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Abstract: Background/Objectives: Generalised immune dysfunction in chronic kidney dis-
ease, especially in patients requiring haemodialysis (HD), significantly enhances the risk of
severe infections. Vaccine-induced immunity is typically reduced in HD populations. The
SARS-CoV-2 pandemic provided an opportunity to examine the magnitude and functional-
ity of antibody responses in HD patients to a previously unencountered antigen—Spike
(S)-glycoprotein—after vaccination with different vaccine platforms (viral vector (VV);
mRNA (mRV)). Methods: We compared the total and functional anti-S antibody responses
(cross-variant neutralisation and complement binding) in 187 HD patients and 43 healthy
controls 21–28 days after serial immunisation. Results: After 2 doses of the same vaccine,
HD patients had anti-S antibody levels and a complement binding capacity comparable to
controls. However, 2 doses of mRV induced greater polyfunctional antibody responses than
VV (defined by the presence of both complement binding and cross-variant neutralisation
activity). Interestingly, an mRV boost after 2 doses of VV significantly enhanced antibody
functionality in HD patients without a prior history of SARS-CoV-2 infection. Conclusions:
HD patients can generate near-normal, functional antigen-specific antibody responses
following serial vaccination to a novel antigen. Encouragingly, exploiting immunological
memory by using mRNA vaccines and boosting may improve the success of vaccination
strategies in this vulnerable patient population.
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1. Introduction
Patients with chronic kidney disease (CKD), particularly those requiring haemodialysis

(HD), have a significantly greater risk of infection and poorer infection-related outcomes
than the general population, independent of immunosuppression, chemotherapy, or HIV
infection [1–4]. The nature and cause(s) of the secondary immunodeficiency state associated
with CKD remain incompletely understood [5]. Although defects in innate and adaptive
immunity have been reported [6,7], CKD patients can maintain near-normal antibody
responses to antigens that are likely first encountered years previously [8]. This suggests a
state of dysfunctional immunity rather than abject immune failure.

Vaccination is a key intervention that is available to modify the risk of infection and
associated morbidity/mortality across populations, particularly for those with CKD/HD.
It also provides a model to understand immune function in patients. Multiple studies
show impaired seroconversion following various conventional vaccines in CKD and HD
populations, independent of immunosuppressive treatments [9,10], but this is not univer-
sal [11,12]. Surrogate measures for the success of vaccination within an individual can be
quantitative measures, e.g., antibody levels, or qualitative measures such as antibody func-
tionality, e.g., the capacity of an antibody to neutralise a pathogen and to fix and activate
complement. Combining these read-outs can provide a more comprehensive assessment
of immunity.

The SARS-CoV-2 pandemic had a devastating impact on patients with CKD, partic-
ularly those requiring HD, with 25–30% case fatality rates observed in pre-vaccination
waves [13,14]. Nevertheless, surprisingly, some HD patients had encountered this novel
pathogen and were able to generate SARS-CoV-2-specific immune responses without expe-
riencing symptoms [15]. This meant that at least some HD patients maintained the capacity
to induce de novo protective immunity to SARS-CoV-2. Critically, clinical outcomes and
infection susceptibility in HD patients were significantly improved with the roll-out of
SARS-CoV-2 vaccines [16–21], despite vaccine efficacy potentially being lower than in
the general population [22,23]. Thus, immunity in CKD/HD patients can be positively
modulated to improve infection-related outcomes. Studying antibody responses to the
novel pathogen SARS-CoV-2 and its vaccines, all delivering the spike glycoprotein (S) via
viral vector-based or mRNA technologies [24], provides an opportunity to examine how
vaccine platforms and prior pathogen exposure influence aspects of antibody-associated
immunity in these patients. In this study, we systematically characterise humoral immune
responses in patients requiring HD by examining quantitative and qualitative antibody
responses to the SARS-CoV-2 S antigen after serial vaccination with two different vaccine
platforms, in the context of previous SARS-CoV-2 infection history.

2. Materials and Methods
2.1. Patient Selection and Data Collection

Patients established on HD were recruited from two UK centres—University Hospi-
tal Birmingham Foundation Trust (UHBFT) and University Hospitals of Leicester NHS
Trust (UHL). Patients from 12 UHBFT satellite dialysis units were recruited to a prospec-
tive observational study of immune responses to SARS-CoV-2 vaccination (Coronavirus
Immunological Analysis (CIA) study; ethical approval granted by North West-Preston
Research Committee, ref 20/NW/0240). Control subjects were recruited from UHBFT
and University of Birmingham employees (through internal advertising) and the gen-
eral public as part of the CIA study. UHL patients requiring dialysis were recruited to
the “Phenotyping Seroconversion Following Vaccination Against COVID-19 In Patients
On Haemodialysis” study (ethical approval granted by West Midlands-Solihull Research
Ethics Committee: ref 21/WM/0031). Only individuals over the age of 18 and eligible
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for SARS-CoV-2 vaccination were approached for participation in the study. Prisoners
and individuals that did not have capacity as defined by the Mental Capacity Act were
excluded. Written informed consent was obtained from all subjects involved in the study.

SARS-CoV-2 vaccination was performed in line with contemporaneous UK clinical
guidelines [25]. National vaccination guidance was revised during the study period and
recommended vaccine intervals were shortened. In most patients, the second vaccine doses
were administered around 3 months after the first dose, while the third vaccine doses were
administered around 6 months after the second dose.

UHBFT HD patients underwent weekly screening for SARS-CoV-2 infection via the
PCR testing of nasopharyngeal swabs as part of standard clinical care. UHBFT HD patients
that returned a positive PCR result were routinely dialysed in a central “COVID cohort”
dialysis centre for 14 days, with regular blood tests and clinical reviews as a standard of
care. UHL HD patients were only tested if they developed symptoms compatible with
SARS-CoV-2 infection. No prospective data collection for the incidence of SARS-CoV-2
infection was performed in controls.

Demographics, SARS-CoV-2 vaccination status, and laboratory and clinical data were
collected from electronic patient records. Immunosuppression was defined as the current
use of immunosuppressant medication (e.g., prednisolone >5 mg per day or an equiv-
alent dose of another steroid, tacrolimus, mycophenolate, or azathioprine), cyclophos-
phamide/methotrexate/plasma exchange in the last 6 months, or immunosuppressive
monoclonal antibody in the last 12 months. Previous SARS-CoV-2 exposure was defined
as a confirmed positive nasopharyngeal SARS-CoV-2 PCR prior to the start of the study
and/or the detection of an anti-nucleocapsid (anti-N) antibody at study entry.

Some data from the UHL HD patient cohort have been published previously [26–28].
In this study, we have combined the previously reported neutralisation antibody data
against the Wuhan, Delta, and Omicron variants from the UHL patients (n = 84) with
previously unpublished data from a larger HD patient cohort from UHBFT (n = 103). We
also report previously unpublished data on anti-S antibody responses in UHL patients
following their second and third vaccine doses.

2.2. Serological Analysis

Serum samples were collected 21–28 days after the second SARS-CoV-2 vaccination in
all subjects, and samples were collected 21–28 days after the third vaccine dose only in HD
patients. Sera were analysed for antibodies directed against the SARS-CoV-2 Spike protein
receptor-binding domain (S-RBD) and nucleocapsid (N) using an established automated
electrochemiluminescence assay (Elecsys Anti-SARS-CoV-2 S and N, Roche Diagnostics
International Ltd., Rotkreuz, Switzerland) [29]. Seropositivity was defined as anti-S levels
greater than 0.8 U/mL. We chose to use a single anti-S antibody assay in this study as
we have previously shown that, after three vaccine doses, patients requiring HD can
generate comparable levels of antibody directed against S protein from different SARS-
CoV-2 variants, including Delta and Omicron [30].

The binding of complement components to anti-S antibodies was assessed using a
solid-phase C1q-binding assay and a C4b/3b/5b complement deposition assay, as de-
scribed previously [31]. Briefly, 96-well microtiter plates were coated with 0.1 µg/mL
HexaPro Wuhan SARS-CoV-2 S protein isolated from transfected HEK293F cells [32]. After
blocking, diluted heat inactivated test sera (56 degrees C, 30 min) were added to the plate
and incubated for 1 h at room temperature (RT). After washing, a standardised complement
source (pooled SARS-CoV-2-negative normal human serum) was added to each well for 1 h
at 37 degrees. Plates were incubated with monoclonal antibodies directed against comple-
ment proteins C1q, C3b, C4b, and C5b, and the signal was amplified using HRP-conjugated
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secondary antibodies and/or the PerkinElmer ELAST amplification kit (Waltham, MA,
USA), as per the manufacturer’s instructions. Plates were developed using TMB Core
(Bio-Rad, Watford, UK) and the reaction was stopped with H2SO4. Optical density (OD)
was read at 450 nm using a SpectraMax ABS Plus plate reader (Molecular Devices UK Ltd.,
Wokingham, UK). The pooled mean OD of negative control wells for each assay was set as
the “detection threshold” (0.5 for C1q; 0.1 for C4b, C3b, and C5b).

The anti-viral neutralising antibody (nAb) activity against SARS-CoV-2 was analysed
in only HD patient sera, which was collected 21–28 days after the second and third vac-
cines using high-throughput live-virus neutralisation assays, as previously described [33].
Briefly, the neutralisation of live virus by serial dilutions of sera was evaluated using a
SARS-CoV-2 isolate with a spike identical to the variants of interest. In this study, we
examined the reactivity against three SARS-CoV-2 strains—Wuhan, Delta (B.1.617.2), and
Omicron (B.1.1.529) isolates—with the latter being evaluated only in samples after 3 vaccine
doses. The quantifiable assay range is from dilutions of 1:40 to 1:2560. Some sera display
neutralising activity, but with an IC50 (the dilution at which 50% of infection is prevented)
below this range. We defined “detectable inhibition” as sera displaying inhibition at the
1:40 dilution or higher.

2.3. Statistical Analysis

The statistical analysis of data was performed using Prism v9 (GraphPad, La Jolla, CA,
USA) and SPSS v26 (IBM, Armonk, NY, USA). Two-sided tests were used throughout, with
p values of 0.05 or less considered to be significant. Categorical variables were compared
using Chi2 or Fisher’s exact tests. For continuous variables, unpaired comparisons were
made using the Mann–Whitney U test, and Wilcoxon’s signed-rank test was used for paired
comparisons. When comparing multiple groups, the Kruskal–Wallis test was used with
Dunn’s post hoc multiple comparisons testing. Correlation analysis was performed using
Spearman’s rank test. Multivariable linear and logistic regression modelling were used to
examine the predictors of antibody quantity/quality and subsequent SARS-CoV-2 infection
incidence. Non-parametric continuous variables were log10 transformed prior to their
inclusion in regression modelling.

3. Results
3.1. Demographics/Descriptors of Study Population

The demographics and clinical parameters of study participants are described in
Table 1. Patients requiring HD were significantly older, more likely to be male, and of non-
white ethnicity compared to the controls. As expected, HD patients had more comorbidities
than control patients, with a significantly greater prevalence of diabetes mellitus (DM;
41% versus nil in controls) and immunosuppression (IS; 9% in HD versus nil in controls).
Patients requiring HD were broadly similar across the two UK study sites. A total of 18 HD
patients developed post-vaccination SARS-CoV-2 infection—representing around 1 in 10 at
both sites (Table 1).

A larger proportion of HD patients than controls received 2 doses of the AZD1222
vaccine than the BNT162b2 (hereafter described as viral vector (VV) and mRNA vaccines
(mRV), respectively), but this did not reach statistical significance, and the time interval
between first and second vaccine doses was similar between controls and HD patients.
A higher proportion of HD patients had previous exposure to SARS-CoV-2 than controls
(defined as either previous positive nasopharyngeal SARS-CoV-2 PCR and/or the detection
of anti-nucleocapsid (anti-N) antibody at study entry), but this was not statistically signifi-
cant. As such, age, gender, ethnicity, HD status, vaccine type, and previous SARS-CoV-2
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exposure were included as co-variables in subsequent multivariable analyses. All HD
patients received mRV as their third vaccine dose.

Table 1. Demographics and clinical descriptors of the study population.

Controls
n = 43

HD
n = 187 p Value

Age (years) 46 (17) 61 (15) <0.001
Male gender, n (%) 18 (42%) 113 (60%) 0.04 $

Non-white ethnicity, n (%) 10 (23%) 99 (53%) <0.001 $

Diabetes, n (%) 0 (0) 76 (41%) <0.001 $

Immunosuppressed, n (%) 0 (0) 17 (9%) 0.04 $

Cause of renal disease, n (%)
Diabetic nephropathy - 57 (30%) -

Hypertensive nephropathy - 19 (10%) -
PKD/structural - 31 (17%) -

Immune mediated - 31 (17%) -
Other * - 14 (7%) -

Unknown - 35 (19%) -

Vaccine type **, n (%) 0.17 $

Viral vector 22 (51%) 117 (63%) -
mRNA 21 (49%) 70 (37%) -

Time interval vaccine 1 to 2 (days) 80 (10) 82 (9) 0.08
Time interval vaccine 2 to 3 (days) - 165 (32) -
Previous SARS-CoV-2 infection, n (%) 11 (26%) 75 (40%) 0.08 $

SARS-CoV-2 infection after vaccine 2, n (%) - 18 (10%) -
Data presented as median (IQR), unless stated otherwise. Statistical comparisons performed using a Mann–
Whitney U test for continuous data and Fisher’s exact test (denoted by $) for categorical data. p value <0.05
considered significant (highlighted in bold typeface). * Other causes of renal disease include multiple myeloma,
trauma, and renal tuberculosis. ** denotes vaccine type given for first 2 doses. Abbreviations: HD—haemodialysis;
PKD—polycystic kidney disease.

3.2. Patients Requiring HD Generate Similar Quantitative Antibody Responses as Controls
Following Two Vaccine Doses

HD patients and controls had similar anti-S antibody levels at 21–28 days after a second
vaccine dose when stratified by vaccine type and prior SARS-CoV-2 infection (Figure 1A–C;
Table 2). Using the assay’s positive threshold of 0.8 U/mL for anti-S levels, all controls and
almost all HD patients (n = 183/187; 98%) were seropositive after two vaccine doses.

Within both groups, post-vaccination anti-S antibody levels were generally higher
in individuals vaccinated with two doses of mRV than VV, particularly in SARS-CoV-2-
naïve individuals (Figure 1A,B). Previous infection with SARS-CoV-2 was associated with
higher anti-S levels for HD patients receiving two vaccine doses, independent of vaccine
type (Figure 1C). For analyses performed in HD patients, mRV, previous SARS-CoV-2
infection, and non-immunosuppressed status were significant predictors of higher anti-S
antibody levels in a multivariable linear regression model that also included age, gender,
ethnicity, and diabetes (Supplementary Table S1). No clinical/demographic parameters
were significant predictors of non-response to two doses of vaccine in HD patients.

In summary, we have shown that after two vaccine doses, HD patients can have similar
antigen-specific antibody levels to novel antigens as controls matched for vaccine type and
previous pathogen exposure.
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body detection (“seropositivity”) shown as dashed line (0.8 U/mL). Kruskal–Wallis test used to com-
pare groups in panels (A,B), with post hoc Dunn’s multiple comparison p values shown (ns denotes 
not significant; p > 0.05). The Mann–Whitney U test is used for pre-defined comparisons within 
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C1q fixation (OD) 1.12 (0.69) 1.36 (0.33) 0.01 1.24 (0.74) 1.41 (0.17) <0.001 

C3b deposition (OD) 0.14 (1.04) 1.45 (0.28) <0.001 0.69 (1.20) 0.96 (0.84) 0.90 

C4b deposition (OD) 0.07 (0.40) 0.91 (0.31) <0.001 0.18 (0.65) 0.47 (0.77) <0.001 

C5b deposition (OD) 0.08 (0.04) 0.22 (0.10) <0.001 0.10 (0.09) 0.17 (0.15) <0.001 

Detectable C1q-C5b binding *, % 
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Wuhan nAb +ve *,  

% (n/total) 
- - - 92% (95/103) 100% (31/31) 0.20 

Figure 1. Antigen-specific antibody in sera collected 21–28 days after two doses of SARS-CoV-2
vaccine—comparison between controls and patients requiring HD. Comparisons of anti-S antibody
levels between controls (black symbols) and patients requiring HD (orange symbols)—shown in
legend. Filled symbols represent individuals with previous SARS-CoV-2 infection. Blue columns
denote data from mRNA vaccinees. (A) Data from SARS-CoV-2-naïve individuals only; (B) data
from individuals with previous SARS-CoV-2 infection only; (C) all data shown. Threshold level of
antibody detection (“seropositivity”) shown as dashed line (0.8 U/mL). Kruskal–Wallis test used
to compare groups in panels (A,B), with post hoc Dunn’s multiple comparison p values shown (ns
denotes not significant; p > 0.05). The Mann–Whitney U test is used for pre-defined comparisons
within groups in panel (C).

Table 2. Serology after two vaccine doses—comparison between controls and HD patients.

Viral Vector
Controls

mRNA
Controls

Viral Vector
HD

mRNA
HD

All n = 21 n = 21 p Value n = 117 n = 70 p Value

Anti-S antibody level (U/mL) 1259 (2191) 11,111 (12,559) <0.001 1788 (4580) 9921 (20,986) <0.001
C1q fixation (OD) 1.12 (0.69) 1.36 (0.33) 0.01 1.24 (0.74) 1.41 (0.17) <0.001

C3b deposition (OD) 0.14 (1.04) 1.45 (0.28) <0.001 0.69 (1.20) 0.96 (0.84) 0.90
C4b deposition (OD) 0.07 (0.40) 0.91 (0.31) <0.001 0.18 (0.65) 0.47 (0.77) <0.001
C5b deposition (OD) 0.08 (0.04) 0.22 (0.10) <0.001 0.10 (0.09) 0.17 (0.15) <0.001

Detectable C1q-C5b binding *, % (n) 43% (9) 95% (20) <0.001 46% (54) 80% (56) <0.001
Wuhan nAb +ve *,

% (n/total) - - - 92% (95/103) 100% (31/31) 0.20

Delta nAb +ve *, % (n/total) - - - 63% (71/112) 85% (58/68) 0.002
Delta nAb +ve with high complement binding *,

% (n/total) - - - 72% (51/71) 91% (53/58) <0.001

SARS-CoV-2-Naive n = 15 n = 16 p Value n = 65 n = 47 p Value

Anti-S antibody level (U/mL) 860 (1323) 10,934 (10,171) <0.001 841 (1550) 7818 (12,677) <0.001
C1q fixation (OD) 0.84 (0.75) 1.37 (0.30) 0.004 0.96 (0.88) 1.40 (0.15) <0.001

C3b deposition (OD) 0.14 (0.71) 1.43 (0.31) <0.001 0.19 (0.71) 0.83 (0.84) 0.03
C4b deposition (OD) 0.06 (0.18) 0.93 (0.37) <0.001 0.08 (0.17) 0.37 (0.59) <0.001
C5b deposition (OD) 0.07 (0.03) 0.22 (0.13) <0.001 0.08 (0.04) 0.15 (0.10) <0.001

Detectable C1q-C5b binding *, % (n) 27% (4) 94% (15) <0.001 25% (16) 76% (36) <0.001
Wuhan nAb +ve *,

% (n/total) - - - 88% (51/58) 100% (23/23) 0.18

Delta nAb +ve *, % (n/total) - - - 44% (27/62) 83% (38/46) <0.001
Delta nAb +ve with high complement binding *,

% (n/total) - - - 52% (14/27) 89% (34/38) <0.001
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Table 2. Cont.

Viral Vector
Controls

mRNA
Controls

Viral Vector
HD

mRNA
HD

Previous SARS-CoV-2 Infection n = 6 n = 5 p Value n = 52 n = 23 p Value

Anti-S antibody level (U/mL) 3171 (8982) 19,338 (25,633) 0.06 6423 (11,131) 25,000 (63,169) <0.001
C1q fixation (OD) 1.35 (0.26) 1.32 (0.41) 0.93 1.38 (0.25) 1.44 (0.17) 0.13

C3b deposition (OD) 1.23 (0.74) 1.53 (0.24) 0.06 1.25 (0.78) 1.15 (0.12) 0.18
C4b deposition (OD) 0.52 (0.80) 0.90 (0.22) 0.25 0.62 (0.69) 0.90 (0.34) 0.006
C5b deposition (OD) 0.12 (0.16) 0.23 (0.06) 0.33 0.17 (0.13) 0.26 (0.10) <0.001

Detectable C1q-C5b binding *, % (n) 83% (5) 100% (5) 1.00 73% (38) 87% (20) 0.24
Wuhan nAb +ve *,

% (n/total) - - - 98% (44/45) 100% (8/8) 1.00

Delta nAb +ve *, % (n/total) - - - 88% (44/50) 91% (20/22) 1.00
Delta nAb +ve with high complement binding *,

% (n/total) - - - 84% (37/44) 95% (19/20) 0.44

Initially, comparisons between the viral vector and mRNA vaccines were performed for the control and HD
patients separately. The analyses were then repeated for the subgroups of patients that were SARS-CoV-2 naïve
at the time of study entry, and those that had a previous SARS-CoV-2 infection. Data are presented as median
(IQR) unless otherwise stated. For proportions—denominator (total n) is given where there is missing data.
Mann–Whitney U test p values shown for continuous data; Fisher’s exact test p values shown for categorical
data (denoted by *). p values <0.05 considered as significant and highlighted in bold typeface. Abbreviations:
nAb—neutralising antibody activity (positivity defined as IC50 40 or greater).

3.3. Vaccine Platform and HD Influence Fixation and Deposition of Complement by
Antigen-Specific Antibody

As quantitative antigen-specific antibody responses after two vaccine doses were
largely similar between controls and HD patients, we then compared surrogates of antigen-
specific antibody functionality between the groups. One such surrogate is the binding and
activation of complement components by antigen-specific antibody—the fixation of C1q
and the deposition of downstream products of the complement cascade (C4b, C3b, and
C5b) [31]. In seropositive individuals, the detection of complement component binding in
our solid-phase assay positively correlated with the quantity of circulating anti-S antibody
(Figure 2A–D).

Spearman’s rank correlation coefficient and p value shown for all data points. Black
symbols denote controls, orange symbols denote HD patients, and filled symbols de-
note previous SARS-CoV-2 infection—see legend. Threshold level of antibody detection
(“seropositivity”) are shown as a vertical dashed line (0.8 U/mL), complement binding
assay negative thresholds are shown as horizontal dashed lines (0.5 for C1q and 0.1 for
C3b/4b/5b).

As such, both mRV and previous SARS-CoV-2 infection were significantly associated
with a greater binding of complement components by anti-S antibody (Table 2, Figure 3A–D).
Although the majority of seropositive individuals (controls and HD patients) had detectable
C1q fixation, SARS-CoV-2 infection-naïve VV recipients generally showed a lower binding of
C3b-C5b to anti-S antibody than their mRV vaccinated counterparts (Table 2, Figure 3B–D).
Indeed, a significantly lower proportion of SARS-CoV-2 infection-naïve VV recipients had
detectable binding of all four complement components tested, both in control and HD cohorts
(Table 2, Fisher’s exact p < 0.001).

The assay’s negative threshold (0.1 for C3b-C5b, 0.5 for C1q) is shown as a dashed
line. A Kruskal–Wallis test was used for comparisons between groups (p < 0.05 for all
complement components), with post hoc Dunn’s multiple comparison p values shown. The
purple colour in panels I and J denotes comparisons of particular interest (described in
main text); ns denotes p > 0.05.
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Comparisons shown between controls (black symbols) and patients requiring HD (orange symbols)
with data grouped by vaccine type and previous SARS-CoV-2 exposure (filled symbols denote
previous infection); (A–D) correspond to C1q, C3b, C4b, and C5b, respectively.
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Overall, when stratified by vaccine type and previous SARS-CoV-2 exposure, patients
requiring HD exhibited greater heterogeneity than controls in the levels of complement
binding detected (Figure 3A–D). Interestingly, despite having similar anti-S levels, SARS-
CoV-2-naïve mRV vaccinated HD patients showed a significantly lower deposition of
C4b and C3b than controls matched for vaccine type and previous pathogen exposure
(Figure 3B,C—comparisons highlighted in purple).

In summary, we have shown that complement component fixation and deposition
by antigen-specific antibody is highest in individuals that received two doses of mRV or
those that have had a previous infection, with HD patients showing a greater variability in
responses than controls.

3.4. In HD Patients, the mRNA Vaccine Induces a Broader Functionality of Antigen-Specific
Antibodies than the Viral Vector Vaccine

Sera from HD patients can exhibit reduced neutralisation activity against SARS-CoV-2
when compared to healthy controls [26]. Neutralisation activity against related, but geneti-
cally distinct, SARS-CoV-2 variants reflects the breadth of immune responses induced and is
a desirable feature of the antibody response to SARS-CoV-2 vaccination [34,35]. As such, we
then assessed the neutralising activity of sera (nAb) against the Delta variant as a proxy of
fragment antigen binding (Fab) antibody segment diversity and functionality.

Most patients requiring HD for whom data were available were able to neutralise the
Wuhan SARS-CoV-2 variant after two doses of any SARS-CoV-2 vaccine (94%; n = 126 of 134;
Table 2). For the Delta variant, the mRV platform was associated with a greater prevalence
of detectable nAb than the VV vaccine in SARS-CoV-2 infection-naïve HD patients (Table 2;
Supplementary Figure S1A; Fisher’s exact 2-tailed p < 0.0001), but no differences according
to vaccine type were observed in those who had experienced SARS-CoV-2 infection. Delta
nAb-positive HD patients had significantly higher anti-S levels than Delta nAb-negative
patients (Supplementary Figure S1B).

We then cross-compared Delta variant neutralisation and the binding of complement
components as surrogate measures of Fab and fragment crystallisable (Fc) segment antibody
function, respectively. Surprisingly, detectable Delta nAb and complement component
binding were not mutually inclusive in HD patients. This was most pronounced in SARS-
CoV-2-naïve VV vaccinees, where almost half of the individuals with detectable Delta
neutralising antibody did not have detectable binding of all four complement components
tested (Table 2). This proportion was significantly lower than that seen in SARS-CoV-2-
naïve mRV and VV vaccinees with previous SARS-CoV-2 infection (Table 2; Fisher’s exact
2-tailed p < 0.001 and p = 0.02, respectively).

Interestingly, the presence of highly functional anti-S antibody (either detectable Delta
nAb and/or binding to all four complement components tested) was significantly associated
with a reduced likelihood of post-vaccination SARS-CoV-2 infection, independent of age,
gender, ethnicity, the presence of DM/immunosuppression, vaccine type, and HD centre
(included due to different infection screening practises) (Supplementary Table S2).

Overall, vaccination with the mRV platform in HD patients is associated with greater
antibody functionality than with VV, and the presence of highly functional antigen-specific
antibody is associated with protection against post-vaccination infection.

3.5. mRNA Vaccination After Two Doses of a Viral Vector Vaccine Significantly Improves
Antigen-Specific Antibody Function in Patients Requiring HD

During the study period, the HD population (as a clinically vulnerable group) were
offered a third vaccine dose (booster) at 6 months after the completion of the primary
(two dose) course, but this was not routinely carried out for controls [25]. This enabled us
to compare the impact of receiving heterologous (VV followed by mRV) or homologous
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(mRV only) vaccines on quantitative and functional measures of circulating anti-S antibody
in patients requiring HD.

All HD patients had detectable anti-S antibody after three doses of SARS-CoV-2
(Figure 4). The third vaccine dose significantly increased anti-S antibody levels in the viral
vector vaccine groups, irrespective of previous SARS-CoV-2 infection history (Figure 4,
Table 3). In HD patients who had previously received mRV, only the group without
previous SARS-CoV-2 infection demonstrated an increase in antibody levels after the third
vaccine dose (Figure 4, Table 3).
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Figure 4. Anti-S antibody levels in sera of HD patients 21–28 days after two and three vaccine doses.
Anti-S antibody levels in HD patients after two and three vaccine doses—comparisons by first vaccine
type (grey—viral vector; blue—mRNA), split by previous SARS-CoV-2 infection (filled symbols
denote previous infection)—see legend. Paired statistical comparisons performed between timepoints
using Wilcoxon’s signed-rank test (post-dose two vs. post-dose three levels), and Mann–Whitney’s U
test was used to compare antibody levels at the same timepoints by previous SARS-CoV-2 exposure
(denoted by $).

A third vaccine dose significantly increased the proportion of Delta nAb-positive indi-
viduals in VV recipients (Table 3), such that after three vaccine doses, there were no longer
any vaccine type-associated differences in the capacity of HD patient sera to neutralise the
Delta SARS-CoV-2 variant (Fisher’s exact p > 0.99). The presence of neutralising activity
against the Omicron variant was observed in the majority of Delta nAb-positive individuals
after three vaccine doses (97 of 106 sera; 92%; Supplementary Figure S2). A third vaccine
dose also increased complement component binding in the HD patient cohort. This was
most pronounced in VV vaccinees, regardless of previous SARS-CoV-2 exposure, where
the binding of C1q, C3b, C4b, and C5b was significantly higher after three doses of vaccine
than after two (Table 3).

A third vaccine dose had a striking impact on the antibody functionality of VV vacci-
nees, as measured by dual capacity to neutralise the Delta variant and bind complement
components (Figure 5A), particularly in SARS-CoV-2-naïve HD patients (Figure 5B). Here,
the third vaccine increased the proportion of Delta-neutralising, complement-fixing anti-
body from just over 50% to 95%, a level similar to that seen in those that received triple
mRV (Table 3). A similar pattern was seen when neutralising antibody directed against
Omicron after three vaccine doses was considered alongside complement binding capacity
(Supplementary Figure S3).
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Table 3. Comparison of serology parameters after two and three vaccine doses in patients requiring
HD stratified by previous SARS-CoV-2 exposure.

Viral Vector mRNA

All HD Patients 2 Doses
n = 117

2 Doses +
mRNA
n = 92

p Value 2 Doses
n = 70

2 Doses +
mRNA
n = 40

p Value

anti-S Ab level (IU) 1788 (4580) 18,227 (36,914) <0.001 9921 (20,986) 26,967 (45,573) <0.001
fold change in anti-S Ab level ref 9.9 (22.8) ref 3.3 (6.3)

C1q fixation (OD) 1.23 (0.74) 1.41 (0.28) <0.001 1.41 (0.17) 1.40 (0.30) 0.90
C3b deposition (OD) 0.69 (1.20) 1.29 (0.24) <0.001 0.96 (0.84) 1.22 (0.54) <0.001
C4b deposition (OD) 0.18 (0.65) 0.90 (0.42) <0.001 0.47 (0.77) 0.74 (0.66) <0.001
C5b deposition (OD) 0.10 (0.09) 0.31 (0.13) <0.001 0.17 (0.15) 0.24 (0.15) <0.001

Detectable C1q-C5b binding *, % (n) 46% (54) 95% (87) <0.0001 80% (56) 85% (34) 0.61
Delta nAb +ve *, % (n/total) 63% (71/112) 98% (83/85) <0.0001 85% (58/68) 100% (23/23) 0.06

Delta nAb +ve with high complement binding *, %
(n/total Delta nAb +ve) 72% (51/71) 98% (81/83) <0.0001 91% (53/58) 83% (19/23) 0.26

SARS-CoV-2-Naive 2 Doses
n = 65

2 Doses +
mRNA
n = 46

p Value 2 Doses
n = 47

2 Doses +
mRNA
n = 28

p Value

anti-S Ab level (IU) 841 (1550) 12,401 (17,966) <0.001 7818 (12,677) 20,800 (35,949) <0.001
fold change in anti-S Ab level ref 14.6 (33.1) ref 3.7 (6.4)

C1q fixation (OD) 0.96 (0.88) 1.37 (0.34) <0.001 1.40 (0.15) 1.32 (0.34) 0.95
C3b deposition (OD) 0.19 (0.71) 1.16 (0.34) <0.001 0.83 (0.84) 1.09 (0.76) <0.001
C4b deposition (OD) 0.08 (0.17) 0.67 (0.55) <0.001 0.37 (0.59) 0.46 (0.71) 0.002
C5b deposition (OD) 0.08 (0.04) 0.26 (0.17) <0.001 0.15 (0.10) 0.17 (0.14) 0.002

Detectable C1q-C5b binding *, % (n) 25% (16) 89% (41) <0.0001 77% (36) 82% (23) 0.77
Delta nAb +ve *, % (n/total) 44% (27/62) 95% (40/42) <0.0001 83% (38/46) 100% (19/19) 0.09

Delta nAb +ve with high complement binding*, %
(n/total Delta nAb +ve) 52% (14/27) 95% (38/40) <0.0001 89% (34/38) 79% (15/19) 0.42

Previous SARS-CoV-2 Infection 2 Doses
n = 52

2 Doses +
mRNA
n = 46

p Value 2 Doses
n = 23

2 Doses +
mRNA
n = 12

p Value

anti-S Ab level (IU) 6423 (11,131) 30,650 (46,987) <0.001 25,000 (63,169) 56,589 (57,269) 0.11
fold change in anti-S Ab level ref 6.8 (9.9) ref 2.2 (4.0)

C1q fixation (OD) 1.38 (0.25) 1.45 (0.60) <0.001 1.44 (0.17) 1.48 (0.26) 0.70
C3b deposition (OD) 1.25 (0.78) 1.33 (0.16) 0.009 1.15 (0.12) 1.36 (0.20) 0.03
C4b deposition (OD) 0.62 (0.69) 0.99 (0.21) <0.001 0.90 (0.34) 0.93 (0.24) 0.21
C5b deposition (OD) 0.17 (0.13) 0.34 (0.06) <0.001 0.26 (0.10) 0.28 (0.07) 0.10

Detectable C1q-C5b binding *, % (n) 73% (38) 100% (46) <0.0001 87% (20) 92% (11) 0.99
Delta nAb +ve *, % (n/total) 88% (44/50) 100% (42/42) 0.03 91% (20/22) 100% (4/4) 0.99

Delta nAb +ve with high complement binding+, %
(n/total Delta nAb +ve) 84% (37/44) 100% (42/42) 0.01 95% (19/20) 100% (4/4) 0.11

Initially, comparisons between two and three vaccine doses were performed separately for HD patients initially
vaccinated with viral vector and mRNA vaccines. The analyses were then repeated for the subgroups of patients
that were SARS-CoV-2 naïve at the time of the first vaccine, and those that had a previous SARS-CoV-2 infection.
Data presented as median (IQR) unless otherwise stated. For proportions—denominator (total n) given where
there is missing data. Mann–Whitney U test p values shown for continuous data, Fisher’s exact test p values shown
for categorical data (denoted by *). p values <0.05 considered as significant and highlighted in bold typeface.
Abbreviations: nAb—neutralising antibody activity (positivity defined as IC50 40 or greater).

In summary, an mRNA vaccine given after two doses of a VV vaccine significantly
improves the quality of antigen-specific antibody in HD patients to levels comparable to
individuals receiving mRNA vaccines alone.
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Figure 5. Antigen-specific antibody functionality in patients requiring HD—comparison between two
and three vaccine doses. (A) Diagrammatic representation of antigen-specific antibody functionality
after two and three vaccine doses for all HD patients—comparisons by vaccine type. Venn diagrams
showing the overlap of neutralisation activity against Delta VoC (Delta nAb +) with the binding of
all four complement components tested (C1q-C5b +) to denote antibody with dual function; n and
% of total for whom data were available are shown. (B) As above, but for SARS-CoV-2-naïve HD
patients only.
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4. Discussion
In this study, we examined the quantity and features of the quality of antigen-specific

antibody following serial vaccination in patients requiring HD. The use of different vac-
cine platforms and the potential influence of infection provides us with the opportu-
nity to understand how immunity develops to the same antigen presented in different
immunological contexts.

Patients requiring HD can generate anti-S antibody after SARS-CoV-2 infection, which
is associated with protection [36]. Nevertheless, after primary vaccination, quantitative hu-
moral anti-S responses are typically lower than in controls [37–40]. This may be because HD
patients, who are often B cell lymphopenic, have a less-diverse naïve B cell repertoire [41],
and thus fewer B cells can potentially be recruited into primary responses, as observed
after B cell depletion therapies [42]. Nevertheless, the recollection of humoral responses
is largely preserved in HD patients [18,43–45]. This suggests that germinal centres are
maintained and produce memory B cells that can respond upon subsequent antigen chal-
lenge. As such, HD patients can have immunological systems that can ultimately induce
near-normal antibody responses, but this requires immunological memory recall, combined
with optimised methods of antigen delivery.

The quantity of antigen-specific antibody and qualitative features of that antibody
are frequently used as correlates of vaccine-associated immunity [46–50]. Fc functions of
antibodies are conserved for when the anti-S antibody cross-reacts with different virus
variants [51,52]; the engagement of the classical complement pathway by antibodies may
contribute to this or be a proxy for the development of antibody functionality [53]. How
the antigen is encountered may influence the quantitative and qualitative features of the
antibody response induced. SARS-CoV-2-naïve HD patients generate significantly lower
nAb titres to the reference (Wuhan) virus and other variants than controls after two doses
of VV, but not after mRV. Moreover, here, we find that previous SARS-CoV-2 infection
promotes cross-variant neutralising antibody responses in HD patients (to both Delta
and Omicron), which has previously been observed in healthy individuals [54,55]. In
combination, these findings emphasise the fact that antibody responses in HD patients can
be “normal” or “near-normal” when the antigen is encountered in certain immunological
contexts, even after heterologous boosting mRV [56]. The importance of this is that it
indicates that vaccines can be tailored, either in how they are built and/or delivered, to
improve the immune responses they provoke in HD patients and, potentially, the clinical
benefit they confer.

Despite our HD cohort being relatively large, ethnically diverse, and representative
of the wider HD patient population in terms of comorbidity, our study has limitations.
Our smaller control group is significantly younger and different in gender/ethnic mix. In
order to remove potential confounding effects, we included these variables in multivariable
predictive models comparing controls and HD patients. Due to the speed of vaccine rollout,
we did not capture primary responses to vaccines, as was originally envisaged. As third
vaccine doses were not routinely offered to healthy individuals at the time of study, we were
unable to collect third vaccine data for controls. We did not perform virus neutralisation
assays on the control group as others have shown largely comparable neutralising responses
in patients receiving HD treatment to controls, using the same assay [26]. Our focus in
this study was to examine whether vaccine platform affected the quality and quantity of
antibody responses in a patient cohort with secondary immunodeficiency.

In summary, we have found that HD patients induce antigen-specific antibody re-
sponses that differ based on how the antigen is encountered. Our results suggest that
patients requiring HD can mount effective recall immune responses, and that mRNA
vaccine platforms may potentially enhance the functionality of antibody responses in
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this patient population. As such, greater study of immune responses in this vulnerable
patient population, particularly in relation to responses to mRV, is warranted. One area
of immediate relevance for study is in relation to pathogens of clinical interest, where
current vaccination strategies yield poor or inconsistent; for example, seasonal influenza
and hepatitis B [9].

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/vaccines13010007/s1, Table S1: Predictors of anti-S antibody levels in HD
patients after two vaccine doses; Table S2: Predictors of post-vaccination SARS-CoV-2 infection in
HD patients after two vaccine doses; Figure S1: Serum virus neutralisation activity in HD patients
21–28 days after two vaccine doses; Figure S2: Serum virus neutralisation activity in HD patients
21–28 days after two and three vaccine doses; Figure S3: Antigen-specific antibody functionality in
patients requiring HD after three vaccine doses—neutralisation activity against Omicron variant.
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