increase parameters in Step 4 to improve con-
vergence speed over all frequencies. Alternatively
increase the magnitude of X over higher frequen-
cies where convergence is desirable in Step 3, or
increase the range of permissive inputs by increas-
ing filter cut-oft w.. If evidence of instability is
observed, make the opposite changes in Steps 3
and 4.

Implementation of the above procedure is now
demonstrated through application of the framework to
a realistic simulation scenario.

5. Application of framework

In order to demonstrate the effectiveness of this approach,
control algorithms were implemented on a simulation of
the Quanser QUBE servo rotational pendulum, carried
out using MATLAB and Simulink. The full system model
is given in Quanser (2014). This system is highly non-
linear, open-loop unstable, and under-actuated, making
it ideal for testing the proposed algorithm. A diagram of
the system is shown in Figure 7. The input u to this sys-
tem is the voltage V}, applied to the rotary arm, which
actuates the arm angle q; and thus alters pendulum angle
q2. These two angles combine to give the output, ie. y =
(91, qz]T. All angles are in degrees.

To better replicate real-world conditions, band-
limited white noise (noise power 5e~7, SNRg1 = 37.3,
SNRg> = 12.6) was added to the output angles, and the
parameter values were altered slightly from the nominal
values used to construct model G, as shown in Table 2.
Initial conditions of g; = 0, g2 = 0.0873, g1 = 0.5, g2 =
0.5 were selected to simulate a slight deviation from
the equilibrium position. Note that the Quanser QUBE
rotary encoder takes the initial angle g, to be zero regard-
less of absolute position, which is reflected in the choice
of g1 = 0.

The intended task was to stabilise the pendulum to the
upright position whilst the rotary arm tracked a periodic
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L,J

p> 7p> Vp

Figure 7. The rotary inverted pendulum system, with parameters given in Table 2.

Table 2. Pendulum nominal and model parameter values.

Parameter Nominal Model
Mp Pendulum mass (kg) 0.024 0.026
M, Rotary arm mass (kg) 0.095 0.093
L Rotary arm length (m) 0.085 0.08
Lp Pendulum length (m) 0.129 0.134
o MmL2 M2
J Moment of inertia —_— -
12 12
Dp Pendulum damping coefficient 0.0012 0.002
Rm Motor terminal resistance 84 9.8
km Motor torque constant 0.042 0.03

60

A

20/ \
[}
§ \
g of
3 /l
3 /
=T
20t /1
40 \/ |
-60 1 | | . . \ L
0 1 2 3 4 5 6 7 8
Time (s)

Figure 8. Servo angle component of reference signal y,.

sinusoidal signal, as given by

-
ya(t) = |:30 (sin (%t) + sin (%t)) ,0:| ,

t e [0,T] (45)

where T = 8. This reference contains multiple low-
frequency components, and is similar to that used in
other ILC works, e.g. Zhang et al. (2022). The reference
is shown in Figure 8.

A parallel control structure was used of the form of
Figure 2(b), with two nested PID loops acting as the
internal stabilising feedback controller K. This control
structure allowed stabilisation of g, to be decoupled from
tuning the performance of g1, simplifying the design pro-
cedure. The form of K is thus given by K = (K2K;, K))
where Kj, K; are the PID control operators. These con-
trollers were heuristically tuned in turn to achieve a stable
closed-loop response, with resulting parameter values
Kp1 = 186, Kiy = 542.7, Kg; = 11.3, Ny = 100, K, =
0.0155, Kj, = 0.00185, Kz, = 0.0204, N, = 8.06. The
full system setup is shown in Figure 9.

The non-linear model G was then linearised about
the upright position (g, = 0) and combined with the
feedback controller K (according to the configuration
shown in Figure 9) to generate the stable plant model
P. A full summary of the linearisation procedure and
construction of the system matrices is given in the sup-
plementary material, available at https://doi.org/10.52
58/SOTON/D2914.

5.1 ILCdesign

First the design procedure was implemented without
the robustness filter (Q = I), in order to establish base-
line performance. This corresponds to the choice Z = 0
within Step 3, which therefore means ILC will seek to
achieve the minimum possible tracking error.

To satisfy Step 4, the choice X = B(I + gPPT)7! is
made, where f > 0, g > 0 are scalar. This allows for a
transparent trade-off between convergence speed at dif-
ferent frequencies through parameter q. For large ¢ it fol-
lows that X places emphasis on minimising the tracking
error in the cost function (12) and also maximises con-
vergence speed in (13) since P' XP = LP approximates
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Vi
Ve =Q(vi-Ley) |-
- Y1k
Vid + | + 1 ﬁl U [ ,
— ; K[ — K2 i — G >
i —— i
Y24 + i | Y2k
Figure 9. Parallel control implementation for the pendulum.
a) b)
25 T T 25 T T
——q=100 ——q=100
——q=1000 ——q=1000
20 g=10000 | | 20 g=3300 ||
——g=20000 ——9=6700
———-Min error ———-Min error

Error norm

- N

o (4]
; :

Error norm
> =

2 4 6 8 10 12 14 16 18 20
Iterations

Iterations

Figure 10. Convergence when using X = q(/ + gPP")~", Z = 0 with varying g > 0 and (a) no uncertainty, (b) parametric model

uncertainty (see Table 2).

unity and ¢ approximates 0. Unfortunately the terms
|LP|| and [|L|| in robustness margin (34) are large, so that
the system has a small robustness margin.

To address this, g can be decreased: X then tends
towards I and the convergence speed reduces while
the robustness margin increases. The ILC algorithm
produced using X = S(I + gPPT)~! is the well-known
norm-optimal ILC (Amann et al., 1996), which has
proven extremely popular within the ILC community
for many years. Furthermore, suitable choice of param-
eter q generates both inverse (g > W) or gradient
(g = 0) ILC.

Figure 10(a) compares the convergence performance
for different g, with § = g selected to allow convergence
rate at lower reference frequencies to be directly tuned.

Increasing g improves the initial convergence, how-
ever, large values of g cause instability. This is exacerbated
when implementing the algorithm on the system in the
presence of model uncertainty, when the parameter val-
ues are altered to those shown in the right-hand column
of Table 2. This is shown in Figure 10(a,b) and directly
confirms the trade-off between robustness and conver-
gence speed (i.e. minimising (13) and maximising (34)).
Recall that larger values of g lead to g > m, resulting
in an algorithm that closely approximates inverse ILC (i.e.

the 2nd row of Table 1 with § = 1). As such, Figure 10
clearly demonstrates the improved convergence rate of
this parameter choice, as well as the decreased robustness
resulting from increased |LP||, ||L||, ¢.

Figure 11 compares convergence when selecting
q = 0, with different values of § (i.e. gradient ILC), in
the presence of model uncertainty. Conclusions are the
same as those from Figure 10, in that larger values of
(corresponding to larger | X (w)| over all frequencies) lead

 |==="-Min error

Error norm
n
o

5 10 15 20 25 30 35 40
lterations

Figure 11. Convergence when using X = 8, Z = 0 with para-
metric model uncertainty (see Table 2).
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Figure 12. (a) error and (b) input convergence with different filter cutoff frequencies, using a value of g = 6.7 e*3 with added model

uncertainty.

to instability. When comparing this performance to that
of Figure 10, slower convergence is observed with g = 0,
which backs up the theoretical conclusions of Section 2.2.

Having confirmed the design procedure for Z = 0, the
use of Z # 0 to improve robust performance is now illus-
trated. In Step 3 of the design procedure a range of cut-oft
frequencies w. > 7 are selected, with Z being imple-
mented as a high-pass zero-phase Butterworth filter in
each case, consistent with the guidance given in the lower
half of Table 1. This corresponds to Q as a high-pass filter,
with a range of frequencies selected to allow the effective-
ness of the approach to be examined. A filter order of 5
was selected to give a sharp cutoft.

Note that combining ILC update (3) and the expres-
sion for L in (14) results in

Vir1 = Qvk + QLex = Qv + P Xey. (46)

This reveals that Q only operates on the previous con-
trol input, and hence filter Q can be implemented easily
using the matlab ‘filtfilt command, or using an FFT fil-
ter. For operator X we use the same selection of X =
S+ gPPT)~! as previously, with f = g = 6.7 ™13 cor-
responding to the case of instability for the uncertain
system.

Figure 12(a) demonstrates the error convergence
when using the ILC designs in the presence of parame-
ter uncertainty. This reveals that lower cutoff frequencies
(below 4Hz) are able to stabilise the system, but that
these result in a greater steady-state error, as predicted
by (25). Furthermore, Figure 12(b) demonstrates conver-
gence of the input signal to a constant value, as predicted
by Theorem 2.5.

160

140 -

120

gl
>
o

80 [

60 [ -~
/

40

llw I

Figure 13. Change in gain bound inverse with altering cutoff
frequency.

The increase in robustness observed when introduc-
ing the Q filter demonstrates the robustness results in
Section 3. This can be seen in Figure 13, which shows
how the inverse of the gain margin (i.e. the inverse of
the right-hand side of (34)) increases with increasing cut-
off frequency, corresponding to a smaller bound on the
gap 5(P,P*) and hence decreased robustness to model
uncertainty.

6. Conclusions and future work

This paper has introduced a comprehensive new approach
to the design of ILC algorithms, allowing trade-oft
between error convergence and robustness in a system-
atic way. This has been achieved by minimising a cost
function, and using the non-linear gap metric frame-
work to analyse the resulting robustness properties. The



approach extended previous cost-function approaches
through the inclusion of a feedback controller and a Q fil-
ter, and the introduction of a transparent, unified design
procedure to implement the framework.

The theory was demonstrated by simulation on an
inverted pendulum, revealing an increase in performance
and decrease in robustness when increasing the learning
matrix L, with the reverse being true for the robustness
filter Q. These findings align with both the standard ILC
literature and the theory presented in this paper. Hav-
ing validated the framework in a controlled numerical
scenario where all aspects can be defined and quanti-
fied, the next step will focus on implementing it on an
experimental system to demonstrate its practicality and
effectiveness in the real-world.

Whilst the new design procedure involves tuning the
matrices L and Q sequentially, the framework could be
expanded to directly use (12) in a quantitative manner.
Quantifying robustness and performance in terms of the
two ILC operators opens up the possibility of tuning L
and Q such that robustness is optimised given certain
performance criteria, or vice-versa.

Longer term future work areas include relaxing the
assumptions of a fixed reference trajectory. Steps have
already been made in this direction in the form of point-
to-point ILC and spatial ILC, which relax the track-
ing objective. These can be extended and placed in the
robustness framework introduced in this paper. Greater
flexibility in the task then allows the range of practical
applications of ILC to be extended. A prominent exam-
ple is ILC-enabled stroke rehabilitation, where robotics
or electrical stimulation are controlled to assist human
motion.

Note

1. The biased norm is defined as || w3 = [|w — w|| for signal
w and bias w
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