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Abstract—The accurate and robust prediction of vessel traffic
flow is gaining importance in maritime intelligent transportation
system (ITS), such as vessel traffic services, maritime spatial plan-
ning, and traffic safety management, etc. To achieve fine-grained
vessel traffic flow prediction, we will first generate the maritime
traffic network (which is essentially a graph), and then propose a
graph-driven neural network. In particular, to represent various
correlations among spatio-temporal vessel traffic flow, we tend
to extract the feature points (i.e., starting, way and ending
points) by utilizing the knowledge of vessel positioning data.
These feature points are essentially related to the geometrical
structures of massive vessel trajectories collected from massive
automatic identification system (AIS) records, contributing to
the generation of maritime traffic network. We then propose a
spatio-temporal multi-graph convolutional network (STMGCN)-
based vessel traffic flow prediction method by exploiting multiple
types of inherent correlations in the generated maritime graph.
The proposed STMGCN mainly contains one spatial multi-graph
convolutional layer and two temporal gated convolutional layers,
beneficial for extracting spatial and temporal traffic flow patterns.
The main benefit of our graph-driven prediction method is that
it takes full advantage of the maritime graph and multi-graph
learning. Comprehensive experiments have been implemented on
realistic AIS dataset to compare our method with several state-
of-the-art prediction methods. The fine-grained prediction results
have demonstrated our superior performance in terms of both
accuracy and robustness.

Index Terms—Traffic flow prediction, maritime traffic net-
work, multi-graph convolutional network, automatic identifica-
tion system (AIS)

I. INTRODUCTION

THE accurate and robust prediction of vessel traffic flow
plays a vital role in maritime intelligent transportation

system (ITS) [1]. It is potentially beneficial for reducing
ship collision accidents [2], enhancing navigational safety [3],
and assisting port management [4], etc. With the widespread
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equipping of universal shipborne automatic identification sys-
tem (AIS)1, the reliable prediction of spatio-temporal vessel
traffic flow through large-scale historical AIS data has gained
increasing attention within both academia and industry.

The evolution of vessel traffic flow is inevitably affected by
several different factors, such as special events (e.g., COVID-
19), economic development, environmental changes, and ad-
verse weathers (e.g., haze, low-lightness, snow and rain),
etc. Due to these non-linear random effects, it is commonly
intractable to accurately and robustly predict the vessel traffic
flow using existing prediction methods. In the literature, the
widely-used prediction methods could be mainly divided into
two types, i.e., traditional computational methods [5], [6]
and advanced learning methods [7], [8]. In particular, the
traditional methods have the advantages of highly efficient
operation and strong interpretability. However, they essentially
ignore the inherent spatial-temporal correlations of vessel
traffic flow, leading to unstable prediction results in practice.
To eliminate these limitations, many studies [9], [10], [11]
proposed to extend the concept of graph convolutional network
(GCN) to traffic flow prediction. These learning methods cre-
atively incorporate the topological structures of transportation
network into the deep neural network. They could provide
superior prediction results compared with existing traditional
methods [12]. However, unlike traffic traffic network, there
is no obvious road network structure, directly extracted from
maritime ITS. Therefore, the powerful GCN-enabled traffic
flow prediction methods, originally proposed for urban and
highway driving scenarios, are not directly applicable in
maritime transportation. In addition, existing GCN methods
mainly consider the spatial accessibility between nodes in
transportation networks, and ignore other correlational factors,
e.g., historical, temporal and semantic correlations, etc. It is
thus difficult to further improve GCN-based prediction results
under complex traffic conditions. In summary, to achieve
satisfactory vessel traffic flow prediction performance, it is
necessary to handle two important problems as follows

1) How to reliably extract the maritime traffic network
(essentially a graph) from massive historical AIS data?

2) How to develop more powerful GCN methods to accu-
rately achieve fine-grained vessel traffic flow prediction?

1The AIS is an automatic tracking system that adopts transceivers on
vessels. In particular, the AIS equipment can transmit dynamic and static
information such as maritime mobile service identification (MMSI), vessel
size, position (i.e., longitude and latitude), speed, heading, etc.
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In this work, to conveniently measure the spatial-temporal
correlations of vessel traffic flow, we first extract the maritime
traffic network from large-scale historical AIS data. A spatio-
temporal multi-graph convolutional network (STMGCN) is
then proposed to accurately and robustly predict the vessel
traffic flow within the maritime traffic network. The proposed
STMGCN is capable of exploring the internal spatio-temporal
correlation structures of nodes in the traffic network. The main
contributions of this work are summarized as follows

1) Extraction of Maritime Traffic Network. To better rep-
resent the correlations among vessel traffic flow, a big
data-driven computational method is proposed to auto-
matically extract the maritime traffic network from large-
scale historical AIS records.

2) Multi-Graph Convolutional Neural Network. To take full
advantage of the correlations of traffic flow in maritime
graph, an advanced multi-graph convolutional network is
presented accordingly, leading to satisfactory prediction
results under complex traffic conditions.

3) Numerous Experiments with Realistic Dataset. Com-
prehensive experiments on realistic AIS dataset have
demonstrated that the proposed graph-based framework
obviously outperformed several state-of-the-art predic-
tion methods in terms of accuracy and robustness.

Our fine-grained traffic flow prediction method mainly bene-
fits from the extracted maritime traffic network and STMGCN.
Numerical experiments on realistic AIS data have illustrated
the superior prediction performance of our graph-driven learn-
ing method under several different scenarios.

II. RELATED WORKS

In this section, we will briefly review the recent progresses
from several perspectives, i.e., general traffic flow prediction
methods (i.e., modeling and learning methods), and specific
prediction methods for vessel traffic flow.

A. Modeling-Based Traffic Flow Prediction

Many traditional methods, which mainly include the auto-
regressive integrated moving average (ARIMA) model [13],
low-rank modeling [14], HoltWinter [15], data-driven filtering
[16], and their extended versions [17], [18], have been de-
veloped to perform traffic flow prediction. The primary trend
and periodicity features of original traffic flow can be captured
through linear models, whose major benefits are simplicity and
efficiency in practice. However, they are highly sensitive to
chaotic and fractal characteristics of traffic, leading to low-
accuracy prediction in practice. The Kalman filtering [16]
has become a typical linear method to predict traffic flow.
It has the capacity of continuously updating the estimate of
state variables, which could improve the prediction accuracy
and robustness [19]. In addition, the support vector regression
(SVR)-based computational framework [20] has been widely
utilized in traffic flow prediction in the presence of small
samples. In practical applications, the original traffic flow
data changes periodically and shows high spatio-temporal
correlations. Therefore, the low-rank modeling [14] has also
been introduced to reliably predict traffic flow.

B. Learning-Based Traffic Flow Prediction

Due to the strong feature learning capacity of neural net-
work, different learning methods have attracted significant
attention in traffic flow prediction. The learning methods have
strong non-linear representation ability, potentially leading to
high-accuracy prediction results. The representative methods
mainly include the back-propagation neural network (BPNN)
[21], [22], recurrent neural network (RNN) [23], [24], gated
recurrent unit (GRU) [25], [26], [27], convolutional neural net-
work (CNN) [28], [29], [30], stacked auto-encoder (SAE) [31],
diffusion convolutional recurrent neural network (DCRNN)
[32], and GCN [33], etc. The early studies mainly focused
on the temporal correlation of traffic flow [22], [34], resulting
in limited prediction reliability. To enhance the prediction
performance, CNN has been widely adopted to capture the
spatial correlation [12], [35]. Essentially, the CNN-based pre-
diction methods are only appropriate in the Euclidean space.
With the recent evolution of GCN [36], [37], various methods
have shown satisfactory prediction results in the non-Euclidean
space, such as, temporal graph convolutional network (T-GCN)
[27], syntax and knowledge-based GCN (SK-GCN) [38], etc.
In the field of road traffic flow prediction, the GCN-driven
prediction methods have been widely exploited [27], [39],
[40] since Kipf et al. [41] simplified the graph convolu-
tion. The spatio-temporal graph convolutional neural network
(STGCN) was then proposed to capture both spatial and
temporal correlations [42]. In STGCN, the entire convolutional
structures were employed to capture the temporal dynamic
behaviors of traffic flow along the time axis. In addition, a
spatial graph convolutional layer was introduced to capture
the spatial dynamic correlations. Similar network structures
have been successfully adopted in GCN-driven computational
frameworks [43], [44], [45], [46].

C. Vessel Traffic Flow Prediction

With the rapid developments of shipping business, regional
and global economy, the reliable prediction of vessel traffic
flow has attracted significant attention from both industry and
academia. For example, to promote the accuracy of short-term
prediction, He et al. [47] constructed a novel Kalman method
by combining the regression analysis and Kalman filtering. Yu
et al. [48] proposed to exploit three data mining approaches to
estimate the delay or advance of vessel arrivals by utilizing the
traffic-specific knowledge collected from historical shipping
data. An improved particle swarm optimization (PSO)-back-
propagation method [49] has also been presented to accurately
predict the vessel traffic flow in the port water area. In addition,
a novel multi-layer perception (MLP) network was developed
to improve long-term vessel speed prediction results [50]. Li et
al. [51] developed a novel hybrid method for optimizing SVR
parameters to enhance traffic flow prediction. In the literature,
the existing prediction methods do not take into account both
spatial and temporal correlations among vessel traffic flow
data in specific water areas. Therefore, it is computationally
intractable to achieve fine-grained spatio-temporal prediction
results under complex traffic conditions.
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Fig. 1. The flowchart of generation of maritime traffic network. From left to right: (a) Collection of original AIS-based vessel trajectories, (b) Extraction of
feature points, (c) Projection of feature points, and (d) Generation of maritime traffic network.

Algorithm 1 Extraction of Maritime Traffic Network.
Input: The set of trajectory, Tn ; The grid size, M ∗N ;
Output: The maritime traffic network, GO;

1: for each vessel trajectory Ti in Tn do
2: Extract starting, ending and way points from Ti by the

DP
3: Add starting, ending and way points into P
4: end for
5: The research area is divided into M ×N grid cells, and

each cell is assigned a grid code that uniquely identifies
the row and column ID to which it belongs

6: P is clustered into C clusters by DBSCAN
7: for each cluster F c with 1 ≤ c ≤ C do
8: for feature points pj ∈ F c do
9: Calculate the grid cell ID of each point

10: end for
11: end for
12: Node N is defined as the region where grid cells contain

the same cluster of feature points
13: The edges E are the connection relationships of the nodes
14: The adjacency matrix Aijo is calculated by Eq. (6)
15: return GO = (N , E,AO);

III. EXTRACTION OF MARITIME TRAFFIC NETWORK

The internal spatio-temporal correlation among vessel traffic
flow is usually highly related to the maritime traffic network.
Accurate extraction of traffic nodes and edges is therefore an
important prerequisite for effective prediction of vessel traffic
flow. This section will introduce the details on how to extract
the maritime traffic network from spatio-temporal AIS data.

A. Definitions

We will formally define the basic concepts of vessel trajec-
tory, feature points (including starting, ending and way points),
and maritime traffic network considered in this work.

Definition 1: Vessel Trajectory: The vessel trajectory T is
always represented through a series of timestamped points
pn = [lonn, latn, tn] with n ∈ {1, 2, . . . , N} recorded by AIS
devices, i.e., T = {p1, p2, . . . , pN} with N being the number
of timestamped points in T . Here, tn, latn and lonn represent
the time stamp, latitude, and longitude, respectively.

Fig. 2. The visual example of vessel traffic flow data. (a) The spatio-temporal
structure of vessel traffic data, where the data at each time slice form a graph.
(b) The vessel traffic flow observations at different graph nodes.

Definition 2: Starting and Ending Points: The starting and
ending points, respectively, represent the coordinates where
vessels begin and stop in the same shipping routes.

Definition 3: Way Points: The way points are isolated
positions within the vessel trajectory where a vessel obviously
changes its course.

Definition 4: Feature Points: The feature points are the
clusters of starting, ending, and way points. Generally, the
feature points contain fruitful vessel motion information.

Definition 5: Maritime Traffic Network: The maritime traffic
network (a.k.a., maritime graph) is defined as an undirected
graph G = (N , E,A), visually illustrated in Fig. 1. Here,
N denotes a finite set of nodes, E denotes a set of edges,
indicating the connectivity between adjacent nodes, and A ∈
RN×N denotes the adjacency matrix. Each node in G records
N measurements with the same sampling frequency. It means
that each node generates a feature vector of length N at each
time slice, shown by the solid lines in Fig. 2. More details on
how to generate the maritime traffic network will be discussed
in Section IV-B3.

The maritime traffic network will be generated through the
massive historical AIS-based vessel trajectories. Based on this
maritime traffic network, the fine-grained vessel traffic flow
prediction could be guaranteed accordingly.

B. Extraction of Feature Points

To generate the maritime traffic network given in Definition
5, it is necessary to robustly and accurately extract the feature
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points. In this work, the popular Douglas-Peucker (DP)-based
compression algorithm, which captures the vessel directional
changes based on spatial trajectory information, is directly
used to roughly detect the starting, ending, and way points
of vessel trajectories. The implementation of DP algorithm is
abstractly formulated as follows

{psi , pwi , pei} ← DP(Ti), (1)

for i = 1, 2, · · · , I . Here, I is the total number of collected
vessel trajectories, Ti denotes the i-th vessel trajectory, psi , p

w
i

and pei denote the starting, way, and ending points, respec-
tively. The DP algorithm is iteratively performed to extract
the starting, ending, and way points for each vessel trajectory.

These recorded starting, ending, and way points are coarse
and inevitably suffer from undesirable biases and noise. To
avoid these detrimental consequences, we exploit the density-
based spatial clustering of applications with noise (DBSCAN)
algorithm [52], [53] to distinguish outliers and cluster all the
starting, ending, and way points into feature points. Among
common spatial clustering algorithms, DBSCAN is always
used because it does not need to set the number of clusters in
advance, and is resistant to noise points. In addition, DBSCAN
can find arbitrarily-shaped clusters. The implementation of
DBSCAN illustrated in Fig. 1 (b), which can be abstractly
described as follows

[F 1, · · · , FC ] +O ← DBSCAN (P) , (2)

where F c with 1 ≤ c ≤ C denotes the c-th cluster of feature
points, P denotes the set of all starting, ending, and way
points extracted from Eq. (1), and O denotes the outliers. More
details and explanations on DP and DBSCAN algorithms can
be found in Ref. [52].

C. Projection of Feature Points

The nodes of the maritime traffic network should be a region
but not a precise coordinate point. To accurately construct the
maritime traffic network, we project the feature points in grids,
shown in Fig. 1 (c). We first divide the experimental water
area into an L ×W grid and project the feature points into
this grid. The grids with the same cluster of feature point
projections can be defined as a network node. Specifically,
let F c = {p1, p2, · · · , pN} denote the c-th cluster of feature
points, where N is the number of trajectory feature points.
The pn in F c contains longitude loncn, latitude latcn, and
time tcn. The mathematical relationship between (latcn, loncn)
in Cartesian coordinates and (lcn, w

c
n) in projected grids J are

given by

lcn =

〈
latcn − latmin

latmax − latmin
· (L− 1)

〉
+ 1 ∈ [1, L] , (3)

wcn =

〈
loncn − lonmin

lonmax − lonmin
· (W − 1)

〉
+ 1 ∈ [1,W ] , (4)

where latmax /min and lonmax /min, respectively, denote the
maximum/minimum latitude and longitude in the experimental
water area, and 〈·〉 denotes the cell operation. When the
number of feature points (ln, wn) with projected coordinates
equals d, the intensity of element (lcn, w

c
n) in J becomes

J (lcn, w
c
n) = d, essentially denoting the magnitude of pro-

jected image J . The binary trajectory grid X is then generated
by the intermediate image J , whose definition is given by

Xij =

{
c, if J (wcn, h

c
n) > d̂,

0, otherwise,
(5)

where d̂ denotes a predefined threshold, which is empirically
selected as 3 in this work.

D. Generation of Maritime Traffic Network

In this work, the node nc of the maritime traffic network
is defined as the grids in Xij equal to c. The edges of
the maritime traffic network are defined as the reachable
relationship between adjacent nodes. If two nodes ni and nj
connect in the origin graph, the corresponding value in the
adjacency matrix AijO is set to 1. Therefore, the adjacency
matrix of the localized original maritime traffic network GO
can be formulated as follows

AijO =

{
1, if ni connects to nj , i 6= j,

0, otherwise,
(6)

where ni and nj , respectively, denote the i- and j-th node in
the localized original maritime traffic network. The maritime
traffic network is visually illustrated in Fig. 1 (d). In this paper,
node observations are obtained by counting the vessel traffic
flow passing the node per unit time span.

IV. STMGCN: SPATIO-TEMPORAL MULTI-GRAPH
CONVOLUTIONAL NETWORK

This section mainly focuses on how to model different types
of spatio-temporal correlations through multiple graphs and
how to predict vessel traffic flow based on STMGCN. The
vessel traffic flow prediction is a classic time-series prediction
task, i.e., estimation of the most likely traffic measurements
in the following H time steps based on previous M traffic
observations. In this paper, we regard the traffic information
on the maritime traffic network as the attribute features of the
node in the network. Thus, the prediction framework in this
paper can be given by

[vt+1, · · · , vt+H ] = F ([vt−M+1, · · · , vt] ;GD,GI ,GC) , (7)

where vt ∈ RN represents the node observations (i.e., vessel
traffic flow) in maritime traffic network G in the unit time span
t, F (·) denotes the mapping function. The GD, GI , and GC ,
respectively, represent the distance, interaction, and correlation
graphs. For the sake of better understanding, we will first
briefly introduce the basic concept of GCN, and then propose
the STMGCN-based vessel traffic flow prediction method.

A. Overview of Graph Convolutional Network

CNN has received tremendous success in various applica-
tions, such as visual navigation [54], computer vision [55],
and time series forecasting [56], etc. However, the classical
CNN is only applicable in the Euclidean space. Therefore,
it is intractable to perform CNN-based vessel traffic flow
prediction in the (non-Euclidean) maritime graph. As an
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Fig. 3. The flowchart of spatio-temporal multi-graph convolutional network
(STMGCN). The STMGCN contains two spatio-temporal multi-graph con-
volutional blocks (STMG-Conv blocks) and a fully connected output layer.
There are one spatial multi-graph convolutional layer and two temporal gated
convolutional layers in STMG-Conv block. The residual connection and
bottleneck strategy are applied inside each STMG-Conv block.

advanced extension of CNN in the graph domain, GCN is
capable of fully exploiting graph structure to learn the node
representation of the generated graph. It has been successfully
adopted in many non-Euclidean space applications, including
trajectory prediction [57], natural language processing [58],
and recommended systems [59], etc.

In this work, the convolution on graph is calculated in the
Fourier domain. Let U ∈ Rn×n denote the Fourier basis matrix
of eigenvectors of the normalized Laplacian L. We design to
express the Laplace matrix L for a graph as follows

L = In −D−
1
2 ÂD− 1

2 = UΛUT ∈ Rn×n, (8)

with Dii =
∑
j Âij ∈ Rn×n. Here, In ∈ Rn×n and Â ∈

Rn×n, respectively, denote the identity matrix and weighted
adjacency matrix of maritime graph G.

The spectral graph convolution operator “∗G” is defined as
the multiplication of signal x ∈ Rn with a kernel Θ. The
Fourier transform for x is defined as x̂ = UTx. Based on
these definitions, x can be filtered by Θ with multiplication
between Θ and UTx. Therefore, the spectral graph convolution
in this work is defined as follows

Θ ∗ Gx = Θ (L)x = Θ
(
UΛUT

)
x = UΘ (Λ)UTx. (9)

In general, the computational cost of kernel Θ in graph
convolution is very high. To improve computational efficiency,
Defferrard et al. [60] developed a quick localized technique

Fig. 4. Temporal gated convolutional layer. In this layer, the input feature
matrix is processed by a 1-D causal convolutional layer with a Z width kernel
and nonlinear GLUs.

to localize the filter and decrease the number of spectral
graph convolution parameters. With the fast localized spectral
filtering, the spectral graph convolution is given by

Θ ∗ Gx = Θ (L)x ≈
K−1∑
k=0

θkβk

(
L̂
)
x, (10)

with βk
(
L̂
)
∈ Rn×n denoting the k-th order Chebyshev poly-

nomial evaluated at the scaled Laplacian L̂ = 2L/λmax− In.
Here, θ ∈ RK, K and λmax, respectively, denote the vector of
polynomial coefficients, the kernel size of graph convolution,
and the maximum eigenvalue of L. The approximate expansion
of the Chebyshev polynomial has been adopted to handle the
spectral graph convolution. The computational cost of Eq. (8)
can be accordingly reduced to O (K | ε) as Eq. (9) shows.

B. Spatio-Temporal Multi-Graph Convolutional Network

1) Network Architecture. The detailed architecture of our
STMGCN is introduced in this section. As shown in Fig. 3,
STMGCN is mainly made up of two spatio-temporal multi-
graph convolutional blocks (STMG-Conv block). Each STMG-
Conv block consists of two temporal gated convolutional
layers and one spatial multi-graph convolutional layer. As
shown in Fig. 4, we use the temporal gated convolutional layer
to extract the temporal correlation of vessel traffic flow. The
spatial multi-graph convolutional layer is exploited to learn
the spatial correlation of graph nodes, illustrated in Fig. 5.
The temporal and spatial convolutional layers are alternatively
performed to better fuse the spatio-temporal correlations.

2) Gated CNN for Extracting Temporal Correlations. As
illustrated in Fig. 4, we employ a 1-D temporal convolutional
layer to capture the temporal correlations of original traffic
flow. The temporal convolutional layer contains a 1-D causal
convolutional layer with a kernel of width Kt and nonlinear
gated linear units (GLUs). Given the input of temporal convo-
lutional layer V ∈ Rn×m×cin , where n,m, cin, respectively,
denote the width, length and input channel dimensions. The
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Fig. 5. Spatial multi-graph convolutional layer. In this layer, each input feature is processed by three graph convolutional layers. Then, the feature matrix
will be concatenated together. Finally, the concatenated feature matrix is mapped to the same size as the input features using fully-connected layers.

convolutional kernel Γ ∈ RKt×cin×2cout maps V to an output
element [V1,V2] ∈ Rn×(m−Kt+1)×(2cout) (V1, V2 are split into
half with the same size of channels), where cout denotes the
output channel dimensions. The temporal gated convolutional
is calculated by

T = Γ ∗τ V = V1 � σ (V2) ∈ Rn×(m−Kt+1)×cout , (11)

where V1,V2 ∈ R(m−Kt+1)×(2cout) denote the separate inputs
of GLU, and � denotes the elementwise Hadamard product.
The sigmoid gate σ (V2) is exploited to recognize the composi-
tional structure and dynamic variations in the time series from
the current state input V1. The sigmoid gate σ (V2) decides
which current status inputs V1 are important for recognizing
the compositional structure and dynamic variations in the time
series.

3) Gated Multi-Graph CNN for Extracting Spatial Correla-
tions. To fuse spatial correlations into our network, the spatial
multi-graph convolutional layer is developed to jointly process
graph-structured time series, shown in Fig. 3. This layer can be
stacked and expanded according to the scale and complexity
of original vessel traffic flow.

As shown in Fig. 3, the spatial multi-graph convolutional
layer is a link between two temporal gated convolutional
layers. To capture node interactions, we use the spatial multi-
graph convolutional layer to perform the convolution opera-
tion. The STMGCN relies heavily on graph construction. If
the produced graphs are unable to adequately describe the
correlations between graph nodes, it would become harmful to
model learning, and even decrease the prediction performance.
Based on this concept, we construct three spatial correlation
graphs (i.e., distance graph GD, interaction graph GI , and cor-
relation graph GC) to describe the spatial correlation between

nodes in the extracted maritime graph, which will be detailedly
discussed as follows.

Distance Graph. From the Waldo Tobler’s First Law of
Geography [61], it is easy to observe that any two nodes
near each other in a maritime graph may share the similar
navigation behaviors. Motivated by this assumption, we design
to reconstruct the distance graph GD (N , E,AD) to describe
the distance between nodes. In particular, The reciprocal of
the distance is used to express the weight between two nodes.
Thus, the closer the nodes, the higher the weight. According
to the Algorithm 1, we use the centroids of graph nodes to
calculate the distance between different nodes. Let Dij denote
the Euclidean distance between the centroids of nodes ni and
nj . The adjacent matrix AD of distance graph GD can be
represented as follows

AijD =

{
1
Dij

if i 6= j

0 otherwise
, (12)

where AijD represents the weight of distance graph GD corre-
sponding to the i-th row and j-th column.

Interaction Graph. The historical traffic flow between nodes
has a crucial influence on constructing the spatial correlation
graphs. For instance, if there exist many navigation records
between the nodes ni and nj , these two nodes ni and nj then
tend to influence each other regarding the dynamic vessel traf-
fic flow patterns. Following this logic, we create an interaction
graph GI (N , E,AI) to represent how frequently two nodes
interact with each other based on historical navigation records.
The traffic flow between any two nodes can be easily counted,
according to the method proposed in Section III. Then, the
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TABLE I
THE VARIANTS OF STMGCN USING IN THIS PAPER. THE ’X’ INDICATES THE STGCN OR STMGCN VARIANTS CONSIDERING THE CORRESPONDING

SPATIAL CHARACTERISTICS. THE ”X” AND ”Y”, RESPECTIVELY, INDICATE THE STGCN AND STMGCN.

Methods
Graph Types X-O X-D X-I X-C Y-OD Y-OI Y-OC Y-DI Y-DC Y-IC
GO X X X X
GD X X X X
GI X X X X
GC X X X X

adjacent matrix AI of GI can be represented as follows

AijI =

{
Iij if i 6= j

0 otherwise
, (13)

where Iij denotes the number of maritime traffic flow records
between the i-th and j-th nodes.

Correlation Graph. The historical usage (i.e., inflow or
outflow) of each node in each time segment plays an important
role in the construction of spatial correlation graphs. To
better consider the historical usage of nodes, we construct
a correlation graph GC (N , E,AC) through the inflow or
outflow correlation between nodes. In this paper, we utilize the
well-known Pearson coefficient to determine the correlation.
Pearson coefficient is a popular test statistics that is used to
measure the statistical relationship, or association, between
two datasets. Let X and Y denote the traffic flow volume
at node ni and node nj , the Pearson coefficient is then given
by

Cij =
Cov(X,Y )

σXσY
, (14)

where Cov(·, ·) denotes the covariance between two vectors.
Here, σX and σY , respectively, denote the standard deviations
of X and Y . Then, we can represent the adjacent matrix AC
of GC as follows

AijC =

{
Cij if i 6= j

0 otherwise
, (15)

Spatial Multi-Graph Convolution. The process of spatial
multi-graph convolution is shown in Fig. 5. Given the input
data of the graph convolutional layer as T ∈ Rn×m×cin , where
n,m, cin, respectively, denote the size of the spatial, temporal,
and channel dimensions. We can represent the propagation rule
of spatial graph convolution as follows

S = ψ (Θ ∗ GT ) ∈ Rn×m×cout , (16)

where ψ(·) denoting the ReLU activation function, and Θ
denotes the spectral kernel of graph convolution. Each traffic
flow segment is input to three GCN modules, together with
the corresponding maritime graphs (i.e., GD, GI , and GC),
resulting in three feature matrices, denoted as SD, SI , and
SC . We use the Chebyshev polynomial to estimate kernels to
speed up the spectral graph convolution operation in this work.
The three feature matrices are concatenated as the input of a
fully connected layer, and the output V̂ of the final spatial
multi-graph convolution is calculated by

V̂ = ψ (W [SD,SI ,SC ] + B) ∈ Rn×m×cout , (17)

Fig. 6. Influences of parameter ϕ on detection of starting, ending, and way
points. Here, ξ denotes the ratio of compression (the proportion of remaining
timestamped points).

where [·, ·, ·] represents the concatenation operation, W and
B, respectively, denote the weighting matrix and bias.

4) Spatio-Temporal Multi-Graph Convolutional Block. As
previously mentioned, each STMG-Conv block consists of two
temporal gated convolutional layers and one spatial multi-
graph convolutional layer. In this paper, the temporal gated
convolutional layer and spatial multi-graph convolutional layer
are run interleaved. Given the input traffic measurements
V l, one STMG-Conv block computes the predicted traffic
measurements V l+1 by the following equations

T l = Γ ∗τ V l, (18)

V̂ l = W
[
ψ
(
Θ ∗ GDT l

)
, ψ
(
Θ ∗ GIT l

)
, ψ
(
Θ ∗ GCT l

)]
+B,
(19)

V l+1 = Γ ∗τ V̂ l. (20)

In this paper, the STMGCN consists two STMG-Conv
blocks. Thus, we will repeat this process twice to get the
predicted traffic measurements. Theoretically, the STMG-Conv
module can be extended to more other models and applica-
tions.

V. EXPERIMENTS AND ANALYSIS

In this section, various experiments will be conducted on
realistic data to validate the proposed method. Firstly, we
will briefly describe the research water regions and data
used in this paper. The quantitative metrics and comparison
baselines are then presented in detail. Finally, we implement
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TABLE II
COMPARISONS OF BASELINE METHODS FOR VESSEL TRAFFIC FLOW PREDICTION. IN THIS PAPER, EACH PREDICTION MODEL IS RUN TEN TIMES TO

DECREASE RANDOMNESS. THE RMSE, MAE AND R2 (MEAN ± STANDARD DEVIATION) ARE SIMULTANEOUSLY EXPLOITED TO EVALUATE THE VESSEL
TRAFFIC PREDICTION RESULTS.

Unit Time Spans Evaluation Metrics Models
HA [62] SVR [20] BPNN [22] LSTM [23] GRU [25] T-GCN [27] DCRNN[32] STMGCN

1h
RMSE↓ 9.03± 7.19 8.66± 7.76 8.47± 7.73 7.71± 6.69 7.84± 6.79 7.61± 5.84 7.35± 6.91 6.46± 0.96
MAE↓ 5.94± 4.59 5.48± 4.80 6.25± 5.98 5.48± 4.77 5.63± 4.89 4.73± 3.24 4.09± 5.01 3.63± 0.43

R2↑ * 0.17± 0.27 0.17± 0.29 0.24± 0.30 0.19± 0.32 0.42± 0.27 0.50± 0.60 0.66± 0.08

2h
RMSE↓ 9.03± 7.19 8.69± 7.73 8.75± 8.01 7.89± 6.94 8.16± 7.37 8.10± 6.54 8.37± 7.25 7.19± 1.47
MAE↓ 5.94± 4.59 5.46± 4.76 6.45± 6.28 5.62± 4.98 6.00± 5.71 5.14± 3.78 6.11± 5.33 3.86± 0.44

R2↑ * 0.15± 0.26 0.11± 0.30 0.18± 0.32 0.17± 0.31 0.36± 0.24 0.30± 0.60 0.60± 0.09

3h
RMSE↓ 9.03± 7.19 8.77± 7.74 8.86± 8.09 8.09± 7.03 8.37± 7.38 8.41± 6.77 8.37± 8.05 7.59± 2.19
MAE↓ 5.94± 4.59 5.51± 4.79 6.51± 6.35 5.78± 5.07 6.13± 5.61 5.32± 3.95 5.10± 6.02 4.16± 0.72

R2↑ * 0.13± 0.26 0.10± 0.31 0.12± 0.35 0.12± 0.34 0.33± 0.28 0.32± 0.44 0.56± 0.11

TABLE III
COMPARISONS OF VESSEL TRAFFIC FLOW PREDICTION ON RE FOR DIFFERENT COMPETING METHODS. EACH PREDICTION MODEL IS RUN TEN TIMES TO

DECREASE RANDOMNESS.

Nodes Models
HA [62] SVR [20] BPNN [22] LSTM [23] GRU [25] T-GCN[27] DCRNN[32] STMGCN

1 0.8380± 0.000 0.8030± 0.163 0.8303± 0.072 0.8197± 0.103 0.8603± 0.064 0.4378± 0.015 0.3675± 0.055 0.2711± 0.008
2 0.8382± 0.000 0.8023± 0.138 0.8255± 0.109 0.6255± 0.092 0.7390± 0.067 0.5743± 0.056 0.3614± 0.039 0.2539± 0.009
3 0.4940± 0.000 0.5100± 0.124 0.4661± 0.136 0.4374± 0.079 0.4423± 0.073 0.3179± 0.062 0.5470± 0.026 0.2998± 0.005
4 0.5340± 0.000 0.4867± 0.063 0.5099± 0.049 0.4844± 0.063 0.4810± 0.062 0.4153± 0.053 0.3852± 0.018 0.3227± 0.012
5 0.3329± 0.000 0.3021± 0.054 0.4060± 0.055 0.4027± 0.046 0.3777± 0.052 0.3294± 0.044 0.3550± 0.024 0.2650± 0.020
6 0.8529± 0.000 0.7652± 0.150 0.8046± 0.126 0.7165± 0.134 0.7465± 0.137 0.4185± 0.122 0.5059± 0.118 0.3260± 0.019
7 1.0547± 0.000 0.9617± 0.129 1.2194± 0.105 1.0325± 0.134 1.3391± 0.157 0.4808± 0.110 1.3598± 0.097 0.4723± 0.011
8 0.6807± 0.000 0.7443± 0.126 0.6788± 0.091 0.6363± 0.082 0.6748± 0.075 0.5474± 0.071 0.6833± 0.039 0.4438± 0.015
9 0.6895± 0.000 0.7233± 0.080 0.6492± 0.109 0.5617± 0.061 0.6492± 0.081 0.5328± 0.072 0.9284± 0.079 0.4706± 0.015
10 0.7591± 0.000 0.8348± 0.083 0.8405± 0.078 0.7191± 0.057 0.7591± 0.059 0.5824± 0.054 0.6330± 0.042 0.4455± 0.015
11 0.8331± 0.000 0.8699± 0.108 0.7741± 0.131 0.8214± 0.121 0.8204± 0.103 0.6247± 0.112 0.6571± 0.149 0.5475± 0.021
12 0.8140± 0.000 0.8180± 0.089 0.8046± 0.089 0.6852± 0.080 0.7029± 0.072 0.5834± 0.070 0.4507± 0.039 0.4392± 0.028
13 0.7910± 0.000 0.8365± 0.247 0.8255± 0.149 0.7234± 0.148 0.8405± 0.135 0.7244± 0.121 0.4984± 0.035 0.4213± 0.015
14 0.9346± 0.000 0.8201± 0.083 0.8303± 0.075 0.8197± 0.047 0.8603± 0.069 0.4199± 0.042 0.5516± 0.035 0.3928± 0.028
15 0.7714± 0.000 0.7511± 0.157 0.7011± 0.153 0.9189± 0.110 1.0672± 0.106 0.5940± 0.095 0.9083± 0.052 0.4362± 0.036
16 0.7435± 0.000 0.8173± 0.136 0.7189± 0.105 0.9011± 0.134 0.9672± 0.137 0.5537± 0.105 0.6396± 0.047 0.3579± 0.028

Fig. 7. Influences of DBSCAN parameters (Eps and MinPts) on extraction
of feature points. Here, ς denotes the ratio of utilization (the proportion of
remaining timestamped points). (a) The influences of Eps, (b) The influences
of MinPts.

experiments on realistic scenarios to demonstrate the supe-
rior performance of our maritime traffic network extraction
methods and STMGCN-based vessel traffic flow prediction
methods.

A. Dataset Description

We collected original vessel trajectories from the terrestrial
AIS base stations in the South Channel of Yangtze River
Estuary, within longitude 121◦23′ − 121◦59′ east and latitude
31◦07′ − 31◦34′ north. The temporal sampling rate of the
collected data is 2-30 s. The dataset includes a total of 49, 532

vessel trajectories and 61, 994, 075 trajectory data points. The
time period used was from 31 July to 31 August 2017.
For the sake of better comparisons, the qualities of original
trajectories were improved directly by utilizing the existing
methods proposed in our previous work [52]. We implemented
all experiments in PyTorch 1.0 with the NVIDIA GeForce
RTX 2060 GPU, Intel Core i7-9750H CPU (2.6 GHz), 16 GB
of RAM, and Windows 10 64-bit operating system.

B. Evaluation Metrics and Baselines

1) Evaluation Metrics. To quantitatively evaluate the pre-
diction results, the root mean squared error (RMSE), coeffi-
cient of determination (R2), mean absolute error (MAE), and
relative error (RE) were jointly employed in our experiments.
In particular, the proposed model and all baseline model
were run 10 times to reduce the randomness in prediction
evaluation. In addition, we also calculated the mean and
variance of each evaluation metrics to measure the traffic
prediction in terms of accuracy and robustness. Generally,
the smaller values of RMSE, MAE and RE indicate better
prediction performance. R2 ∈ [0, 1] shows how well the data
fit the regression model (goodness of fit). Theoretically, the
more accurate prediction results could be obtained with the
higher R2.
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Fig. 8. Extraction results of maritime traffic network. From left to right: (a) Visualization results of vessel trajectories in experimental water area, (b) extraction
results of feature points, (c) projection results of feature points, and (d) generation results of maritime traffic network.

Fig. 9. Comparisons of predicted performance over different learning rates
in the training and test sets. (a) The changes of RMSE, MAE, and R2 on the
training set. (b) The changes of RMSE, MAE, and R2 on the test set.

Fig. 10. Comparisons of predicted performance over different learning rates
in the training and test sets. (a) The results of RMSE, MAE, and R2 on the
training set. (b) The results of RMSE, MAE, and R2 on the test set.

2) Baselines. To fairly evaluate the performance of our
STMGCN, we compared the proposed method with recent
novel baseline methods, including history average (HA) [62],
SVR [20], BPNN [22], long short-term memory (LSTM)
[23], GRU [25], T-GCN[27], and DCRNN[32]. It is worth
noting that we employ the default parameter from the original
implementations for all baseline methods. In addition, we
attempt to evaluate the effectiveness of the different spatial
correlation graphs of STMGCN in our experiments, i.e., the
four maritime graphs described in Sections III-D and IV-B3.
This paper compares 10 variants of STMGCN, as shown in
Table I.

C. Maritime Traffic Network Extraction Results

1) Parameter Settings. Both DP and DBSCAN methods
are employed to assist in the extraction of maritime traffic
networks, as illustrated in Section III-B. The extraction results
are highly dependent on the input settings used in DP and
DBSCAN. It is thus important to choose the compression

threshold (i.e., ϕ) for DP compression, the neighbourhood
radius (i.e., Eps), and the minimal number of points inside the
Eps radius (i.e., MinPts) for optimal DBSCAN clustering.
Fig. 6 depicts the effects of DP thresholds ϕ ∈ [0, 0.10)
on AIS-based vessel trajectory compression. It is apparent
that when ϕ increases, the fraction of surviving timestamped
points decreases dramatically. A larger proportion could retain
more timestamped points in vessel trajectories, resulting in
redundant way points, whereas a smaller proportion may result
in the removal of certain way points owing to trajectories being
oversimplified. We empirically set ϕ = 0.045 to extract the
feature points by compressing the vessel trajectories to obtain
a reasonable equilibrium.

During the generation of maritime traffic networks, DB-
SCAN could assist in removing undesired outliers from typical
feature points. It should be noted that the parameters Eps
and MinPts have a considerable influence on the automated
detection of outliers. However, it is difficult to determine
the ideal settings directly. This paper proposes exhaustive
experiments to empirically identify the best values of Eps
and MinPts. Eps and MinPts, in particular, span the ranges
[0, 0.05] and [2, 98], respectively. The impact of different pa-
rameters Eps and MinPts on automatic detection of outliers
is clearly depicted in Fig. 7. As Eps increases, the propor-
tion of retained feature points increase and then gradually
settle. In comparison, when MinPts rises, the proportion
of the remaining feature points varies slowly. According to
the experimental results, we empirically choose the optimal
parameters Eps = 0.01 and MinPts = 14 to guarantee
detection stability. In addition, we manually set the spatial
interval ∆ = 0.0075◦ (i.e., grid size L×W = 79× 60).

2) Network Extraction Results. In this work, we developed
a data-driven multi-step computational framework to extract
the maritime traffic networks based on massive historical
AIS data, as illustrated in Section III. Fig. 8 shows the
extraction result of the maritime traffic network in South
Channel of Yangtze River Estuary. Fig. 8 (a) demonstrates
the original vessel trajectories considered in this work. As
shown in Fig. 8 (b), the feature points, including starting,
ending, and way points, are sufficiently estimated via DP
compression and DBSCAN. Different colored points in Fig.
8 (b) represent different clusters of feature points. Benefiting
from the feature point extraction process, it becomes more
feasible to accurately obtain nodes of the graph in Fig. 8 (c).
The result of the maritime traffic network is shown in Fig. 8
(d). In particular, the points with numbers and the black lines
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Fig. 11. Comparisons of predicted performance (RMSE, MAE, and R2) over different unit time spans (1 h/2 h/3 h). Each prediction model is run ten times
to decrease randomness.

in Fig. 8 (d), respectively, denote the nodes and edges. It can
be seen that the original maritime traffic network contains 16
nodes and 20 edges. The number of vessels passing through
each node in a certain unit time span (1 h/2 h/3 h) is counted
to obtain the vessel traffic flow dataset.

D. Vessel Traffic Flow Prediction Results

1) Network Settings. In this subsection, the optimal
STMGCN hyperparameters are selected through extensive
comparative experiments. In STMGCN, the MSE is set as the
loss function. Both the graph convolution kernel size K and
temporal convolution kernel size Kt are set to 3 in the model.
All tests use 12 hours as a historical time window, i.e., 12
observation data are utilized to estimate vessel traffic flow in
the next 1 hour, 2 hours, and 3 hours. In our experiments, 80%
of the traffic flow data is selected as the training set, and the
remaining 20% is exploited as the test set.

Since the hyperparameters (i.e., initial learning rate, batch
size) of a deep learning model have a significant impact on its
performance, we compare the different parameters of network
settings and select the model parameters with the optimal
performance. It is worth mentioning that, despite progress
made in recent years, selecting an optimal learning rate (LR)

in STMGCN remains a difficult task. LR controls how much
the network parameters are adjusted to minimize the network
loss function. If LR is too small, the deep learning model will
hardly converge for a specific model, resulting in a protracted
training period and lower performance. However, if LR is too
high, it will lead to loss vanishing so that valuable features
cannot be excavated. In this paper, we recommend manually
experimenting with several LR values to find the optimal LR.
As shown in Fig. 9, extensive tests have been carried out
to explore the effect of various LR values on the proposed
method training. The x-axis in Fig. 9 indicates the LR values,
and the y-axis indicates the change in different metrics. As
shown in Fig. 9 (a) and (b), if the LR value is equal to 0.0025,
it can obtain the optimal prediction results on both the test and
training datasets. Furthermore, if the learning rate is greater
than 0.0025, the R2 decreases with increasing learning rate,
MAE and RMSE increase with increasing learning rate. Thus,
the initial LR is set to 0.0025. In addition, we choose the batch
size from [3, 6, 8, 12, 24, 36, 48, 60] and analyze the results in
prediction precision. Fig. 10 shows that when the batch size is
8, the prediction precision error is lowest, and the precision is
highest in both the training and test sets. Therefore, the batch
size is set to 8 in all experiments.
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Fig. 12. Comparisons of RE for variants of STMGCN at 16 nodes. Each prediction method is performed ten times to decrease randomness.

2) Experiment Results. Table II demonstrates the prediction
results of our STMGCN and other state-of-the-art methods for
1 hour, 2 hours, and 3 hours prediction tasks. We employ ∗
to represent negligibly small values and mark the best results
in bold. As shown in Table II, STMGCN generates the most
satisfactory prediction results for all evaluation metrics. It
proves that STMGCN is effective for spatio-temporal vessel
traffic flow prediction. In addition, it can be observed that the
STMGCN obtains a minimum standard deviation under all
evaluation indexes. It demonstrates that STMGCN has strong
learning and stability properties, leading to superior prediction
results. To further evaluate the accuracy and robustness, RE
is employed to evaluate the proposed method and other com-
peting methods for all graph nodes, shown in Table III. It can
be seen from the Table III that the prediction results obtained
by traditional methods are worse than learning models. Our
graph-driven learning method has the capacity of yielding the
best prediction results for all nodes in the maritime traffic
network.

3) Ablation Experiments. In this subsection, we attempt to
evaluate the effectiveness of graphs in STMGCN. The predic-
tion results of single-graph (i.e., origin, distance, interaction or
correlation graph) and multi-graph fusion variants are shown
in Figs. 11 and 12. As observed in Fig. 11, the two-graph
fusion-based variants obtain better prediction results than

Fig. 13. Residual analysis. (a) Residual distribution of all predicted results.
(b) Boxplots of residuals at different time periods.

single-graph models. It is worth noting that STGCN-DC and
STGCN-IC show better prediction results in two-graph fusion-
based variants, which illustrates that the distance, interaction
and correlation graphs can enhance the prediction accuracy.
Owing to the superior performance of multi-graph fusion, our
STMGCN performs well in predicting high-accuracy vessel
traffic flow over different unit time spans. To further evaluate
the prediction methods, we analyze the prediction results for
all graph nodes. These prediction results are evaluated using
the RE, creating the boxplots shown in Fig. 12. As observed
from Fig. 12, STMGCN generates the most accurate and
robust prediction results for all graph nodes.
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Fig. 14. Perturbation analysis. (a) Adding Gaussian perturbation to the input
data. (b) Adding Poisson perturbation to the input data.

4) Residual Analysis. The residuals are an important indica-
tor of whether a model is systematically correct, therefore this
subsection analyzes the residuals of the proposed prediction
method. The residual r can be defined as the ground-truth
value subtracting the predicted value—that is, r = x − x̂.
The fitted Laplace distribution with a location parameter of
−0.088 (i.e., a mean µ of −0.088) and scale parameter of
3.63 (i.e., variance σ of 3.63) is shown in Fig. 13 (a). The
residual distributions with a mean of −0.088 indicate that
the trained STMGCN has successfully learned the spatio-
temporal correlations of vessel traffic flow in the maritime
traffic network. The temporal information, such as the time of
day, may influence the accuracy of traffic flow prediction. As
shown in Fig. 13 (b), we estimate the residuals with regard to
hour by drawing a box plot. The residuals, shown in Fig. 13
(b), are distributed around the zero lines, illustrating that the
proposed method can fit the vessel traffic flow data and obtain
good prediction performance in all-day.

5) Perturbation Analysis and Robustness. In the real world,
noise is unavoidable during data collection and transmission.
We investigate the robustness of STMGCN using perturbation
analysis to test its noise immunity. Gaussian and Gamma noise
can accurately reflect many systems, and are mathematically
easy to deal with [63], [64]. Therefore, this work uses the
Gaussian and Gamma noise to evaluate the robustness of
our prediction method. As shown in Fig. 14, random noise
with the Gaussian distribution N ∈ (0, σ2) and the Gamma
distribution G(α, 0.5) are added to the input data. Fig. 14 (a)
depicts the effects of adding Gaussian noise to the dataset,
where the x-axis indicates σ, the y-axis indicates the change in
each assessment measure, and colors indicate different metrics.
Fig. 14 (b) depicts the effects of adding Gamma noise to
the dataset. Regardless of noise distribution is Gaussian or
Gamma, the change of metrics is extremely small in Fig. 14.
It indicates that the STMGCN is a robust prediction method
and can deal with high-noise problems.

VI. CONCLUSION AND FUTURE PERSPECTIVES

In this work, a graph-based learning framework was pro-
posed for fine-grained vessel traffic flow prediction. To en-
hance the prediction accuracy, we first extract the regional
maritime traffic networks from massive historical AIS data.

The STMGCN was then constructed for traffic flow predic-
tion, which has the advantage of considering multiple spatial
correlations. Finally, comprehensive prediction experiments
have been carried out on realistic dataset to demonstrate
the superiority of the proposed method. Experimental results
shown that the multi-graph fusion strategy can tremendously
improve the prediction accuracy and robustness under different
traffic conditions.

However, there still exists room for improvement. The
traffic flow prediction performance is highly dependent on
the selection of input parameters. Therefore, to guarantee
more satisfactory prediction results, we will develop automatic
methods to adaptively select the optimal parameters for both
traffic network extraction and STMGCN-based traffic flow
prediction. In addition, vessel traffic flow prediction is often
influenced by abnormal events, e.g., severe weather, and
traffic accidents, etc. It is thus necessary to further extend
our STMGCN to learn the relationship between traffic flow
prediction and abnormal events in practical applications.
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