Applied Soft Computing Journal 180 (2025) 113368

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Random-key algorithms for optimizing integrated Operating Room
Scheduling

Bruno Salezze Vieira »><®>*, Eduardo Machado Silva >"2 | Anténio Augusto Chaves?®

a Federal University of Sdo Paulo (UNIFESP), Sdo José dos Campos, Brazil
b Aeronautics Institute of Technology (ITA), Sdo José dos Campos, Brazil
¢ Southampton Business School, University of Southampton, Southampton, United Kingdom

GRAPHICAL ABSTRACT

Random-Key Optimizer Overview of the ILS

(RKO)
Initial Solution

RVND
Overview of the BRKGA-QL

Initial Solutions Shaking solution

RVND
Choose an action Repeat

Acceptance criterion
Copy Pe elite solutions

Blending solutions Overview of the SA
Repeat
Initial Solution
Sort solutions
Shaking solution
Update Q-Table
Acceptance criterion
RVND Repeat
Update temperature
RVND
ARTICLE INFO ABSTRACT
Keywords: Efficient surgery room scheduling is essential for hospital efficiency, patient satisfaction, and resource
Surgery scheduling utilization. This study addresses the challenge as a combinatorial optimization problem that incorporates multi-
Metaheuristic

room scheduling, equipment scheduling, and complex availability constraints for rooms, patients, and surgeons,
facilitating rescheduling and enhancing operational flexibility. To solve such a problem, we introduce multiple
algorithms based on a Random-Key Optimizer (RKO), coupled with relaxed formulations to compute lower

Reinforcement learning
Random-key optimizer

* Corresponding author at: Southampton Business School, University of Southampton, Southampton, United Kingdom.
E-mail addresses: bsvieira@unifesp.br (B.S. Vieira), machado.silva@unesp.br (E.M. Silva), antonio.chaves@unifesp.br (A.A. Chaves).

https://doi.org/10.1016/j.as0c.2025.113368

Received 23 September 2024; Received in revised form 29 April 2025; Accepted 19 May 2025

Available online 11 June 2025

1568-4946,/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
https://orcid.org/0000-0003-1617-2627
https://orcid.org/0000-0003-1333-1426
https://orcid.org/0000-0001-5767-6798
mailto:bsvieira@unifesp.br
mailto:machado.silva@unesp.br
mailto:antonio.chaves@unifesp.br
https://doi.org/10.1016/j.asoc.2025.113368
https://doi.org/10.1016/j.asoc.2025.113368
http://creativecommons.org/licenses/by/4.0/

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

bounds efficiently, rigorously tested on literature and new, real-world-based instances. The RKO approach
decouples the problem from the solving algorithms through an encoding/decoding layer, making it possible to
use the same solving algorithms to multiple room scheduling problems case studies from multiple hospitals,
given the particularities of each place, even other optimization problems. Among the possible RKO algorithms,
we design the heuristics Biased Random-Key Genetic Algorithm with Q-Learning, Simulated Annealing,
and Iterated Local Search for use within an RKO framework, employing a single decoder function. The
proposed heuristics, complemented by the lower-bound formulations, provided optimal gaps for evaluating the
effectiveness of the heuristic results. Our results demonstrate significant lower- and upper-bound improvements
for the literature instances, notably in proving one optimal result. Our strong statistical analysis shows
the effectiveness of our implemented heuristic search mechanisms. Furthermore, the best-proposed heuristic
efficiently generates schedules for the newly introduced instances, even in highly constrained scenarios. This
research offers valuable insights and practical solutions for improving surgery scheduling processes, delivering
tangible benefits to hospitals by optimizing resource allocation, reducing patient wait times, and enhancing
overall operational efficiency.

1. Introduction

Surgeries are crucial in hospital management, impacting patient
outcomes, hospital efficiency, and overall healthcare system resilience.
Effective surgical scheduling optimizes resource utilization, reduces
service delivery costs, shortens patient wait times, and increases hos-
pital admissions. However, operating room (OR) scheduling remains
a persistent challenge due to increasing demand, constrained hospital
resources, and the complexity of coordinating multiple interdepen-
dent factors. The integrated surgery scheduling problem emerges as
a critical optimization challenge, requiring the efficient allocation of
surgical procedures while considering various operational constraints
and objectives [1,2].

Healthcare resiliency issues, such as workforce shortages, supply
chain disruptions, and infrastructure limitations, further exacerbate the
complexities of surgery scheduling. The availability of key resources —
including operating rooms, pre- and post-operative care beds, Intensive
Care Units (ICUs), and Post-Surgery Care Units (PSCUs) — is often con-
strained by staffing limitations and fluctuating patient demand [e.g., 3].
Additionally, disruptions in medical supply chains and the increasing
burden of chronic illnesses contribute to scheduling inefficiencies, lead-
ing to prolonged wait times and suboptimal resource utilization. The
rise of cybersecurity threats and interoperability challenges in hospital
IT systems also complicate real-time scheduling adjustments [e.g., 4].

To address these challenges, integrated surgery scheduling problems
aims to optimize the allocation of surgeries by considering multiple
constraints, including room availability, required medical equipment,
surgeon schedules, and patient care pathways. The primary goal is
to optimize surgical scheduling to improve resource utilization, re-
duce patient waiting times, and enhance hospital resilience. Effective
scheduling strategies enable hospitals to adapt to disruptions, ensure
service continuity, and enhance overall patient care [e.g., 2,5-7].

From the patient’s perspective, Fig. 1 visually represents the surgery
process. It begins with the patient arriving at the hospital and pro-
gressing through the following steps: (i) Resting room: Upon arrival,
the patient is admitted and taken to a resting bed in the assessment
area. Diagnostic tests and observations are conducted to assess the
patient’s medical condition; (ii) Operating Room (OR): Subsequently,
the patient is taken to the OR to undergo the surgical procedure; (iii)
Post-Surgery Care Unit (PSCU): After surgery, the patient is transferred
to the PSCU for critical observation and anaesthesia recovery. This step
ensures the patient’s safe transition from the surgical procedure; (iv)
Intensive Care Unit (ICU) (if applicable): Depending on the surgery’s
risk level or the patient’s condition, there might be a scheduled transfer
to the ICU for specialized care and monitoring; (v) Recovery Room:
Following the critical observation and ICU (if required), the patient is
taken back to the same room from step (i) for a recovery period. During
this phase, the patient receives focused care and support to aid their
healing process. Once the medical team determines the patient is stable
and ready to leave the hospital, they are discharged (vi) with relevant

OR W PSCU

(i)

(v)

Home » Bed ICU

Fig. 1. Patient surgery flow.

post-surgery instructions and prescriptions, if necessary. A 3D model
of the described sequence, even though without the PSCU components,
can be found in [8].

Considering this process, the problem we refer to as the Integrated
Operating Room Scheduling Problem (IORSP) involves managing a
set of surgical procedures, surgeons, operating rooms, and necessary
equipment. A solution is to assign each patient to a suitable sequence
of rooms based on predefined time slots at different stages within the
previously outlined workflow. This allocation aims to schedule pending
surgeries to minimize the total execution time, a metric referred to as
makespan. This optimization problem takes into account a range of
critical factors and constraints, which include:

Surgeon availability: The scheduling process must account for
the availability and preferences of surgeons. Surgeons often have
different specialities and expertise, and their schedules must be
synchronized with the allocated ORs. In this case study, each
surgery already has a surgeon selected for it;

Operating room allocation: The problem entails allocating surgi-
cal procedures to the available operating rooms (ORs), which are
only accessible during business hours, to minimize idle time and
maximize utilization. Additionally, certain surgeries may necessi-
tate specific equipment or specialized facilities unique to certain
ORs, which adds complexity to the allocation process;

Surgery duration: Each surgical procedure has an estimated du-
ration, which must be considered when scheduling surgeries se-
quentially. Accurate estimation of surgery duration is crucial for
avoiding delays and conflicts. The patient’s time in all surgery
steps must be accounted for when scheduling the multiple rooms;
Equipment availability: The availability of necessary equipment
for different kinds of surgeries, such as ophthalmic and brain
microscopes or video/endoscopy racks, is considered during the
scheduling process. Ensuring that all required resources are avail-
able at the right time is essential for smooth operations;

Time constraints: The scheduling problem also considers time
constraints, such as surgeon availability, business hours, moving
time between rooms, and room maintenance post-use.

Building upon the research of Xiang et al. [9], Burdett and Kozan
[10], and Vali et al. [11], we establish that the Integrated Operat-
ing Room Scheduling Problem (IORSP) can be effectively conceptu-
alized and addressed as a variant of the Flexible Job Shop Problem

B.S. Vieira et al.

(FJSP) [12]. This research has been guided by the collaboration with
a non-profit hospital that has unities in several cities in Brazil, basing
our approach on a real-world case. This paper reviews existing liter-
ature alongside a comparative analysis with analogous scenarios and
methodologies.

In this paper, we propose three metaheuristics using the Random-
Key Optimizer (RKO) concept [13] to solve the IORSP: Biased Ran-
dom Key Genetic Algorithm with Q-Learning (BRKGA-QL) [14], Sim-
ulated Annealing (SA) [15], and Iterated Local Search (ILS) [16]. The
BRKGA-QL has demonstrated efficacy without necessitating parameter
fine-tuning, which is crucial for real-case hospital applications. Fur-
thermore, we introduce two mathematical models for relaxed cases,
enabling more efficient computation of lower bounds compared to a
complete formulation [17].

To our knowledge, this is the first work among ORSP literature to (i)
propose multiple solution methods that are completely decoupled from
the original problem and (ii) propose relaxed formulations to compute
lower bounds efficiently. For the RKO literature, (iii) a proposed lo-
cal search has been completely decoupled from the original problem,
operating solely in the random-key solution space. With it, we tested
available literature instances, successfully adapting our methods to
solve them and comparing our results with existing literature methods.
Finally, we designed, tested, and made a set of 20 instances based
on our case study, which is available online. We can highlight our
combined scientific contributions as:

Proposal of two lower bound formulations that have small im-
plementation complexity and yield better lower bounds than
previous literature approaches;

Investigation of flexible time constraints for each restricted sched-
ule, where each room and surgeon’s working hours can be delim-
ited as available or not by the minute (one minute was our time
discretization approach, but the user can change it);
Introduction of a novel concept of a random-key optimizer with
three metaheuristics with local searches using the same decoder
process;

Development of a parameter-less metaheuristic that performs bet-
ter than tuned ones and literature algorithms for similar hospital
cases.

Our in-depth statistical performance analysis shows the effective-
ness of the implemented heuristic mechanics.

Validation of our methods against a similar literature case and
demonstration of better results than previous ones, also being able
to prove optimal solutions;

Complete modelling of a real-case scenario and the production of
20 procedurally generated instances with the combined knowl-
edge of other works and making them available in a public
repository;

Demonstration of possible rescheduling using the same input data
approach.

The remainder of the paper is structured as follows. In Section 2, we
provide a literature review of the most similar works. In Section 3, we
define the problem description. Section 4 details our proposed meta-
heuristics using the random-key concept, decoder, and reinforcement
learning component. In Section 5, we present our experimental data,
results, and analyses. In Section 6, we further discuss the results and
conclude the paper. Our mathematical formulations to compute lower
bounds are shown in Appendices A and B. The computational results of
these models are in Appendix C.

2. Literature review

In this section, we provide a literature review on the ORSP and a
review of the RKO literature. We perform a systematic review of the
literature using the string ((“Operat* Room Schedul*”) AND hospital
AND optimi*) in the scopus base.

Applied Soft Computing 180 (2025) 113368

2.1. ORSP literature

The modelling of surgery scheduling problems began early in the
literature, with [18] developing a job shop-based decision support
system that integrates mathematical programming, a knowledge base,
and database technologies to optimize nurse scheduling, surgeon block
allocation, and surgeries, maximizing OR utilization and minimizing
overtime costs. Next, the work of Dexter et al. [19] studied bin packing
algorithms and fuzzy constraints in operating room management.

Reviewing the literature, the diversity of hospital management
worldwide results in real-world case studies that rarely match each
other, highlighting the absence of a singular dominant trend and
reflecting the variety of challenges in ORSP research [1,20]. Still,
similarities can be identified. We categorize this subsection into pa-
pers that address OR scheduling using exact methods (mathematical
models solved by optimization software such as Gurobi or CPLEX) and
heuristic approaches. We also highlight recent studies exploring other
approaches, such as multi-objective and stochastic methods.

2.1.1. Exact approaches

Roshanaei et al. [21] introduced Branch-and-Check methods for op-
erating room planning and scheduling, incorporating surgeon speciali-
ties to optimize patient-surgeon assignments and priorities. Their exact
methods significantly outperformed traditional integer programming
formulations on both benchmark instances and procedurally generated
test cases.

Yazdi et al. [22] models the Surgery Scheduling Problem as a Multi-
Project, Multi-Mode Resource-Constrained Project Scheduling Prob-
lem. Their approach treats each surgery as a project composed of
sequential activities such as surgery, cleaning, and recovery, with
varying precedence constraints. The model incorporates resource allo-
cation flexibility through multiple activity modes and optimizes surgery
scheduling using a mixed-integer programming (MIP) framework. It
aims to minimize makespan while inserting emergency surgeries using
the Break-in-Moments technique.

Roshanaei et al. [23] proposed a Balanced Distributed Operat-
ing Room Scheduling model, optimizing OR allocation across mul-
tiple hospitals. Their approach minimizes macro (hospital-level) and
micro (OR-level) imbalances using mixed-integer nonlinear program-
ming, solved via reformulation-linearization and Benders decompo-
sition. Their method focuses on optimizing workload balance in a
multi-hospital network, which is evaluated using real hospital data.

Augustin et al. [24] proposed a data-driven approach for OR
scheduling that integrates ICU bed availability into the surgical case as-
signment process. Their model optimizes patient selection and schedul-
ing, maximizing OR utilization, while considering ICU congestion and
cancellation risks, using a MIP formulation with probabilistic con-
straints. However, their model does not explicitly consider patient
priorities, nor does it incorporate detailed resource scheduling for
nurses, anaesthetists, and equipment. Their method was evaluated on
the practical case of the teaching hospital Sainte-Justine in Montreal,
Canada.

2.1.2. Heuristic approaches

Among the works most similar to our approach, we have the works
of Fei et al. [25], which proposed a tactical operating room planning
model based on an open scheduling strategy. Their approach assigns
surgical cases to multifunctional ORs while optimizing utilization and
minimizing overtime costs using a column-generation-based heuristic.
Their model assumes that all resources except surgeons are always
available, without considering dynamic rescheduling. Fei et al. [26]
extended their previous work by incorporating a two-phase approach
for weekly surgery scheduling. They first solve the planning prob-
lem using a column-generation heuristic and then optimize the daily
schedule with a hybrid genetic algorithm, considering recovery room

B.S. Vieira et al.

constraints. Liu et al. [27] modelled OR allocation with five days
of planning considering working hours and surgeon scheduling and
solved using dynamic programming heuristics for procedurally gener-
ated instances and a Belgian university hospital case study. Xiang et al.
[9] treated the problem as an FJSP variant, scheduling pre and post-
surgery rooms, nurses, and anaesthetists individually, similarly to our
approach. They solved it with an Ant Colony metaheuristic.

Molina-Pariente et al. [28] proposed a case that may allocate an
assistant surgeon to shorter surgery times; they propose a mixed-
integer linear programming formulation and an iterative constructive
method to optimize schedules. Aringhieri et al. [29] modelled OR and
recovery bed scheduling at San Martino University Hospital over a
one-week horizon, integrating weekend stays without surgeries and
multiple surgical specialities. Their approach employs a two-stage tabu
search metaheuristic that first assigns OR blocks to specialities and
then schedules patients, optimizing societal costs. However, it does not
explicitly model simultaneous resource allocation. Landa et al. [30]
address the OR planning problem, integrating assigning surgery dates
and OR blocks and sequencing surgeries in each OR under uncertain
surgery durations, aiming to maximize OR utilization and minimize
overtime costs, and solved it using a hybrid simulation-based algorithm
exploring neighbourhood search.

Dellaert and Jeunet [31] modelled a case of a Dutch cardiotho-
racic centre for a 4-week planning horizon, considering the allocation
of beds, ORs, and ICUs and maximizing the number of scheduled
surgeries. The authors proposed a mathematical model and a VNS
metaheuristic that found better results than the model solved with
CPLEX in all cases. Duran et al. [32] modelled a case of a Chilean
public hospital and developed two models and two algorithms for
scheduling interventions on top of an existing OR schedule over a
defined period that satisfies patient priority criteria. Burdett and Kozan
[10] modelled a case of a university and college-affiliated teaching
hospital in Brisbane, Australia, as an FJSP considering bed, OR, PSCU,
and ICU allocation. They presented and made available 24 generated
instances, and to solve it, they proposed some initial solution heuristics
and a Hybrid Simulated Annealing as its main algorithm.

Akbarzadeh et al. [5] proposed a heuristic approach for OR schedul-
ing that integrates nurse re-rostering and nurse-patient assignments
to improve resource utilization and maximize OR profit. Their model
jointly optimizes surgical case planning and scheduling while ad-
justing nurse shifts based on actual patient demand and minimizing
costs. However, although their model explicitly incorporates nurse
re-rostering and assignment, it does not consider operating room equip-
ment or anaesthetist assignments. A two-phase heuristic that uses
the linear problem solution generated via column generation to con-
struct a feasible solution is presented. Computational experiments have
been conducted with artificial data generated in a controlled and
structured manner and real-life data from the Sina Hospital (Tehran,
Iran). Zhu et al. [33] solved a case study of an affiliated hospital of
the University of Science and Technology of China, maximizing OR
utilization on a one-week planning horizon, OR to surgery to surgeon
assignment, and patient priorities. The authors presented a mathe-
matical formulation and two hybrid metaheuristics to obtain better
solutions. Thomas Schneider et al. [34] investigated the scheduling
of surgical groups while considering ORs and downstream beds with
varying availability over a 15-day planning horizon. Based on the
Leiden University Medical Center, they proposed a single-step integer
model that maximizes OR utilization while minimizing bed usage
variation through weighted objectives. They also developed a simulated
annealing approach, demonstrating that their method reduces the
number of required beds compared to previous results.

Lin and Li [35] solved a case of surgery to OR assignment, five
days planning horizon and minimizing the operation costs and overtime
usage, provided an improved mathematical model of Fei et al. [25]
and a metaheuristic Artificial Bee Colony that obtained better solutions
for larger instances. Park et al. [36] modelled a case of a Korean

Applied Soft Computing 180 (2025) 113368

university hospital considering surgeons’ preferences and cooperative
operations, in which surgery can have multiple surgeons cooperatively
and sequentially to reduce its execution time, and the co-oped surgeries
have a lower total execution time. This feature helps to minimize the
total overtime and the number of ORs used. A mathematical model and
a metaheuristic were proposed to solve it.

2.1.3. Variants of the problem

When considering OR scheduling under uncertainty conditions, we
have the works of several researchers. Siqueira et al. [37] solved a
stochastic model for a long-term plan from a case study of the Brazilian
National Institute of Traumatology and Orthopedics, which considers
OR and recovery ward allocations with downstream constraints, using
simulations and optimal action-taking. Khaniyev et al. [38] proposed
a next-day OR scheduling model that accounts for uncertain surgery
durations. Their model assumes a predefined sequence of surgeries and
optimizes the weighted sum of idle time, patient waiting time, and
overtime costs. Their approach focuses on fixed-sequence scheduling in
a single OR containing all the necessary surgery resources. They devel-
oped an exact recursive analysis method and proposed three heuristics:
Expectation (using expected durations), Myopic (independent surgery
scheduling), and Veteran (allowing early starts). The experiments were
conducted on randomly generated instances. Giir et al. [8] proposed
a two-stage OR scheduling model integrating Constraint Programming
and Goal Programming to balance surgical team workload and max-
imize OR utilization. Their method focuses on structured workforce
balancing and minimizing idle time, with some assumptions such as
a sufficient number of personnel and full availability of necessary
resources to carry out the operations. Addis et al. [39] proposed a
cardinality-constrained robust optimization model for OR scheduling,
addressing uncertain surgery durations. Their model incorporates pa-
tient waiting times, urgency levels, and delay penalties in the objective
function, ensuring operational resilience. The model was tested on real
hospital data from San Martino Public Hospital, Italy. For a deeper
understanding of patient scheduling under uncertainty, we recommend
the papers of Addis et al. [39]; Rahimi and Gandomi [40], which
explore robust optimization techniques and mathematical modelling for
OR scheduling under uncertainty conditions.

We can highlight several works when considering multi-objective
papers for ORSP. Marques and Captivo [41] modelled a case of Lis-
bon’s public hospital, allocating only ORs in a one-week planning
horizon. The bi-objective problem maximizes the number of surgeries
and room occupations with surgeon specialities and is solved with a
bi-objective evolutionary metaheuristic. Hamid et al. [42] modelled
a public hospital case in Tehran as a multi-objective problem. They
schedule ORs considering patient priorities and surgical team members’
decision-making styles to improve the surgical teams’ compatibility
level, minimizing the total cost, overtime OR utilization, and maxi-
mizing team consistency. They presented a mathematical model and
implemented two metaheuristics to obtain better solutions: a Non-
dominated Sorting Genetic Algorithm and a Multi-Objective Particle
Swarm Optimization. Mazloumian et al. [3] proposed a multi-objective
integrated model for OR scheduling that simultaneously addresses the
Master Surgical Schedule Problem and the Surgical Case Assignment
Problem. They developed a deterministic integer programming model
as a baseline and two robust optimization models, both designed to
handle uncertainty in surgery durations and emergency arrivals. The
objective function is the minimization of patient waiting times, surgery
postponements, and OR utilization deviations. Equipment availability is
not explicitly modelled in their work, as OR block times are assumed
to include full personnel resources and necessary medical devices. Lotfi
and Behnamian [4] proposed a multi-objective scheduling model for
distributed OR planning in hospital networks, considering emergency
arrivals, inter-hospital transportation, and shared resources, including
ORs, surgeons, nurses, and medical equipment. However, it does not ex-
plicitly model allocating multiple specific resources per surgery, as they

B.S. Vieira et al.

Table 1

Case study comparisons with similar literature works.

Applied Soft Computing 180 (2025) 113368

Paper E H Objective function SSA MRS TS PP SE PH OT ORS MO SC
Fei et al. [25,26]; Liu et al. [27] X X Costs X X X

Aringhieri et al. [29]; Landa et al. [30] X X Costs X X X

Molina-Pariente et al. [28] X X #Surgeries X X X X

Marques and Captivo [41] X Usage X X X X X

Xiang et al. [9] X Makespan X X X X X X

Duréan et al. [32] X Usage X X X X X

Dellaert and Jeunet [31] X X Usage X X

Siqueira et al. [37] X #Surgeries X X X X
Burdett and Kozan [10] X X Makespan X X

Hamid et al. [42] X X Usage and MSWT X X X X X
Roshanaei et al. [21] X Usage X X X X

Roshanaei et al. [23] X Usage X X

Khaniyev et al. [38] X X Costs X X X X
Zhu et al. [33] X Costs X X X X

Thomas Schneider et al. [34] X X Usage X X X X

Yazdi et al. [22] X #Surgeries X X X X

Akbarzadeh et al. [5] X X Costs X X X

Park et al. [36] X X Active ORs and OT X X X X
Augustin et al. [24] X Usage X X X X X X X
Lotfi and Behnamian [4] X X Makespan and Costs X X X X X X X X
Mazloumian et al. [3] X #Surgeries and Usage X X X X X X X
Giir et al. [8] X Usage X X X X X X X
Ma et al. [6] X X Costs X X X X X X

Addis et al. [39] X #Surgeries X X X X
Azab et al. [7] X Costs and Usage X X X X X X X X
This Work X X Makespan X X X X X

are treated as aggregated hospital resources. Their approach employs a
multi-objective learning Variable Neighbourhood Search to minimize
surgery completion time, patient allocation costs, and OR overtime,
balancing efficiency and cost. Ma et al. [6] proposed a knowledge-based
multi-objective evolutionary algorithm for home health care routing
and scheduling with multiple centres. Their MIP model minimizes total
service cost and tardiness, considering caregiver skill levels, workload
balancing, and patient time constraints. The algorithm integrates ge-
netic operators with knowledge-based local search to improve solution
quality. Computational experiments compare the proposed algorithm
with five benchmark algorithms and a mathematical programming
solver. Azab et al. [7] proposed a bi-objective stochastic model for OR
scheduling that considers time constraints, surgeon preferences, and
collaborative surgeries. Their model uses stochastic optimization with
the Sample Average Approximation method to handle uncertain surgery
durations, aiming to balance operating costs and surgeon satisfaction.
However, resource allocation is indirectly addressed by assuming ORs
with fixed nursing teams and equipment.

2.1.4. Summary of the literature review

Table 1 presents the similarities identified in our literature review,
categorizing studies based on whether they were solved using an exact
(E) or heuristic (H) method, their objective function focus, and key
problem attributes. These attributes include surgery-to-surgeon assign-
ment (SSA), multi-room scheduling (MRS), time slot allocation (TS),
patient prioritization (PP), surgeon specialities (SE), limited planning
horizon (PH), overtime costs (OT), and other resource scheduling (ORS)
such as nurses, anaesthetists, or equipment. Additionally, the table
highlights whether the approach is multi-objective (MO) or stochastic
(SC). We observe that the least explored aspects in the literature are
papers focusing on ORS, followed by PP, SSA and MRS.

For more comprehensive and recent reviews of ORSP models and
mixed approaches, we advise the works of Al Amin et al. [1]; Aktas
et al. [2]. Al Amin et al. [1] provides a comprehensive review of Oper-
ating Room Scheduling (ORS) research from 2000 to 2023, analysing
key factors, optimization techniques, and solution approaches under
deterministic and uncertain conditions. The study highlights real-world
constraints, such as resource limitations, staff availability, and patient
variability, which significantly impact scheduling. Aktas et al. [2]
provides a comprehensive review of operating room and surgical team

scheduling, emphasizing the importance of efficient resource utiliza-
tion, patient safety, and staff workload balance. The study highlights
key scheduling factors, such as personnel availability, equipment readi-
ness, and sterilization conditions. By analysing 29 research articles, the
review categorizes constraints, scheduling strategies, uncertainties, and
solution methods, stressing the benefits of integrating surgical team
scheduling into OR planning to enhance overall efficiency.

2.2. RKO literature

To address the gaps identified in the literature review, this study
proposes the application of the Random-Key Optimizer (RKO) method
to solve an integrated ORSP, considering multi-room scheduling, time
slot allocation, patient priorities, and resource scheduling, including
nurses, anaesthetists, and equipment.

A RKO is an optimization heuristic that operates in the continuous
random-key space [0, 1)", where n represents the size of the random-
key vector used to encode the problem solution. The pioneer of this
approach is the work of Bean [43], which utilizes a genetic algorithm
to perform searches in the solution space for various optimization
problems. In [44,45], a variation of the RKGA called Biased RKGA
(BRKGA) is proposed and evaluated for a wide range of optimiza-
tion problems. Later, [46-48] introduced a continuous Particle Swarm
Optimization (PSO) algorithm combined with a random-key encod-
ing scheme to determine a permutation. Similarly, [49] proposed a
Harmony Search (HS) heuristic with random-key encoding to solve a
job-shop scheduling problem, where the application of HS operators
to harmonies encoded by random keys resulted in feasible scheduling
solutions. Pessoa and Andrade [50] presented four constructive heuris-
tics for the flowshop scheduling problem, along with heuristics based
on the BRKGA, Iterated Local Search (ILS), and Iterated Greedy Search
(IGS), which explore feasible neighbourhoods represented as sequences.
In another study, [51] proposed a BRKGA and an ILS approach with
a decoder that translates random-key vectors into schedules for the
machine-dependent scheduling problem. This decoder, a straightfor-
ward construction method based on job permutations, was also adapted
for use in Tabu Search (TS) and Simulated Annealing (SA). Andrade
et al. [52] proposed the Implicit Path-Relinking (IPR) that also explores
the separation between problem and solution spaces, constructing the
path entirely within the unit hypercube and leveraging the decoder

B.S. Vieira et al.

for solution evaluation. Recently, the RKO framework was employed
by Schuetz et al. [13] for robot motion planning, using the BRKGA
and an extension of SA to search the random-key space. In [53], the
RKO is implemented using SA, ILS, and Variable Neighbourhood Search
(VNS) for the tree hub location problem. Chaves et al. [54] proposed
an RKO considering the GRASP metaheuristic and evaluates it for
the travelling salesman problem, tree hub location problem, Steiner
triple covering problem, node capacitated graph partitioning problem,
and job sequencing and tool switching problem. A comprehensive and
up-to-date review of the BRKGA can be found in [55,56].

3. Problem definition

Given the literature review and problem characteristics, we model
the IORSP as an FJSP variant. The FJSP is usually described as having a
set of jobs K to be processed by the machines of set R, each job consists
of a sequenced set T, of tasks, and each task ¢ has to be performed
sequentially to complete the job. For each job k, k € K, the execution
of task ¢, t € T}, requires one machine r out of a set of given machines
R;, R, C R, that execute task 7. For task ¢ running on machine r, r € R,,
the task time is yf , the setup time is 7" and cool-down time is y;.
When a task ¢ is complete, but the allocated machine r € Ry, is not
immediately available, the start of task Nex#(r) is delayed. This delay
is called blocking, with a blocking limit per task ¢,.

Moreover, the FJSP typically follows some assumptions as we do, as
the machines and jobs are always available. Once started, an operation
cannot be interrupted. There is no precedence among the tasks of
different jobs; each task can be processed by only one machine at a
time. As the objective function, FJSP usually minimizes the makespan,
that is, the amount of time required to complete all jobs or to maximize
the total of completed jobs given a planning horizon.

We can translate the FJSP nomenclature to our problem, considering
jobs as surgeries and machines as subjects (rooms, types of equip-
ment, and surgeons). Each surgery consists of a sequence of tasks. Our
problem has some particularities, like a non-empty initial schedule or
simultaneous machines for the same task, as operations (tasks) require
a surgeon, which may require some equipment and OR, i.e., different
types of machines (subjects) allocated simultaneously. All v/, y™ and
y{ are fixed for any particular subject, so they are called duration
(y;‘), moving time (y;") and cleaning time (y;). The name blocking is
a homonym in our work, and we have a fixed blocking limit @& for all
tasks of 15 minutes. Each subject (machine) has its initial availability
schedule (structure we call availability slots). As an FJSP variant, the
surgery is a job that requires heterogeneous machines working on the
same task during the same period to complete it. In our approach, we
only tackled minimizing the makespan. We note that maximizing the
number of surgeries tends to prioritize the shorter surgeries.

Table 2 shows our modelled structures for our mathematical no-
tations. We can divide them between static and dynamic structures.
Among our static structures, the input data consists of a set of equip-
ment E, for each equipment type f, sets Rb¢d and R” representing
the beds and operation rooms, respectively, a set of surgeries K, and
each surgery k to be scheduled has a set of tasks 7. Each task k has a
set of required people L, (in our case study, this set primarily includes
patients for all tasks and the assigned surgeon for each surgery), set
of required equipment types F,, set of compatible rooms R,, expected
duration time y,d , moving time y;" and cleaning time y;. There is an
initial set of availability slots for each one of our resources (person,
equipment, or room).

Fig. 2 illustrates the concept of availability slots (AS), a timeline for
any subject with available and unavailable intervals. The numbers and
arrows on the illustration point to the corresponding hour an interval
starts or ends. In this example W = {0,15,24,39,72,87,120}, the
subject is available for the first 15 h, becomes unavailable for 9 h (15
to 24), is available again for 15 h (24 to 39), becomes unavailable for

Applied Soft Computing 180 (2025) 113368

Table 2
Problem data notations.
Sets
E, Equipment of type f
R” All OR rooms
Ry All bed rooms
K Surgeries
T, Tasks of surgery k
L, People allocated for task ¢
F, Equipment types required for task ¢
R, Compatible rooms for task ¢
Attributes
e Duration time of task ¢
" Moving time of task ¢
s Cleaning time of task ¢

the next 33 h (39 to 72), and so on. This AS example could be the avail-
ability of a surgeon, operating room, or other subjects. Mathematically,
we define W as an ordered set of time instants arranged in increasing
order. The initial element signifies the first available time instant, while
the subsequent elements represent an alternation of unavailable and
available time instants. This data structure is used as an initial timeline
availability and is dynamically adjusted per solution.

Furthermore, our modelling allows tackling the re-scheduling of
surgeries. Surgery re-scheduling is crucial for effectively managing the
IORSP due to the hospital environment’s dynamic and unpredictable
nature. It allows for flexibility and adaptability in emergencies, re-
source availability fluctuations, and changes in patient conditions.
Re-scheduling ensures that urgent surgeries can be accommodated
without significant disruptions, minimizes delays and wait times, and
optimizes the use of resources. Additionally, it helps cope with can-
cellations and no-shows by filling gaps efficiently, maintaining high
productivity levels, and ensuring timely surgical care. To implement
surgery re-scheduling efficiently, we make use of the sets of availability
slots with the previously fixed schedules for rooms, patients, equipment
and surgeons as shown in detail in Section 5.5.

Appendices A and B present the relaxed models we propose and
implement to compute lower bounds to minimize each instance’s
makespan. The resulting lower bounds, presented in Appendix C, are
used to analyse the performance of the heuristics, where smaller gaps
indicate a stronger performance of both approaches. Both models solve
a relaxed case of the IORSP and exploit the fact that, for the case
study and the literature case, the bed is reserved during the entire
patient’s stay in the hospital. It considers a best-case scenario execution
for all surgeries and only allocates surgeries to rooms but does not
sequence any task. All patients are treated without delays (blocking),
disregarding room or surgeon-restricted schedules, sequencing of tasks,
and equipment availability. Removing these constraints, the relaxed
problem solved by both models is an allocation problem.

4. Random-key optimizer

The random-key representation was first proposed by Bean [43] for
an extension of the genetic algorithm called the Random-key Genetic
Algorithm (RKGA). This representation encodes a solution with random
numbers in the interval [0, 1). The main idea is that the RKGA searches
the random-key space as a surrogate for the original solution space.
Points in the random-key space are mapped to points in the original
solution space by a deterministic algorithm called the decoder. An
advantage of this encoding is its robustness to problem structure,
as it separates the solver (solution procedure) from the problem be-
ing solved. The connection between the solver and the problem is
established through the decoder.

A Random-key Optimizer (RKO) is an optimization heuristic that
solves specific problems by exploring the continuous random-key space
[0,1)", where n is the size of the random-key vector that encodes the

B.S. Vieira et al.

0 15 24 39

24h 24h 24h

Applied Soft Computing 180 (2025) 113368

72 87 120

24h 24h

Fig. 2. Example of a set of availability slots (AS) for a subject.

B -

a) Optimization pipeline

Random-Key Optimizer

BRKGA-QL

= I

o
X

< onm”

random-key space

solution space

b)r ing rand

PPINs

key solution to feasible solution

1 2 3 4 5

X 0.4 0.8 0.6 0.1

Sort the random keys

Dx) 4 1 5 3 2

0.1 0.4 0.5 0.6

c) Example of a decoder

Fig. 3. Random-Key Optimizer concept. Based on [13].

problem solution. Fig. 3 presents the RKO concept where 9 represents
the specific decoder algorithm.

The optimization process is shown in Fig. 3(a). This process takes
as input an instance of a combinatorial optimization problem, runs
the search process of each metaheuristic sequentially or parallelly,
considering the decoder, and returns the best solution found by the
metaheuristics. In this paper, we consider three metaheuristics: BRKGA-
QL, SA, and ILS. However, other metaheuristics can be adapted in this
framework. Fig. 3(b) illustrates the mapping schema that connects the
random-key representation to the solution space through a problem-
specific decoder. After this transformation, the quality of the solutions
can be evaluated. Finally, Fig. 3(c) presents an example of a decoder
process for a scheduling-based problem. In this case, each vector posi-
tion represents a task or characteristic of the optimization problem. The
decoder works by sorting the random keys, where the sorted indices
correspond to a potential solution obtained by arranging the tasks in
the specific order dictated by the sorted keys.

In the remainder of this section, we introduce the RKO framework.
We begin by discussing its key components (Section 4.1), followed
by the decoder proposed to the IORSP (Section 4.2). An overview of
the metaheuristics utilized in the framework (BRKGA-QL, Simulated
Annealing, and Iterated Local Search) are presented in Section 4.3,
which operate on the random-key vectors within the proposed RKO
framework.

4.1. RKO components

The RKO components are procedures embedded within the frame-
work’s random-key space that support the search process’s metaheuris-
tics balance between diversification and intensification. These compo-
nents include shaking, blending, and local search performed by the
Randomized Variable Neighbourhood Descent (RVND) method on the

random-key vectors. Each component is described in detail in the
following subsections, and the pseudocodes are in the Appendix D.

4.1.1. Shaking

The shaking method was inspired by the approach proposed by An-
drade et al. [57]. The method modifies random-key values by applying
random modifications considering four distinct neighbourhood moves.
A perturbation rate g is employed. This value is randomly generated
within a specified interval [f,,;,, f,...], Which should be defined ac-
cording to the specific metaheuristic approach being used. The four
movements are:

» Swap: Swap the positions of two randomly selected random keys
i and j.

+ Swap Neighbour: Swap the position of a randomly selected random
key i with its neighbouring key i + 1.

» Mirror: Change the value of a randomly selected random key i
with its complementary value.

» Random: Assigns a new random value within the interval [0, 1) to
a randomly selected random key i.

Algorithm 6 described the shaking procedure. First, a shaking rate
is randomly generated within the interval [§,,;,, f,...], determining the
number of perturbations to be applied, specifically fxn, where » is the
length of the random-key vector A. For each perturbation, a random
shaking move is selected from four options: a random move, a mirror
move, a swap move, or a swap neighbour move. The selected move is
then applied to the vector A. After all perturbations are performed, the
modified vector is returned as the output. This vector is then decoded
during the metaheuristics search process.

4.1.2. Blending
The blending method extends the uniform crossover (UX) concept
proposed by Davis [58] by introducing stochastic elements to create a

B.S. Vieira et al.

new random-key vector. The algorithm combines two solutions, A* and
Ab, to generate a new solution A¢. For each position i in the vector,
a random decision is made based on a probability p to inherit the
corresponding key from either A% or A®. The algorithm introduces a
parameter factor, which modulates the contribution of A®. Specifically,
when factor = 1, the original key from A’ is used, and when factor
= -1, the complement (1.0 — A,.b) is considered. Additionally, with
a small probability u, the algorithm generates a new random value
within the interval [0,1), further diversifying the resulting vector A¢.
The algorithm’s pseudocode is presented in Algorithm 7.

The parameter factor is specifically used in our proposed Nelder—
Mead heuristic (see Section 4.1.7) to generate solutions in a direction
opposite to a ‘worse’ solution. In the classical Nelder-Mead method,
new points are typically generated based on the difference between
two solutions. However, applying this approach directly in the random-
key space could lead to invalid solutions, such as negative random
keys. Additionally, combining random keys without proper adjustments
could result in solutions that deviate significantly from the base so-
lutions. Therefore, we introduced the factor parameter within the
blending method to address these issues. This modification ensures con-
trolled exploration while maintaining feasibility within the random-key
representation.

4.1.3. Randomized Variable Neighbourhood Descent

The Variable Neighbourhood Descent (VND) was proposed
by Mladenovi¢ and Hansen [59] and extended later for various op-
timization problems. The VND consists of a finite set of pre-selected
neighbourhood structures denoted by N, for k = 1,...,k,,., wWhere
N, (A) represents the set of solutions in the kth neighbourhood of a
random-key vector A. While standard local search heuristics typically
employ a single neighbourhood structure, VND utilizes multiple struc-
tures to enhance the search process. Key considerations for applying
VND include determining which neighbourhood structures to use and
their sequence and selecting an appropriate search strategy for switch-
ing between neighbourhoods. Later, [60] proposed the RVND. RVND
randomly selects the neighbourhood heuristic order to be applied in
each iteration. RVND efficiently explores diverse solution spaces and
can be applied to random-key spaces. Users can implement classic
heuristics for the specific problem and encode the locally optimal
solution into the random-key vector after the search process. Alterna-
tively, users can implement random-key neighbourhoods independent
of the specific problem, using the decoder to converge towards better
solutions iteratively.

Algorithm 8 displays the RVND pseudo-code. Given an initial so-
lution A, the algorithm begins by initializing a Neighbourhood List
(NL). While the NL is not empty, a neighbourhood N is selected
randomly from it, and the best neighbour A’ within N is identified. If
the objective function value 65,4/, improves upon the current solution
dp(a), the current solution A is updated to A’, and the N L is reset. If
no improvement is found, the selected neighbourhood N is removed
from the N L. The process repeats until all neighbourhoods have been
explored without finding a better solution. The algorithm then returns
the best solution found.

Next, we introduce four problem-independent local search heuristics
designed to operate within the random-key space. These heuristics
employ distinct neighbourhood structures for the RVND algorithm,
specifically used to identify the best neighbours. The neighbourhood
structures include Swap LS, Mirror LS, Farey LS, and Nelder-Mead LS.

4.1.4. Swap Local Search

The Swap local Search focuses on interchanging two values within
the random-key vector. The local search procedure considering this
structure is outlined in Algorithm 9. The algorithm begins by defining a
vector RK with random order for the random-key indices and initializes
the best solution found, A%, to the current solution A. It then iterates
over all pairs of indices i and j (with j > i) in the random-key vector.

Applied Soft Computing 180 (2025) 113368

For each pair, it swaps the value of the random keys at indices RK; and
RK; in A. If the resulting solution has a better objective function value
than A% it updates A%’ to the new solution. If not, it reverts A to the
previous best solution. The process continues until all pairs have been
considered. The algorithm returns A% as the best random-key vector
found in the neighbourhood.

4.1.5. Mirror Local Search

The Mirror Local Search perturbs the random-key values, changing
the current value in position j to (1 — A[j]). Algorithm 10 illustrates
this procedure. Initially, it defines a vector RK with a random order
for the random-key indices and sets the best solution found, A%, to
the current solution A. The algorithm then iterates over all indices i in
the random-key vector A. For each index, it inverts the value of the
random key at RK;. After each inversion, if the new solution has a
better objective function value than A’**, it updates A% to the new
solution. If not, it reverts A to A%, This process continues until all
indices have been processed. Finally, the algorithm returns A% as the
best random-key vector found in the neighbourhood.

4.1.6. Farey Local Search

The Farey Local Search modifies the value of each random key
by randomly selecting values between consecutive terms of the Farey
sequence [61]. The Farey sequence of order 5 consists of all completely
reduced fractions between 0 and 1, with denominators less than or
equal to 5, arranged in increasing order. For our purposes, we use the
Farey sequence of order 7:

F_{0111121231432534561}
D =

176547357275374567 1

In each iteration of the heuristic, the random keys are processed in
a random order. Algorithm 11 illustrates this procedure. It begins by
defining a vector RK with a random order for the random-key indices
and initializes the best solution found, A%, to the current solution
A. The algorithm then iterates over each index i in the random-key
vector. For each index i, it iterates over the Farey sequence F of
fractions, setting the value of the random key RK; in A to a random
value uniformly generated between F; and F,,;, where F; and F,;
are consecutive fractions in the Farey sequence. After updating the
random key RK;, if the new solution has a better objective function
value than A%, it updates A%* to the new solution. If not, it reverts A
to A%, The algorithm continues this process until all indices have been
processed. Finally, the algorithm returns A”** as the best random-key
vector found in the neighbourhood.

4.1.7. Nelder-Mead Local Search

The Nelder-Mead Local Search, introduced by Nelder and Mead
[62], is a numerical technique for finding the minimum of an objective
function in a multidimensional space. This direct search approach
relies on function comparisons and is commonly used in derivative-free
nonlinear optimization. The method starts with at least three solutions
and can perform five moves: reflection, expansion, inside contraction,
outside contraction, and shrinking. In this study, we always apply the
Nelder-Mead Local Search with three solutions: A, A,, and A3, where
one is the current solution derived from the metaheuristic, while the
others are randomly chosen from a pool of elite solutions found during
the search process. These solutions are ordered by objective function
value (4, is the best and A is the worst). Fig. 4 illustrates a simplex
polyhedron and the five moves.

Algorithm 12 presents the pseudo-code for the Nelder-Mead Local
Search adapted for discrete optimization problems. We employ the
blending method (Section 4.1.2) to generate new solutions, using p =
0.5 and y = 0.02. The algorithm begins with an initial simplex of three
solutions (A, A5, A3). The simplex is sorted based on the objective
function values, and the simplex’s centroid (A,) is computed between
Ay and A, (Ag = Blending(A4,, A5,1)). The main loop iterates until

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

Simplex

Reflection

Expansion

Outside Contraction

Inside Contraction

Shrinking

Fig. 4. Illustrative example of the simplex polyhedron and the five moves of the Nelder-Mead Local Search.

Source: Chaves et al. [54].

a termination condition is met. The algorithm performs a series of
moves on the simplex during each iteration to explore the search
space. A reflection solution (A, = Blending(Ag, A3, —1)) is computed.
If the objective function value at A, is better than the current best
solution (A;), the algorithm computes an expansion solution (4, =
Blending(A,, Ay, —1)). If the objective function value at A, is better
than at A,, A; is replaced by A,; otherwise, A5 is replaced by A4,.
If neither the reflection nor the expansion improves the solution, the
algorithm contracts towards the solution A, or A;. For an outside
contraction (when A, is better than Aj), the contraction solution is
A, = Blending(4,, Ay, 1). For an inside contraction (when A, is not
better than Aj3), the contraction solution is A. = Blending(A, A3, 1).
If the contraction step does not improve, the entire simplex is shrunk
towards the best solution A; (A; = Blending(A;,A;,1),i = 2,3). The
algorithm terminates when the maximum number of iterations equals
nxe 2.

4.2. Encoding and decoding

Solutions to the IORSP are encoded with a vector A of n = |K|
random keys, where K is the set of surgeries. Then, each random
key corresponds to a unique surgery. Our decoder implementation
follows a straightforward approach: (i) sorts the surgeries based on
their random-key values, (ii) sorts the surgeries based on their pri-
ority values, keeping the random-key order for equal priorities; (iii)
schedules each surgery task sequentially at the earliest available time
slots. This implementation always produces feasible schedules given
that the planning horizon is not planning horizon constrained while
minimizing the makespan since, for any surgery, there will always be a
future timeslot in some compatible room with the necessary equipment
available. The same approach also always produces feasible solutions
to the version of the problem that maximizes the number of scheduled
surgeries within a planning horizon.

Table 3 shows the decoder’s dynamic structures and operators. We
have a solution problem s, that contains, for each surgery k € K, a
surgery allocation data D, and each surgery allocation data contains
an allocated room r, set of equipment e¢,, starting time o, and blocking

time . Thus, the scheduled surgeries makespan &g, 4, is when the last
patient completes its last task.

Algorithm 1 details our implementation. The solution starts with
no surgeries scheduled (Line 1) and, consequently, g4, = O, then
the surgeries are sorted given the sequence of random keys (Line 2).
Then, given the final sequence of surgeries, each one is scheduled by
our Greed Insertion algorithm (Line 4).

Algorithm 1: Decoder

Data: Vector A of random keys
Result: Fitness (makespan) value, S9a)
54 < 5 8g4) < 0;
SortByRK(A);
for a e A do

L GreedInsertion(s 4, K, 65 4);

FNEC R R

5 return oy,

Algorithm 2 details the Greed Insertion algorithm. It also has the
simple concept of scheduling each surgery’s task as soon as possible,
given all available rooms, types of equipment, and persons. It receives
a current problem solution s, and a surgery k to be scheduled and starts
by setting variable ¢™ (minimal start time) to zero and Success to false
(Line 1). The main loop (Lines 2—22), for each task (Line 4), searches all
compatible rooms R, and selects it the one r, with the earliest moment
available o, (Line 6), with the assistance of operator Search as noted
on Table 3. The same logic is applied to select the required equipment
types F,, if any is required (Lines 9—12) and for the required people P,
(Lines 13-15).

Variable o, indicates the selected start time for task k. It starts as
¢™" (Line 5), and it is updated with the maximum value of the selected
room (Line 7), each selected equipment (Line 12) and each involved
person’s schedule (Line 15). The blocking value ¢, is computed as the
delay (Line 16), if it exceeds the limit (Line 17), the new ¢™" is set by
delaying the first task (Line 18) and restarting k’s scheduling (Line 19),
otherwise ¢ is updated to allocate the following task (Line 21). After
a successful surgery allocation, the surgery allocation data D, is added

B.S. Vieira et al.

Table 3
Decoder notations.

Applied Soft Computing 180 (2025) 113368

Solution variables

Sp Solution problem construct from random-key vector A
D, Surgery’s k allocation data

r Room for task ¢

e Set of equipment for task 7

o, Starting time for task ¢

v, Blocking time for task ¢

[Makespan of random-key vector A

Operators

Next(r) Returns the next task to be executed after + on the same surgery
First(k) Returns the first task to be executed on surgery k
Last(k) Returns the last task to be executed on surgery k

Search(R,, k,s 4,0

min

Returns the earliest available resource r and the corresponding candidate

moment ¢f at which task k can be executed in solution s,, after moment ¢"".

to solution s, (Line 23) and hence, the makespan S (a) IS updated (Line
24).
Algorithm 2: Greed Insertion

Data: Solution s, surgery k, and the current makespan 6,
Result: A Solution s, with surgery k scheduled.

1 o™ « 0; Success < False;

2 while —Success do

3 Success < True; D, < @;

4 for Task t € T, do

5 o, < o""

6 (r;,0¢) < Search(R,,t,5,4,0,);

7 o, < max(c;,0¢);

8 e, « @

9 for f € F, do

10 (e,0¢) « Search(E;,1,5,,0,);
11 e, < e J{e}

12 o, < max(c,,0°);

13 for pe P, do

14 (p,0¢) < Search({p},t,54,0,);
15 o, < max(oc,,0°);

16 ¢, < 0, — 0™

17 if ¢, > @ then

18 6" < Opigy + B

19 Success < False; Break;

20 else

21 Lcr'"«—tr,+y,”+y{";

22 | Di < DUl e0, ¢}

23 s, < s, U{Dy)s

d .
24 04y < Max(8g 4y O Lasi(r)y + VL,m(k))’

Fig. 5 illustrates an example of the Algorithm 1 on a simplified
scenario with five surgeries, no priorities, two beds, two ORs, one
PSRU, and all subjects with clear initial schedules. Notably, Surgeries 2
and 3 lack PSRU tasks; not all tasks follow the same room sequencing,
and all surgeries allocate first and last the same bed as described in
Section 1.

The decoder receives a vector of random keys A =
{0.2,0.6,0.1,0.4,0.3}. Subsequently, each surgery is scheduled in the
sequence 3, 1, 5, 4, and 2. Firstly, Surgery 3 involves 3 tasks, with the
first task allocating Bed 1 at the first time slot, OR 1 at the second time
slot, and the patient returning to Bed 1 at the third time slot. Surgery 1
comprises 4 tasks, with the first allocating Bed 1 at the first time slot,
OR 2 at the second and third time slots, the PSRU at the fourth, and
the patient returning to Bed 2 at the fifth. Similarly, Surgeries 5, 4,
and 2 also have their respective tasks sequentially allocated at the first
available moment.

4.3. Metaheuristics

The components presented are employed in the three metaheuristics
developed in this study: BRKGA-QL, SA, and ILS. BRKGA-QL utilizes the

10

123 8B

/-§31.42

\‘ UYL,

oo 305 s I - -
Bed 2 1| 1 4 4 4
Operation Room 1 & - 4 4
Operation Room 2 i 1 2 2
PSRU 1 [5] 4

Fig. 5. Example of our decoder with a Greed Insertion strategy.

blending method as a crossover operator and applies the shaking and
RVND methods to intensify the search in promising regions. SA con-
ducts its search using the shaking method and performs local searches
with RVND after the temperature cooling process. Finally, ILS bases its
search strategy on the shaking and RVND methods. All metaheuristics
explore the random-key solution space, and the generated solutions are
mapped into feasible IORSP solutions through the decoder method. The
following subsections present the methodology of each metaheuristic in
detail.

4.3.1. Biased Random-Key Genetic Algorithm with Q-learning

The Biased Random-Key Genetic Algorithm (BRKGA) [45] extends
RKGA by introducing bias in selection and crossover. It starts with a
randomly generated population P, in which each individual is evalu-
ated based on fitness and classified into elite (P,) and non-elite individ-
uals (P — P,). A new population is formed by retaining P,, introducing
mutants (P,), and generating offspring (P.) via parametrized uniform
crossover (PUX) [63] with probability p, guiding gene inheritance.
Each individual is then decoded into a solution.

In this paper’s BRKGA variant, the new population consists only of
P, and P,, replacing PUX with a blending crossover (Section 4.1.2) that
incorporates mutation (Algorithm 7, lines 2-3). Evolution continues
until a stopping criterion is met, with parameters including population
size |P|, elite proportion p,, and mutation probability u. BRKGA-
QL [14] differs by replacing mutants with direct mutations, where each
gene mutates with probability u or follows p, for inheritance. It also
employs a Q-Learning agent to dynamically adjust parameters (p, p,,
u, p.) and integrates a local search module (RVND, Section 4.1.3) for
solution refinement via clustering and intensification.

B.S. Vieira et al.

Table 4
Possible parameter states.
Parameter States
|P| 233, 377, 610, 987, 1597, 2584
Pe 0.10, 0.15, 0.20, 0.25, 0.30
H" 0.01, 0.02, 0.03, 0.04, 0.05
Pe 0.55, 0.60, 0.65, 0.70, 0.75, 0.80

The parameter selection process represents an additional optimiza-
tion challenge, typically addressed through a parameter tuning pro-
cedure for later static parameter executions. Such procedure often
entails selecting parameter ranges manually or through automation in
most existing works [64]. In contrast, the O-Learning process offers an
automated parameter-tuning mechanism that runs parallel to the main
problem-solving algorithm.

The Q-Learning algorithm [65] has its domain modelled as a
Markov Decision Process [66]. It consists of the learning process of
the agent inserted in an environment in terms of actions a, states s,
and rewards r. Eq. (1) shows the calculations for updating the weights
of state-action pairs. Function Q delineates the value associated with
the state-action pair (s, a) at the Q-table i + 1, symbolizing the quality
of actions taken to anticipate future returns or rewards. This update is
contingent on two parameters: the learning factor, denoted as 1A'/, and
the diversification factor, denoted as A4/.

0™ (s,a) := Q'(s,a) + A [Ri(s,a) + A% X max,Q'(s',d") — Q'(s,a)] (1)

Moreover, analogous to metaheuristic common practices, the Q-
Learning execution tends to take the best-known actions for each state
(intensification) to obtain the expected maximum return. On the other
hand, it is also necessary to choose different actions to explore other
policies (diversification). The e-Greedy policy consists of a good strat-
egy to balance intensification and diversification, choosing the action
with the highest value in Q with probability 1 — ¢ or selecting an
action at random with probability e. The Q-table represents the learning
process with the value of each state-action pair.

In our implementation, at the end of each BRKGA-QL generation j,
areward Ri(s, a) is incremented for the corresponding state-action pair
(s,a) and Q-table i, as showed by Eq. (2), where 6bj is the best fitness
in the current generation and 6,,‘]7 , the previous one.

(6[’/*1 /5bj)-1
|P| ’
0, otherwise

if 5bj < 61,171 @)

Ri(s,a) < Ri(s,a) + {

Furthermore, the reward function serves as an intermediary solu-
tion, striking a balance between enhancing the current best fitness and
the binary rewards as proposed by Karafotias et al. [67]. Notably, this
function exhibits a higher sensitivity to scale than the binary reward,
considering the magnitude of improvement and the population size.
Table 4 presents the potential states for each parameter, with A¢/ fixed
as 0.8 and A'/ starts with 1 and decreases linearly until 0.1 at the time
limit. The QO-table initially has all values set to 0. It undergoes updates
every k BRKGA-QL generation using Eq. (1), followed by the reset of
corresponding rewards.

Finally, Algorithm 3 presents the summarized implementation of
the BRKGA-QL. It is comprised of a usual BRKGA implementation [45]
coupled with a local search (Lines 16—19) and the added QL component
(Lines 1, 5, 6 and 15).

4.3.2. Simulated annealing

Simulated Annealing (SA) is a widely used global optimization
method inspired by statistical physics [15,68] and is supported by the-
oretical guarantees of global convergence [69]. SA starts with an initial
solution (denoted as a vector of random keys) A € .S, where S repre-
sents the random-key solution space. Then, a neighbourhood solution
A’ is generated through a perturbation algorithm. The search procedure

11

Applied Soft Computing 180 (2025) 113368

Algorithm 3: BRKGA-QL

Input: Time limit TL
Output: Best solution found A%
1 Step 1: Initialize Q-Table values;
2 Step 2: Randomly generate the population P;
3 Step 3: Evaluate and sort P by fitness. Store the best individual in
Abcsl;
4 while T'L is not reached do
5 Step 4: Set Q-Learning parameters (e,/f,d f);

6 Step 5: Choose an action for each parameter (p, p,, u, p,) from the
Q-Table using the e-greedy policy;

7 Step 6: Evolutionary process;

8 Classify P as elite or non-elite individuals;

9 Create elite set P, using p, as a guide;

10 Create the offspring set P, through the blending procedure, using
pes #, and factor =1 as guides;

11 P<PUP;

12 Evaluate and sort P by fitness;

13 if the best individual improved then

Store the best individual in A%*;
Step 7: Set reward (R') and update Q-Table;

14
15

16 if exploration or stagnation is detected then

17 Step 8: Local Search;

18 Identify communities in P, with the clustering method;

19 Apply RVND in the best individuals of these communities;

20

Apply Shaking in other individuals;

21 return A’

in SA is based on the Metropolis acceptance criterion of Metropolis
et al. [70], which models how a thermodynamic system moves from the
current solution (state) to a candidate solution in which the objective
function (energy content) is being minimized. If 6g4/)— g4y < 0, then
A’ is accepted as the current solution, else the candidate solution is
accepted based on the acceptance probability:

P(A') = exp (-%), 3

where AE = g4y — 6g() and T defines the current temperature. The
key idea is to prevent the algorithm from becoming trapped in local
optima by allowing uphill moves. It is important to note that uphill
moves are more likely to occur at higher temperatures.

Algorithm 4 presents the SA pseudo-code used in this work. The pro-
cedure starts by initializing with a solution represented by a random-
key vector A. The algorithm runs a loop until a stopping criterion
is met. Within this loop, it generates a neighbouring solution (A’)
from the current solution (A) and calculates the difference in objective
function values (energy difference, 4E). If the new solution has a lower
energy (A4E < 0), it is accepted as the current solution and potentially
updates the best-found solution. If the new solution has higher energy
(AE > 0), it may still be accepted based on a probability determined by
the Metropolis criterion via Eq. (3), which allows for occasional uphill
moves to escape local optima. The temperature (T') is then updated by
multiplying it with a cooling rate («). An RNVD is subsequently called
to refine the current solution further. This process continues, gradually
reducing the temperature and thus the probability of accepting worse
solutions until the stopping criterion is satisfied. The algorithm finally
returns the best solution found during the search.

4.3.3. Iterated local search

The Iterated Local Search (ILS) is a straightforward yet powerful
heuristic to solve various optimization problems. The foundational
idea of ILS was introduced by Baxter [71] and further elaborated
by Lourenco et al. [16]. The essence of ILS lies in iteratively construct-
ing a sequence of solutions using a specific heuristic, which typically
leads to significantly better solutions than repeated random trials of
the same heuristic. This optimization technique attempts to escape

B.S. Vieira et al.

Algorithm 4: Simulated Annealing

Data: Random-key vector A, initial temperature Tj,, cooling rate a,
Brins Braxs SA time limit TL
Result: Best found solution
1 A — A, T « Ty ;
2 while TL is not reached do

max>

3 iter < 0;

4 while iter < SA,,,, do

s A Shaking(A. fyns Brar;

6 Calculate the energy difference AE « 6q,4') — 6g(a)
7 if AE <0 then

8 A<« Al

9 if 64y < Og(arery then

10 L Abest — A

11 else

12 Calculate the acceptance probability P « exp <—A,I—_E) H
13 Generate a random number r € [0, 1];

14 if r < P then

15 L A< A

16 iter + +;
17 Update temperature T < a X T
18 A < RVND(A);

19 return A’

local optima by applying local search and perturbation in an iterative
manner.

The ILS algorithm, as detailed in Algorithm 5, begins with a random-
key vector A as input. Initially, the vector A undergoes an RVND
process, resulting in the solution set as A***’. The algorithm then enters
a loop until the stopping criterion is met. A copy of A***’, denoted as A’,
is created and perturbed within the loop. This perturbed solution is then
refined using the RVND function. If the objective function value g4/,
of the newly obtained solution A’ is better than that of the current
best solution A%, represented as g, ysesr), then A% is updated to A’.
Once the stopping criterion is satisfied, the algorithm returns A% as
the best-found solution.

Algorithm 5: Iterated Local Search

Data: Random-key vector 4, f,,,,
Result: Best found solution

1 A < RVND(A);

2 Abet — A;

3 while T'L is not reached do
4 A« Abeu;

5 A’ « Shaking(4’, g,
6

7

8

time limit TL

max>

max);

min?
A" « RVND(A");
if 6g(47) < 6g(ares, then
L Abest < Al

o return A’

5. Computational experiments and analysis

Our proposed metaheuristics were coded in C++ and compiled with
GCC. The proposed lower bound models were coded on Python and
solved with Gurobi 10.01 [72]. The computer used in all experiments
was a Dual Xenon Silver 4114 20c¢/40t 2.2 GHz processor with 96 GB
of DDR4 RAM and running CentOS 8.0 x64. Each proposed model was
solved for each instance with a time limit of 3600 s, and the metaheuris-
tics were run 30 times for each instance with a time limit proportional
to the number of surgeries. The literature instances and results were
retrieved from [10] (48 instances in total: 24 with business hours
and 24 without), and our case study instances were generated based

12

Applied Soft Computing 180 (2025) 113368

on gathered data from multiple sources (20 instances with business
hours and surgeon and room availabilities and 20 instances without
it). This process is detailed in Section 5.4. Table 5 presents the general
characteristics of each instance, with its name, number of surgeries and
number of rooms per room type in the sequence a patient usually has,
and the total CPU time limit (in seconds) of each heuristic run.

We analysed the computational results in terms of quality and
robustness. We present the average CPU time and the relative percentile
deviation (RPD) for the best-known solution (X,,,) as shown in Eq.
(4). The RPD values are relative deviations from reference ones. We
calculated the RPD in each run and presented the average (ARPD) and
best (BRPD) values. A statistical analysis is made per set of instances,
considering the RPDs of all runs. First, we apply the Friedman test with
a significance level of « = 0.05 to determine whether the methods have
statistically significant differences. This non-parametric test analyzes
the rankings of the methods across multiple problem instances and
evaluates whether their performances differ beyond random variation.
If the null hypothesis, which states that all methods have similar
performance, is rejected at the chosen a level, we proceed with the
Nemenyi post hoc test followed by the second stage [73] p-value
correction method. The Nemenyi test performs pairwise comparisons
to identify which specific methods exhibit significant differences in
performance coupled with the p-value correction method for a more
accurate multi-stage statistical inference acceptance criteria.

RPD =(X/X,,;, —1)x 100 ©)]

5.1. Parameter settings

The parameters of the BRKGA-QL are tuned during the search pro-
cess using the Q-Learning method. However, we also tested a version
of the BRKGA without Q-Learning. The parameters of this BRKGA
version, SA and ILS are tuned using an offline strategy. We applied
an experimental design approach considering potential values for each
parameter and identifying the “best” value for each parameter through
many experiments on a subset of the problem instances. For each
parameter, we consider three possible values, as listed in Table 6,
resulting in 3#rarameter possible configurations for each method, where
#parameter represents the total number of parameters of the method.
The computational experiments were conducted on six instances from
each set (case_01, case_06, case_11, case_16, case_20, and case_24).

We ran each parameter configuration and instance five times, and
the configuration that found the lowest average RPD was selected as
the best parameter set for solving the IORSP with the specific method.
The parameters of the ILS were set as f,,;, = 0.10 and g,,, = 0.20.
The parameters of the SA were T, = 10%, « = 0.99, SA,,, = 200
Pin = 0.05, and B, = 0.20. The parameters of the BRKGA without
QO-Learning were |P| = 1597, p, = 0.20, x = 0.03, and p, = 0.70.

5.2. Computational results for literature instances

The case study modelling of Burdett and Kozan [10] does not
completely match ours. The main difference is that, in their case, the
wardroom is the long-time recovery room; in our case, the patient
returns to the initial bed for a long recovery. In both cases, one type
of room is reserved during each patient’s whole stay. This allowed
their case to be compatible with Formulation (A.1)-(A.5). For these
instances, the distinction between the scenarios with and without busi-
ness hours lies in the fact that, in the case with it, the ORs are only
operational during regular business hours (from 8:00 AM to 5:00 PM
from Monday until Friday), and the other rooms are always available,
these are implemented with availability slots. Other distinctions include
the absence of surgeon or equipment scheduling, compatibility between
rooms and surgery types, and customization in initial schedules. These
variances were more straightforward to accommodate when we exam-
ined a simplified scenario based on our case study. In the following

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

Table 5
Literature and case study instances details.
Literature Case study
Name #Surgeries #Rooms Time limit (s) Name #Surgeries #Rooms Time limit (s)
case_01.dat 50 5,2,5,10 120 p070 58 31,3,2,4 60
case_02.dat 100 5,2,5,10 200 p078 66 23,3,3,4 70
case_03.dat 150 5,2,5,10 240 po87 75 29,3,3,4 80
case_04.dat 200 5,2,5,10 300 p093 81 30,3,3,4 90
case_05.dat 50 5,3,5,10 120 p098 86 40,3,2,4 100
case_06.dat 100 5,3,5,10 200 p100 84 39,4,3,5 100
case_07.dat 150 5,3,5,10 240 p109 93 35,4,3,5 100
case_08.dat 200 5,3,5,10 300 p120 104 46,4,4,5 100
case_09.dat 50 5,4,5,20 120 p138 118 43,5,4,5 120
case_10.dat 100 5,4,5,20 200 p153 133 71,5,4,7 120
case_11.dat 150 5,4,5,20 240 p165 141 78,6,4,7 130
case_12.dat 200 5,4,5,20 300 p178 154 88,6,4,6 130
case_13.dat 50 5,5,5,20 120 p183 159 89,6,4,6 140
case_14.dat 100 5,5,5,20 200 p189 161 71,7,5,7 140
case_15.dat 150 5,5,5,20 240 p192 164 72,7,4,8 140
case_16.dat 200 5,5,5,20 300 p193 165 78,7,5,7 140
case_17.dat 50 5,10,5,20 120 p197 173 99,6,5,7 160
case_18.dat 100 5,10,5,20 200 p201 177 73,6,4,8 160
case_19.dat 150 5,10,5,20 240 p216 188 95,7,5,9 160
case_20.dat 200 5,10,5,20 300 p233 197 88,9,4,10 160
case_21.dat 50 5,10,5,30 120
case_22.dat 100 5,10,5,30 200
case_23.dat 150 5,10,5,30 240
case_24.dat 200 5,10,5,30 300
Table 6 and ARPD). The ATTB shows us that the BRKGA-QL was the fastest to
Parameter settings configuration. converge to the best solution found. Looking at the obtained new lower
Method Parameter Values bounds and upper bounds, instance “case_21” has an optimal result
BRKGA |P| {610, 987, 1597} proved, and such a solution was found by all three RKO heuristics.
Pe {0.10, 0.15, 0.20} Table 8 shows our heuristic results with the literature instances
ﬁ 1822(1): g:ggz g:ggi with business hours. Similar to the previous table, the HSA results are
: reported from [10] with its solution times in seconds, makespan values
SA SApar {200, 500, 1000}
K {0.95, 0.97, 0.99} for the best solution found (best) in days, its best and average relative
Boin {0.005, 0.01, 0.05} percentile deviation, respectively BRPD and ARPD, the standard devi-
Brvax {0.05, 0.10, 0.20} ations (STD), and the average time to best (ATTB) in seconds. Upon
T, {10%.10%,10°} analysis of the results, we observed that the RKO methods consistently
LS Brin {0.005, 0.05, 0.10} enhanced the results for all instances from the literature. Specifically,
Brnas 10.10, 0.20, 0.40} SA found six new best-known solutions (BKS), ILS found three new

tables, the displayed lower bounds are the best ones computed by
any of our relaxed formulations; the formulations and their results are
detailed on Appendices A-C.

Table 7 shows our heuristic results with the literature instances
without business hours. The old lower bound and Hybrid Simulated
Annealing (HSA) results are reported from [10], algorithms were coded
on C++ and ran on a personal computer with a 2.6 GHz processor
and 16 GB of RAM under Windows 7. The first tree columns describe
the instances, followed by the literature lower bound (Old), our best
computed lower bound from Table C.10 (New), followed by the HSA
and RKO heuristic results, the makespan values for best solution found
(best) in days, its best and average relative percentile deviation, respec-
tively BRPD and ARPD, the standard deviations (STD), and the average
time to the best solution (ATTB) in seconds. Analysing the results, our
relaxed formulations computed lower bound values better than the ones
in the literature. Besides, the RKO methods found better results for all
literature instances without business hours. The SA found 15 new best-
known solutions (BKS), the ILS found 11 new BKS, and the BRKGA-QL
found two new BKS. These methods are robust with very small RPDs.
Statistical tests indicated that among the RKO heuristics, ILS and SA
outperformed BRKGA-QL (ILS vs. BRKGA-QL: Nemenyi test p-values
= 0.006 for BRPD and p-values = 0.0007 for ARPD; SA vs. BRKGA-
QL: Nemenyi test p-values = 0.015 for BRPD and p-values = 0.005
for ARPD), as shown in Fig. 6(a) and 6(b). No statistically significant
difference was found between SA and ILS (p-value = 1.000 for BRPD

13

BKS, and BRKGA-QL found 18 new BKS. Statistical tests confirm that
the BRKGA-QL heuristics exhibited superior performance compared to
SA and ILS, as shown in Fig. 6(c) and 6(d). Specifically, considering
the BRPD BRKGA-QL outperformed SA and ILS, BRKGA-QL vs. SA
Nemenyi test p-value = 0.024, and BRKGA-QL vs. ILS p-value = 0.037.
However, no statistically significant difference was observed between
the methods considering the ARPD (BRKGA-QL vs. SA p-value = 0.075,
BRKGA-QL vs. ILS p-value = 0.241, and SA vs. ILS p-value = 1.000).
SA and ILS also show no statistically significant difference for BRPD
(p-value = 1.000). Notably, the disparity between the ARPDs was more
pronounced than in Table 7.

Fig. 7 presents the performance profile, as proposed by Dolan and
Moré [74], comparing the computational time of the evaluated heuris-
tics: BRKGA-QL, SA, ILS, and HSA, under a 1% optimality gap threshold
relative to the best-known solutions (BKS). The results demonstrate
the superior performance of BRKGA-QL, which solves approximately
93% of the instances within the shortest time ratio and exhibits a steep
curve that quickly plateaus, indicating both efficiency and robustness.
In contrast, SA and ILS show similar trends, achieving up to 80% of
instances solved but with a more gradual curve, suggesting higher
variability in computational performance. Notably, HSA did not solve
any instance within the 1% gap threshold, indicating a significant
limitation in its ability to achieve high-quality solutions under strict
optimality criteria. These results highlight the effectiveness of BRKGA-
QL in providing high-quality solutions efficiently across a diverse set of
problem instances.

The Time To Target (TTT) plot, as described in [75], is used to
analyse the RKO convergence rate considering BRKGA-QL, SA, and ILS

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

Table 7

Literature instances heuristic results without business hours.
Instance Lower bounds HSA SA ILS BRKGA-QL

old New best BRPD (%) time(s) best BRPD (%) ARPD (%) STD ATTB (s) best BRPD (%) ARPD (%) STD ATTB (s) best BRPD (%) ARPD (%) STD ATTB (s)

case_01 14.82 16.41 16.80 1.54 173 16.54 0.00 0.05 0.00 63 16.54 0.00 0.06 0.00 54 16.55 0.04 0.14 0.01 66
case_02 32.24 35.32 36.04 1.73 1822 35.42 0.00 0.03 0.01 147 35.43 0.01 0.02 0.00 137 35.43 0.01 0.09 0.01 45
case_03 44.29 49.06 50.10 1.86 6282 49.18 0.01 0.03 0.01 180 49.17 0.00 0.02 0.01 166 49.18 0.02 0.08 0.02 49
case_04 60.81 67.05 68.13 1.43 16110 67.17 0.01 0.04 0.01 201 67.16 0.00 0.02 0.01 201 67.17 0.01 0.05 0.01 82
case_05 15.37 16.88 17.41 270 151 16.95 0.00 0.04 0.00 77 16.95 0.00 0.05 0.00 62 16.96 0.05 0.12 0.01 48
case_06 29.89 3294 34.49 4.47 1606 33.01 0.00 0.04 0.00 152 33.01 0.01 0.04 0.00 136 33.02 0.04 0.09 0.01 40
case 07 44.18 48.81 49.45 117 6080 48.88 0.01 0.03 0.01 155 48.87 0.00 0.02 0.01 155 48.88 0.02 0.05 0.01 46
case 08 61.27 67.50 68.73 1.72 11999 67.57 0.002 0.02 0.01 207 67.57 0.00 0.03 0.06 213 67.57 0.00 0.03 0.01 83
case 09 679 7.60 817 582 122 771 0.00 0.27 0.01 78 772 013 0.34 0.01 77 772 013 0.41 0.01 72
case 10 1499 16.53 17.54 5.3 1397 16.68 0.00 0.09 0.01 171 16.68 0.02 0.10 0.01 130 16.68 0.02 0.22 0.02 51
case 11 22.09 24.31 2595 6.11 5231 24.46 0.03 0.10 0.01 171 24.45 0.00 0.07 0.01 167 2445 0.01 0.12 0.02 79
case 12 30.57 33.60 3513 412 12834 3373 0.01 0.10 0.02 211 3373 0.00 0.22 0.18 232 33.74 0.05 0.12 0.02 126
case_13 7.34 8.11 9.08 10.47 119 8.22 0.00 0.20 0.01 74 8.23 0.12 0.20 0.00 76 8.23 0.15 0.30 0.01 71
case_14 15.41 16.92 18.72 9.76 1318 17.04 0.00 0.09 0.01 182 17.04 0.004 0.13 0.01 119 17.05 0.09 0.25 0.02 80
case_15 23.31 2550 27.11 5.82 4788 25.63 0.05 0.11 0.01 171 25.61 0.00 0.16 0.11 157 25.62 0.02 0.14 0.02 71
case_16 32.23 3527 37.02 458 12395 35.38 0.00 0.10 0.01 230 35.38 0.01 0.09 0.08 256 35.38 0.01 0.12 0.02 125
case_17 8.23 9.03 9.79 7.66 97 9.09 0.00 0.27 0.01 73 9.09 0.00 0.31 0.01 69 9.10 0.14 0.40 0.01 75
case_18 15.46 16.99 18.22 6.74 1202 17.07 0.004 0.07 0.01 179 17.07 0.00 0.07 0.00 138 17.07 0.01 0.15 0.01 90
case_19 2391 26.23 27.67 5.17 4450 26.31 0.00 0.09 0.01 150 26.31 0.01 0.15 0.14 178 26.31 0.02 0.10 0.01 86
case_20 30.48 33.55 35.29 4.95 11135 33.62 0.00 0.08 0.01 216 33.63 0.01 0.06 0.01 245 33.63 0.02 0.09 0.01 135
case_21 5.04 6.09 6.54 7.36 119 6.09 0.00 0.00 0.00 52 6.09 0.00 0.00 0.00 30 6.09 0.00 0.00 0.00 30
case_22 10.02 11.05 12.31 9.80 1220 11.20 0.00 0.23 0.01 175 11.22 0.14 0.27 0.01 138 11.20 0.02 0.31 0.02 119
case_23 14.18 15.70 17.31 9.27 4356 15.84 0.00 0.24 0.01 197 15.85 0.05 0.19 0.01 182 15.84 0.01 0.22 0.02 121
case24 19.27 21.26 23.02 7.51 10876 21.42 0.11 0.21 0.02 234 21.40 0.03 0.16 0.01 249 21.40 0.00 0.19 0.03 160
Averages 5.29 0.01 0.11 0.01 0.02 0.12 0.03 0.04 0.16 0.01

Table 8

Literature instances heuristic results with business hours.
Instance HSA SA LS BRKGA-QL

best BRPD (%) time (s) best BRPD (%) ARPD (%) STD ATTB (s) best BRPD (%) ARPD (%) STD ATTB (s) best BRPD (%) ARPD (%) STD ATTB (s)

case_01 19.63 12.22 900 17.49 0.00 1.26 0.25 82 1824 4.26 4.59 0.02 48 1820 4.05 457 0.03 60
case_02 4219 10.19 9432 3857 0.53 2.52 0.20 167 38.36 0.00 2.30 0.39 148 3849 0.33 2.57 0.44 101
case_03 59.33 10.87 32796 57.29 5.31 6.76 0.48 186 57.35 5.42 7.27 1.22 173 54.40 0.00 5.22 1.19 172
case_04 79.46 6.65 110160 78.50 0.05 2.23 0.85 234 7924 0.99 2.42 1.67 202 78.46 0.00 1.53 0.68 207
case 05 20.01 13.48 828 17.63 0.00 0.27 0.06 82 17.66 0.17 3.00 0.22 73 17.68 0.28 2.55 0.23 77
case_06 3859 11.60 8100 3643 0.44 1.36 0.17 134 3648 0.59 1.25 0.07 103 36.27 0.00 1.14 0.20 87
case_07 56.85 8.68 32652 53.24 1.76 4.32 1.24 212 53.22 1.72 3.29 0.59 196 52.32 0.00 2.75 1.06 151
case_08 68.41 1.25 13572 67.57 0.01 0.02 0.01 203 67.57 0.00 0.01 0.00 219 67.57 0.01 0.03 0.01 118
case_09 10.06 16.18 576 8.66 0.00 0.33 0.06 68 8.66 0.00 1.35 0.07 55 8.66 0.00 1.11 0.07 68
case_10 20.52 15.68 6120 18.33 1.58 2.46 0.13 163 18.28 1.32 2.32 0.11 148 18.05 0.00 2.42 0.27 106
case_11 32.08 21.55 24480 27.39 3.83 10.63 0.64 172 27.25 3.30 6.66 0.87 192 26.38 0.00 3.29 0.96 161
case_12 42.34 13.34 76464 38.42 0.30 4.29 0.67 294 38.34 0.10 2.99 0.51 283 38.30 0.00 2.11 0.50 241
case_13 11.65 28.91 504 9.04 0.00 2.42 0.10 74 9.23 217 4.01 0.05 66 9.26 2.41 3.43 0.06 84
case_14 21.41 16.70 5760 18.38 0.21 1.23 0.27 159 18.36 0.06 0.65 0.16 154 18.35 0.00 0.96 0.13 108
case_15 32.74 19.06 24012 28.99 5.31 7.03 0.17 192 28.42 3.23 6.68 0.18 185 27.53 0.00 3.82 0.66 215
case_16 44.43 15.57 69624 40.13 1.81 5.60 1.05 273 39.44 0.06 3.00 0.44 286 39.42 0.00 2.19 0.38 233
case_17 11.73 20.28 432 9.85 0.00 3.30 0.11 88 10.25 4.05 5.05 0.07 60 10.21 3.69 4.24 0.05 74
case_18 20.47 11.87 4716 1841 0.09 1.03 0.22 155 1840 0.08 0.45 0.05 139 1839 0.00 0.39 0.06 108
case_19 3341 1879 20700 29.36 3.25 4.53 0.27 202 2936 3.25 3.83 0.24 193 28.44 0.00 2.94 0.29 200
case_20 41.87 14.93 59904 37.49 017 2.58 0.37 260 37.48 0.15 1.98 0.36 265 37.43 0.00 1.59 0.44 222
case_21 7.88 22.99 360 6.41 0.00 0.67 0.02 72 645 0.75 1.26 0.04 68 6.41 0.00 1.21 0.05 63
case_22 15.15 22.80 4500 1256 1.43 4.31 0.27 160 1248 0.85 1.85 0.10 169 12.38 0.00 2.44 0.24 124
case 23 2212 26.55 17928 1831 4.38 5.44 0.19 214 1831 442 4.86 0.09 190 17.54 0.00 4.67 0.22 167
case_24 27.36 14.65 56124 24.55 0.52 4.48 0.43 262 24.55 0.49 3.70 0.32 281 24.43 0.00 2.81 0.39 243
Averages 15.62 1.29 3.29 0.34 1.56 3.12 0.33 0.45 2.50 0.36

heuristics. The instance set fjspnostr/case_21 was considered for this
test. All three solution procedures find the same solution, which is also
the best-known solution for this instance. The experiment consists of
running each method 100 times for the instance. Each run is indepen-
dent and stops when a solution with a cost at least as good as a given
target value is found. These experiments consider an integer value at
most 0.50% greater than the BKS solution as the target. The analysis
of Fig. 8 indicates that within the first 20 s, BRKGA-QL has a 97%
probability of reaching the target value, compared to 93% for ILS and
44% for SA. By 40 s, BRKGA-QL consistently achieves the target value,
while ILS and SA reach probabilities of 98% and 89%, respectively. The
likelihood of reaching the target increases to 100% at approximately 50
s for ILS and 58 s for SA. These results demonstrate that while all three
methods exhibit strong convergence, BRKGA-QL achieves the fastest
convergence.

Based on computational tests, no single method outperformed the
others in all cases. Therefore, we selected the BRKGA-QL method for the
case study, as it provided better results for instances considering busi-
ness hours. Additionally, this method does not require offline parameter
tuning, making it more convenient for day-to-day hospital manage-
ment. The case study instances are more complex and constrained by

14

factors such as surgeon schedules, operating room types, equipment
availability, and other additional attributes.

5.3. Performance comparison of different RKO components

To better understand the contribution of each RKO component, we
conducted additional computational experiments analysing the impact
of different shaking moves and local search heuristics. In this section,
we evaluate the performance of the shaking method when restricted to
a single move at a time and the effectiveness of individual local search
heuristics compared to the RVND method. These experiments provide
insights into the role of each component in the optimization process,
helping to justify our design choices and offering guidance for future
research in this domain.

5.3.1. Shaking component

Statistical analysis revealed distinct behaviours among the BRKGA-
QL, ILS, and SA heuristics when different shaking operators were
applied separately. For BRKGA-QL, no statistically significant differ-
ence was observed between the shaking methods. This behaviour is
expected, as the shaking function in BRKGA-QL is used to perturb

B.S. Vieira et al.

SA

NS

p < 0.05

ILS

p <0.01

p < 0.001

)
54
<
o
~
=4
)

SA ILs

BRKGA-QL

(a) BRPD for instances without business hours.

<

]
NS

2 p < 0.05
p <0.01
p < 0.001

)

54

<

]

™

o«

)

SA ILs BRKGA-QL

(c) BRPD for instances with business hours.

Applied Soft Computing 180 (2025) 113368

SA

NS

p < 0.05

ILS

p <0.01

p < 0.001

BRKGA-QL

SA ILS BRKGA-QL

(b) ARPD for instances without business hours.

<

)
NS

9 p <0.05
p<0.01
p < 0.001

-

54

<

9

M

4

o

SA Its BRKGA-QL

(d) ARPD for instances with business hours.

Fig. 6. Nemenyi test considering the best and average relative percentile deviation (RPD) for the RKO-based heuristics.

10

Instances solved

05

10

15 20

Performance Ratio (log scale)

Fig. 7. Performance Profile considering the RKO-based heuristics.

solutions from communities rather than directly guiding the search
process. In the case of ILS, only the shaking operator based on the
mirror move led to significantly worse results, while the other operators
exhibited no statistical difference. Finally, no significant difference was
found for SA between using all shaking operators and applying only the
random or swap moves. However, SA performed worse when restricted
to the mirror and swap neighbour operators, indicating that a more
diverse set of perturbations is beneficial for this method. Fig. 9 presents
the heatmap with p-values of the Nemenyi Test.

15

5.3.2. Local search component

Fig. 10 displays the box plots of the RPD performance for each meta-
heuristic: BRKGA-QL, ILS, and SA, respectively, across the test cases.
In each metaheuristic, the version using the RVND (which combines
the four local search heuristics) is compared against four simplified
variants, each using a single local search heuristic instead of the RVND.
In all comparisons, the total CPU time is kept constant. The results
indicate that the RVND version outperformed all simplified variants.
Among the single-heuristic versions, Swap yielded the best results for

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

<
-) o .
* +
* + x
¥ + x
¥ + X
£ + x
i + :
% + x
5 + x
i + x
i ¥ x
5 + x
i + x
5 + x
i + X
- b x
© | ¥ Py <
[=) % & x X
¥ ¥ &
¥ ¥ x
% y x
£ ¥ x
: b X
% i x
p + 4
i i ¥
k4 ¥ X
3 i X
% i x
4 Py M
S % i X
= i i &
= o | i I %
Qo * & LR
© % 5 X
o x t K
< P
S ¥ i %
o i F X
> % b M
= i f e
2 N =
=]
E3 i
3° if
s N
i B
£ ¥
L X
i1 X
iy ¥
it X
i 3
iT X
i1 X
i1 M
s 3
§F X
o~ it <
o it X
it &
ii X
i X
i %
s M
X x
ir M
oy X
g <=
5 + ILS
8 B * BRKGA-QL
o | &t < x
S SA
T T 7 T T
0 10 20 30 40 50
time to target solution (secs)
Fig. 8. Time to target plot (Instance fjspnostr/case_21).
ES = ES
3 € 3
£ £ €
5 S 5
4 & 3
N¢ NS NS
gl 3 g p<o H p<005
s H =
P p<0. p <0.01
a P a p<0 a p < 0.001
g g g
a & &
H g H
5 5 5
2 2 2
Al Random Mirror Swap Neighbor All Random Mirror Swap Neighbor All Random Mirror Swap Neighbor
(b) ILS. (c) SA.

(a) BRKGA-QL.

Fig. 9. Nemenyi test considering the relative percentile deviation (RPD) for the RKO-based heuristics with different Shaking moves (Random, Mirror, Swap, and Swap Neighbour).

e B
. © ! o -
@ . B -
. 1 J—
© . i - e : =
o ; ‘ a a —_ —_
B & &] -
-]
© © :
~
o 4 - . i o i - i i ° ; . i I
RVND Swap Mirror Farey Nelder-Mead RVND Swap Mirror Farey Nelder-Mead RVND Swap Mirror Farey Nelder-Mead
(b) ILS. (c) SA.

(a) BRKGA-QL.

Fig. 10. Boxplots considering the relative percentile deviation (RPD) for the BRKGA-QL, ILS, and SA with RVND and different local search heuristics (Swap LS, Mirror LS, Farey

LS, and Nelder-Mead LS).
16

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

oo o

BRKGA-QL

BRKGA without QL

BRKGA without QL and RVND

Fig. 11. Boxplots considering the relative percentile deviation (RPD) for the BRKGA-QL, BRKGA without Q-Learning, and BRKGA without Q-Learning and RVND.

BRKGA-QL and ILS, while Nelder-Mead performed best for SA. These
findings reinforce that no single heuristic consistently dominates and
that combining multiple heuristics within the RVND improves the
robustness and overall performance of the metaheuristics.

5.3.3. Q-learning component

Fig. 11 displays the box plots with the different performances of the
BRKGA with and without the Q-Learning and without Q-Learning and
the RVND local search. As shown in other works [14], it is observable
that the Q-Learning component helps it to produce better solutions on
average with a smaller spread of results compared to the other versions,
reinforced by the Nemenyi test, which shows statistical relevance when
comparing superiority of the BRKGA-QL against the BRKGA without QL
(p < 0.05) and against the BRKGA without QL and RVND (p <« 0.05).

5.4. Computational results for the case study instances

Our case study instances were primarily generated using data col-
lected from Santa Casa, a non-profit hospital located in several Brazilian
cities. Most of the modelling resulted from several meetings with man-
agement staff and interviews with surgeons and nurses that detailed
the decision-making process when scheduling surgeries and its expected
occurrences. For the production of the test instances, management
provided some statistical data with surgery types and operating times.
Further data about probability distribution functions for occurrence
were sourced from [76,77]. The script initially receives or randomly
picks some surgeries, multiplies per a constant, and picks a number
inside a +15% range for the number of surgeons, number of each
room type, and available types of equipment. For a 14-day planning
horizon, operating rooms and surgeons are only available from 7:00
AM to 10:00 PM. The other room types are always available. Each day,
a surgeon is available with a 70% chance. Based on our case study
collected data, each operating room is always available from Monday to
Friday and from 7:00 AM to 1:00 PM on Saturdays with a 35% chance.
The equipment requirement is determined according to the surgery
type. The generated set of instances is publicly available at a Github
repository.!

Table 9 shows our heuristic results with the case study instances.
The first three columns describe the instances, followed by the best
computed lower bound from Table C.11, followed by the BRKGA-QL
results split between the cases with and without availability slots (AS).
For these instances, the tests without availability slots imply that all
subjects (rooms, surgeons, patients, or equipment) are always available.
Each instance has the best and average makespan values in days, as well
as the average CPU time in seconds. The case with no availability slots
has a percentile optimality gap comparing the best solution to the best
lower bound.

1 https://github.com/brunosalezze/iorsp-instances

17

Analysing the gap results, eight instances had gaps smaller than 1%,
even among the larger ones. This shows that BRKGA-QL found almost
optimal results even in instances with many more constraints (surgeon
schedules, OR compatibility, and equipment availability) in relation
to the instances of Burdett and Kozan [10]. BRKGA-QL demonstrated
the ability to identify high-quality solutions within seconds of com-
putation time, even for large-scale instances containing approximately
200 surgical procedures. The algorithm was executed 15 times for
each instance, exhibiting robust performance by consistently producing
average solutions close to the best solutions obtained. These attributes
make BRKGA-QL suitable for practical implementation in hospital man-
agement systems, where computational efficiency and solution quality
are essential.

5.5. Surgery fixing and rescheduling

Due to unforeseen reasons, a previously scheduled surgical proce-
dure can be postponed or cancelled. This leads to surgery rescheduling,
as highlighted by Burdett and Kozan [10]. It is a challenging but
necessary aspect of healthcare management. It requires balancing and
accommodating patient needs, ensuring patient safety, and efficiently
managing resources. While some previously scheduled surgeries can be
ultimately rescheduled, often, most of the surgeries closest to execution
need to be maintained during the next scheduling. Our approach was
developed with initial availability slots for every resource to allow a
more flexible input. Some of the reserved initial schedules can also be
pre-scheduled surgeries.

As an example of how input can be used for rescheduling efforts,
we selected the best-known solution to instance p70, shown in Fig.
12, the non-available moments are marked with the colour purple
(171,99,250), on a 0-255 (red, green, blue) scale. We highlight the
schedule of a patient as an example. The patient of colour orange
(255,161, 90) has its events numbered. The patient arrives at the hos-
pital and first goes to Room 12022 — 0 (1), goes to surgery in Room
46048 —1 (2), leaves to observation in Room 89947 — 3 (3) and moves
to recovery back in Room 12022 — 0 (4).

Out of the initial 58 surgeries to be scheduled, we randomly re-
moved 11 to simulate cancelled surgeries, followed by the fixation of
programmed schedules of 10 other ones, fixing the rooms, surgeons,
and types of equipment reserved for these time intervals. We selected
mainly from the first to be performed for the initial scheduling. Finally,
we created 7 new surgeries. The BRKGA-QL was run with the new
instance under the same conditions as when p70 was initially solved
with ten runs. The room scheduling for the best solution found can
be observed in Figure Fig. 13. The fixed time intervals are the same
colour as the non-business hour intervals for all rooms, marked with red
(239, 85,59). The algorithm could fulfil the ORs’ time slots as efficiently
as possible without pre-scheduled surgeries.

https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances
https://github.com/brunosalezze/iorsp-instances

B.S. Vieira et al. Applied Soft Computing 180 (2025) 113368

Table 9
Case study instances heuristic results.
Instance Surgeries Rooms Best LB BRKGA-QL
No AS With AS
Best Average ARPD (%) Time (s) Gap (%) Best Average ARPD(%) Time (s)

p070 58 31,3,2,4 4.440 4.610 4.632 0.48 60.1 3.85 6.615 6.960 5.22 60.1
p078 66 23,3,3,4 5.536 6.057 6.073 0.26 70.1 9.41 8.959 9.036 0.86 70.4
p087 75 29, 3,3, 4 5.247 5.679 5.698 0.33 80.1 8.23 9.663 9.678 0.16 80.1
p093 81 30, 3, 3, 4 5.485 5.848 5.870 0.38 90.1 6.62 9.678 9.706 0.29 94.4
p098 86 40, 3, 2, 4 5.719 5.728 5.731 0.05 100.1 0.15 9.648 9.675 0.28 104.6
p100 84 39,4,3,5 4.604 4.981 4.998 0.34 100.1 8.19 8.708 8.740 0.37 104.9
p109 93 35,4,3,5 5.364 5.926 5.942 0.27 100.1 10.47 9.534 9.570 0.38 103.7
pl20 104 46, 4, 4, 5 5.466 5.497 5.515 0.33 100.2 0.57 9.823 9.876 0.54 105.0
p138 118 43,5,4,5 5.224 5.776 5.801 0.43 120.2 10.55 9.252 9.315 0.68 126.0
p153 133 71,5, 4,7 5.486 5.503 5.515 0.22 120.2 0.3 9.994 10.115 1.21 124.9
pl65 141 78,6, 4,7 5.019 5.042 5.055 0.26 120.3 0.46 9.233 9.257 0.26 131.3
p178 154 88,6,4,6 5.335 5.353 5.369 0.30 120.3 0.34 9.901 10.026 1.26 128.8
p183 159 89,6,4,6 5.556 5.588 5.596 0.14 140.4 0.56 10.344 10.528 1.78 146.2
p189 161 71,7,5,7 4.902 5.238 5.278 0.76 140.4 6.86 8.847 8.934 0.98 140.3
pl92 164 72,7,4,8 4.964 5.257 5.280 0.44 140.4 5.9 9.260 9.354 1.02 141.4
p193 165 78,7,5,7 4.952 5.017 5.034 0.34 140.2 1.3 9.098 9.232 1.47 140.3
p197 173 99, 6, 5, 7 5.767 5.782 5.794 0.21 160.4 0.25 10.263 10.321 0.57 160.9
p201 177 73,6,4,8 6.053 6.081 6.095 0.23 160.4 0.46 10.945 11.085 1.28 160.5
p216 188 95,7,5,9 5.505 5.529 5.547 0.33 160.5 0.44 10.247 10.294 0.46 160.8
p233 197 88,9,4,10 4.778 5.222 5.258 0.69 160.5 9.27 8.980 9.090 1.22 160.0
Averages 0.34 4.20 1.010

romissoo NN IR S B

Room 12022-0 1 4 H NN B

Room 12527-0

Room 18996-0 .

romisoszo N IS B R N

Room 18695-0 | H

Room 19832-0

Remizeo NS I W

Roam 13775-0 I D §

Room 14657-0 | H

Romivero N W

Room 13240-0]

- i I

Room 15556:0] H

Room 15737-0 H B

Room 18416-0

Room 17673-0 N

N N

Room 19087-0 N H

Room 14148-0]

Room 15515-0 |]

Room 147640 I H D B

Room 17601-0 B

Room 13425-0

Room 19921-0

Room 46048-1 20 10 I I N 1 N I I N H

Room 20102-1 NN N N N N BN BN I NN BN

Room 43468-1 1NN I I N N N NN |

Room 64610-2 | 1 1 N1 | [] [] 1

Room 69453-2 [|

Room 89947-3 | 11 imia e 1111 I 1l 11

Room 83652-3 1 111 | [| 111 |

Room 75543-3 | 1 1
Room 70930-3
Mar 14 Mar 15 Mar 16 Mar 17 Mar 18 Mar 19 Mar 20

Fig. 12. Rooms schedule of the best-known solution to p70.

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

Room 14559-0 I I

Room 12022-0 H I H

Room 12527-0 —

Room 18996-0 H I H

Room 19043-0 01

Room 11751-0 [|

Room 18695-0 I

Room 19832-0 ——] [e —
Room 14076-0 I I N N

Room 14657-0 I . ——
Room 13264-0 1]

Room 13340-0 [

Room 12858-0 H I H I

Room 15556-0 [H B B .
Room 15737-0 H

Room 18416-0 H I

Room 17672-0 . _

Room 14455-0 H DN B

Room 19987-0 I I

Room 14148-0 — H I
Room 15515-0 H I

Room 11797-0

Room 14764-0 | H

Room 17030-0 H I

Room 16540-0 | E— H

Room 17601-0 H

Room 13425-0

Room 46048-1 HEE'AEEEEEE R Y & B

Room 20102-1

Room 45468-1

Room 64610-2 I I l I I
Room 69453-2 I

Room 89947-3 I I " I I I " I I
Room 83652-3 I l I I I
Room 75543-3 [[| | '

Mar 14

Mar 17 Mar 20

Fig. 13. Rooms schedule of a rescheduled solution to p70.

6. Conclusions and future works

This research underscores the critical role of optimized surgery
scheduling in enhancing hospital efficiency, improving patient out-
comes, and strengthening healthcare system resiliency. By introducing
a Biased Random-Key Genetic Algorithm with Q-Learning (BRKGA-
QL), Simulated Annealing, and an Iterated Local Search derived from
a Random-Key Optimizer (RKO) framework, we have developed an in-
novative and adaptable approach to solving the complex challenges of
surgery scheduling. Our method effectively manages the intricate con-
straints of multi-room scheduling, equipment availability, and person-
nel coordination, ensuring operational flexibility and robust reschedul-
ing capabilities in dynamic healthcare environments.

A key contribution of this study is the development of simple yet
effective lower-bound formulations, which provide critical benchmarks
for assessing heuristic performance. Through rigorous computational
testing on both existing literature instances and newly generated real-
world datasets, our approach demonstrates significant improvements
in both upper and lower-bound quality, surpassing existing methods
in terms of accuracy and efficiency. Notably, we prove one optimal
result for a literature instance, showcasing the strength of our approach.
Among the tested heuristics, BRKGA-QL emerges as the most effective,
particularly when considering business-hour constraints, making it a
valuable tool for real-world hospital applications.

This study fills several critical gaps in the existing literature. Firstly,
our encoding/decoding layer within the RKO framework allows seam-
less adaptation to different hospital settings, making it applicable across

19

multiple healthcare facilities with varying operational constraints. Sec-
ond, many scheduling models do not incorporate rescheduling mech-
anisms, a crucial component for handling unexpected changes such
as surgeon unavailability or emergency surgeries. Our approach ex-
plicitly integrates flexible scheduling and re-scheduling capabilities,
ensuring that hospitals can maintain operational continuity in the face
of disruptions.

Furthermore, our work contributes to healthcare resiliency and
sustainability as our methodology enables hospitals to handle more
surgeries within the same infrastructure, thereby reducing unneces-
sary costs and operational bottlenecks. This contributes to sustainable
hospital management, ensuring that healthcare facilities can adapt to
workforce shortages, supply chain disruptions, and increasing patient
demands without excessive resource strain.

For future works, we plan to explore a complete MIP model to cap-
ture real-world constraints in a better-structured manner. Additionally,
we aim to integrate decomposition techniques to reduce optimality
gaps further efficiently. Decomposition methods are well-suited for hy-
brid exact algorithms, improving solution quality and bound tightening.
Given that real-world surgery scheduling is highly uncertain — subject
to last-minute changes due to emergencies, delays, or surgeon avail-
ability — extending our approach to a stochastic or robust optimization
framework would enhance its practical applicability. Methodologically,
we also intend to develop new versions of Farey Local Search, incorpo-
rating this concept into a Variable Neighbourhood Descent framework.
Other metaheuristics, such as GA and ABC, can also be adapted using
similar components.

B.S. Vieira et al.
CRediT authorship contribution statement

Bruno Salezze Vieira: Writing — original draft, Visualization, Val-
idation, Software, Methodology, Investigation, Formal analysis, Data
curation. Eduardo Machado Silva: Writing — review & editing, Visual-
ization, Validation, Formal analysis. Anténio Augusto Chaves: Writing
- review & editing, Validation, Supervision, Software, Methodology,
Funding acquisition, Data curation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Bruno Salezze Vieira reports financial support was provided by State
of Sao Paulo Research Foundation. Antonio Augusto Chaves reports a
relationship with State of Sao Paulo Research Foundation that includes:
funding grants. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Sdo Paulo Research Founda-
tion (FAPESP) under grant #2021/09482-4. Antonio A. Chaves was
supported by FAPESP under grants #2018/15417-8, #2022/05803-
3 and #2024/08848-3, and the National Council for Scientific and
Technological Development (CNPq) under grants #423694/2018-9 and
#303736/2018-6. Eduardo M. Silva was supported by the Sdo Paulo
Research Foundation (FAPESP) under grant #2023/04588-4.

Appendix A. Model bounded by beds

Formulation (A.1)-(A.5) assumes that beds are the scheduling bot-
tleneck. Our only decision variable x,, is a binary one that indicates
whether surgery k is allocated to bed r (x,, = 1) or not (x,, = 0).

The objective function (A.1) minimizes the best case makespan,
Constraints (A.2) calculate the minimal allocated time for each room,
where T := ¥, v/ + " is the minimal total time the patient
from surgery s takes from arriving at the hospital until discharge
(sum of duration y[d and moving y;" times), Constraints (A.3) ensure
each surgery is allocated to some room. Constraint (A.4) allocates an
arbitrary surgery to a room for symmetry breaking, we display the
surgery O being allocated to bed 0, and Constraints (A.5) state all x,,
variables as binary.

Minimize zq (A.1)
Subject to:
Z Tkark <z Y re Rk (A.2)
kek
Y xy=1 VkeK (A.3)
reRbed
X0 = 1 (A.4)
X, € {0,1} VreR* YikeK (A5)

Appendix B. Model bounded by operation rooms

The other proposed solution, Formulation (B.1)-(B.7), also offers a
relaxed approach to solving the IORSP. It assumes that ORs are the
scheduling bottleneck. Our objective function, (B.1), minimizes the
hypothetical makespan. Constraints (B.2) estimate the best possible
makespan for each OR, where TkF = yf,l_m(k) + y;’im(k) is the duration
and moving times before the OR for surgery k, Tks is the surgery added
to the moving time after it and TkL is the sum of all duration and transfer
times after the OR task. Analogous to these constants, we have our

20

Applied Soft Computing 180 (2025) 113368

binary decision variables, f,, indicating if surgery k is the first one
allocated to OR r, x,, indicates if surgery k is allocated to OR r and
1, indicates if surgery k is the last one allocated to OR r.

Constraints (B.3) ensure that all surgeries are allocated to a room,
while Constraints (B.4) and (B.5) ensure that each OR has a first and
last scheduled surgery. Constraints (B.6) ensure that surgery k can
only be the first or last if it is allocated to the respective OR, while
Constraints (B.7) define all x,,, f,, and /,, variables as binary.

Minimize z, (B.1)
Subject to:
F S L or
T fa+ T % +Ty) < 25 VreR (B.2)
keK,
Y xp = Vkek (B.3)
rGRZ’
Y fa=1 VreR” (B.4)
keK,
D= ¥ re R (B.5)
kekK,
Xpe = frn + 1k VreR” VkekK, (B.6)
Xps Fro Lok € {0,1} VreR” VkeKkK, (B7)

Appendix C. Lower bound computations

Table C.10 shows the results of our proposed models with the
literature instances. For each instance is shown its name, number of
surgeries, and number of rooms sorted by room type (for instance
“case_10”, using our nomenclature, there are 5 beds, 4 ORs, 5 ICUs,
and 20 wards) and the computed lower bound and CPU time spent for
each model.

Analysing the results, the model bounded by ORs (B.1)-(B.7) is
much easier to solve than that bounded by Beds (A.1)-(A.5). In con-
trast, only seven out of the 24 instances have optimal lower bounds
with 3600 s, while all computed lower bounds by the OR model are
optimal. Our statistical testing showed the Model Bed to generate
superior bounds with p-value < 0.05. Thus, the instances are more
bounded by Bed availability by a large margin.

We can visualize this attribute in Fig. C.14, a heuristic solution
of “case_01”. Each unique colour represents a patient, and we can
observe that all rooms, except for beds, have sparse allocations. A bed is
reserved from the moment the patient enters a Ward. This explains the
empty spaces between the bed usages; however, they are fully utilized.

Table C.11 shows the results of our proposed models with the
case study instances. For each instance, the instances’ names, number
of surgeries, number of rooms sorted by room type, the computed
lower bound in days, and CPU time spent for each model type are
presented. Analysing the results, we can observe that 16 instances
were more bounded by OR availability and four by Bed availability.
The statistical testing shows that the OR formulation computed better
bounds with p-value = 0.005. This shows some balance during the
instances’ procedural generation. As in the literature instances, the
model bounded by ORs is much easier to solve than the model bounded
by Beds, whereas only nine out of the 20 instances have optimal lower
bounds within 3600 s, and all computed lower bounds by the OR model
are optimal.

To visualize how a solution with all the availability slots looks like,
Fig. C.15 shows the Gantt view of the best solution of instance p098
without availability slots. We can observe that the operating rooms are
allocated very close to the limit of their capacity, and the last occupied
beds are released almost simultaneously, not as well distributed as in
Fig. C.14.

B.S. Vieira et al. Applied Soft Computing 180 (2025) 113368

Ward 01

Ward 02 ‘ | | |

| | I | |

Ward 03

Ward 04

Ward 05

OR1

OR 2

vl

Icu 2

cu 3

U4

cus

Bed 01

Bed 02

Bed 03

Bed 04

Bed 05

Bed 06

Bed 07

Bed 08

Bed 09

Bed 10

Mar 14 Mar 16 Mar 18 Mar 20 Mar 22 Mar 24 Mar 26 Mar 28 Mar 30

Fig. C.14. Example of a solution found by BRKGA-QL for a literature instance bounded by bed availability.

Bed 03

w0 A

Bed 02
-
H I N

I D N S N S

Bed 07

Bed 09

N

Bed 11

N
et]

&
=

Bed 18

&
5

- H
H I
Bed 22

= EHTYE EIEENIEE WTEEE e HENENN
on2 L P EENE 'IETENETYEE IEE
N'EAEEEE H B VEENS N EEE EEEER
rnmprrnrrpamer rrmireiinrrrnnnl
It nn A BN I | (R I
I 1 11l
11 1 fl | i LI B | |

w2 [0] il

Mar 15 Mar 16 Mar 17 Mar 18 Mar 19 Mar 20

Fig. C.15. Example of a solution found by BRKGA-QL for a case study instance bounded by OR availability.

B.S. Vieira et al.

Applied Soft Computing 180 (2025) 113368

Table C.10

Literature instances formulation results.
Model Surgeries Rooms Bed OR
Instance Lower bound Time(s) Lower bound Time(s)
case 01 50 5,2,5,10 16.41 3600.01 4.57 0.01
case_02 100 5,2, 5,10 35.32 340.21 7.89 0.01
case_03 150 5,2,5,10 49.06 243.07 11.69 0.01
case_04 200 5,2,5,10 67.05 355.09 14.93 0.01
case_05 50 5,3,5,10 16.88 3600.01 3.72 0.02
case_06 100 5,3,5,10 32.94 145.64 5.97 0.02
case_07 150 5,3,5,10 48.81 95.60 7.89 0.03
case_08 200 5,3,5,10 67.50 281.53 10.09 0.02
case_09 50 5, 4, 5, 20 7.60 3600.01 2.85 0.10
case_10 100 5, 4, 5, 20 16.53 3600.02 4.64 0.02
case_11 150 5, 4,5, 20 24.31 3600.01 5.92 0.06
case_12 200 5, 4,5, 20 33.60 3600.02 7.73 0.04
case_13 50 5,5,5,20 8.11 3600.01 2.67 0.19
case_14 100 5,5, 5,20 16.92 3600.01 3.91 0.07
case_15 150 5, 5, 5, 20 25.50 3600.01 5.10 0.10
case_16 200 5,5, 5, 20 35.27 3600.01 6.66 0.04
case_17 50 5, 10, 5, 20 9.03 3600.01 2.44 65.02
case_18 100 5, 10, 5, 20 16.99 3600.01 2.70 50.53
case_19 150 5, 10, 5, 20 26.23 3600.01 3.29 0.64
case_20 200 5, 10, 5, 20 33.55 3600.01 3.96 19.58
case_21 50 5, 10, 5, 30 6.09 0.51 2.36 76.05
case_22 100 5, 10, 5, 30 11.05 3600.16 2.62 15.84
case_23 150 5, 10, 5, 30 15.70 3600.02 3.27 160.01
case_24 200 5, 10, 5, 30 21.26 3600.01 3.90 95.01
Averages RPD (%) 0.000 77.321

Table C.11

Case study instances formulation results.
Model Surgeries Rooms Bed OR
Instance Lower bound Time (s) Lower bound Time (s)
p070 58 31,3,2,4 3.899 0.32 4.440 0.01
p078 66 23,3,3,4 5.536 3600.02 4.722 0.07
p087 75 29, 3,3,4 5.247 3600.02 5.146 0.06
p093 81 30, 3, 3, 4 5.253 3600.01 5.485 0.07
p098 86 40, 3, 2, 4 4.444 26.32 5.719 0.02
pl00 84 39,4,3,5 4.486 3600.03 4.604 0.14
pl09 93 35,4,3,5 5.364 3600.01 5.015 0.36
p120 104 46, 4, 4,5 4.699 3600.03 5.466 0.46
p138 118 43,5,4,5 5.224 3600.01 4.945 0.04
p153 133 71,5, 4,7 3.823 2.32 5.486 0.09
plés 141 78,6, 4,7 3.895 4.76 5.019 5.69
pl78 154 88, 6,4, 6 3.848 2.89 5.335 1.09
pl83 159 89, 6, 4, 6 3.875 282.51 5.556 1.76
p189 161 71,7,5,7 4.849 2912.48 4.902 8.45
p192 164 72,7, 4,8 4.701 3600.01 4.964 3.97
p193 165 78,7,5,7 4.113 3600.02 4.952 13.92
pl97 173 99,6,5,7 3.829 30.11 5.767 3.16
p201 177 73,6,4,8 4.875 3600.03 6.053 5.82
p216 188 95,7,5,9 3.842 24.05 5.505 3.19
p233 197 88,9, 4, 10 4.484 3600.08 4.778 36.02
Averages RDP(%) 13.944 1.424

22

B.S. Vieira et al.

Appendix D. Pseudocode of the RKO components

Algorithm 6: Shaking method

Input: Random-key vector A, £, Buax
Output: Changed random-key vector A
1 Generate shaking rate g randomly within the interval [B,,,, Bux];

2 for k <1 to fxndo

3 Randomly select one shaking move m from {1,2,3,4};
4 switch m do
5 case 1 do
6 ‘ Apply Random move in 4;
7 end
8 case 2 do
9 ‘ Apply Invert move in A4;
10 end
11 case 3 do
12 ‘ Apply Swap move in A;
13 end
14 case 4 do
15 ‘ Apply Swap Neighbour move in 4;
16 end
17 end
18 end

19 return A;

Applied Soft Computing 180 (2025) 113368

Algorithm 9: Swap Local Search.

Input: Random-key vector A
Output: Best random-key vector A** found in the neighbourhood
1 Define a vector RK with random order for the random-key indices;
2 Update the best solution found A" « A4;
3 fori—1ton-1do
for j < i+1tondo
Swap random keys RK; and RK; of A;
if 6p4) < Sp(aresy then
L Abest A;

N o oua s

else
L A<~ Abexr;

®

10 return A

Algorithm 10: Mirror Local Search.

Algorithm 7: Blending method

Input: Random-key vector A, Random-key vector A®, factor, p, u
Output: New random-key vector A¢
1 for i< 1tondo
if UnifRand(0,1) < u then
| Af < UnifRand(0,1);
end
else
if UnifRand(0,1) < p then
| A« a
end
else
if factor =1 then
| A< 4
end
if factor = -1 then
| Ac<10-4P
end
end

© ® N U A w N

[S S S
U R W N = O

-
o

17 end

18 end
19 return A¢;

Algorithm 8: RVND

Input: A

Output: The best solution in the neighbourhoods.
1 Initialize the Neighbourhood List (N L);
2 while NL # 0 do

3 Choose a neighbourhood N € NL at random;
4 Find the best neighbour A’ of A € N7}

5 if 6p4 < 6p(s) then

6 A< Al

7 L Restart NL;

8 else

9 L Remove N from the NL ;

10 return A

23

Input: Random-key vector A
Output: Best random-key vector A% found in the neighbourhood

1 Define a vector RK with random order for the random-key indices;

2 Update the best solution found A% « 4;

3 for i« 1tondo

4 Change the value of the random key RK; of A to its complement;
5 if 64y < Op(aresy then

6 L Abest A;

7 else

8 L A « Abest,

o return A’

Algorithm 11: Farey Local Search.

Input: Random-key vector A

Output: Best random-key vector A% found in the neighbourhood
1 Define a vector RK with random order for the random-key indices;
2 Update the best solution found A" « 4;
3 for i< 1tondo

4 for j < 1 to |F| do

5 Set the value of the random key RK; of A with
UnifRand(Fj, Fj);

6 if 6p4) < Sp(anesy then

7 L Abest A;

8 else

9 L A« Abest;

10 return A%

B.S. Vieira et al.

Algorithm 12: Nelder-Mead Local Search.

Input: A;, Ay, A3, n
Output: The best solution found in simplex X

1 begin
2 Initialize simplex: X « {A;, Ay, A3} ;
3 Sort simplex X by objective function value ;
4 Compute the simplex centroid A, < Blending(4;, 4,,1) ;
5 iter < 0 ;
6 numlter — n-|1.0/h] ;
7 while iter < numlIter do
8 shrink < 0 ;
9 iter « iter+1 ;
10 Compute reflection solution A, < Blending(4,, A3, 1) ;
11 if 654) < 8g(4,) then
12 Compute expansion solution 4, « Blending(A,, Ay, —1) ;
13 if 654) < 854, then
14 L A3 < A, ;
15 else
16 L Ay < A, ;
17 else
18 if 654y < 894, then
19 L A3 < A, ;
20 else
21 if 654) < 84, then
22 Compute contraction solution

A, < Blending(4,, Ay, 1) ;
23 if 654,y < g4, then
24 L Ay — A,
25 else
26 L shrink < 1 ;
27 else
28 Compute contraction solution

A, < Blending(4,, A3,1) ;
29 if 654) < 8g(4,, then
30 L Ay < A,
31 else
32 L shrink < 1 ;
33 if shrink = 1 then
34 Replace all solutions except the best A; with

A; < Blending(A;,A,,1), i=2,3;

35 Sort simplex X by objective function value ;
36 | Compute the simplex centroid 4, « Blending(4;,4,,1) ;
37 | return A; ;

Data availability

The data is in a public repository disclosed in the paper.

References

[1] M. Al Amin, R. Baldacci, V. Kayvanfar, A comprehensive review on operating

(2]

[3]

[4]

room scheduling and optimization, Oper. Res. 25 (1) (2024) 3, http://dx.doi.
org/10.1007/s12351-024-00884-z.

E. Aktas, H.E. Atmaca, H.E. Akbulut, Operating room and surgical team members
scheduling: A comprehensive review, J. Proj. Manag. 9 (2024) 149-162, http:
//dx.doi.org/10.5267/j.jpm.2023.12.001.

M. Mazloumian, M.F. Baki, M. Ahmadi, A robust multiobjective integrated master
surgery schedule and surgical case assignment model at a publicly funded
hospital, Comput. Ind. Eng. 163 (2022) 107826, http://dx.doi.org/10.1016/j.cie.
2021.107826.

M. Lotfi, J. Behnamian, Collaborative scheduling of operating room in hospital
network: Multi-objective learning variable neighborhood search, Appl. Soft
Comput. 116 (2022) 108233, http://dx.doi.org/10.1016/j.as0c.2021.108233.

24

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Applied Soft Computing 180 (2025) 113368

B. Akbarzadeh, G. Moslehi, M. Reisi-Nafchi, B. Maenhout, A diving heuristic for
planning and scheduling surgical cases in the operating room department with
nurse re-rostering, J. Sched. 23 (2) (2020) 265-288, http://dx.doi.org/10.1007/
510951-020-00639-6.

X. Ma, Y. Fu, K. Gao, H. Zhang, J. Mou, A knowledge-based multi-objective
evolutionary algorithm for solving home health care routing and scheduling
problems with multiple centers, Appl. Soft Comput. 144 (2023) 110491, http:
//dx.doi.org/10.1016/j.as0c.2023.110491.

R. Azab, A. Eltawil, M. Gheith, A bi-objective stochastic model for operating
room scheduling considering surgeons’ preferences and collaborative surgeries,
Decis. Anal. J. 14 (2025) 100544, http://dx.doi.org/10.1016/j.dajour.2024.
100544.

S. Giir, M. Pinarbasi, H.M. Alakas, T. Eren, Operating room scheduling with sur-
gical team: a new approach with constraint programming and goal programming,
Central Eur. J. Oper. Res. 31 (4) (2023) 1061-1085, http://dx.doi.org/10.1007/
510100-022-00835-z.

W. Xiang, J. Yin, G. Lim, An ant colony optimization approach for solving
an operating room surgery scheduling problem, Comput. Ind. Eng. 85 (2015)
335-345, http://dx.doi.org/10.1016/j.cie.2015.04.010.

R.L. Burdett, E. Kozan, An integrated approach for scheduling health care
activities in a hospital, European J. Oper. Res. 264 (2) (2018) 756-773, http:
//dx.doi.org/10.1016/j.ejor.2017.06.051.

M. Vali, K. Salimifard, A.-H. Gandomi, T.J. Chaussalet, Application of job shop
scheduling approach in green patient flow optimization using a hybrid swarm
intelligence, Comput. Ind. Eng. 172 (2022) 108603, http://dx.doi.org/10.1016/
j.cie.2022.108603.

P. Brucker, R. Schlie, Job-shop scheduling with multi-purpose machines,
Computing 45 (4) (1990) 369-375, http://dx.doi.org/10.1007/BF02238804.
M.J. Schuetz, J.K. Brubaker, H. Montagu, Y. van Dijk, J. Klepsch, P. Ross,
A. Luckow, M.G. Resende, H.G. Katzgraber, Optimization of robot-trajectory
planning with nature-inspired and hybrid quantum algorithms, Phys. Rev. Appl.
18 (2022) 054045, http://dx.doi.org/10.1103/PhysRevApplied.18.054045.

A.A. Chaves, L.H.N. Lorena, An adaptive and near parameter-free BRKGA using
Q-learning method, in: 2021 IEEE Congress on Evolutionary Computation, CEC,
2021, pp. 2331-2338, http://dx.doi.org/10.1109/CEC45853.2021.95047.

S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 671-680, http://dx.doi.org/10.1126/science.220.
4598.671.

H.R. Lourenco, O.C. Martin, T. Stiitzle, Iterated local search, in: F. Glover, G.A.
Kochenberger (Eds.), Handbook of Metaheuristics, Springer US, Boston, MA,
2003, pp. 320-353, http://dx.doi.org/10.1007/0-306-48056-5_11.

LA. Chaudhry, A.A. Khan, A research survey: review of flexible job shop
scheduling techniques, Int. Trans. Oper. Res. 23 (3) (2016) 551-591, http:
//dx.doi.org/10.1111/itor.12199.

1. Ozkarahan, Allocation of surgical procedures to operating rooms, J. Med. Syst.
19 (4) (1995) 333-352, http://dx.doi.org/10.1007/BF02257264.

F. Dexter, A. Macario, R.D. Traub, Which Algorithm for Scheduling Add-on Elec-
tive Cases Maximizes Operating Room Utilization: Use of Bin Packing Algorithms
and Fuzzy Constraints in Operating Room Management, Anesthesiology 91 (5)
(1999) http://dx.doi.org/10.1097/00000542-199911000-00043, 1491-1491.

Z. Abdelrasol, N. Harraz, A. Eltawil, Operating room scheduling problems:
A survey and a proposed solution framework, in: H.K. Kim, S.-I. Ao, M.A.
Amouzegar (Eds.), Transactions on Engineering Technologies, Springer Nether-
lands, Dordrecht, 2014, pp. 717-731, http://dx.doi.org/10.1007/978-94-017-
9115-1.52.

V. Roshanaei, K.E. Booth, D.M. Aleman, D.R. Urbach, J.C. Beck, Branch-and-
check methods for multi-level operating room planning and scheduling, Int. J.
Prod. Econ. 220 (2020) 107433, http://dx.doi.org/10.1016/j.ijpe.2019.07.006.
M. Yazdi, M. Zandieh, H. Haleh, A mathematical model for scheduling elective
surgeries for minimizing the waiting times in emergency surgeries, Int. J. Eng.
33 (3) (2020) 448-458, http://dx.doi.org/10.5829/ije.2020.33.03c.09.

V. Roshanaei, C. Luong, D.M. Aleman, D.R. Urbach, Reformulation, lineariza-
tion, and decomposition techniques for balanced distributed operating room
scheduling, Omega 93 (2020) 102043, http://dx.doi.org/10.1016/j.omega.2019.
03.001.

A. Augustin, P. Jouvet, N. Lahrichi, A. Lodi, L.-M. Rousseau, A data-driven ap-
proach to include availability of ICU beds in the planning of the operating room,
Omega 109 (2022) 102608, http://dx.doi.org/10.1016/j.omega.2022.102608.
H. Fei, C. Chu, N. Meskens, Solving a tactical operating room planning problem
by a column-generation-based heuristic procedure with four criteria, Ann. Oper.
Res. 166 (1) (2009) 91-108, http://dx.doi.org/10.1007/s10479-008-0413-3.

H. Fei, N. Meskens, C. Chu, A planning and scheduling problem for an operating
theatre using an open scheduling strategy, Comput. Ind. Eng. 58 (2) (2010)
221-230, http://dx.doi.org/10.1016/j.cie.2009.02.012, Scheduling in Healthcare
and Industrial Systems.

Y. Liu, C. Chu, K. Wang, A new heuristic algorithm for the operating room
scheduling problem, Comput. Ind. Eng. 61 (3) (2011) 865-871, http://dx.doi.
org/10.1016/j.cie.2011.05.020.

http://dx.doi.org/10.1007/s12351-024-00884-z
http://dx.doi.org/10.1007/s12351-024-00884-z
http://dx.doi.org/10.1007/s12351-024-00884-z
http://dx.doi.org/10.5267/j.jpm.2023.12.001
http://dx.doi.org/10.5267/j.jpm.2023.12.001
http://dx.doi.org/10.5267/j.jpm.2023.12.001
http://dx.doi.org/10.1016/j.cie.2021.107826
http://dx.doi.org/10.1016/j.cie.2021.107826
http://dx.doi.org/10.1016/j.cie.2021.107826
http://dx.doi.org/10.1016/j.asoc.2021.108233
http://dx.doi.org/10.1007/s10951-020-00639-6
http://dx.doi.org/10.1007/s10951-020-00639-6
http://dx.doi.org/10.1007/s10951-020-00639-6
http://dx.doi.org/10.1016/j.asoc.2023.110491
http://dx.doi.org/10.1016/j.asoc.2023.110491
http://dx.doi.org/10.1016/j.asoc.2023.110491
http://dx.doi.org/10.1016/j.dajour.2024.100544
http://dx.doi.org/10.1016/j.dajour.2024.100544
http://dx.doi.org/10.1016/j.dajour.2024.100544
http://dx.doi.org/10.1007/s10100-022-00835-z
http://dx.doi.org/10.1007/s10100-022-00835-z
http://dx.doi.org/10.1007/s10100-022-00835-z
http://dx.doi.org/10.1016/j.cie.2015.04.010
http://dx.doi.org/10.1016/j.ejor.2017.06.051
http://dx.doi.org/10.1016/j.ejor.2017.06.051
http://dx.doi.org/10.1016/j.ejor.2017.06.051
http://dx.doi.org/10.1016/j.cie.2022.108603
http://dx.doi.org/10.1016/j.cie.2022.108603
http://dx.doi.org/10.1016/j.cie.2022.108603
http://dx.doi.org/10.1007/BF02238804
http://dx.doi.org/10.1103/PhysRevApplied.18.054045
http://dx.doi.org/10.1109/CEC45853.2021.95047
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1111/itor.12199
http://dx.doi.org/10.1111/itor.12199
http://dx.doi.org/10.1111/itor.12199
http://dx.doi.org/10.1007/BF02257264
http://dx.doi.org/10.1097/00000542-199911000-00043
http://dx.doi.org/10.1007/978-94-017-9115-1_52
http://dx.doi.org/10.1007/978-94-017-9115-1_52
http://dx.doi.org/10.1007/978-94-017-9115-1_52
http://dx.doi.org/10.1016/j.ijpe.2019.07.006
http://dx.doi.org/10.5829/ije.2020.33.03c.09
http://dx.doi.org/10.1016/j.omega.2019.03.001
http://dx.doi.org/10.1016/j.omega.2019.03.001
http://dx.doi.org/10.1016/j.omega.2019.03.001
http://dx.doi.org/10.1016/j.omega.2022.102608
http://dx.doi.org/10.1007/s10479-008-0413-3
http://dx.doi.org/10.1016/j.cie.2009.02.012
http://dx.doi.org/10.1016/j.cie.2011.05.020
http://dx.doi.org/10.1016/j.cie.2011.05.020
http://dx.doi.org/10.1016/j.cie.2011.05.020

B.S. Vieira et al.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

J.M. Molina-Pariente, V. Fernandez-Viagas, J.M. Framinan, Integrated operating
room planning and scheduling problem with assistant surgeon dependent surgery
durations, Comput. Ind. Eng. 82 (2015) 8-20, http://dx.doi.org/10.1016/j.cie.
2015.01.006.

R. Aringhieri, P. Landa, P. Soriano, E. Tanfani, A. Testi, A two level metaheuristic
for the operating room scheduling and assignment problem, Comput. Oper. Res.
54 (2015) 21-34, http://dx.doi.org/10.1016/j.cor.2014.08.014.

P. Landa, R. Aringhieri, P. Soriano, E. Tanfani, A. Testi, A hybrid optimization
algorithm for surgeries scheduling, Oper. Res. Heal. Care 8 (2016) 103-114,
http://dx.doi.org/10.1016/j.0rhc.2016.01.001.

N. Dellaert, J. Jeunet, A variable neighborhood search algorithm for the surgery
tactical planning problem, Comput. Oper. Res. 84 (2017) 216-225, http://dx.
doi.org/10.1016/j.cor.2016.05.013.

G. Duran, P.A. Rey, P. Wolff, Solving the operating room scheduling problem
with prioritized lists of patients, Ann. Oper. Res. 258 (2) (2017) 395-414,
http://dx.doi.org/10.1007/510479-016-2172-x.

S. Zhu, W. Fan, T. Liu, S. Yang, P.M. Pardalos, Dynamic three-stage operating
room scheduling considering patient waiting time and surgical overtime costs,
J. Comb. Optim. 39 (1) (2020) 185-215, http://dx.doi.org/10.1007/s10878-019-
00463-5.

A. Thomas Schneider, J. Theresia van Essen, M. Carlier, E.-W. Hans, Scheduling
surgery groups considering multiple downstream resources, European J. Oper.
Res. 282 (2) (2020) 741-752, http://dx.doi.org/10.1016/j.ejor.2019.09.029.
Y.K. Lin, M.Y. Li, Solving operating room scheduling problem using artifi-
cial bee colony algorithm, Healthcare 9 (2) (2021) http://dx.doi.org/10.3390/
healthcare9020152.

J. Park, B.I. Kim, M. Eom, B.K. Choi, Operating room scheduling considering
surgeons’ preferences and cooperative operations, Comput. Ind. Eng. 157 (2021)
107306, http://dx.doi.org/10.1016/j.cie.2021.107306.

C.L. Siqueira, E.F. Arruda, L. Bahiense, G.L. Bahr, G.R. Motta, Long-term
integrated surgery room optimization and recovery ward planning, with a
case study in the Brazilian National Institute of Traumatology and Orthopedics
(INTO), European J. Oper. Res. 264 (3) (2018) 870-883, http://dx.doi.org/10.
1016/j.€jor.2016.09.021.

T. Khaniyev, E. Kayis, R. Giillii, Next-day operating room scheduling with
uncertain surgery durations: exact analysis and heuristics, European J. Oper.
Res. 286 (1) (2020) 49-62, http://dx.doi.org/10.1016/j.ejor.2020.03.002.

B. Addis, G. Carello, E. Tanfani, Evaluating the impact of the level of robustness
in operating room scheduling problems, Heal. (Basel) 12 (20) (2024) http:
//dx.doi.org/10.3390/healthcare12202023.

1. Rahimi, A.H. Gandomi, A comprehensive review and analysis of operating
room and surgery scheduling, Arch. Comput. Methods Eng. 28 (3) (2021)
1667-1688, http://dx.doi.org/10.1007/s11831-020-09432-2.

1. Marques, M.E. Captivo, Bicriteria elective surgery scheduling using an evolu-
tionary algorithm, Oper. Res. Heal. Care 7 (2015) 14-26, http://dx.doi.org/10.
1016/j.0orhc.2015.07.004, ORAHS 2014 - The 40th international conference of
the EURO working group on Operational Research Applied to Health Services.
M. Hamid, M.M. Nasiri, F. Werner, F. Sheikhahmadi, M. Zhalechian, Operating
room scheduling by considering the decision-making styles of surgical team
members: A comprehensive approach, Comput. Oper. Res. 108 (2019) 166-181,
http://dx.doi.org/10.1016/j.cor.2019.04.010.

J.C. Bean, Genetic algorithms and random keys for sequencing and optimization,
ORSA J. Comput. 6 (2) (1994) 154-160, http://dx.doi.org/10.1007/510729-008-
9080-9.

J.F. Gongalves, J.R. De Almeida, A hybrid genetic algorithm for assembly
line balancing, J. Heuristics 8 (2002) 629-642, http://dx.doi.org/10.1023/A:
1020377910258.

J.F. Gongalves, M.G.C. Resende, Biased random-key genetic algorithms for
combinatorial optimization, J. Heuristics 17 (5) (2011) 487-525, http://dx.doi.
org/10.1007/510732-010-9143-1.

T.L. Lin, S.J. Horng, T.W. Kao, Y.H. Chen, R.S. Run, R.J. Chen, J.L. Lai, I.H. Kuo,
An efficient job-shop scheduling algorithm based on particle swarm optimization,
Expert Syst. Appl. 37 (3) (2010) 2629-2636, http://dx.doi.org/10.1016/j.eswa.
2009.08.015.

L.A. Bewoor, V. Chandra Prakash, S.U. Sapkal, Evolutionary hybrid particle
swarm optimization algorithm for solving NP-hard no-wait flow shop scheduling
problems, Algorithms 10 (4) (2017) 121, http://dx.doi.org/10.3390/a10040121.
L.A. Bewoor, V.C. Prakash, S.U. Sapkal, Production scheduling optimization in
foundry using hybrid particle swarm optimization algorithm, Procedia Manuf. 22
(2018) 57-64, http://dx.doi.org/10.1016/j.promfg.2018.03.010.

C. Garcia-Santiago, J. Del Ser, C. Upton, F. Quilligan, S. Gil-Lopez, S. Salcedo-
Sanz, A random-key encoded harmony search approach for energy-efficient
production scheduling with shared resources, Eng. Optim. 47 (11) (2015)
1481-1496, http://dx.doi.org/10.1080/0305215X.2014.971778.

L.S. Pessoa, C.E. Andrade, Heuristics for a flowshop scheduling problem with
stepwise job objective function, European J. Oper. Res. 266 (3) (2018) 950-962,
http://dx.doi.org/10.1016/j.€jor.2017.10.045.

C.E. Andrade, S.D. Byers, V. Gopalakrishnan, E. Halepovic, D.J. Poole, LK.
Tran, C.T. Volinsky, Scheduling software updates for connected cars with limited
availability, Appl. Soft Comput. 82 (2019) 105575, http://dx.doi.org/10.1016/j.
as0c.2019.105575.

25

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

[76]

[771

Applied Soft Computing 180 (2025) 113368

C.E. Andrade, R.F. Toso, J.F. Gongalves, M.G. Resende, The multi-parent biased
random-key genetic algorithm with implicit path-relinking and its real-world
applications, European J. Oper. Res. 289 (1) (2021) 17-30, http://dx.doi.org/
10.1016/j.ejor.2019.11.037.

A.D. Mangussi, H. Pola, H.G. Macedo, L.A. Julido, M.P.T. Proenca, P.R.L.
Gianfelice, B.V. Salezze, A.A. Chaves, Meta-heuristicas via chaves aleatdrias
aplicadas ao problema de localizacdo de hubs em arvore, in: Anais do Simpésio
Brasileiro de Pesquisa Operacional, Galod, Sdo José dos Campos, 2023, p. 25,
http://dx.doi.org/10.59254/sbpo-2023-174934.

A.A. Chaves, M.G.C. Resende, R.M.A. Silva, A random-key GRASP for combina-
torial optimization, J. Nonlinear Var. Anal. 8 (6) (2024) http://dx.doi.org/10.
23952/jnva.8.2024.6.03.

T.F. Noronha, C.C. Ribeiro, Biased random-key genetic algorithms: A tutorial
with applications, in: ACM International Conference Proceeding Series, 2024,
pp. 110-115, http://dx.doi.org/10.1145/3665065.3665083.

M.A. Londe, L.S. Pessoa, C.E. Andrade, M.G. Resende, Biased random-key genetic
algorithms: A review, European J. Oper. Res. 321 (1) (2025) 1-22, http://dx.
doi.org/10.1016/j.ejor.2024.03.030.

C.E. Andrade, T. Silva, L.S. Pessoa, Minimizing flowtime in a flowshop scheduling
problem with a biased random-key genetic algorithm, Expert Syst. Appl. 128
(2019) 67-80, http://dx.doi.org/10.1016/j.eswa.2019.03.007.

L.D. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New
York, 1991, http://dx.doi.org/10.1016/50004-3702(98)00016-2.

N. Mladenovié, P. Hansen, Variable neighborhood search, Comput. Oper. Res.
24 (11) (1997) 1097-1100, http://dx.doi.org/10.1016/50305-0548(97)00031-2.
A. Subramanian, L.M. Drummond, C. Bentes, L.S. Ochi, R. Farias, A parallel
heuristic for the vehicle routing problem with simultaneous pickup and delivery,
Comput. Oper. Res. 37 (11) (2010) 1899-1911, http://dx.doi.org/10.1016/j.cor.
2009.10.011.

1. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory of
Numbers, John Wiley & Sons, 1991, http://dx.doi.org/10.1126/science.90.2329.
158.b.

J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J.
7 (4) (1965) 308-313, http://dx.doi.org/10.1093/comjnl/7.4.308.

W. Spears, K. De Jong, On the virtues of parametrized uniform crossover, in:
ICGA, 1991, pp. 230-236, http://dx.doi.org/10.21236/ADA293985.

N. Dang, L.P. Caceres, P. De Causmaecker, T. Stiitzle, Configuring irace using
surrogate configuration benchmarks, in: GECCO ’17: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’17, Association for Comput-
ing Machinery, New York, NY, USA, 2017, pp. 243-250, http://dx.doi.org/10.
1145/3071178.3071238.

C.J.C.H. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (3) (1992) 279-292,
http://dx.doi.org/10.1007/BF00992698.

R.S. Sutton, A. Barto, Reinforcement Learning, J. Cogn. Neurosci. 11 (1) (1999)
126-134, http://dx.doi.org/10.1162,/089892999563184.

G. Karafotias, M. Hoogendoorn, A.E. Eiben, Evaluating reward definitions for
parameter control, in: A.M. Mora, G. Squillero (Eds.), Applications of Evolution-
ary Computation, Springer International Publishing, Cham, 2015, pp. 667-680,
http://dx.doi.org/10.1007/978-3-319-16549-3_54.

V. Cerny, Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm, J. Optim. Theory Appl. 45 (1) (1985) 41-51,
http://dx.doi.org/10.1007/BF00940812.

A. Dekkers, E. Aarts, Global optimization and simulated annealing, Math.
Program. 50 (1) (1991) 367-393, http://dx.doi.org/10.1007/BF01594945.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation
of state calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953)
1087-1092, http://dx.doi.org/10.1063/1.1699114.

J. Baxter, Local optima avoidance in depot location, J. Oper. Res. Soc. 32 (1981)
815-819, http://dx.doi.org/10.2307/2581397.

Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2023.

Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A prac-
tical and powerful approach to multiple testing, J. R. Stat. Soc. Ser.
B Stat. Methodol. 57 (1) (1995) 289-300, http://dx.doi.org/10.1111/j.
2517-6161.1995.tb02031.x, URL: https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/§.2517-6161.1995.tb02031.x, arXiv:https://rss.onlinelibrary.wiley.com/
doi/pdf/10.1111/§.2517-6161.1995.tb02031.x.

E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance
profiles, Math. Program. 91 (2) (2002) 201-213, http://dx.doi.org/10.1007/
5s101070100263.

R.M. Aiex, M.G. Resende, C.C. Ribeiro, TTT plots: a perl program to create time-
to-target plots, Optim. Lett. 1 (4) (2007) 355-366, http://dx.doi.org/10.1007/
s11590-006-0031-4.

A.d.S. Costa, Assessment of operative times of multiple surgical specialties in
a public university hospital, Einstein (Sao Paulo) 15 (2017) 200-205, http:
//dx.doi.org/10.1590/51679-45082017GS3902.

C.L. Siqueira, E.F. Arruda, L. Bahiense, G.L. Bahr, G.R. Motta, Long-term
integrated surgery room optimization and recovery ward planning, with a
case study in the Brazilian National Institute of Traumatology and Orthopedics
(INTO), European J. Oper. Res. 264 (3) (2018) 870-883, http://dx.doi.org/10.
1016/j.€jor.2016.09.021.

http://dx.doi.org/10.1016/j.cie.2015.01.006
http://dx.doi.org/10.1016/j.cie.2015.01.006
http://dx.doi.org/10.1016/j.cie.2015.01.006
http://dx.doi.org/10.1016/j.cor.2014.08.014
http://dx.doi.org/10.1016/j.orhc.2016.01.001
http://dx.doi.org/10.1016/j.cor.2016.05.013
http://dx.doi.org/10.1016/j.cor.2016.05.013
http://dx.doi.org/10.1016/j.cor.2016.05.013
http://dx.doi.org/10.1007/s10479-016-2172-x
http://dx.doi.org/10.1007/s10878-019-00463-5
http://dx.doi.org/10.1007/s10878-019-00463-5
http://dx.doi.org/10.1007/s10878-019-00463-5
http://dx.doi.org/10.1016/j.ejor.2019.09.029
http://dx.doi.org/10.3390/healthcare9020152
http://dx.doi.org/10.3390/healthcare9020152
http://dx.doi.org/10.3390/healthcare9020152
http://dx.doi.org/10.1016/j.cie.2021.107306
http://dx.doi.org/10.1016/j.ejor.2016.09.021
http://dx.doi.org/10.1016/j.ejor.2016.09.021
http://dx.doi.org/10.1016/j.ejor.2016.09.021
http://dx.doi.org/10.1016/j.ejor.2020.03.002
http://dx.doi.org/10.3390/healthcare12202023
http://dx.doi.org/10.3390/healthcare12202023
http://dx.doi.org/10.3390/healthcare12202023
http://dx.doi.org/10.1007/s11831-020-09432-2
http://dx.doi.org/10.1016/j.orhc.2015.07.004
http://dx.doi.org/10.1016/j.orhc.2015.07.004
http://dx.doi.org/10.1016/j.orhc.2015.07.004
http://dx.doi.org/10.1016/j.cor.2019.04.010
http://dx.doi.org/10.1007/s10729-008-9080-9
http://dx.doi.org/10.1007/s10729-008-9080-9
http://dx.doi.org/10.1007/s10729-008-9080-9
http://dx.doi.org/10.1023/A:1020377910258
http://dx.doi.org/10.1023/A:1020377910258
http://dx.doi.org/10.1023/A:1020377910258
http://dx.doi.org/10.1007/s10732-010-9143-1
http://dx.doi.org/10.1007/s10732-010-9143-1
http://dx.doi.org/10.1007/s10732-010-9143-1
http://dx.doi.org/10.1016/j.eswa.2009.08.015
http://dx.doi.org/10.1016/j.eswa.2009.08.015
http://dx.doi.org/10.1016/j.eswa.2009.08.015
http://dx.doi.org/10.3390/a10040121
http://dx.doi.org/10.1016/j.promfg.2018.03.010
http://dx.doi.org/10.1080/0305215X.2014.971778
http://dx.doi.org/10.1016/j.ejor.2017.10.045
http://dx.doi.org/10.1016/j.asoc.2019.105575
http://dx.doi.org/10.1016/j.asoc.2019.105575
http://dx.doi.org/10.1016/j.asoc.2019.105575
http://dx.doi.org/10.1016/j.ejor.2019.11.037
http://dx.doi.org/10.1016/j.ejor.2019.11.037
http://dx.doi.org/10.1016/j.ejor.2019.11.037
http://dx.doi.org/10.59254/sbpo-2023-174934
http://dx.doi.org/10.23952/jnva.8.2024.6.03
http://dx.doi.org/10.23952/jnva.8.2024.6.03
http://dx.doi.org/10.23952/jnva.8.2024.6.03
http://dx.doi.org/10.1145/3665065.3665083
http://dx.doi.org/10.1016/j.ejor.2024.03.030
http://dx.doi.org/10.1016/j.ejor.2024.03.030
http://dx.doi.org/10.1016/j.ejor.2024.03.030
http://dx.doi.org/10.1016/j.eswa.2019.03.007
http://dx.doi.org/10.1016/s0004-3702(98)00016-2
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.1126/science.90.2329.158.b
http://dx.doi.org/10.1126/science.90.2329.158.b
http://dx.doi.org/10.1126/science.90.2329.158.b
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.21236/ADA293985
http://dx.doi.org/10.1145/3071178.3071238
http://dx.doi.org/10.1145/3071178.3071238
http://dx.doi.org/10.1145/3071178.3071238
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1162/089892999563184
http://dx.doi.org/10.1007/978-3-319-16549-3_54
http://dx.doi.org/10.1007/BF00940812
http://dx.doi.org/10.1007/BF01594945
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.2307/2581397
http://refhub.elsevier.com/S1568-4946(25)00679-9/sb72
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s11590-006-0031-4
http://dx.doi.org/10.1007/s11590-006-0031-4
http://dx.doi.org/10.1007/s11590-006-0031-4
http://dx.doi.org/10.1590/S1679-45082017GS3902
http://dx.doi.org/10.1590/S1679-45082017GS3902
http://dx.doi.org/10.1590/S1679-45082017GS3902
http://dx.doi.org/10.1016/j.ejor.2016.09.021
http://dx.doi.org/10.1016/j.ejor.2016.09.021
http://dx.doi.org/10.1016/j.ejor.2016.09.021

	Random-key algorithms for optimizing integrated Operating Room Scheduling
	Introduction
	Literature review
	ORSP literature
	Exact approaches
	Heuristic approaches
	Variants of the Problem
	Summary of the Literature Review

	RKO literature

	Problem definition
	Random-Key Optimizer
	RKO Components
	Shaking
	Blending
	Randomized Variable Neighbourhood Descent
	Swap Local Search
	Mirror Local Search
	Farey Local Search
	Nelder–Mead Local Search

	Encoding and Decoding
	Metaheuristics
	Biased Random-Key Genetic Algorithm with Q-Learning
	Simulated Annealing
	Iterated Local Search

	Computational experiments and analysis
	Parameter settings
	Computational results for literature instances
	Performance comparison of different RKO components
	Shaking component
	Local Search component
	Q-Learning component

	Computational results for the case study instances
	Surgery fixing and rescheduling

	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Model bounded by Beds
	Appendix B. Model bounded by Operation Rooms
	Appendix C. Lower bound computations
	Appendix D. Pseudocode of the RKO components
	Data availability
	References

