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Abstract. Under certain hypotheses, we prove a loop space decomposition for simply-connected

Poincaré Duality complexes of dimension n whose (n − 1)-skeleton is a co-H-space. This unifies

many known decompositions obtained in different contexts and establishes many new families of

examples. As consequences, we show that such a looped Poincaré Duality complex retracts off the

loops of its (n− 1)-skeleton and describe its homology as a one-relator algebra.

1. Introduction

A simply-connected CW -complex M is a Poincaré Duality complex if the cohomology of M sat-

isfies Poincaré Duality. Examples include simply-connected closed n-dimensional manifolds. There

has been a great deal of activity recently in studying the homotopy theory of Poincaré Duality

complexes. This often takes the form of a loop space decomposition: if ΩM is the based loop space

of M then the goal is to show that ΩM is homotopy equivalent to a product of other spaces. One

consequence is that the homotopy groups of M can then be described in terms of the homotopy

groups of the factors. Ideally, the factors are recognisable spaces whose homotopy groups are known

through a range or have appealing global properties.

For example, using different methods, in [BB1, BT1] it was shown that ifM is a simply-connected

4-manifold and the rank of H2(M) is at least 2 then ΩM is homotopy equivalent to an explicit

product of spheres and loops on spheres. Consequently, the homotopy groups of a simply-connected

4-manifold can be determined to the same extent as the homotopy groups of spheres. Other fam-

ilies of manifolds for which loop space decompositions into recognisable factors are known include

(n− 1)-connected 2n-dimensional manifolds [BB1, BT1] and (n−1)-connected (2n+1)-dimensional

manifolds where either Hn(M) is torsion-free and of rank at least one [Bas, BT2] or Hn(M) has

torsion but n is even [BW, HT1].

In general, let M be the (n− 1)-skeleton of M . In the cases mentioned and in many other known

homotopy decompositions for ΩM it turns out thatM is a co-H-space (in fact, usually a suspension).

This led J. Wu to ask if there is a general decomposition formula for ΩM if M is a co-H-space. The

purpose of this paper is to show that this is true, given an extra hypothesis.
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The hypothesis is that if M is (m− 1)-connected then there is a map Sm −→ M with a left ho-

motopy inverse. For m < n, as M is a co-H-space, this implies that there is a homotopy equivalence

M ≃ Sm ∨ A for some space A, so the hypothesis can be interpreted as a sort of partial freeness

condition. To describe the decomposition another space is needed. Poincaré Duality implies that

M has dimension n −m, so the same is true for A. It also implies that in M ≃ Sm ∨ A there is

a class y ∈ Hn−m(A) whose cup product with the cohomology class corresponding to Sm equals

the generator of Hn(M). It will be shown that there is a space B and a homotopy cofibration

B −→ A −→ Sn−m, where Sn−m corresponds to y.

Theorem 1.1. Let M be an (m − 1)-connected n-dimensional Poincaré Duality complex where

2 ≤ m < n. Suppose that M is a co-H-space and there is a map Sm −→ M with a left homotopy

inverse M −→ Sm. Then there is a homotopy fibration

A ∨ (B ∧ ΩSm) −→M −→ Sm

that splits after looping to give a homotopy equivalence

ΩM ≃ ΩSm × Ω(A ∨ (B ∧ ΩSm)).

This decomposition also satisfies a naturality property which is discussed in detail in Remark 2.14.

We also show that if M is homotopy equivalent to a wedge of spheres and Moore spaces then so are

A and B, and their homotopy types can be simply read off from the homology of M . Thus in these

cases the homotopy type of ΩM is very explicit and completely determined by the homology of M .

Theorem 1.1 unifies a wide range of decomposition results. Manifolds satisfying the hypotheses

of Theorem 1.1 include (n − 1)-connected, (2n)-dimensional manifolds with n /∈ {2, 4, 8} and the

(n−1)-connected (2n+1)-dimensional manifolds described above, as do connected sums of products

of two spheres or connected sums of nontrivial Sn−m-bundles over Sm with m < n− 1. A new case

is a moment-angle manifold associated to a neighbourly simplicial complex.

We go on to significantly extend the known families of examples by showing that the hypotheses of

Theorem 1.1 are preserved under the operations of connected sum and gyration (a type of surgery).

Explicitly, let A be the family of Poincaré Duality complexes that satisfy the hypotheses of Theo-

rem 1.1. We show that ifM ∈ A and N is a simply-connected Poincaré Duality complex such that N

is a co-H-space and the connectivity of N is at least that of M , then the connected sum M#N is

in A. We also show that if M ∈ A and Gkτ (M) is a twisted k-gyration of M , then Gkτ (M) ∈ A. In

particular, applying Theorem 1.1 gives an integral homotopy decomposition for ΩGkτ (M), improving

on the local decomposition in [HT2] that inverted primes related to the J-homomorphism.

Theorem 1.1 leads to other good properties of Poincaré Duality complexes in A. One benefit is

to describe the effect in homotopy of the attaching map for the n-cell of M . Recall that there is a
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homotopy cofibration

Sn−1 f−→M
i−→M

where f is the attaching map for the n-cell of M and i is the skeletal inclusion. An approach

is developed in [BT2] to study the homotopy theory of M by studying properties of the spaces

and maps in this homotopy cofibration. A particularly useful special case is when Ωi has a right

homotopy inverse, that is, when ΩM retracts off ΩM . In this case the attaching map f is called

inert, generalising a similar notion in rational homotopy theory [HL]. The inert property was shown

in [BT2, Proposition 3.5] to imply that there is a homotopy fibration

(1) Sn−1 ⋊ ΩM −→M −→M

that splits after looping to give a homotopy equivalence

(2) ΩM ≃ ΩM × Ω(Sn−1 ⋊ ΩM).

Here, for spaces A and B, the right half-smash A⋊B = (A×B)/ ∼ is the quotient space given by

collapsing the subspace {∗}×B to the basepoint, and if A is a co-H-space then there is a homotopy

equivalence A⋊B ≃ A∨ (A∧B). Rationally, Halperin and Lemaire [HL] showed that the attaching

map for the n-cell of any simply-connected n-dimensional Poincaré Duality complex is inert, provided

the rational cohomology is generated by more than one element. The second author [T1] showed

that if M is (m− 1)-connected and there is a map Sm −→M having a left homotopy inverse, then

the attaching map for the n-cell in M is integrally inert. Thus every member of the class A has the

following property.

Theorem 1.2. If M is an n-dimensional Poincaré Duality complex in A then the attaching map

for the n-cell of M is integrally inert. □

Theorem 1.2 has useful consequences. One is that the homotopy decomposition of ΩM in The-

orem 1.1 then refines the decomposition of ΩM via (1) and (2). Another is that Theorem 1.1 can

now be used to identify new families of Poincaré Duality complexes whose attaching map for the top

cell is integrally inert. This includes all gyrations Gkτ (M) with M ∈ A, substantially adding to the

examples in [Hu], and simply-connected 6-manifolds M with regular circle action for which H2(M)

has at least one Z summand.

A second benefit of Theorem 1.1 is that the co-H-property ofM combined with the inert property

of the attaching map for the n-cell of M leads to a calculation of H∗(ΩM ;R) as an algebra. To

state this, let R be a commutative ring with unit and let V be a free graded R-module. Write Σ−1V

for the free graded R-module whose generators are shifted down one degree as compared to those

in V . Let T ( ) be the free tensor algebra functor. If M is n-dimensional, let Sn−1 f−→ M be the

attaching map for the n-cell of M and let Sn−2 f̃−→ ΩM be its adjoint.
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Theorem 1.3. Let M be an n-dimensional Poincaré Duality complex in A and let R be a com-

mutative ring with unit such that ‹H∗(M ;R) is a free R-module. Then there is an isomorphism of

algebras

H∗(ΩM ;R) ∼= T (Σ−1‹H∗(M ;R))/(Im (f̃∗))

where (Im (f̃∗)) is the two-sided ideal generated by Im (f̃∗).

In particular, Theorem 1.3 implies that H∗(ΩM ;R) is a one-relator algebra, a free algebra with

only a single relation. Moreover, if M satisfies the hypotheses of Theorem 1.3 with n ≤ 3m− 2 and

R = Q, the relation is quadratic (see Remark 8.5).

The families of examples that satisfy Theorem 1.1 can be extended further by localising. They

include highly connected Poincaré duality complexes and moment-angle manifolds associated to

minimally non-Golod complexes. In particular, in the first case, we show the following.

Theorem 1.4. Let M be an (m − 1)-connected, closed Poincaré duality complex of dimension n,

where 2 ≤ m < n and n ≤ 3m − 1. Let k be the least integer such that Hk(M) contains a Z

summand, and suppose that k < n. If k is even and k = m = n − m, suppose there exists a

generator x ∈ Hk(M) such that x2 = 0. Localise away from primes p appearing as p-torsion in

H∗(M), and primes p ≤ n−k+3
2 if k is odd, or primes p ≤ n−k+4

2 if k is even. Then there is a

homotopy fibration

A ∨ (B ∧ ΩSk) −→M
h′

−→ Sk,

where A and B are wedges of spheres that can be explicitly enumerated as in Corollary 3.2. Moreover,

this homotopy fibration splits after looping to give a homotopy equivalence

ΩM ≃ ΩSm × Ω(A ∨ (B ∧ ΩSm)).

Theorem 1.4 modestly improves on and brings under the unifying umbrella of Theorem 1.1 a

result of Basu and Basu [BB2], who gave a local decomposition of such an M provided n ≤ 3m− 2.

Their list of inverted primes and their method of proof is different. They localised away from primes

appearing as torsion in the integral homology ofM and a set of primes depending on the image of the

rational Hurewicz homomorphism. Their proof first calculated the local homology of ΩM and then

used this as a guide to identify what the factors of ΩM should be. The advantages of our approach

are that the primes that must be inverted are more easily described and the local homology of ΩM

can be recovered topologically via Theorem 1.3. Moreover, in the dimensional range n ≤ 3m − 2,

we give a local decomposition of ΩM that allows for large primes in homology (see Theorem 8.6).

This paper is organised as follows. Theorem 1.1 is proved in Section 2 and its refinement whenM

is a wedge of spheres and Moore spaces is proved in Section 3. Theorems 1.2 and 1.3 are proved in

Section 4. Examples are given in Section 5 and these are significantly expanded on in Section 6 by
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showing the class A is closed under the connected sum and gyration operations. Sections 7 and 8

extend the integral results to local settings.

The authors thank the referee for several helpful comments which improved the paper and sug-

gesting that a naturality statement be included.

2. Loop space decompositions of Poincaré duality complexes with (n− 1)-skeleton a

co-H-space

Let M be a simply-connected, closed n-dimensional Poincaré Duality complex. As M is simply-

connected, it has a CW -structure with a single n-cell; fix such a CW -structure. Let M be the

(n − 1)-skeleton of M . Note that as M is closed then M is homotopy equivalent to M with a

puncture. Observe that there is a homotopy cofibration

Sn−1 f−→M
i−→M

where f attaches the n-cell to M and i is the inclusion of the (n− 1)-skeleton.

Suppose that M is (m− 1)-connected for some 2 ≤ m < n. Note that if Hm(M) ̸= 0 then m < n

implies that M ̸≃ Sn. As we proceed two hypotheses will be introduced:

• M is a co-H-space;

• there is a map Sm
s′−→M that has a left homotopy inverse M

h′

−→ Sm.

In this section, a decomposition of ΩM is given under these hypotheses. Examples of families of

such Poincaré Duality complexes will be given in Section 5 and Section 6.

Since m < n, the map Sm
s′−→M factors through the (n− 1)-skeleton of M as a composite

Sm
s−→M

i−→M

for some map s. Notice that as h′ is a left homotopy inverse for s′, the composite

h : M
i−→M

h′

−→ Sm

is a left homotopy inverse for s. Define the space A and the map a by the homotopy cofibration

(3) Sm
s−→M

a−→ A.

Lemma 2.1. Suppose that M is a co-H-space with comultiplication σ. Then the homotopy cofibra-

tion (3) splits to give a homotopy equivalence

e : M
σ−→M ∨M h∨a−→ Sm ∨A.

Proof. Since h is a left homotopy inverse for s, the long exact sequence in homology induced by

the homotopy cofibration (3) degenerates into split short exact sequences in each degree. This is

geometrically realized by the composite e. Thus e induces an isomorphism in homology. As all the

spaces are simply-connected, e is a homotopy equivalence by Whitehead’s Theorem. □
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In general, if X and Y are spaces, the right half-smash is the quotient space

X ⋊ Y = (X × Y )/ ∼

where the subspace ∗×Y is collapsed to a point. Let p1 : X ∨Y −→ X be the pinch map to the left

wedge summand. As in [Sel, Theorem 7.7.7], a method developed by Ganea [G] proves the following.

Lemma 2.2. There is a natural homotopy fibration

Y ⋊ ΩX −→ X ∨ Y p1−→ Y. □

In our case, consider p1 ◦ e. The naturality of p1 implies that p1 ◦ e = p1 ◦ (h∨ a) ◦ σ ≃ h ◦ p1 ◦ σ.

Since M is a co-H-space, p1 ◦σ is homotopic to the identity map on M . Thus p1 ◦ e ≃ h. Therefore,

if E is the homotopy fibre of h, we obtain a homotopy fibration diagram

(4)

E
e′ //

��

A⋊ ΩSm

��
M

e //

h

��

Sm ∨A

p1

��
Sm Sm

for some map e′. Notice that the upper square is a homotopy pullback. Therefore, as e is a homotopy

equivalence, we immediately obtain the following.

Lemma 2.3. The map E
e′−→ A⋊ ΩSm is a homotopy equivalence. □

Consider the diagram

(5)

E //

��

E′

��
Sn−1

f
// M

i //

h

��

M

h′

��
Sm Sm.

Here, the middle row is a homotopy cofibration, the lower square homotopy commutes by definition

of h as the restriction of h′ to the (n−1)-skeleton, E′ is defined as the homotopy fibre of h′, and the

upper square is an induced map of homotopy fibres. With such data, by [BT1] there is a homotopy

cofibration

(6) Sn−1 ⋊ ΩSm
θ−→ E −→ E′

for some map θ. Under certain hypotheses, a left homotopy inverse for θ and a splitting of the

homotopy cofibration (6) were constructed in [T2].
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Theorem 2.4. Suppose that M is (m− 1)-connected and there is a map Sm −→M with a left ho-

motopy inverse M −→ Sm. Then the homotopy cofibration (6) splits to give a homotopy equivalence

E ≃ E′ ∨ (Sn−1 ⋊ ΩSm). □

One step in the proof of Theorem 2.4 was to find a left homotopy inverse of θ. In this paper

we wish to be more careful about the choice of such a left homotopy inverse. So to go further, the

argument proving Theorem 2.4 is briefly summarized. Before proceeding, we first prove a lemma

regarding the ring structure of H∗(M).

Lemma 2.5. Let M be an (m − 1)-connected, n-dimensional Poincaré Duality complex where

2 ≤ m < n. Suppose there is a map s : Sm → M with a left homotopy inverse h : M → Sm. If

ι ∈ Hm(Sm) is a generator, let x = (h′)∗(ι) ∈ Hm(M). Then x generates a primitive Z-summand,

x2 = 0, and there is a Z-generator y ∈ Hn−m(M) with x ̸= y such that x ∪ y generates Hn(M).

Further, if m = n−m then y can be chosen to be in Hm(M)\Z{x}.

Proof. The primitivity of x follows since h ◦ s is homotopic to the identity map on Sm. Since (h′)∗

is an algebra map and ι2 = 0, it follows that x2 = 0. Poincaré duality therefore implies that there

exists y ∈ Hn−m(M) with x ̸= y such that x ∪ y generates Hn(M). If m = n −m then possibly

y = x + z for some z ∈ Hm(M)\Z{x}. But then as x2 = 0 we obtain x ∪ y = x ∪ z. Note that z

must also generate a Z-summand; otherwise z is rationally trivial, implying that x ∪ z is rationally

trivial, a contradiction. Thus we may take y to be z. □

SinceM is (m−1)-connected, by Poincaré Duality, Hk(M) ∼= 0 for n−m < k < n. The universal

coefficient theorem then implies that Hk(M) ∼= 0 for n−m < k < n. Therefore the (n− 1)-skeleton

of M has dimension at most n−m. By assumption, there is a map Sm
s′−→M with a left homotopy

inverse M
h′

−→ Sm. By Lemma 2.5, x = (h′)∗(ι) ∈ Hm(M) generates a primitive Z-summand and

there is a Z-generator y ∈ Hn−m(M) such that x ̸= y and x ∪ y generates Hn(M). The universal

coefficient theorem implies that y dualizes to a Z-summand in Hn−m(M). Thus M is precisely

(n−m)-dimensional. LetM be the (n−m−1)-skeleton ofM . Then there is a homotopy cofibration

d∨
i=1

Sn−m−1 −→M −→M

that attaches the (n−m)-cells to M . Note that d ≥ 1.

In general, any homotopy cofibration X −→ Y −→ Z has a connecting map δ : Z −→ ΣX and a

homotopy coaction ψ : Z −→ Z ∨ΣX with the property that ψ composed with the pinch map to Z

is homotopic to the identity map and ψ composed with the pinch map to ΣX is homotopic to δ. In

our case, we obtain a connecting map

M
δ−→

d∨
i=1

Sn−m
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and a homotopy coaction

M
ψ−→M ∨

d∨
i=1

Sn−m.

The generator y ∈ Hn−m(M) may also be regarded as a generator in Hn−m(M), and for dimensional

reasons it is in the image of δ∗. Let

p :

d∨
i=1

Sn−m −→ Sn−m

be the pinch map to the i = 1 summand. Changing
∨d
i=1 S

n−m by a self-equivalence if necessary,

we may assume that the composite

p′ : M
δ−→

d∨
i=1

Sn−m
p−→ Sn−m

has image y in cohomology. Let ψ′ be the composite

ψ′ : M
ψ−−−−→M ∨

d∨
i=1

Sn−m
h∨p−−−−→ Sm ∨ Sn−m.

As ψ is a comultiplication, ψ′ composed with the pinch map to Sm is homotopic to h and ψ′ composed

with the pinch map to Sn−m is homotopic to p′. Thus (ψ′)∗ sends the generator of Hm(Sm) to x

and the generator of Hn−m(Sn−m) to y.

Generically, let X ∨ Y p1−→ X be the pinch map to the left wedge summand. The naturality of p1

implies that p1 ◦ψ′ = p1 ◦ (h∨p)◦ψ ≃ h◦p1 ◦ψ. Since ψ is a homotopy coaction, p1 ◦ψ is homotopic

to the identity map onM . Thus p1◦ψ′ ≃ h. This homotopy results in a homotopy fibration diagram

(7)

E
γ
//

��

Sn−m ⋊ ΩSm

��
M

ψ′

//

h

��

Sm ∨ Sn−m

p1

��
Sm Sm

that defines the map γ. Let

q : Sn−m ⋊ ΩSm −→ Sn−m ∧ ΩSm

be the standard quotient map from the half-smash to the smash product. By the James construc-

tion [J], there is a homotopy equivalence ΣΩSm ≃
∨∞
k=1 ΣS

k(m−1). Thus freely moving suspension
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coordinates gives homotopy equivalences

Sn−m ∧ ΩSm ≃ Sn−m ∧ (

∞∨
k=1

Sk(m−1))

≃ (Sn−m ∧ Sm−1) ∨ (Sn−m ∧ (

∞∨
k=2

Sk(m−1)))

≃ (Sn−m ∧ Sm−1) ∨ (Sn−m ∧ Sm−1 ∧ (

∞∨
k=1

Sk(m−1)))

≃ Sn−1 ∨ (Sn−1 ∧ ΩSm)

≃ Sn−1 ⋊ ΩSm.

In [T2] it was shown that the composite

(8) Sn−1 ⋊ ΩSm
θ−→ E

γ−→ Sn−m ⋊ ΩSm
q−→ Sn−m ∧ ΩSm ≃ Sn−1 ⋊ ΩSm

is a homotopy equivalence.

By Lemma 2.3, there is a homotopy equivalence E ≃ A ⋊ ΩSm. The goal is to show that γ

is well-behaved with respect to this homotopy equivalence in order to identify the homotopy type

of the cofibre E′ of θ. The first step is to determine to what extent the homotopy class of γ is

determined by the homotopy pullback (7).

Lemma 2.6. The homotopy class of the map γ in (7) is uniquely determined by it making the top

square in (7) homotopy commute.

Proof. We first show that E is a co-H-space. By hypothesis, M is a co-H-space. By Lemma 2.1,

M ≃ Sm ∨ A, so as A retracts off a co-H-space it is itself a co-H-space. In general, if B is a

co-H-space and C is any space then B ⋊ C is a co-H-space. Therefore the homotopy equvalence

E ≃ A⋊ ΩSm in Lemma 2.3 implies that E is a co-H-space.

Now consider the homotopy fibration sequence

ΩSm
δ−→ Sn−m ⋊ ΩSm

r−→ Sm ∨ Sn−m p1−→ Sm

where r is a name for the map from the homotopy fibre to the total space and δ is the fibration

connecting map. Since p1 has a right homotopy inverse, δ is null homotopic. Suppose that there is

another map E
γ′

−→ Sn−m ⋊ ΩSm that makes the top square in (7) homotopy commute. As E is a

co-H-space, we can consider the difference E
γ−γ′

−−→ Sn−m ⋊ ΩSm. As both γ and γ′ make the top

square in (7) homotopy commute, the composite

E
γ−γ′

−−→ Sn−m ⋊ ΩSm
r−−→ Sm ∨ Sn−m

is null homotopic. Therefore γ−γ′ lifts to the homotopy fibre of r, meaning it lifts through δ. But δ

is null homotopic, implying that γ ≃ γ′. □
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The next step is to reconcile the map M
ψ′

−→ Sm ∨ Sn−m used to define γ in (7) with the

comultiplication on M used to produce the homotopy equivalence in Lemma 2.3. In general, if

X −→ Y −→ Z
δ−→ ΣX is a homotopy cofibration sequence and Z is a co-H-space with comulti-

plication σ, then the associated homotopy coaction Z
ψ−→ Z ∨ ΣA need not be homotopic to the

composite Z
σ−→ Z ∨ Z 1∨δ−→ Z ∨ ΣX. The following lemma overcomes this in our case.

Lemma 2.7. Let M be a co-H-space with comultiplication σ. Then the map M
ψ′

−→ Sm ∨ Sn−m is

homotopic to the composite M
σ−→M ∨M h∨p′−→ Sm ∨ Sn−m.

Proof. In general, let j : X ∨ Y −→ X × Y be the inclusion of the wedge into the product. By

definition, ψ′ is the composite M
ψ−→ M ∨ (

∨d
i=1 S

n−m)
h∨p−→ Sm ∨ Sn−m and it was noted that ψ′

composed with the pinch map to Sm is homotopic to h while ψ′ composed with the pinch map to

Sn−m is homotopic to p′. Thus the composite

M
ψ′

−→ Sm ∨ Sn−m j−→ Sn × Sn−m

is the product map h×p′. On the other hand, since σ is a comultiplication it is a lift of the diagonal

map M
∆−→M ×M . The naturality of j then implies that the composite

M
σ−→M ∨M h∨p′−→ Sm ∨ Sn−m j−→ Sm × Sn−m

is homotopic to h× p′. Thus if

D : M −→ Sm ∨ Sn−m

is the difference D = ψ′ − (h ∨ p′) ◦ σ then j ◦D is null homotopic. By [G], the homotopy fibre of j

is homotopy equivalent to ΣΩSm ∧ ΩSn−m. Thus we obtain a lift

ΣΩSm ∧ ΩSn−m

��
M

D //

λ

88

Sm ∨ Sn−m

for some map λ. Observe thatM is (n−m)-dimensional while ΣΩSm∧ΩSn−m is (n−2)-connected.

Since spaces are simply-connected we have m ≥ 2, implying that n−m ≤ n− 2. Therefore λ is null

homotopic, implying that D is null homotopic. Hence ψ′ ≃ (h ∨ p′) ◦ σ, as asserted. □

Next, recall from (3) that there is a homotopy cofibration Sm
s−→ M

a−→ A. If m < n − m,

the composite Sm
s−→ M

p′−→ Sn−m is null homotopic for dimension and connectivity reasons. If

m = n − m, recall that the generators x ∈ Hm(M) and y ∈ Hn−m(M) have been chosen using

Lemma 2.5, so it may be assumed that y ∈ Hm(M)\Z{x}. Therefore, Sm
s−→ M

p′−→ Sm is null

homotopic as it has trivial image in cohomology by definition of s and p′. Therefore p′ extends

across a to give the following.

Lemma 2.8. The mapM
p′−→ Sn−m factors as a compositeM

a−→ A
p′′−→ Sn−m for some map p′′. □
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Now things are put together to gain some control over the map γ in (7).

Lemma 2.9. The map γ in (7) factors as the composite E
e′−−→ A ⋊ ΩSm

p′′⋊1−−→ Sn−m ⋊ ΩSm,

where e′ is the homotopy equivalence in Lemma 2.3.

Proof. First consider the diagram

M
σ //

ψ′

��

M ∨M
h∨a //

h∨p′
��

Sm ∨A

1∨p′′
��

Sm ∨ Sn−m Sm ∨ Sn−m Sm ∨ Sn−m.

The left square homotopy commutes by Lemma 2.7 and the right square homotopy commutes by

Lemma 2.8. The top row is the definition of the homotopy equivalence e in Lemma 2.1. Thus

ψ′ ≃ (1∨p′′)◦e. This homotopy will let us factor the homotopy pullback defining γ in (7). Consider

the diagram

E A⋊ ΩSm Sn−m ⋊ ΩSm

M Sm ∨A Sm ∨ Sn−m

Sm Sm Sm

e′ p′′⋊1

e

h

1∨p′′

p1 p1

where the columns are homotopy fibrations. The map of homotopy fibrations between the left and

middle columns is (4) while the map of homotopy fibrations between the middle and right columns

is due to the naturality of Lemma 2.2. Since the middle row is homotopic to ψ′, Lemma 2.6 implies

that the top row is homotopic to γ, proving the lemma. □

One more step is needed. Consider the composite

A⋊ ΩSm
p′′⋊1−−→ Sn−m ⋊ ΩSm

q−−→ Sn−m ∧ ΩSm.

We will identify q◦(p′′⋊1) as being induced by a homotopy cofibration. To do so, we first identify p′′

as being induced by a homotopy cofibration.

Lemma 2.10. There is a space B and a map b : B → A which induces a homotopy cofibration

B
b−→ A

p′′−→ Sn−m.

Proof. If m = n − m, suppose Hm(M) has rank d. Then M ≃
∨d
i=1 S

m, and by relabelling the

wedge summands if necessary, the map s : Sm →
∨d
i=1 S

m can be taken to be the inclusion of the

first wedge summand. Hence, A ≃
∨d
i=2 S

m, and the map p′′ can be chosen to be the pinch map

onto the second wedge summand. Therefore, defining B =
∨d
i=3 S

m and b :
∨d
i=3 S

m →
∨d
i=2 S

m as

the inclusion, we obtain the asserted homotopy cofibration.
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Now suppose that m < n−m. By definition, the map A
p′′−→ Sn−m factors the mapM

p′−→ Sn−m,

which induces an epimorphism in homology. Thus p′′ also induces an epimorphism in homology.

Define the space F by the homotopy fibration

F −→ A
p′′−→ Sn−m.

Taking the connecting map gives a homotopy fibration ΩSn−m −→ F −→ A. Since A is (m − 1)-

connected for m ≥ 2 and ΩSn−m is (n −m − 2)-connected, the Serre exact sequence implies that

this homotopy fibration induces a long exact sequence in homology

(9) Hn−m(ΩSn−m) −→ Hn−m(F ) −→ Hn−m(A) −→ Hn−m−1(ΩS
n−m) −→ · · ·

Notice thatHn−m(ΩSn−m) ∼= 0 unless n−m = 2. In our case, n−m > m ≥ 2, soHn−m(ΩSn−m) ∼= 0.

Thus if Fn−m is the (n−m)-skeleton of F then the exactness of (9) implies that there is a homotopy

cofibration Fn−m −→ A
p′′−→ Sn−m. Taking B = Fn−m and b : B −→ A as Fn−m −→ A, we obtain

the assertion in the statement of the lemma. □

Let

i : A −→ A⋊ ΩSm

be the inclusion into the first factor. Let j be the composite

j : B ∧ ΩSm
b∧1−→ A ∧ ΩSm ↪→ A⋊ ΩSm.

Let

i ⊥ j : A ∨ (B ∧ ΩSm) −→ A⋊ ΩSm

be the wedge sum of i and j.

Lemma 2.11. There is a homotopy cofibration

A ∨ (B ∧ ΩSm)
i⊥j−−−−→ A⋊ ΩSm

q◦(p′′⋊1)−−−−→ Sm−n ∧ ΩSm.

Proof. The homotopy cofibration B
b−→ A

p′′−→ Sn−m implies there is a homotopy cofibration

B ∧ ΩSm
b∧1−→ A ∧ ΩSm

p′′∧1−→ Sn−m ∧ ΩSm.

This in turn implies that there is a homotopy cofibration

A ∨ (B ∧ ΩSm)
1∨(b∧1)−−−−−−→ A ∨ (A ∧ ΩSm)

∗∨(p′′∧1)−−−−−−→ Sn−m ∧ ΩSm.

But as A is a co-H-space, there is a homotopy equivalence A ∨ (A ∧ ΩSm) ≃ A ⋊ ΩSm, under

which 1 ∨ (b ∧ 1) becomes i ⊥ j and ∗ ∨ (p′′ ∧ 1) becomes (p′′ ∧ 1) ◦ q. The naturality of q implies

(p′′ ∧ 1) ◦ q ≃ q ◦ (p′′ ⋊ 1). This gives the asserted homotopy cofibration. □

Finally, we will identify the homotopy type of E′ and prove Theorem 1.1.

Proposition 2.12. There is a homotopy equivalence E′ ≃ A ∨ (B ∧ ΩSm).
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Proof. Consider the homotopy cofibration

Sn−1 ⋊ ΩSm
θ−→ E −→ E′.

By (8), the composite

Sn−1 ⋊ ΩSm
θ−→ E

q◦γ−→ Sn−m ∧ ΩSm

is a homotopy equivalence. By Lemma 2.9, γ ≃ (p′′ ⋊ 1) ◦ e′. Thus the composite

Sn−1 ⋊ ΩSm
e′◦θ−−−−−−→ A⋊ ΩSm

q◦(p′′⋊1)−−−−−−→ Sn−m ∧ ΩSm

is a homotopy equivalence. As the homotopy cofibre of θ is E′ and e′ is a homotopy equivalence, the

homotopy cofibre of e′◦θ is also E′. Therefore, using Lemma 2.11, we obtain a homotopy cofibration

diagram

A ∨ (B ∧ ΩSm)

i⊥j
��

A ∨ (B ∧ ΩSm)

��
Sn−1 ⋊ ΩSm

e′◦θ // A⋊ ΩSm //

q◦(p′′⋊1)

��

E′

��
Sn−1 ⋊ ΩSm

≃ // Sn−m ∧ ΩSm // ∗.

The homotopy cofibration in the right column implies that the map A ∨ (B ∧ΩSm) −→ E′ induces

an isomorphism in homology, and is therefore a homotopy equivalence by Whitehead’s Theorem

since all spaces are simply-connected. □

Proof of Theorem 1.1. Take Sm
s′−→M andM

h′

−→ Sm as the maps in the statement of the theorem.

By definition, E′ is the homotopy fibre of h′. By Proposition 2.12, E′ ≃ A∨ (B∧ΩSm). This proves

the asserted homotopy fibration. Since h′ has a right homotopy inverse, the asserted homotopy

equivalence for ΩM follows immediately. □

Remark 2.13. There is a localised version of Theorem 1.1 which will be used in Section 8. Let M

be a (k−1)-connected Poincaré duality complex of dimension n, where 2 ≤ k < n. Letm be the least

number such that Hm(M) contains a Z summand, and suppose m < n. Let Γ be the set of primes

appearing as p-torsion in Hi(M) for i < m. Localised away from Γ, M is an (m − 1)-connected

complex that satisfies Poincaré duality. In this case, if the hypotheses of Theorem 1.1 hold after

localisation away from Γ, then so do the conclusions.

Remark 2.14. Theorem 1.1 satisfies a naturality property. LetM and N be two (m−1)-connected

n-dimensional Poincaré Duality complexes where 2 ≤ m < n, that M and N are co-H-spaces, and

there are maps sM : Sm −→ M and sN : Sm −→ N having left homotopy inverses hM : M −→ Sm

and hN : N −→ Sm respectively. Suppose that there is a map α : M −→ N . Let α : M −→ N be the
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restriction of α to (n − 1)-skeletons. If (i) α is a co-H-map, (ii) there is a homotopy commutative

diagram

Sm
sM //

β

��

M
hM //

α

��

Sm

β

��
Sm

sN // N
hN // Sm

for some map β, and (iii) there is a homotopy commutative diagram of associated homotopy coactions

M
ψ′

M //

α
��

M ∨ Sn−m

α∨λ
��

N
ψ′

N // N ∨ Sn−m

for some map λ, then there is a homotopy fibration diagram

AM ∨ (BM ∧ ΩSm) //

a∨(b∧Ωβ)

��

M
hM //

α

��

Sm

β

��
AN ∨ (BN ∧ ΩSm) // N

hN // Sm

for some maps a and b, and there are correspondingly compatible loop space decompositions of ΩM

and ΩN .

To explain why this is true, observe that the inclusions of (n− 1)-skeletons leads to a homotopy

cofibration diagram

Sn−1
fM //

d
��

M
iM //

α
��

M

α

��
Sn−1

fN // N
iN // N

where iM and iN are the inclusions of the (n− 1)-skeletons, fM and fN are the attaching maps for

the n-cells, and d is some map (of degree d). Note here that the right square clearly commutes by

skeletal restriction, so it induces a map of homotopy fibres, and the simple-connectivity of M and N

implies by the Blakers-Massey Theorem that the map of fibres to total spaces coincides with a map

of attaching maps in degrees ≤ n − 1, giving the homotopy commutativity of the left square. This

diagram of homotopy cofibrations, together with both the left and right squares in condition (ii),

implies by [T1, Remark 2.7] that there is a homotopy cofibration diagram

Sn−1 ⋊ ΩSm
θM //

d⋊Ωβ

��

EM //

ϵ

��

E′
M

ϵ′

��
Sn−1 ⋊ ΩSm

θN // EN // E′
N

for some maps ϵ and ϵ′. The homotopy commutative diagram of homotopy coactions in condition (iii)

implies that the construction of the left homotopy inverses of θM and θN are natural. These are
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used in combination with the homotopy decompositions of EM and EN in Lemma 2.3. That Lemma

is natural since α is a co-H-map, giving a homotopy commutative diagram

M
eM //

α
��

Sm ∨AM

β∨a
��

N
eN // Sm ∨AN

where eM and eN are homotopy equivalences and a is the map of homotopy cofibres induced by the

homotopy commutativity of the left square in condition (ii). The pinch maps to Sm on the right in

this diagram are natural so there is an induced homotopy commutative diagram of fibres

EM
e′M //

��

AM ⋊ ΩSm

a⋊Ωβ

��
EN

e′N // AN ⋊ ΩSm

where e′M and e′N are homotopy equivalences. This together with the naturality of the left homotopy

inverses for θM and θN imply that Lemma 2.9 is natural. The space B in Lemma 2.10 is constructed

using the homotopy fibre of A
p′′−→ Sn−m, which satisfies a naturality property since this map is

determined by M −→ Sn−m and the latter is natural because of condition (iii). Thus all the

ingredients in the statement and proof of Proposition 2.12 for the homotopy type of E′ are natural,

and hence so is Theorem 1.1.

3. A refinement

In this section, the decomposition of ΩM in Theorem 1.1 is refined whenM is homotopy equivalent

to a wedge of spheres and Moore spaces, in which case the spaces A and B can be explicitly identified.

As notation, let W be the collection of topological spaces that are homotopy equivalent to a finite

type wedge of spheres and let M be the collection of topological spaces homotopy equivalent to a

finite type wedge of spheres and Moore spaces. Note that W ⊂ M. For a space X and n ≥ 0,

let X∨n be the n-fold wedge sum of copies of X, where if n = 0 then X∨0 = ∗.

Let M be an (m−1)-connected n-dimensional Poincaré Duality complex. Separate the homology

groups into torsion-free and torsion components:

Hi(M) ∼= Zdi ⊕ Ti

where di ≥ 0 and Ti is a finite abelian group. Recall that A is the homotopy cofibre of the map

Sm
s−→M , where s has a left homotopy inverse, and by Lemma 2.10, there is a homotopy cofibration

B
b−→ A

p′′−→ Sn−m.
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Proposition 3.1. Let M be an (m− 1)-connected, Poincaré duality complex of dimension n, where

2 ≤ m < n, and suppose that M ∈ M. Then there are homotopy equivalences

A ≃ (Sm)∨dm−1 ∨
n−m∨
i=m+1

(Si)∨di ∨
n−m−1∨
i=m

P i+1(Ti)

and

B ≃ (Sm)∨dm−1 ∨ (Sn−m)∨dn−m−1 ∨
n−m−1∨
i=m+1

(Si)∨di ∨
n−m−1∨
i=m

P i+1(Ti).

Proof. By Lemma 2.1, there is a homotopy equivalence

M ≃ Sm ∨A.

This implies that A retracts off M . By [St, Theorem 3.5], M is closed under retracts. Therefore,

as M ∈ M by hypothesis, we obtain A ∈ M. The asserted homotopy equivalence for A therefore

follows from the homology of M .

By definition, p′′ factors through M
p′−→ Sn−m, which induces an epimorphism in homology.

Therefore so does p′′. Thus, as A ∈ M, there is a map f : Sn−m → A such that p′′ ◦ f induces

an isomorphism in homology. Thus p′′ has a right homotopy inverse, implying that the homotopy

cofibration B
b−→ A

p′′−→ Sn−m splits to give a homotopy equivalence A ≃ Sn−m ∨B. In particular,

B retracts off A, implying that B ∈ M. The asserted homotopy equivalence for B therefore follows

from the decomposition of A. □

Applying Theorem 1.1, we obtain the following.

Corollary 3.2. Let M be an (m − 1)-connected, Poincaré duality complex of dimension n, where

2 ≤ m < n. Write Hi(M) ∼= Zdi ⊕ Ti, where di ≥ 0 and Ti is a finite abelian group. Suppose that

M ∈ M and there is a map Sm −→ M with a left homotopy inverse M
h′

−→ Sm. Then there is a

homotopy fibration

A ∨ (B ∧ ΩSm) −→M
h′

−→ Sm,

where

A ≃ (Sm)∨dm−1 ∨
n−m∨
i=m+1

(Si)∨di ∨
n−m−1∨
i=m

P i+1(Ti)

and

B ≃ (Sm)∨dm−1 ∨ (Sn−m)∨dn−m−1 ∨
n−m−1∨
i=m+1

(Si)∨di ∨
n−m−1∨
i=m

P i+1(Ti),

and this homotopy fibration splits after looping to give a homotopy equivalence

ΩM ≃ ΩSm × Ω(A ∨ (B ∧ ΩSm)). □
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4. Inert attaching maps and loop space homology

Let A be the collection of Poincaré Duality complexes M such that:

(1) M is a co-H space;

(2) if M is (m− 1)-connected with 2 ≤ m < dimM then there is a map Sm
s′−→ M that has a

left homotopy inverse M
h′

−→ Sm.

Theorem 1.1 applies to any M ∈ A. In this section we show that the class A of Poincaré Duality

complexes has two interesting properties: one is that ΩM retracts off ΩM , and the other is that

H∗(M ;R) can be calculated as an algebra for appropriate rings R.

Suppose that there is a homotopy cofibration A
i−→ X

h−→ Y . Following [T1], the map i is inert

if Ωh has a right homotopy inverse. This definition is inspired from rational homotopy theory [HL],

where in a homotopy cofibration Sn−1 f−→ X
h−→ X ∪ en the attaching map f is inert if Ωh has a

right homotopy inverse. (Rationally, the inert property tends to be equivalently described in terms

of the associated rational homotopy Lie algebra.) The idea is that an inert cell attachment kills off

homotopy groups of X but does not introduce new ones in X ∪ en.

In [BT2] it was shown that if Ωi has a right homotopy inverse then there is a homotopy fibration

A⋊ ΩM −→M
i−→M

that splits after looping to give a homotopy equivalence

ΩM ≃ ΩM × Ω(A⋊ ΩM).

In [T2] it was shown that if M is an (m − 1)-connected n-dimensional Poincaré Duality complex

and there is a map Sm −→ M with a left homotopy inverse, then in the homotopy cofibration

Sn−1 f−→ M
i−→ M , the attaching map for the n-cell of M is inert. The hypothesis on the map

Sm −→ M is exactly the second condition for being in the class A. Thus we obtain the following

re-statement of Theorem 1.2.

Theorem 4.1. Let M be an (m− 1)-connected n-dimensional Poincaré Duality complex. If M ∈ A

then the attaching map for the n-cell of M is inert. Consequently, there is a homotopy fibration

Sn−1 ⋊ ΩM −→M
i−→M

that splits after looping to give a homotopy equivalence

ΩM ≃ ΩM × Ω(Sn−1 ⋊ ΩM). □

There is a useful homological consequence of an inert map, derived from the following more

general statement proved in [T1, Proposition 10.1].
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Proposition 4.2. Suppose there is a homotopy cofibration

ΣA
f−→ ΣX

h−→ Y

where Ωh has a right homotopy inverse. Let f̃ : A → ΩΣX be the adjoint of f and let R be a

commutative ring with unit such that H∗(ΣX;R) is a free-R module. Then there is an algebra

isomorphism

H∗(ΩY ;R) ∼= T (‹H∗(X);R)/(Im(f̃∗)),

where (Im(f̃∗)) is the two sided ideal generated by Im(f̃∗). Moreover, if X is a suspension then this

is an isomorphism of Hopf algebras. □

The proof of Proposition 4.2 uses the Bott-Samelson Theorem, which says there is an algebra

isomorphism H∗(ΩΣX;R) ∼= T (‹H∗(X;R)) that is an isomorphism of Hopf algebras if X is a sus-

pension. Berstein [Ber] generalised this to looped co-H-spaces: if C is a co-H-space then there is an

algebra isomorphism H∗(ΩC;R) ∼= T (Σ−1‹H∗(C;R)), where Σ−1‹H∗(C;R) is ‹H∗(C;R) shifted down

one degree, and this is an isomorphism of Hopf algebras if C is the suspension of a co-H-space.

The argument proving Proposition 4.2 in [T1] goes through verbatim in the more general case of a

looped co-H-space. Thus we obtain the following re-statement of Theorem 1.3.

Theorem 4.3. Let M be an (m− 1)-connected n-dimensional Poincaré Duality complex. If M ∈ A

then for any commutative ring R with unit such that H∗(M ;R) is a free-R-module, there is an

algebra isomorphism

H∗(ΩM ;R) ∼= T (Σ−1‹H∗(M);R)/(Im(f̃∗)),

where (Im(f̃∗)) is the two sided ideal generated by Im(f̃∗). Moreover, if M is the suspension of a

co-H-space then this is an isomorphism of Hopf algebras. □

Proof. There is a homotopy cofibration Sn−1 f−→ M −→ M where f attaches the n-cell to M . By

hypothesis, M ∈ A, so M is a co-H-space. Now apply Proposition 4.2. □

5. Initial examples

The next two sections build up an array of examples to which Theorem 1.1 or its refinement

in Corollary 3.2 apply, as well as the two properties in Theorems 4.1 and 4.3. This section con-

siders some initial examples that will then feed into the operations on Poincaré Duality complexes

considered in the next section.

(n− 1)-connected (2n)-dimensional Poincaré Duality complexes with n /∈ {2, 4, 8}. Let M

be an (n−1)-connected (2n)-dimensional Poincaré Duality complex for n ≥ 2. ThenM is homotopy

equivalent to a wedge of copies of Sn. In particular, M is a co-H-space. If the rank of Hn(M) is

at least 2 and n /∈ {2, 4, 8}, then in [BT2] it is shown that there is a map Sn −→ M with a left

homotopy inverse. Thus M satisfies the hypotheses of Corollary 3.2.
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(n− 1)-connected (2n+ 1)-dimensional Poincaré Duality complexes. Let M be an (n− 1)-

connected (2n+1)-dimensional Poincaré Duality complex for n ≥ 2. ThenM is homotopy equivalent

to a wedge of copies of Sn, Sn+1 and (n+1)-dimensional Moore spaces. In particular, M is a co-H-

space. If the rank of Hn(M) is at least 1, then in [BT2] it is shown that there is a map Sn −→ M

with a left homotopy inverse. Thus M satisfies the hypotheses of Corollary 3.2.

Connected sums of products of two spheres. Let M be a connected sum of products of two

spheres, M = #d
i=1(S

mi × Sn−mi). Then M ≃
∨d
i=1(S

mi ∨ Sn−mi), so M ∈ W. Let m be the

minimum of {mi, n−mi}di=1. Then there is a map Sm
s′−→M that first includes Sm into the wedge

of spheres in M and then includes into M . Within M , collapsing out all the spheres in M except

the pair Sm ∨ Sn−m produces a map M −→ Sm × Sn−m. Composing with the projection to Sm

then gives a left homotopy inverse for s′. Thus M satisfies the hypotheses of Corollary 3.2 when

2 ≤ m < n.

Connected sums of Sn−m-bundles over Sm. We begin with a lemma.

Lemma 5.1. Let M be an Sn−m-bundle over Sm with 2 ≤ m < n− 1. Then M ∈ A.

Proof. There is a homotopy fibration Sn−m −→ M −→ Sm and M is a Poincaré Duality complex.

Since m < n, the Hurewicz isomorphism implies that there is a map Sm −→ M that is a right

homotopy inverse for the bundle map M −→ Sm. Also, M ≃ Sm ∨ Sn−m, so M is a co-H-space.

Thus M ∈ A. □

One possibility forM is the product Sm×Sn−m but there are also nontrivial bundles (for example,

see [JW]). In these cases, the attaching map for the n-cell of M is a map Sn−1 −→ Sm ∨Sn−m that

is nontrivial when pinched to Sn−m.

More generally, letM = N1# · · ·#Nd where each Ni is an n-dimensional Sn−mi-bundle over Smi

with mi < n − 1. Then M ≃
∨d
i=1(S

mi ∨ Sn−mi) and if m is the minimum of {mi}di=1 then there

is a map Sm −→ M that has a left homotopy inverse given by the composite M
c−→ Ni0

q−→ Sm,

where i0 is an index with mi0 achieving the minimum m, the map c collapses the connected sum to

the factor Ni0 , and q is the bundle map. Thus M ∈ A.

Remark 5.2. A decomposition for ΩM when M is (n−1)-connected, (2n+1)-dimensional and the

rank of Hn(M) is at least 1 is known [Bas, BT2], a decomposition for ΩM when M is the connected

sum of products of two spheres is also known [BT1], and a decomposition for ΩM when M is a

connected sum of Sn−m-bundles over Sm withm < n−1 can be deduced from a decomposition in [T1]

of the loops on a connected sum where one factor is inert. However, the first two decompositions

arise in a different context than the latter. Theorem 1.1 deals with all three uniformly and, in fact,

gives a more refined decomposition in the case of the loops on a connected sum of sphere-bundles

over spheres.
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A completely new example is the following.

Neighbourly moment-angle manifolds. Let K be a simplicial complex on the vertex set

[m] = {1, . . . ,m}. For σ ∈ K, let

(D2, S1)σ =

m∏
i=1

Yi

where Yi = D2 if i ∈ σ and Yi = S1 if i /∈ σ. The moment-angle complex ZK associated to K is

defined as

ZK =
⋃
σ∈K

(D2, S1)σ.

If K is a triangulation of Sn then ZK is a manifold of dimension m+ n+ 1 [BP, Theorem 4.1.4].

A simplicial complex is k-neighbourly if any set of k + 1 vertices spans a simplex. If K is a

k-neighbourly simplicial complex then ZK is (2k + 2)-connected [BP, Proposition 4.3.5 (b)]. A

triangulation K of S2n+1 is called neighbourly if K is n-neighbourly.

Proposition 5.3. Let K ̸= ∂∆2n+2 be a neighbourly triangulation of S2n+1 on [m]. Then there is

a homotopy fibration

A ∨ (B ∧ ΩS2n+3) −→ ZK
h′

−→ S2n+3

where A and B are as in Theorem 1.1, and this homotopy fibration splits after looping to give a

homotopy equivalence

ΩZK ≃ ΩS2n+3 × Ω(A ∨ (B ∧ ΩS2n+3)).

Further, if n = 1 then A and B are wedges of spheres that can be explicitly enumerated as in

Corollary 3.2.

Proof. We will check that the hypotheses of Theorem 1.1 hold.

First, we claim that K contains a minimal missing face of dimension n+1. Suppose not. As K is a

neighbourly triangulation of S2n+1 it is n-neighbourly. Having no minimal missing face of dimension

n+ 1 implies that K is (n+ 1)-neighbourly. But then [IK, Theorem 1.6] implies that ZK is a co-H

space. However, a moment-angle manifold ZK where K is a triangulation of a sphere is a co-H space

if and only if K is the boundary of a simplex (c.f [ST, Lemma 6.3] for example), contradicting the

hypothesis that K ̸= ∂∆2n+2. Thus K has a minimal missing face of dimension n + 1. Therefore,

by [T2, Example 5.4] for example, there is a map ZK → S2n+3 that has a right homotopy inverse.

Next, if K is a neighbourly triangulation of S2n+1 on [m] then the dimension of ZK is m+2n+2

and its connectivity is 2n+ 2. Since 2n+ 1 ≥ 3, m ≥ 4 and so, 2n+ 3 < m+ 2n+ 2.

Finally, in [ST, Theorem 6.6], it was shown that if K is a neighbourly sphere then there is a

homotopy equivalence

ZK ≃
∨

I /∈K,I ̸=[m]

Σ1+|I||KI |.



LOOP SPACES OF POINCARÉ DUALITY COMPLEXES 21

In particular, ZK is a suspension, so it is a co-H space. Moreover, if K is a triangulation of S3 then

ZK is homotopy equivalent to a wedge of spheres [ST, Lemma 6.8].

Hence all the hypotheses of Theorem 1.1 hold, and applying it gives the statement of the propo-

sition. □

Remark 5.4. The homotopy decomposition for ΩZK in Proposition 5.3 when n = 1 improves

on [ST, Theorem 1.2], which showed that if K is a neighbourly triangulation of S3 then ΩZK is

homotopy equivalent to a product of spheres and loops on spheres, but the number and dimensions

of the spheres involved were not explicitly enumerated.

6. Connected sums and gyrations

In this section we show that if M ∈ A then the connected sum and gyration operations produce

new members of A.

Connected sums. Let M and N be simply-connected n-dimensional Poincaré Duality complexes.

There are homotopy cofibrations

Sn−1 f−→M
i−→M Sn−1 g−→ N

j−→ N

where f and g are the attaching maps for the n-cells and i and j are skeletal inclusions. The

connected sum M#N is formed by removing the interior of an n-disc Dn from each of M and N

and gluing M\(Dn)◦ and N\(Dn)◦ together along their boundaries. Notice that M#N is a simply-

connected n-dimensional Poincaré Duality complex. A topological description is as follows. Observe

that M\(Dn)◦ and N\(Dn)◦ are homotopy equivalent to M and N respectively. Observe also that

the (n− 1)-skeleton of M#N is homotopy equivalent to M ∨N . The attaching map for the n-cell

of M#N is given by the composite f + g : Sn−1 σ−→ Sn−1 ∨ Sn−1 f∨g−→ M ∨ N , where σ is the

comultiplication. Thus there is a homotopy cofibration

(10) Sn−1 f+g−→M ∨N −→M#N.

Proposition 6.1. Let M and N be simply-connected n-dimensional Poincaré Duality complexes

such that M ∈ A, N is a co-H-space, and the connectivity of M is less than or equal to the

connectivity of N . Then M#N ∈ A.

Proof. Suppose thatM is (m−1)-connected. The homotopy cofibration (10) impliesM#N ≃M∨N .

In particular, as the connectivity ofM is less than or equal to that of N ,M#N is (m−1)-connected.

We check that M#N satisfies both conditions required to be in the class A.

First, M is a co-H-space since M ∈ A and, by hypothesis, N is a co-H-space. Thus M ∨N is a

co-H-space.

Second, as M ∈ A there is a map Sm
s′−→ M with a left homotopy inverse M

h′

−→ Sm. Since M

is n-dimensional and by assumption m < n, s′ factors through the (n − 1)-skeleton to give a map
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Sm
s−→ M . Collapsing N to a point inside M#N gives a map M#N −→ M whose restriction

to M is the inclusion of M into M . Thus the composite Sm
s−→M ↪→M ∨N −→M#N has a left

homotopy inverse given by M#N −→M
h′

−→ Sm. □

It is notable in Proposition 6.1 that N does not have to satisfy condition (2) for being in A. This

lets us inflate the examples to which Theorem 1.1 applies.

Corollary 6.2. Let N be any n-dimensional Poincaré Duality complex such that N is a co-H-space.

Then for any 2 ≤ m < n− 1 we have (Sm × Sn−m)#N ∈ A.

Proof. Observe that the product Sm × Sn−m ∈ A since Sm × Sn−m ≃ Sm ∨ Sn−m is a co-H-

space and the inclusion Sm −→ Sm × Sn−m has a left homotopy inverse given by the projection

Sm × Sn−m −→ Sm. Thus Proposition 6.1 implies that (Sm × Sn−m)#N ∈ A. □

Similarly, as any Sn−m-bundle over Sm with m < n− 1 is in A by Lemma 5.1, we also have the

following.

Corollary 6.3. Let N be any n-dimensional Poincaré Duality complex such that N is a co-H-space.

If M is an Sn−m-bundle over Sm with m < n− 1 then M#N ∈ A. □

We give an interesting example for each of these corollaries.

Example 6.4. Let W be the Wu manifold, W = SU(3)/SO(3). Then W is a simply-connected

5-dimensional Poincaré Duality complex and W is the 3-dimensional mod-2 Moore space P 3(2). In

particular, W is a co-H-space. Thus Corollary 6.2 implies that (S2 × S3)#W ∈ A. Further, as

(S2 × S3)#W ≃ S2 ∨ S3 ∨ P 3(2) is in M, Corollary 3.2 implies there is a homotopy fibration

A ∨ (B ∧ ΩS2) −→ (S2 × S3)#W −→ S2

where A ≃ S3 ∨ P 3(2) and B ≃ P 3(2), and this homotopy fibration splits after looping.

Similarly, there is a nontrivial S3-bundle over S2 denoted S2‹×S3. Corollary 6.3 implies that

(S2‹×S3)#W ∈ A, and as (S2‹×S3)#W ≃ S2 ∨ S3 ∨ P 3(2) is in M, Corollary 3.2 implies there is a

homotopy fibration

A ∨ (B ∧ ΩS2) −→ (S2‹×S3)#W −→ S2

where A ≃ S3∨P 3(2) and B ≃ P 3(2), and this homotopy fibration splits after looping. Consequently

Ω((S2 × S3)#W ) ≃ Ω((S2‹×S3)#W ).

Gyrations. Let τ : Sk−1 −→ SO(n) be a map. Using the standard action of SO(n) on Sn−1, define

the map ϑ : Sn−1 × Sk−1 −→ Sn−1 × Sk−1 by ϑ(a, t) = (τ(t) · a, t). Recall that Sn−1 f−→ M is the

attaching map for the top cell of M , and let i : Sk−1 −→ Dk be the standard inclusion. For any



LOOP SPACES OF POINCARÉ DUALITY COMPLEXES 23

integer k ≥ 2, the twisted gyration Gkτ (M) is defined by the pushout

(11)

Sn−1 × Sk−1
1×i //

(f×1)◦ϑ
��

Sn−1 ×Dk

��
M × Sk−1 // Gkτ (M).

The twisted gyration is an (n, k − 1)-surgery, implying that Gkτ (M) is an (n + k − 1)-dimensional

Poincaré Duality complex. If τ is the trivial map, denote the associated non-twisted gyration by

Gk0 (M). The non-twisted gyration plays an important role in determining the diffeomorphism types

of certain moment-angle manifolds in toric topology [GLdM] while the twisted gyration plays an

important role in classifying circle bundles over manifolds [D].

We will show that the gyration for any choice of twisting preserves the property of being in A.

This makes use of the identification of Gkτ (M) by Basu and Ghosh [BG, Proposition 6.9].

Lemma 6.5. For all k ≥ 1 and all τ , there is a homotopy equivalence Gkτ (M) ≃M ⋊ Sk−1. □

It will be convenient for applications to consider the two properties of being in A separately.

Lemma 6.6. Let M be a simply-connected n-dimensional Poincaré Duality complex such that M is

a co-H-space. Then Gkτ (M) is a co-H-space for any k ≥ 2 and any τ .

Proof. By Lemma 6.5, there is a homotopy equivalence Gkτ (M) ≃M ⋊Sk−1. By hypothesis, M is a

co-H-space. It is well known that if A is a co-H-space then for any space B, the half-smash A⋊B

is also a co-H-space. Thus M ⋊ Sk−1 and hence Gkτ (M) is a co-H-space. □

Lemma 6.7. Let M be an (m−1)-connected, n-dimensional Poincaré Duality complex with m < n,

such that there is a map Sm → M with a left homotopy inverse. Then for any k ≥ 2 and any τ ,

there is a map Sm → Gkτ (M) with a left homotopy inverse.

Proof. Consider the homotopy cofibration

Sn−1 f−→M
i−→M,

where f is the attaching map of the top cell. By hypothesis, there is a map s : Sm →M which has

a left homotopy inverse r : M → Sm. Since m < n, the map s factors through the (n− 1)-skeleton

M via a map s′ : Sm →M . Further, the composite

r′ :M
i−→M

r−→ Sm

is a left homotopy inverse for s′. Note that the composite r′ ◦ f is null homotopic.

Now consider the homotopy fibration

Sn+k−2 ϕτ−−→M ⋊ Sk−1 → Gkτ (M),
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where ϕτ is the attaching map of the top cell. In [CT, Lemma 3.2] the map ϕτ was identified as the

composite

ϕτ : Sn+k−2 j−→ Sn−1 ⋊ Sk−1 t′−→ Sn−1 ⋊ Sk−1 f⋊1−−−→M ⋊ Sk−1,

where j is the restriction of the homotopy equivalence Sn−1 ∨ Sn+k−2 → Sn−1 ⋊ Sk−1 to Sn+k−2,

and t′ is a map depending on the choice of τ . Since r′ ◦ f is null homotopic, the composite

Sn−1 ⋊ Sk−1 f⋊1−−−→M ⋊ Sk−1 r′⋊1−−−→ Sm ⋊ Sk−1 π−→ Sm,

where π is the projection, is null homotopic. Hence, π ◦ (r′ ⋊ 1) ◦ ϕτ is null homotopic, implying

that there is an extension of π ◦ (r′ ⋊ 1) to a map r′′ : Gkτ (M) → Sm. The right homotopy inverses

for π and r′ imply that r′′ has a right homotopy inverse. Hence there is a map s′′ : Sm → Gkτ (M)

with a left homotopy inverse. □

As a consequence, combining [T2, Theorem 1.1] and Lemma 6.7, we significantly extend the

known examples of gyrations satisfying the inertness property proved in [Hu].

Theorem 6.8. Let M be an (m− 1)-connected, n-dimensional Poincaré Duality complex such that

there is a map Sm →M with a left homotopy inverse. Then for any k ≥ 2 and any τ , the attaching

map of the top cell of Gkτ (M) is inert. □

Combining Lemmas 6.6 and 6.7, while noting that M and Gkτ (M) have the same connectivity by

Lemma 6.5, we obtain the following.

Theorem 6.9. Let M be a simply-connected n-dimensional Poincaré Duality complex such that

M ∈ A. Then for any k ≥ 2 and any τ , the gyration Gkτ (M) is a simply-connected (n + k − 1)-

dimensional Poincaré Duality complex with Gkτ (M) ∈ A. □

Remark 6.10. In [HT2], it is shown that for any simply-connected Poincaré Duality complex M

there is a homotopy equivalence ΩGk0 (M) ≃ ΩM × ΩΣkF , where F is the homotopy fibre of the

attaching map Sn−1 −→M for the n-cell of M . The space F may not be explicitly described. It is

also shown that the same decomposition holds for ΩGkτ (M) with nontrivial τ after localisation away

from a finite set of primes depending on the image of the J-homomorphism. However, if M ∈ A

then there are significant improvements. Theorem 6.9 implies that Gkτ (M) ∈ A, and therefore

Theorem 1.1 can be applied. This gives an integral homotopy decomposition for ΩGkτ (M) for all τ

and one in which the factors are more explicitly described.

Mixing and iterating Proposition 6.1 and Theorem 6.9 leads to more examples of Poincaré Duality

complexes in A.

Example 6.11. Let M and N be simply-connected n-dimensional Poincaré Duality complexes.

Suppose that M ∈ A and N is a co-H-space. Let τ, ω : Sk−1 → SO(n). Then Gkτ (M) ∈ A



LOOP SPACES OF POINCARÉ DUALITY COMPLEXES 25

by Theorem 6.9 and Gkω(N) has the property that Gkω(N) is a co-H-space by Lemma 6.6. Both

gyrations are (n + k − 1)-dimensional, so their connected sum exists, and Proposition 6.1 implies

that Gkτ (M)#Gkω(N) ∈ A.

Example 6.12. LetM be a simply-connected Poincaré Duality complex in A. Then for any k, ℓ ≥ 2

and τ, ω : Sk−1 → SO(n), by Theorem 6.9 the iterated gyration Gℓω(Gkτ (M)) is in A.

A systematic family of mixed and iterated examples is the following.

Simply-connected 6-manifolds with a regular circle action. Duan [D] completed the clas-

sification of simply-connected 6-manifolds with a regular circle action begun by Goldstein and

Lininger [GL]. This begins with the classification of simply-connected 5-manifolds by Smale [Sm]

and Barden [Bar]. They showed that all simply-connected 5-manifolds can be described up to diffeo-

morphism as iterated connected sums of five basic types: S2 × S3, S2‹×S3, W , Mk and X2i . Here,

S2‹×S3 is the nontrivial S3-bundle over S2, W is the Wu manifold SU(3)/SO(3), Mk is a 5-cell com-

plex with H2(M) ∼= Z/kZ⊕ Z/kZ, and X2i is also a 5-cell complex with H2(X2i) ∼= Z/2iZ⊕ Z/2iZ

but has a different attaching map for the 5-cell than M2i . For any such 5-manifold M , with k = 2

there are two inequivalent twisted gyrations, the trivial one G2
0(M) and a nontrivial one denoted

G2
1(M), corresponding to the trivial and nontrivial homotopy classes for maps S1 −→ SO(5).

Theorem 6.13 ([D] Theorem C). If M is a simply-connected 6-manifold that admits a regular circle

action then

M ∼=

 (S3 × S3)#rG2
0(S

2 × S3)#1≤j≤tG2
1(Mkj )#G2

1(H) if w2(M) ̸= 0

(S3 × S3)#rG2
0(S

2 × S3)#1≤j≤tG2
1(Mkj ) if w2(M) = 0

where H ∈ {S2‹×S3,W,Xk}, #r(· · · ) means take the connected sum r times and #0(· · · ) means take

the connected sum with S6. □

We show that each manifold in Theorem 6.13 hasM ∈ M, and if there is at least one Z-summand

in H2(M), then M ∈ A, implying that the refined homotopy decomposition in Corollary 3.2 holds.

Proposition 6.14. Let M be a simply-connected 6-manifold that admits a regular circle action.

Then the following hold:

(a) M ∈ M;

(b) if the rank of H2(M) is at least 1 then M ∈ A.

Proof. First consider M . In general, if N1 and N2 are n-dimensional closed manifolds then there

is a homotopy equivalence N1#N2 ≃ N1 ∨ N2. Thus the homotopy type of M for each M in

Theorem 6.13 is given by the wedge sum of the 5-skeletons of each connected sum factor. By

Lemma 6.5, G2
t (N) ≃ N ⋊ S1. If N is a co-H-space then N ⋊ S1 ≃ N ∨ (N ∧ S1) = N ∨ΣN . Thus

we obtain:
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(S3 × S3) ≃ S3 ∨ S3;

G2
0(S

2 × S3) ≃ (S2 ∨ S3) ∨ Σ(S2 ∨ S3);

G2
1(Mkj ) ≃ (P 3(kj) ∨ P 3(kj)) ∨ Σ(P 3(kj) ∨ P 3(kj));

G2
1(S

2‹×S3) ≃ (S2 ∨ S3) ∨ Σ(S2 ∨ S3);

G2
1(W ) ≃ P 3(2) ∨ ΣP 3(2);

G2
1(Xk) ≃ (P 3(k) ∨ P 3(k)) ∨ Σ(P 3(k) ∨ P 3(k)).

In particular, this implies that each M is homotopy equivalent to a wedge of spheres and Moore

spaces, so M ∈ M, proving part (a).

The hypothesis that the rank of H2(M) is at least 1 states that H2(M) has at least one Z-

summand. For degree reasons, this is equivalent to stating that H2(M) has at least one Z-summand.

The only wedge summands above that could satisfy this are G2
0(S

2 × S3) and G2
1(S

2‹×S3). Thus at

least one of G2
0(S

2 × S3) or G2
1(S

2‹×S3) is a connected sum factor of M . In general, if N1 and N2

are n-dimensional closed manifolds then there is a map N1#N2 −→ N1 given by collapsing N2 to a

point. In our case, there must be a map

M −→ G2
0(S

2 × S3) or M −→ G2
1(S

2‹×S3).

Since S2 × S3 ∈ A, Theorem 6.9 implies that G2
0(S

2 × S3) ∈ A. Therefore, there is a map S2 −→

G2
0(S

2 × S3) with a left homotopy inverse. Since this map factors through G2
0(S

2 × S3), we obtain

a composite

S2 ↪→ G2
0(S

2 × S3) −→M −→M −→ G2
0(S

2 × S3)

that has a left homotopy inverse. Hence the map S2 −→ M has a left homotopy inverse, implying

thatM ∈ A. The argument in the case of G2
1(S

2‹×S3) is similar since the bundle map S2‹×S3 −→ S2

is a left homotopy inverse for the inclusion of the bottom cell, implying that S2‹×S3 ∈ A. □

In particular, Proposition 6.14 (b) implies that the attaching map for the top cell of such an M

is integrally inert. This extends the known families of manifolds that have this property.

7. Local decompositions of highly connected CW -complexes

To further expand the examples to which we can apply Corollary 3.2, we localise. Before consid-

ering Poincare duality complexes we first consider wedge decompositions of certain highly connected

CW-complexes, when localised away from an explicit, finite set of primes.

7.1. Homotopy classes of maps involving spheres and Moore spaces. We start with classical

results of Serre [Ser] about torsion in the homotopy groups of spheres. Let p be a prime.

Theorem 7.1. Let m ≥ 2. The group πk(S
m) is torsion except when k = m or when m is even

and k = 2m− 1. Further, πk(S
m) contains no p-torsion for k < m+ 2p− 3. □
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Next, a corresponding result is given for the homotopy groups of Moore spaces. This is an

extension of an argument by Cutler and So [CS, Lemma 2.2]. For a prime p and integers r ≥ 1 and

m ≥ 2, the mod-pr Moore space Pm(pr) is the homotopy cofibre of the degree pr map on Sm−1.

Lemma 7.2. Fix m ≥ 3. Let k satisfy m + 1 ≤ k ≤ 2m − 2 and let p be a prime such that

p > k−m+3
2 . Then πk(P

m+1(pr)) is trivial.

Proof. Localise at p. Let q : Pm+1(pr) → Sm+1 be the pinch map to the top cell and let F be its

homotopy fibre. By [N, p.138], Hi(F ) ∼= Z if i = lm for l ≥ 0 and is trivial otherwise. Hence, the

(2m− 1)-skeleton of F is homotopy equivalent to Sm.

Let f : Sk → Pm+1(pr) be a map and consider the composite Sk
f−→ Pm+1(pr)

q−→ Sm+1.

Since Pm+1(pr) is rationally contractible, q ◦ f represents a torsion homotopy class in πk(S
m+1).

The hypothesis p > k−m+3
2 implies that k < m + 2p − 3, and therefore k < (m + 1) + 2p − 3, so

Theorem 7.1 implies that πk(S
m+1) contains no p-torsion. Thus q ◦ f is null homotopic, implying

that there is a lift

Sk F

Pm+1(pr)

ϕ

f

for some map ϕ. By hypothesis, k ≤ 2m− 2, so ϕ factors through the (2m− 2)-skeleton of F , which

is Sm. Thus ϕ factors through a map ϕ′ : Sk −→ Sm. Since k < 2m−1, ϕ′ represents a torsion class

in πk(S
m). Since m ≥ 3 and the hypothesis p > k−m+3

2 implies that k < m+ 2p− 3, Theorem 7.1

implies that ϕ is null homotopic. Hence, f is null homotopic. □

We now turn to homotopy classes of maps where the domain is a Moore space.

Definition 7.3. Let p ≥ 3 be a prime, r ≥ 1 and X be a space. The nth homotopy group of X with

coefficients in Z/prZ is the group

πn(X;Z/prZ) := [Pn(pr), X].

Analogues of Theorem 7.1 and Lemma 7.2 will now be proved for homotopy groups with coef-

ficients. This requires a universal coefficient theorem for homotopy groups that can be found, for

example, in [N, 1.3.1].

Theorem 7.4. Let k ≥ 2 and X be a space. There is a short exact sequence

0 → πk(X)⊗ Z/prZ → πk(X;Z/prZ) → Tor(πk−1(X),Z/prZ) → 0. □

Lemma 7.5. Let m ≥ 3, r ≥ 1, m+1 ≤ k ≤ 2m− 2, and p be a prime such that p > k−m+3
2 . Then

πk(S
m;Z/prZ) is trivial.
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Proof. By Theorem 7.4, there is a short exact sequence

0 → πk(S
m)⊗ Z/prZ → πk(S

m;Z/prZ) → Tor(πk−1(S
m),Z/prZ) → 0.

First, consider the case where k ≥ m+ 2. In this case, as k ≤ 2m− 2, both πk(S
m) and πk−1(S

m)

are torsion groups and, as p > k−m+3
2 , Lemma 7.1 implies both groups contain no p-torsion. Hence,

πk(S
m)⊗ Z/prZ and Tor(πk−1(S

m),Z/prZ) are trivial, implying that πk(S
m;Z/prZ) is trivial.

If k = m + 1 then πm+1(S
m) is 2-torsion since m ≥ 3. The hypothesis that p > k−m+3

2 is

equivalent to p > 2 for k = m + 1, so πm+1(S
m) ⊗ Z/prZ is trivial. The Tor term is trivial since

πm(Sm) ∼= Z. Hence, πm+1(S
m;Z/prZ) is trivial. □

Lemma 7.6. Let m ≥ 3, r, s ≥ 1, m + 2 ≤ k ≤ 2m − 2, and p, q be primes. If p ̸= q, then

πk(P
m+1(pr);Z/qsZ) is trivial. If p = q, suppose that p > k−m+3

2 . Then πk(P
m+1(pr);Z/psZ) is

trivial.

Proof. By Theorem 7.4, there is a short exact sequence

0 → πk(P
m+1(pr))⊗ Z/qsZ → πk(P

m+1(pr);Z/qsZ) → Tor(πk−1(P
m+1(pr)),Z/qsZ) → 0.

Since Pm+1(pr) is contractible when localised at any prime not equal to q, the homotopy groups of

Pm+1(pr) are all p-torsion. Therefore if p ̸= q then both πk(P
m+1(pr)) ⊗ Z/qsZ and the Tor term

are trivial, implying that πk(P
m+1(pr);Z/qsZ) is trivial.

If p = q then the hypotheses on both k and p imply, by Lemma 7.2, that both πk(P
m+1(pr)) and

πk−1(P
m+1(pr)) are trivial. Hence, πk(P

m+1(pr);Z/psZ) is trivial. □

7.2. Local decompositions of highly connected CW -complexes. We now give decompositions

of certain highly connected CW -complexes, after localisation away from sufficiently many primes.

Recall that W is the collection of topological spaces homotopy equivalent to a finite type wedge of

spheres.

Lemma 7.7. Let X be an (m− 1)-connected CW -complex of dimension n ≤ 2m− 1, where m ≥ 2.

Localise away from primes appearing as p-torsion in H∗(X) and primes p ≤ n−m+3
2 . Then X ∈ W.

Proof. By assumption on the dimension of X, the attaching map for each cell is in the stable range.

Therefore, integrally, X ≃ ΣX ′ for some CW -complex X ′. Rationally, any suspension is homotopy

equivalent to a wedge of spheres. Therefore, localised away from primes appearing as p-torsion in

H∗(X) and primes p ≤ n−m+3
2 , [HT3, Lemma 5.1] implies that X ∈ W. □

A torsion analogue of Lemma 7.7 can be proved if we restrict connectivity and dimension. This

requires an extension of the argument in [HT3, Lemma 5.1]. Recall that M is the collection of

topological spaces homotopy equivalent to a finite type wedge of spheres and Moore spaces.
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Lemma 7.8. Let X be an (m − 1)-connected CW -complex of dimension n, where m ≥ 3 and

n ≤ 2m− 2. Localise away from primes p ≤ n−m+3
2 . Then X ∈ M.

Proof. Since X is simply connected, it has a homology decomposition (see [Ha, Chapter 4.H], for

example), which is a sequence of homotopy cofibrations

Mt
ft−→ Xt−1 → Xt,

for 2 ≤ t ≤ n, with Xn = X, each Mt is a wedge of (t − 1)-dimensional spheres and t-dimensional

Moore spaces, and ft is homologically trivial. Since X is (m− 1)-connected, X1, · · · , Xm−1 = ∗.

The proof is by induction. Localise away from primes p ≤ n−m+3
2 . When t = m, we obtain a

homotopy cofibration
lm∨
i=1

Sm−1 ∨
l′m∨
j=1

Pm(p
rj
j ) → ∗ → Xm,

implying that Xm ∈ M. Suppose that for t < s,

Xt ≃
kt∨
i=1

Sni ∨
k′t∨
j=1

Pn
′
j+1(q

r′j
j ),

where m ≤ ni, n
′
j ≤ t for each i, j. For t = s, there is a homotopy cofibration

ls∨
ı=1

Ss−1 ∨
l′s∨
ȷ=1

P s(prȷȷ )
fs−→

ks−1∨
i=1

Sni ∨
k′s−1∨
j=1

Pn
′
j+1(q

r′j
j ) → Xs.

Since s ≤ 2m− 2 and each ni, n
′
j ≤ s− 1, the Hilton-Milnor Theorem implies that

fs ≃
ks−1∑
i=1

f is +

k′s−1∑
j=1

gjs,

where f is is the composite

f is :

ls∨
ı=1

Ss−1 ∨
l′s∨
ȷ=1

P s(prȷȷ )
fs−→

ks−1∨
i=1

Sni ∨
k′s−1∨
j=1

Pn
′
j+1(q

r′j
i )

pi−→ Sni

and pi is the pinch map, while gjs is the composite

gjs :

ls∨
ı=1

Ss−1 ∨
l′s∨
ȷ=1

P s(prȷȷ )
fs−→

ks−1∨
i=1

Sni ∨
k′s−1∨
j=1

Pn
′
j+1(q

r′j
j )

p′j−→ Pn
′
j+1(q

r′j
j )

and p′j is the pinch map.

Consider f is. If ni = s − 1 then, as fs is homologically trivial, f is is null homotopic by the

Hurewicz isomorphism. If ni < s − 1 then, localised away from primes p ≤ n−m+3
2 , Theorem 7.1

implies that πs−1(S
ni) is trivial and Lemma 7.5 implies that πs(S

ni ;Z/prȷȷ Z) is trivial. Hence f is is

null homotopic.

Now consider gjs. If n′j = s − 1 then, as fs is homologically trivial, gjs is null homotopic by the

Hurewicz isomorphism. If n′j < s − 1 then, localised away from primes p ≤ n−m+3
2 , Theorem 7.2
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implies that πs−1(P
n′
j+1(p

rj
j )) is trivial and Lemma 7.5 implies that πs(P

n′
j+1(p

rj
j );Z/prȷȷ Z) is trivial.

Hence gjs is null homotopic.

Therefore fs is null homotopic, implying that X ∈ M. □

8. Highly connected Poincaré duality complexes and moment-angle manifolds

associated to minimally non-Golod complexes

In this section, we extend the reach of Corollary 3.2 to Poincaré duality complexes that satisfy

its hypotheses but only after localisation away from a finite set of primes.

Highly connected Poincaré duality complexes. Let M be an (m − 1)-connected Poincaré

duality complex such that m ≥ 2 and H∗(M) contains a Z summand. Let k be the least dimension

of such a Z summand. For Poincaré duality complexes in a certain dimensional range, we will show

that after sufficient localisation:

(1) M ∈ M;

(2) there is a map M → Sk that has a right homotopy inverse.

The results in Section 7 will be used to show that (1) holds. To show that (2) holds, we use the

following slight reformulation of two statements in [T2, Theorems 6.3 and 7.5], the proofs of which

are easily adapted to the case below.

Theorem 8.1. Let M be an (m − 1)-connected Poincaré duality complex of dimension n, where

2 ≤ m < n. Let k be the least integer such that Hk(M) contains a Z summand and suppose that

k < n. If k is even, suppose there exists a generator x ∈ Hk(M) such that x2 = 0. Localise away

from primes p appearing as p-torsion in Hi(M) with i < k and primes p ≤ n−k+3
2 if k is odd, or

primes p ≤ n−k+4
2 if k is even. Then there exists a map Sk →M with a left homotopy inverse and

the loop map ΩM −→ ΩM has a right homotopy inverse.

Proof. The case where k is odd follows from [T2, Lemma 6.1] and [T2, Theorem 6.3]. The case

where k is even follows from [T2, Lemma 7.4] and [T2, Theorem 7.5]. □

Example 8.2. Connecting back to Section 6, let M be an (m − 1)-connected Poincaré duality

complex of dimension n, where 2 ≤ m < n. Localise away from the primes in the statement of

Theorem 8.1. Then there is a map Sk →M with a left homotopy inverse. For any k ≥ 2 and any τ ,

by Theorem 6.9 there is a map Sk → Gkτ (M) with a left homotopy inverse. The attaching map of

the top cell of Gkτ (M) is then inert by [T2, Theorem 1.1].

Theorem 8.3. Let M be an (m − 1)-connected Poincaré duality complex of dimension n, where

2 ≤ m < n and n ≤ 3m − 1. Let k be the least integer such that Hk(M) contains a Z summand,

and suppose that k < n. If k is even and k = m = n − m, suppose there exists a generator

x ∈ Hk(M) such that x2 = 0. Localise away from primes p appearing as p-torsion in H∗(M) and
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primes p ≤ n−k+3
2 if k is odd, or primes p ≤ n−k+4

2 if k is even. Then there is a homotopy fibration

A ∨ (B ∧ ΩSm) −→M
h′

−→ Sk,

where A and B are wedges of spheres that can be explicitly enumerated as in Corollary 3.2. Moreover,

this homotopy fibration splits after looping to give a homotopy equivalence

ΩM ≃ ΩSk × Ω(A ∨ (B ∧ ΩSk)).

Proof. The dimension restriction onM implies that, by Poincaré duality and the universal coefficient

theorem, M is a (m− 1)-connected CW -complex of dimension d ≤ 2m− 1. Localise away from the

primes in the statement of the theorem. By Lemma 7.7, M ∈ W, and Theorem 8.1 implies that

there exists a map Sk → M with a left homotopy inverse. Hence, Corollary 3.2 and Remark 2.13

imply the existence of the asserted homotopy fibration and loop space decomposition. □

In [BB2], an explicit loop space decomposition of (m− 1)-connected Poincaré duality complexes

of dimension n ≤ 3m − 2 was given after localisation away from a finite set of primes. This was

obtained by giving a presentation of H∗(ΩM) as a quadratic algebra and using an explicit basis of

this algebra to define a map from a product of looped spheres to ΩM which was shown to be a

homotopy equivalence. Our approach reverses this: we first find a homotopy equivalence for ΩM in

the slightly greater range n ≤ 3m− 1 and use this to calculate H∗(ΩM).

Theorem 8.4. Let M be an (m − 1)-connected, closed Poincaré duality complex of dimension n,

where 2 ≤ m < n and n ≤ 3m − 1. Let k be the least integer such that Hk(M) contains a Z

summand, and suppose that k < n. If k is even and k = m = n − m, suppose there exists a

generator x ∈ Hk(M) such that x2 = 0. Localise away from primes p appearing as p-torsion in

H∗(M) and primes p ≤ n−k+3
2 if k is odd, or primes p ≤ n−k+4

2 if k is even. Then there is an

isomorphism of Hopf algebras

H∗(ΩM) ∼= T (u1, · · · , ul)/(I),

where u1, · · · , ul correspond to Z summands in H∗(M ;Z) and I is a sum of monomials in u1, · · · , ul.

Proof. Localise away from p-torsion inH∗(M) and primes p ≤ n−k+3
2 if k is odd, or primes p ≤ n−k+4

2

if k is even. By Lemma 7.7, M ∈ W. Write M ≃
l∨
i=1

Sni , where k ≤ ni ≤ n− k ≤ 2m− 1. There is

a homotopy cofibration

Sn−1 f−→
l∨
i=1

Sni
i−→M,

where f attaches the n-cell to M and i is the inclusion of the (n− 1)-skeleton.

By Theorem 8.1, Ωi has a right homotopy inverse. Therefore Theorem 4.3 implies there is an

isomorphism of Hopf algebras

H∗(ΩM) ∼= T (u1, · · · , ul)/(Im(f̃∗)),
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where |ui| = ni−1. It remains to show that Im(f̃∗) is generated by a sum of monomials in u1, · · · , ul.

Let pi :
l∨
i=1

Sni → Sni be the pinch map and let ki : Sni →
l∨
i=1

Sni be the inclusion. Since

n ≤ 3m− 1, the Hilton-Milnor Theorem implies that

f ≃
l∑
i=1

gi +

l′∑
j=1

W 2
j ◦ hj +

l′∑
j=1

W 3
j ◦ h′j

where:

(1) gi is the composite pi ◦ f ;

(2) each W 2
j : Sn1+n2−1 →

∨l
i=1 S

ni is a Whitehead product of the form [ki1 , ki2 ];

(3) hj ∈ πn−1(S
ni1

+ni2
−1);

(4) each W 3
j : Sn1+n2+n3−2 →

∨l
i=1 S

ni is a Whitehead product of length 3 involving the maps

ki1 , ki2 and ki3 ;

(5) h′j ∈ πn−1(S
ni1+ni2+ni3−2).

Consider hj . By assumption n − 1 < 3m − 2 and ni1 + ni2 − 1 ≥ 2m + 1, implying that

n − 1 < 2(ni1 + ni2 − 1) − 1. Therefore, πn−1(S
ni1

+ni2
−1) is torsion unless n − 1 = ni1 + ni2 − 1.

Since we have localised away from primes p ≤ n−k+3
2 if k is odd, or primes p ≤ n−k+4

2 if k is even, it

follows from Theorem 7.1 that hj is null homotopic, unless n−1 = ni1+ni2−1 and hj is a multiple of

the identity map. A similar argument shows that h′j is null homotopic, unless n−1 = ni1+ni2+ni3−2

and h′j is a multiple of the identity map. Therefore, f ≃
∑l
i=1 gi +

∑l′

j=1 ajWj , where each Wj is a

Whitehead product of length 2 or 3 involving the inclusions kij and aj ∈ Z.

Under adjunction, f̃ ≃
∑l
i=1 g̃i +

∑l′

j=1 ajW̃j , where g̃i and W̃j are the adjoints of gi and Wj

respectively. Let λ ∈ H∗(S
n−1) be a generator. Since ni < n − 1, the map gi represents either a

torsion homotopy class in πn−1(S
ni) or an integral summand if n = 2ni. But we have localised away

from all primes that could contribute a torsion class by hypothesis, so either gi is null homotopic or

it is a map of non-trivial Hopf invariant. Therefore, either (g̃i)∗ maps λ to zero or to some multiple

of u2i . Next, the adjoint of each inclusion ki has Hurewicz image ui. Therefore, as W̃j is a Samelson

product of the adjoints of the inclusions kij , in homology it sends a generator λ ∈ H∗(S
n−1) to a

commutator in the uij ’s, implying that its image in homology is a sum of monomials in u1, · · · , ul.

Hence, Im(f̃∗) is generated by a sum of monomials in u1, · · · , ul. □

Remark 8.5. Note that the proof of Theorem 8.4 strengthens if n ≤ 3m − 2. In that case, for

dimensional reasons the decomposition of f does not contain any Whitehead products of length ≥ 3,

implying that I is a quadratic relation.

If the dimension in Theorem 8.3 is slightly restricted then there is an analogous loop space

decomposition that allows for large torsion in homology.

Theorem 8.6. Let M be an (m − 1)-connected Poincaré duality complex of dimension n, where

3 ≤ m < n−m and n ≤ 3m−2. Let k be the least integer such that Hk(M) contains a Z summand,
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and suppose that k < n. If k is even and k = m = n − m, suppose there exists a generator

x ∈ Hk(M) such that x2 = 0. Localise away from primes p appearing as p-torsion in Hl(M) for

l < k, and primes p ≤ n−k+3
2 if k is odd, or primes p ≤ n−k+4

2 if k is even. Then there is a

homotopy fibration

A ∨ (B ∧ ΩSk) −→M
h′

−→ Sk,

where A and B are wedges of spheres and Moore spaces that can be explicitly enumerated as in

Corollary 3.2. Moreover, this homotopy fibration splits after looping to give a homotopy equivalence

ΩM ≃ ΩSk × Ω(A ∨ (B ∧ ΩSk)).

Proof. The dimension restriction onM implies that, by Poincaré duality and the universal coefficient

theorem, M is a (m− 1)-connected CW -complex of dimension d ≤ 2m− 2. Localise away from the

primes appearing in the statement of the theorem. By Lemma 7.8,M ∈ M, and Theorem 8.1 implies

that there is a map Sk → M with a left homotopy inverse. Hence, Corollary 3.2 and Remark 2.13

imply the result. □

Moment-angle manifolds associated to minimally non-Golod complexes. We extend the

family of moment-angle manifolds for which we can apply Corollary 3.2 by localising. A simplicial

complex K on [m] is called Golod over a field K if all cup products and higher Massey products in

H∗(ZK ;K) are trivial, and K is minimally non-Golod if K \ i is Golod for all i ∈ [m]. Examples of

minimally non-Golod complexes include the neighbourly spheres considered in Section 5, as proved

in [L, Proposition 3.6] if K is the dual of a boundary polytope and [ST, Theorem 6.2] in general.

Recall that if K is a triangulation of Sn on m vertices then ZK is a manifold of dimension

n+m+ 1. There is a homotopy cofibration

Sn+m
f−→ ZK → ZK

where f is the attaching map of the top cell. We first show that if K is minimally non-Golod then

ZK is rationally homotopy equivalent to a wedge of spheres.

Lemma 8.7. Let K be a triangulation of Sn on [m] that is minimally non-Golod. Then, rationally,

ZK ∈ W.

Proof. An unpublished result of Berglund (see [St, Proposition 2.4] for a proof) states that ZK is

rationally Golod if and only if it is rationally a co-H space. Any co-H space is rationally a wedge

of spheres, so any ZK associated to a Golod simplicial complex is rationally in W.

Since K is minimally non-Golod, K \ i is Golod for each i ∈ [m], implying that ZK\i ∈ W.

Since each ZK\i ∈ W, it follows from [ST, Theorem 6.1] that ZK is a co-H space. Therefore ZK is

rationally in W. □
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The rational result can be used to give a p-local decomposition of ΩZK when K is minimally

non-Golod. Recall that if K is k-neighbourly, then ZK is (2k + 2)-connected, and if there is a

minimal missing face of dimension k + 1, then there is a map S2k+3 → ZK with a left homotopy

inverse.

Theorem 8.8. Let K ̸= ∂∆n+1 be a triangulation of Sn on [m] that is k-neighbourly and minimally

non-Golod. Suppose there is a minimal missing face of dimension k + 1. Then localised away from

primes p appearing as p-torsion in H∗(ZK) and primes p ≤ m+n−4k−2
2 , there is a homotopy fibration

A ∨ (B ∧ ΩS2k+3) −→ ZK
h′

−→ S2k+3

that splits after looping to give a homotopy equivalence

ΩZK ≃ ΩS2k+3 × Ω(A ∨ (B ∧ ΩS2k+3)).

The spaces A and B are wedges of spheres that can be explicitly enumerated as in Corollary 3.2.

Proof. By Lemma 8.7, rationally, ZK ∈ W. The space ZK is (2k+2)-connected and (m+n−2k−2)-

dimensional. Lemma 7.7 implies that localised away from primes p appearing as p-torsion in H∗(ZK)

and primes p ≤ m+n−4k−2
2 , ZK ∈ W. Hence, the hypotheses of Corollary 3.2 are satisfied locally

which gives the asserted result. □
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