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Abstract

Purpose

Financial service companies manage huge volumes of data which requires
timely error identification and resolution. The associated tasks to resolve
these errors frequently put financial analyst workforces under significant pres-
sure leading to resourcing challenges and increased business risk. To address
this challenge, we introduce a formal task allocation model which considers
both business orientated goals and analyst well-being.

Methodology

We use a Genetic Algorithm (GA) to optimise our formal model to allo-
cate and schedule tasks to analysts. The proposed solution is able to allocate
tasks to analysts with appropriate skills and experience, while taking into ac-
count staff well-being objectives.

Findings

We demonstrate our GA model outperforms baseline heuristics, current
working practice, and is applicable to a range of single and multi-objective
real-world scenarios. We discuss the potential for metaheuristics (such as
GAs) to efficiently find sufficiently good allocations which can provide rec-
ommendations for financial service managers in-the-loop.
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Originality

A key gap in existing allocation and scheduling models, is fully considering
worker well-being. This paper presents an allocation model which explicitly
optimises for well-being while still improving on current working practice for
efficiency.
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1. Introduction

Financial service companies acquire huge volumes of data which requires
timely error checking and resolution. Specifically, asset managers must ac-
curately publish the per-share value (Net Asset Value; NAV) of mutual or
exchange-traded funds at the end of each trading day. Publication of the
NAYV is reliant on accurate trading data with errors leading to misreporting,
significant fines, and, ultimately, large-scale commercial impacts for asset
managers [1, 2]. Error identification and resolution is often a time consum-
ing and overly manual set of tasks. As data volume increases, companies are
finding it increasingly hard to monitor all data streams effectively, placing
their workforces under increasing pressure.

The human-led checking, analysis, and correction of large volumes of
data has not only increased business risk but has had a detrimental impact
on staff well-being. Financial Analysts report unsustainably long workhours
[3] and detrimental impacts on physical and mental health [4, 5], which have
led to voluntary staff turnover rates rising over the last decade to be over
20% annually [6]. Automation and optimisation of this process is critical to
ensure employers meet their legal duty of care to their workers, and ensure
the likelihood of errors leading to significant financial and reputational loss
is minimised.

One area of possible optimisation is considering how effectively such error
checking tasks are allocated across a workforce of analysts. Automatic task
allocation can be implemented by leveraging Artificial Intelligence (AI) to
find solutions which allocate tasks to analysts with appropriate skills and ex-
perience (hence reducing completion time and risk of incompletion). For ex-
ample, novel modelling techniques have been applied to personnel scheduling
[7, 8], task and team assignment for up-skilling workforces [9, 10], selection
policies to promote cross-learning to increase throughput [11], and profil-
ing worker skills to maximise efficiency in job assignment [12; 13]. While



these approaches often address efficiency, which in-turn may reduce the av-
erage analyst’s workhours, they do not sufficiently capture medium-term staff
well-being objectives. Finding a solution should be multi-faceted; aiming to
balance business orientated goals with those of the worker.

A key gap in existing allocation and scheduling models, is therefore explic-
itly optimising worker well-being. Well-being objectives range from workload
to task satisfaction, with the latter ensuring each analyst receives a fair share
of rewarding tasks. Well-being objectives also include the autonomy of the
worker and their individual preference for types of task they may like to
complete. For financial service sector workforces, where high workload is
often unavoidable, a critical aspect is to ensure that analysts continue to
feel engaged and rewarded from their task set [6]. Business orientated fac-
tors such as ensuring high priority tasks (i.e., those which are particularly
time-dependent or most impactful to the NAV) are completed and maximis-
ing efficiency across the workforce, may often come at the cost of individual
worker well-being factors such as task satisfaction. Financial service sector
companies must strike a difficult balance between reducing risk from accu-
rate NAV reporting, while maximising well-being objectives to keep voluntary
staff turnover as low as possible. In addition to the disruption of training new
workers, the cost of an analyst’s job turning over is estimated at 50-125% of
the employee’s annual salary highlighting the need for optimised well-being,
even from a purely economic perspective [14].

In this work, we formulate the task allocation and scheduling procedure as
a multi-objective problem to quantify and balance both the needs of worker
well-being and business orientated goals of efficiency and throughput. Us-
ing historical data, we compute expected task completion times by analyst
to quantify worker suitability for an allocation based on skill. By consider-
ing this in relation to worker availability, we estimate the likelihood of each
analyst completing their allocated tasks to assess business risk and the indi-
vidual’s workload. We characterise well-being based on both the likelihood
of the allocated task being a true error (i.e., being a rewarding task), and
the preference of the analyst (i.e., which tasks they find most satisfying).
Pareto optimisation can then be found by our formal model which evaluates
the fitness of a given allocation independently for each worker using these
parameterisations of completion likelihood of allocated tasks, and well-being.

In this context, finding sufficiently good solutions efficiently is critical.
Implemented as a decision-support system for a human-in-the-loop, alloca-
tion solutions must be generated quickly for workforce managers who may



then tweak allocation suggestions. Further, allocations may be re-evaluated
as task lists and operational circumstances change through the day, again
requiring efficiency. As a result, this problem can be framed as combina-
torial optimisation where an exhaustive search (i.e., finding global optimal
solution) is not plausible or necessarily required (given that managers may
alter the recommended allocation). Therefore, specialised algorithms which
can quickly rule out large parts of the search space, such as metaheuristics,
are favoured.

One popular choice of metaheuristic, is the Genetic Algorithm (GA)
which takes inspiration from evolutionary processes, such as mutation, crossover,
and selection. GAs are a global optimisation technique, which utilise a popu-
lation of candidate solutions across the search space. Evolutionary algorithms
are popular choices for extensive multi-objective optimization problems as the
set of solutions can explore the pareto front. For the purpose of our formal
model, we utilise and validate a GA optimiser [15] which aims to maximise
the aggregated multi-objective fitness (or utility) across all analysts to ensure
business orientated and worker well-being are balanced.

The key contributions of our work are to:

1. Develop a formal model with probabilistic objective functions (Section
3.2) for task completion probability and well-being (reward, prefer-
ence). Our objectives optimise to ensure the completion of the highest
importance tasks are prioritised in the allocation process. The model
also contains heuristics which natively deal with pre-allocated and par-
tially completed tasks, enabling the model to re-evaluate the solution
as frequently as required, and emulate real-world scenarios. Our model
natively handles different work schedules (e.g., part-time, full-time) for
analysts.

2. Validate our formal model for the allocation and scheduling of a set
tasks across a workforce. We validate the performance of the GA opti-
misation relative to baseline heuristics (Figure 2) and perform testing
to provide suitable hyperparameters for realistic use cases (Section 4.1).

3. Consider the performance of our formal model in relation to current
working practice (Figure 4). We simulate allocations from workforce
managers and quantify the added value of of our formal model sup-
ported by a metaheurtic such as a Genetic Algorithm (Section 4.5).

4. Evaluate the complexity scaling of single and multi-objectives problems
for our formal model through asymptotic analysis. We further perform



empirical analysis to understand the scaling of our formal model in
typical real-world scenarios (Figure 3).

We validate our model using task and analyst data from a global top
10 asset manager taken over a two year period from 2020 to 2022. Due to
data privacy, we present work here using simulated data drawn from typ-
ical working circumstances at the asset manager. In Section 2 we provide
further problem context about workforce planning, requirement for explicit
optimisation of well-being, and metaheuristics. In Section 3 we introduce the
mathematical formulation of our allocation model and simulated data, before
validating our models on a variety of test scenarios (Section 4), comparing
to baseline heuristics and current working practice. Finally we discuss the
human-in-the-loop implementation of our model in Section 5 before conclud-
ing in Section 6.

2. Literature Review

Increasing interest in automated approaches to workforce planning has
provided a number of novel optimisation techniques aiming to improve al-
location and scheduling of both work and workers. Reviews on personnel
scheduling have defined taxonomies of areas within staff scheduling and ros-
tering, often focused on increasing efficiency [7, 8]. Even approaches that
aim to improve the skills of their workforce through task and team assign-
ment [9, 10], selection policies to promote cross-learning [16, 11] and profiling
worker skills [12, 13] still optimise with long-term efficiency in mind. While
up-skilling ensures workers develop sufficient skills to progress in their job
and cross-learning ensures the overall workforce is better balanced, these ap-
proaches do not fully capture the objectives of worker satisfaction. Of par-
ticular relevance, we note [17] who develop a multi-objective formal model to
allocate jobs in the construction industry optimising for both efficiency and
career development.

Business orientated goals of efficiency or throughput may come in di-
rect competition with objectives to maximise worker well-being. Balancing
multiple completing objectives has been previously studied in the context of
scheduling [18, 19]. Despite this, a current gap in knowledge are systematic
task allocation methods which effectively balance the competing objectives
of efficiency and well-being. Part of the problem could be due to difficulties
in effectively modelling well-being. Contemporary theories of resource plan-
ning recognise that the alignment of needs and priorities of the business with



those of those workers is critical for continued productivity [20, 21]. Despite
this, even popular theories (e.g., job demand-resource model) only focus on
relative workload and resourcing to define worker well-being [17].

Workforce planning is particularly challenging in the financial service sec-
tor due to the frequency of over-burden (over 40 hours as standard with ju-
nior analysts at Goldman Sachs reporting an average of 95 hours worked per
week) [4, 3]. Moreover, human resource management practices in finance are
in stark contrast to contemporary theory. Analysts report significant impact
to their physical and mental health due to working practices, with >75%
reporting work impacting their relationships with friends and family [4, 5].
This practice does not recognise the two-way psychological relationship be-
tween employer and employee, championed by contemporary theory, outside
of the legal and formal framework that an employee simply obtains work for
fiscal reward [22]. Developing working practices (e.g., task allocation which
optimises well-being) that better the ‘pyschological contract’ between em-
ployee and employer enables workers to view their relationship as a two-way
transaction, rather than one imposed against their interests [20].

To enable workforce planning which can optimise both for business ori-
entated and well-being goals, it is critical to have an approach capable of
finding solutions to extensive problems with multiple conflicting objectives
or criteria. One option, Multiple-criteria decision making (MCDM), is a
structured approach used to explicitly evaluate multiple conflicting crite-
ria. MCDM typically takes a multi-step approach consisting of (i) problem
formulation, (ii) objective definition, (iii) criteria selection, (iv) setting alter-
natives, (v) weighting the criteria and (vi) selecting an appropriate MCDM
method. Approaches (collectively often referred to as multi-attribute deci-
sion making) include pair-wise comparison (e.g., Analytic hierachy process
and analytic network process) [23, 24], distance-based methods (e.g., TOP-
SIS [25]), outranking methods (e.g., PROMETHEE [26]) and value/utility
function methods [27]. Despite success in resource allocation (e.g., land,
water [28, 29]), problem formulation typically requires predetermined crite-
ria weighting leading to a single solution. Another option is Reinforcement
learning, where an agent learns policies to maximise the ‘reward function’ or
other user-provided reinforcement signals that accumulate from feedback in
a dynamic environment. Here, the reward function would look to maximise
scheduling efficiency while balancing user-provided input on task and work
satisfaction. Despite popularity in the context of dynamic scheduling (see
e.g., [30]), continuous feedback on well-being is challenging.
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Alternatively, multi-objective optimisation concerns optimising a set of
objective functions simultaneously. Despite the positive characteristics of
MCDM (e.g., tranparency of decision rules and more intuitive interpretation
of outcomes) and reinforcement learning (e.g., adaptability and improve-
ment over time), multi-objective optimisation does not require predetermined
weights of each criterion leading to a single solution or continuous feedback
on well-being. Instead, sets of solutions are generated in order to explore
along a Pareto frontier enabling more detailed understanding between the
trade-offs of conflicting objectives.

Given the operational bounds of our proposed model (i.e., requirement to
be computationally efficient and only needing to find ‘good enough’ solutions
for a static problem), the most suitable subset of multi-objective optimisation
techniques are metaheuristics. Metaheurstics are partial search algorithms
designed to provide sufficiently good solutions with limited computational
capacity and relative few assumptions made about the problem. Approaches
include human mind inspired algorithms (e.g., rough set theory, fuzzy set the-
ory, artificial neural networks [31, 32, 33], evolution inspired algorithms (e.g.,
genetic algorithms, evolutionary strategies [34, 35]) and swarm intelligence
(e.g., ant colony, firefly, particle swarm optimisation [36, 37, 38].

In particular, Genetic Algorithms have been identified as a popular choice
for scheduling and allocation related tasks with large, discrete, search spaces
[39]. GAs have been proven to be flexible, easy to implement and robust to
non-linear and noisy objective functions while requiring minimal information
about the search space (e.g., no gradient information required). For example,
GAs have been utilised in scheduling for distributed computing systems [40,
41, 42], the deployment of unmanned aerial vehicles [43, 44, 45], human-
robot collaboration on tasks [46, 47, 48, 49], optimum resource planning
for emergency departments [50, 51] and economics and business [52]. This
background demonstrates the applicability of GAs to efficiently allocate a
‘batch’ of tasks across the currently available workforce, finding a sufficiently
good solution for workforce managers. We further discuss the suitability of
other metaheuristics (e.g., ant colony, particle swarm optimisation) to find
solutions for our multi-objective formal model in Section 5.

3. Methods

In this section, we outline the mathematical formulation of our task allo-
cation model (Section 3.1), including definition of objective functions (Sec-



tion 3.2), along the implementation of the genetic algorithm (Section 3.3),
and data used for model validation (Section 3.4).

3.1. Formal Allocation Model

In this section, we frame the problem of allocating tasks across a team
of financial workforce of analysts as an optimisation problem. The aim of
the optimisation algorithm is to allocate a set of tasks to maximize set ob-
jective(s) as defined below. Here, tasks relate to reviewing and resolving
identified errors in trading data. These errors can result from human error,
technology failures, market volatility and compliance issues. Furthermore,
each task can be divided by type with each type having different expecta-
tions of completion time, required skills to review and resolve efficiently, and
likelihood of being a true error. This is done to address the fact that ana-
lysts have a variety of skills and experience which affect their efficiency of
completing different types of task. We furthermore assume that tasks are
typically allocated in batches across a workforce for the given day. Although
the optimisation is only done for a given batch, the model has been adapted
to deal with pre-allocation and prior progress on tasks so can be re-run as
task lists and operational circumstances change through the day.

In Table 1, we present a summary of notation used in this article. In
more detail, let 7= {1,...,n} be the set of tasks to be allocated and A =
{1,...,m} the set of (available) analysts in the workforce. Each task t € T
is defined by a number of properties: 6, € NVt is the task type; ¢, € R the
task complexity; v; € [0, 1] is the confidence of the task being a true positive
(or, more generally, how interesting the task is); and m, € {1,2,...,p} is the
priority (where a lower value means it is higher priority). If ¢; = 1 this means
a task has average (or unknown) complexity, whereas ¢; > 1 and ¢; < 1 mean
an above-average and below-average complexity respectively.

Similarly, each analyst a € A has a number of properties: 7,9 € RT is
the analyst’s efficiency of solving task of type #; and 7, is the amount of time
(number of seconds) that the analyst is available on the day in question.
If 7,9 = 0, this means the analyst is unable to execute the task of that
type, 140 = 1 means an average execution time, 7,9 < 1 below average, and
N > 1 is above average.

A key part of the model is the objective function(s). Several objective
functions will be defined below (Section 3.2). For now, we present the ob-
jective in general form. Let T, C T denote a’s assignment, i.e. a set of
tasks allocated to analyst a € A. Then, the tuple (11,...,T,,) denotes an
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Symbol Meaning
n number of tasks
m number of analysts
T=A{1,...,n} set of tasks
A=A{1,....,m} set of analysts
T,CT tasks allocated to analyst a
0; € NT task type
¢ € RT task complexity
v € 10,1] probability of true positive
P the number of priorities
m€{1,2,...,p} priority of task (lower value is higher priority)
Nap € RT analyst a’s efficiency of solving task of type 6
Ta analyst availability (in number of hours)
E(t,a) expected execution time of task ¢ allocated to analyst a
149 average task duration of task of type 6
o3 execution time variance of task of type 6
U(Ty,...,Ty) Overall utility of an assignment

Table 1: Notation summary

assignment for each analyst. Furthermore, let U(T3,...,T,,) € R denote the
overall utility or fitness of a particular assignment. Given this, the aim is to
maximise the assignment utility, which is given by:

(I7,...,Ty) =arg max U(Ty,...,Tn) (1)

m ToCT,acA

subject to each task being allocated to exactly one analyst, i.e., Vi €T : t €
UgeaT, and Val,a2 € A,al #a2: T, NTyn =10

Another crucial aspect of the model is a task’s execution time, which
depends on both the properties of the task and the analyst. In particular,
we assume the ezpected execution time function, E(t,a), is given by:

E(t,a) = 2% (2)
77a,0t

where g, is the average execution time of a task with type 6;. Note that, in
general, the execution time can also depend on the other tasks allocated. For
example, if multiple tasks of the same type are allocated to the same analyst,
these can often be completed more efficiently. However, this would make it



challenging to estimate since it adds more unknown parameters. We leave
this for future work. Finally, we assume that a task also has an execution
time wvariance, denoted by agt, indicating the variability in the execution
time. For simplicity, we assume this is independent of the allocation.

3.2. Objective Function

A key feature of the framework is that the objective function should be
easily changed according to the specific application and client specifications,
without having to fundamentally change the model or the algorithm to solve
it. In other words, the system should be able to generalise to a wide range
of objective functions. In addition, we are able to define individual objective
functions for every analyst. Depending on specific needs (i.e. different char-
acteristics of individuals leading to increased job satisfaction) these can be
tailored to the individual. Here we outline three objective functions appropri-
ate for financial service sector domain, however, this can be easily modified
to application-specific needs.

3.2.1. Completion Probability

From the business perspective, a reasonable objective is to maximise the
throughput and explicitly optimise efficiency of task completion (e.g., see
[12, 13]). An additional complication is that tasks have a sense of priority
and it is critical that the highest priority tasks (i.e., those which are particu-
larly time-dependent or most impactful to the NAV) are completed [1, 2]. For
those reasons, we aim to maximise the probability of completing tasks, given
the analyst’s availability, weighted by priority. Maximising completion prob-
ability naturally optimises for efficiency (i.e., finding analysts most efficient
at a given task), while retaining fairness attributes. For example, framing as
a probabilistic utility avoids scenarios where one particularly efficient worker
is unfairly overloaded since the probability of them completing a task set
tends to zero as more tasks are allocated (in comparison to minimising total
completion time). This better aligns the needs and priorities of the business
and workers when explicitly considering efficiency [20, 21].

To calculate this, we assume tasks (777 C T,) are executed in order of pri-
ority (7) so that tasks in 77 are executed before T/ if 7 < 7'. To calculate
the completion probability of a task, we assume execution times are normally
and independently distributed with ¢(x|u, 0?) denoting the cumulative nor-
mal distribution. By defining pg = >~,cp. E(t,a) to be the expected total

10



execution time of tasks, and (07)* = >, . 05 as the total variance, the
probability of completing all tasks with priority 7 is then given by:

Pr(z) = ¢ <Ta) S szf’)?) 3)

7'=1 7'=1

We can then write the conditional probability of completing tasks of priority
7 given that tasks with 7 — 1 (as well as all preceding tasks) are completed
as: Pr(n)
r(mw
Pr(rjmr —1) = Priz—1) (4)
noting that Pr(m) = Pr(1)[[},_, Pr(x’|7’ —1). We also note that, given
tasks are assumed to be completed in order, its means tasks of priority
are completed only if tasks of priority @ — 1 are already complete. This
means that implicitly Pr(r N7 — 1) = Pr(m) (as denoted in the conditional
probability. Now, in order to emphasize high priority tasks compared to
lower priority tasks, we define the utility of an individual analyst, denoted
by US(T,) as follows:

™

U(T,) = Pr(1) [[ Pr(=|a — )™ (5)

/=2

Note that, by adding the power term 1/7’ (conditional) probabilities of lower
priority have reduced influence on the utility compared to those with higher
priority.

3.2.2. Precision

From the worker perspective, job satisfaction can be (partially) charac-
terised in terms of workload (i.e., avoiding overburden and overtime) along
with how engaging or rewarding a given set of tasks are (e.g., [53, 54]). Com-
pletion likelihood aims to optimise to reduce potential for overtime but does
not consider the fairness of the allocation in terms of rewarding tasks or
what workers prefer to do. We now consider parameterisations for both task
reward and worker preference. The former is an intrinsic property of the
tasks with different types of task likely to be more rewarding, engaging, or
fulfilling.

In the context of the financial service sector, the majority of tasks are
error checking with different probabilities of identifying a true positive (rather
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than a false positive). While error checking tasks resulting in a false-alarm
are likely to be perceived as repetitive and unrewarding, identifying true
errors has tractable reward for the individual [54]. Each task can be divided
by type with each type having different expectations of completion time,
required skills to review and resolve efficiently, and likelihood of being a true
error, i.e. its precision based on historical operations. Therefore, tasks can
be scored based on their likelihood of reward (i.e., likelihood of being a true
positive 7;) and considered as an additional objective to optimise. Hence,
the aim is to distribute the tasks in a fair manner so that no single analyst
has too many false positives.

Given that analysts can be allocated different number of tasks based on
their availability, we propose to use the average 7; of the tasks allocated to
analyst to determine their individual utility:

U(T. Z Tt (6)

| “‘ teTy

This simple objective function can be adjusted to optimise for various task
associated scores aiming to increase well-being.

3.2.3. Task Preference

Precision is a property associated with the task, and hence, optimisation
can only ensure a fair balance of true-positives are distributed across the
workforce. In addition, workers have individual preferences of the types of
task they want to complete based on a mixture of personal skills, development
goals, and enjoyment of the task itself. Therefore, a more personalised notion
of task reward is to directly parameterise which tasks individual analysts
prefer to complete. In reality, a detailed characterisation of personalised
reward (i.e., to explicitly quantify personal skills, development goals and
enjoyment) would be a resource intensive procedure and outside the scope of
the current work.

As a basic summarisation, we query analysts to respond to a Likert scale
for each type of task. These scores are then normalised by worker (i.e., to
correct for optimism or pessimism) and we look to explicitly maximise a
time-weighted average of these preference scores. This is given by:

Z Cta (7)

teT,

a a |
where (; , is the preference score of a given task for the analyst.
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3.2.4. Owerall Utility

The above measures of individual utility can be combined by considering
their product to balance business and worker orientated goals. Here, we
define the business orientated utility to be given by equation 5 and the worker
orientated utility to be the combination between precision and preference as
follows:

U(T,) = VI(T) - UST) = oy 3 7y 3 oo 0

teT, ’Ta‘ teT,

Business and worker orientated utility can then be combined into:
Ua(Ta) = Ug(Ta) ) U;U(Ta) (9>

We note that any combination of completion likelihood, individual prefer-
ence and precision can be trivially defined. In words, this represents the
expected completion time multiplied by the average satisfaction of the tasks
(combining precision and preference). Then, to calculate the overall system
objective, the individual utilities need to be combined into a single objec-
tive. Although the framework allows for different approaches, in this work
we assume the overall utility is then computed by the product of individual
analyst utilities, i.e.:

UTy, ..., Tn) = [ Ua(T0) (10)

a€A

Using the product is natural here since it indicates the probability of all
analysts completing all tasks. In addition, in cooperative game theory liter-
ature, this type of joint utility is also known as the Nash product or Nash
bargaining solution [55], and has some attractive fairness properties. In par-
ticular; it is uniquely characterised by four properties or axioms: Pareto
efficiency, symmetry, independence of irrelevant alternatives and invariance
to affine transformations of the utility function. The latter property means
the solution does not rely on interpersonal utility comparisons, i.e. how each
individual’s utility is scaled. This is particularly important when there is no
objective comparison such as money. For more detail, see e.g. [56].

3.3. Genetic Algorithm

To efficiently find solutions to these objective functions we leverage a Ge-
netic Algorithm (GA) implemented by PyGAD [15], an open-source Python
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library for GAs. Applied to the domain of task allocation, GAs obtain op-
timised solutions based on the fitness value (i.e. objective utility functions
defined above) from a large pool of candidate solutions (population). A chro-
mosome is a unique solution in the solution space with each chromosome
containing n (number of tasks) genes which can take m (number of analysts)
discrete values. The best solutions from each population are then passed to
the next with variance induced by genetic operators such as mutation (gene
alteration) and crossover (gene combination between parent solutions). Py-
GAD supports a variety of genetic operations and parent selection strategies,
making it a flexible solution to allocation problems, and comprehensively
identify appropriate hyperparameters (see Section 4.1). In Algorithm 1, we
present a pseudocode of our proposed formal model including the GA proce-
dure.

3.4. Simulation

Throughout model development real-world task and workforce data from
a global top-10 asset manager was utilised, which this algorithm will service.
In Figure 1 we show how our algorithm fits into the workflow of task alloca-
tion overseen by a manager. Historical task data is combined with data of
the current task list and available analysts, before pre-processing and screen-
ing (i.e., identifying if the expected total completion time greatly exceeds
availability). Any warnings are sent to the manager who can decide to re-
move or segment tasks if necessary. This updated task list is then initially
allocated by the GA optimiser, which the workforce manager reviews and
amends before passing to workforce.

Due to privacy concerns, we publicly evaluate our model using simulated
data drawn from typical operating circumstances at the asset manager. To
generate estimates of task complexity in Table 2 we define 5 typical types of
tasks with varying expected completion times and frequency of occurrence.
To simulate test scenarios, we randomly generate a list of tasks with occur-
rence frequency and expected completion times drawn from this table. We
assume task duration and variance by type to be normally distributed.

To calculate the expected execution time function given in equation 2 and
emulate the differences in skills of analysts we modify 7,4 (efficiency by task
type) randomly by a factor between 0.9 - 1.1 when generating a simulated
analyst. We note that setting uniform analyst efficiencies does not impact
the ability of the model to converge. In practice analysts will also balance
newly allocated tasks with left-over work from the prior workday. To emulate
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Algorithm 1 Pseudocode of the Formal Model with GA generated solutions.

START: PREPROCESS(7, 11)

// Evaluate Problem

Compute total sum of workforce availability 7;¢a:;

Compute total sum of expected task duration fisorar;

Identify tasks with prior allocation and completion and adjust 7y, and

Htotal @PPropriately;

// Select Task List
If Tyorar >> ot drop lowest priority tasks;

START: Find solution with GA(j, x,n)
// Initialise Generation
k:=0;
Py := population of j randomly generated solutions
// Evaluate P,
Compute fitness(i) for each i € Py;
// Iterate to find best possible solution in 50 generations
while k& < 50 do
// Create generation k + 1
// 1. Elitism
Select (1—x) x 7 members of Py and insert into Py, 1;

// 2. Crossover

Select x x j members of Py (steady state);
pair them up and produce offspring;

insert the offspring into Py,1;

// 3. Mutate

Random mutation applied at gene level;

High adaptive mutation rate for n x 7 members with lowest fitness
Low adaptive mutation rate for (1—7) X j members with highest fitness

// Evaluate Py, i:
Compute fitness(i) for each i € Py;

// Increment:
k:=k+1
end while
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Figure 1: Flow diagram showing the working context of our proposed model. Historical
data on previous tasks and analysts is first combined with data on the current allocation
period. This is pre-processed to estimate parameters for the current allocation period (e.g.,
expected completion type of tasks to be completed). The task list and analyst availability is
screened to identify significant overall burden (i.e., expected total completion time greatly
exceeds availability) or tasks which are individually too long to complete in the period.
Any warnings are sent to the manager who can decide to remove or segment tasks if
necessary. This updated task list is then initially allocated by the GA optimiser, which
the workforce manager reviews and amends before passing to workforce.

this, we pre-allocate 5% of our simulated tasks with a randomly generated
prior progress time.

To reflect the heavy workload found in asset management, we define test
scenarios that are ‘difficult but achievable’. Practically this means defining
a task list which is expected to between 1.01 and 1.1 times the total analyst
availability. Due to the nature of a probabilistic completion time fitness
function, complete over-burden can result in zero probability for an analyst
and the algorithm failing to converge. For this reason, problems (or task lists)
should be pre-screened to ensure they meet this criterion. For problems with
low workload, we heavily penalise allocations with analysts that have zero
allocated tasks to ensure a fair distribution is still found.

4. Results

This section demonstrates the performance of our allocation model with
several GA hyperparameter set-ups relative to baseline allocation algorithms.
We also consider the run-time complexity of our approach and further evalu-
ate our formal model on a set of realistic use cases of different size and opti-
mising goals (i.e. fitness function). For comparison between hyperparameter
choices and to baseline algorithms, we simulate a basic test scenario of 65
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Type, 6; | pg (seconds) | o7 (seconds) | Relative frequency
Ay 1800 90000 1
B, 3600 810000 0.75
C, 7200 1440000 0.5
Dy 14400 7290000 0.25
E, 21600 12960000 0.05

Table 2: Properties of five tasks types which are used as a basis to simulate real-world
scenarios. Mean duration (p¢) and variance (03) are the expected global completion (and
variance) time for a task of that type across all analysts. Relative frequency defines the
proportion of each task type represented in a simulated scenario.

tasks to be allocated between 10 analysts to optimise for priority weighted
completion time. To understand how our model scales, we adopt Big O nota-
tion to describe the limiting (worst case) behaviour. We further simulate test
scenarios up-to a size of 325 tasks and 50 analysts for both single (completion
probability only) and multi (both completion probability and true positive
probability) objective functions to evaluate empirically.

4.1. Hyperparameter Selection

To select an effective combination of GA hyperparameters we validate
performance for a variety of population sizes along with different parent se-
lection, mutation, and cross-over techniques. In Figure 1 (left panel) we
show the average performance (as defined by total utility) of three distinct
hyperparameter approaches; green: steady state parent selection with adap-
tive mutation, blue: tournament parent selection with adaptive mutation;
red: steady state parent selection with scramble mutation. All other hy-
perparameters are consistent as defined in Table 3. Our key findings are as
follows:

e Population size and number of generations: 50 generations with
500 solutions per population reliably result in a converged solution (as
shown by Figure 1 right panel). Increasing the number of generations
(at the cost of population size) generally results in decreased perfor-
mance, however effect is minimal.

e Mutation: Adaptive mutation results in the best performance. As
outlined in [57], the weak point of ‘classical’ GAs is that mutation
is randomly applied to all chromosomes, irrespective of their fitness.

17



Adaptive mutation solves this by applying a high (low) mutation rate
to low (high) fitness solutions overcoming the usual trade-off between
making incremental improvements and finding better maxima. Scram-
ble mutation (blue) performs particularly poorly since it keeps the
number of tasks assigned per analyst constant (similar for inversion
and swap mutation).

e Parent Selection: Steady State (green) outperforms Tournament par-
ent selection (blue). Along with defined elitism, there may be minimal
selection of low fitness solutions to be passed to the next generation,
highlighting the importance of being able to define a high mutation
rate and escape local maxima.

e Crossover: Crossover choice had minimal effect on performance for
this use case, leading to single point crossover being selected.

1072 50
Steady State Adaptive
1073 L — === Tournament Adaptive
— = g a0 Steady State Scramble
10-4 / 'g = = Greedy )
p == S0 = = Greedy with Hill-Climbing
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Figure 2: (Left) Average performance (as defined by fitness of best solution) of genetic
algorithms (solid lines; green, blue, red) and baseline algorithms (greedy — dotted grey,
greedy and hill-climbing — dashed black). The average is found by performing 20 runs
of each algorithm set-up and the shaded regions represent the 95% confidence interval.
(Right) Average number of tasks switching allocation per generation for best solution.
Only shown for best GA hyperparameter set-up (green - Table 3).

Our final hyperparameters are described in Table 3 (represented by the
green line in Figure 2). For larger scale problems, we utilise the same hyper-
parameters however increasing the population size, number of parents mating
and elitism proportionally to the number of tasks.



Population Size 500
Generations 50
Crossover Type Single Point
Mutation Type Adaptive (Random with variable rates)
Mutation Probability [0.9, 0.05]
Parents Mating 50
Elitism 10

Table 3: Hyperparameters for fiducial GA run validated on basic test scenario of 65 tasks
allocated across 10 analysts.

4.2. Comparison to baseline heuristics

To validate our choice of a metaheuristic such as a Genetic Algorithm for
efficiently finding allocation solutions to our formal model, in Figure 2 (left
panel) we directly compare to baseline heuristics.

We adopt a greedy allocation policy [58] (grey dotted line), which allo-
cates sequentially by task to the analyst which maximises global utility at
each step. Generally, a greedy policy in optimisation problems does not pro-
duce an optimal solution, however can yield local maxima with reasonable
run-times. Despite being computationally efficient, this typically provides a
poor scoring solution and often fails when applied to more complex fitness
functions. We improve upon the initial greedy allocations through applica-
tion of a hill climbing policy (black dashed line). Hill climbing is an iterative
search optimisation technique which starts with an arbitrary solution, then
makes incremental changes to find better local solutions. Here, the hill climb-
ing policy randomly swaps two task allocations to find an improved solution
(from the initial greedy solution). The GA optimisation significantly outper-
forms both the baseline greedy algorithm and the hill climbing improvement
(scaled to be same number of utility function evaluations as the GA).

4.8. Stopping condition

To validate an appropriate stopping condition (or number of generations)
for our GA, we consider both the convergence of fitness score (Figure 2 left
panel) and the number of task allocations changed between best solutions
of each generation (right panel). We note that fitness (and changes to best
allocation) changes rapidly in the first 10 generations, settling towards gen-
eration 20 and showing steady but minimal improvement (and changes to
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best allocation) towards generation 50. We find 50 generations is an appro-
priate stopping point to ensure a high fitness solution is consistently found,
however, if a quicker compute time was required, solutions from generation
20 onwards could be used.

4.4. Scalability

We now consider the run-time complexity of our formal model supported
by a GA optimiser. We adopt Big O notation to describe the limiting (worst
case) behaviour of our approach as n — oo (where n is the size of the pop-
ulation in the GA). The key operations and time-complexity are as follows:
i) initialisation of population: O(n), ii) evaluation of utility: O(n?) (since
utility function evaluation scales with O(n) and must be evaluated for each
worker whose number we assume scales with the number of tasks and hence
population size n), iii) selection O(nlogn) (requires sorting), iv) crossover
O(n), v) mutation O(n) and vi) termination conditions O(1) (since is manu-
ally defined to be 50 generations). The dominating term is therefore O(n?).

In Figure 3, we also empirically estimate the run-time scaling for our
allocation model for a set of realistic scenarios with increasing numbers of
tasks and analysts for single (black) and multi (i.e, completion likelihood
and true positive likelihood; grey) objective problems. The absolute run-
time units are seconds (based on serial evaluation on a single node cluster
with 32GB of memory). In response to the increasing problem scale, we
increase the population size of our GA search space proportionally to the
number of tasks to allocate (i.e. double number of tasks equates to double the
population size). Despite this linear scaling, the number of fitness function
evaluations also increase due to a greater pool of analysts. We fix the number
of generations to be 50 for each problem size, finding solutions to be well
converged. For a given problem size, increasing the number of generations
would lead to a linear increase in computation time. This is in-keeping with
our theoretical complexity scaling limit of n?.

We note that this holds one key assumption that solutions converge con-
sistently when increasing the scale of the GA search space linearly with the
number of tasks to be allocated. In reality for larger use cases, it would be
more suitable to scale the population size proportional to both the increase
in workers and tasks, therefore our formal model would instead scale O(n3, )
(where here ny, is the number of tasks to allocate).
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Figure 3: Run-time complexity for single objective (left) and multi-objective (right) allo-
cations for a range of problem sizes, as denoted by the GA population size (n). Connecting
lines show the width of the 95% CI. The background is shaded by scaling complexity (rel-

ative to smallest scale problem in each panel; i.e. 65 tasks and 10 analysts) divided by n,

nlog(n), n?, n® (in order of increasingly poor scaling).

4.5. Comparison to current practice

We now evaluate our formal model relative to typical operating circum-
stances (i.e., task allocation performed by workforce manager) to assess its
real-world benefit. To emulate how a manager may allocate tasks across a
typical workforce we consider two manager strategies:

1. Efficiency. Here the manager allocates tasks one-by-one (in order of
priority) to the analyst who has historically performed that type of
task most efficiently. Once a given analyst is over-burdened, following
tasks are then allocated to the second most efficient analyst, and so on.
This is effectively the greedy algorithm approach described above. This
allocation strategy also is designed to minimise potential impact to the
NAV by allocating the highest priority (and hence highest materiality)
tasks one-by-one.

2. Balancing task numbers. Here the manager allocates (pseudo-randomly)

to ensure each analyst has roughly the same number of tasks, a basic
notion of fairness. This approach ignores other measures of reward, the
overall length of tasks, and the likelihood of each analyst completing
their allocation.

In Figure 4, we compare the simulated manager allocations against our single
and multi-objective GA approaches. Scores for the GA approaches are found
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Figure 4: Comparison between simulated manager-led allocations and the proposed for-
mal model. In each panel a simulated manager allocating to maximise efficiency (light
green), and, to balance task numbers (dark green) is compared to a single-objective GA to
optimise for completion likelihood (light blue), a multi-objective GA optimising for com-
pletion likelihood and task preference (dark blue) and a multi-objective GA optimising for
completion likelihood, task preference and reward (grey blue). The scores for GAs solu-
tions are found from the average of 5 runs. (Left) Completion likelihood across complete
workforce (i.e., product of individual completion likelihoods for their allocation). (Right)
Allocation fairness. This is maximum difference between the best and the worst allocation
by analyst. A given analyst’s allocation is evaluated by the product of completion likeli-
hood, the time-weighted preference score and the time-weighted reward (anomaly score).

from the average of 5 runs. Here we use a test scenario with 65 tasks allocated
across a workforce of 10 analysts (as described in Section 4.1). For each task
we generate a ‘reward’ score based on the anomaly score of the task. For each
analyst we also generate ‘preference’ scores by task-type. Each GA optimises
completion likelihood along with preference (navy) and both preference and
reward (grey blue).

In the left panel we quantify the success of simulated managers and GAs
at maximising the likelihood of completing the complete set of tasks. This is
effectively the business orientated goal. This is found by the product of com-
pletion likelihood across all 10 analysts (i.e., equation 10). As discussed in
Section 3.2, we use the product rather than the average or sum to ensure fair-
ness in evaluation. We find all GA approaches offer significant improvement
over the simulated manager allocations, increasing global likelihood of tasks
being completed by at-least 7 orders of magnitude. In particular we note
the poor performance of the simulated manager allocating tasks to the most
efficient analyst; highlighting the pitfalls of greedy policies (even relative to
a pseudo-random allocation).

In the right panel we quantify the overall fairness of the allocation across
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the workforce. For each analyst the ‘quality’ of their allocation is found
by the product of the completion likelihood, the (time-weighted) average
preference score, and the (time-weighted) average anomaly score (reward).
This score balances both worker over-load and reward of tasks. The fairness
of each allocation is then found by finding the difference between the best and
the worst scoring allocation by-analyst. We find that both single and multi-
objective GA approaches result in significantly fairer allocations relative to
the simulated manager allocations.

5. Discussion

In practice, Al powered allocation and scheduling recommendations will
be used with resource managers in-the-loop (i.e., human-in-the-loop; HITL).
HITL integrates human judgement and expertise into the decision making
process, augmenting the capabilities of decision-support tools, such as our
proposed formal model. Human involvement in the decision-making process
fosters trust and transparency, as ultimately the resource manager has final
say. Another critical factor, is the contextual domain knowledge of resource
managers, often difficult to capture in modelling. Practically this AI recom-
mendation would therefore be used as a starting point for the manager to
‘tweak’ depending on current operational circumstances and personal domain
knowledge (e.g., escalating certain tasks to be more critical than identified
in the system).

In Figure 5, we show a visualisation containing an example allocation
found from our GA model applied to the multi-objective test scenario with
65 tasks and 10 analysts. In this instance, a manager may identify high
priority tasks which are scheduled to be completed later in the day (e.g.,
Analyst 3’s 4th task) and choose to re-allocate to ensure they are completed
in a timely manner (e.g., swap with Analyst 10’s first task). While HITL
likely reduces the utility score of an allocation, it still offers the best approach
to maximise business and well-being (significantly outscoring current working
practice), while ensuring the hybrid approach is robust by avoiding pitfalls
not captured by modelling. Additionally, human input may enable soft and
hard constraints on allocation to be identified (e.g., that a given analyst
cannot a specific task due to external factors not previously captured in
data). Constrained optimisation (and hence narrowing of the search space)
potential enables solutions to be found faster.
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Figure 5: Example task allocation and scheduling found from the multi-objective test case
with 65 tasks and 10 analysts. Each row shows the allocation for a given analyst through-
out their given workday. Tasks are coloured by priority (purple: high, pink: medium,
orange: low). The available workhours are given by the white solid lines. Note: work
breaks are not explicitly drawn onto the schedule with expected completion times com-
pensating for breaks through the day.

Another important purpose of the decision-support system is to iden-
tify significant pressures on the workforce (i.e., when even optimised solu-
tions may be expected to take significantly longer than the total available
workhours for a team). Providing insights into the available allocations, along
with specifics about the severity of the potential overload (or underload) is
therefore critical to inform business processes (e.g. whether the situation can
be solved by over-time or severe enough to consider bringing in analysts from
external teams).

An important adaptation to our formal model, is the ability to consider
tasks which are pre-allocated or have prior completion. As a result, we are
able to periodically (or on-demand) re-evaluate the allocation and provide
updated recommendations. Throughout the day progress will naturally fluc-
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tuate by analyst relative to initial expectations and operational circumstances
may change. Therefore, the ability to efficiently re-optimise task allocations
to improve business and well-being needs is critical. Additionally if signif-
icant pressures are identified and external members are brought in to help,
again, quick re-allocation is required.

In this manuscript, we have demonstrated one example of a metaheuristic
(i.e., GA) can quickly converge on solutions with significant improvements
on current working practice. Combinatorial optimisation with multiple ob-
jectives makes GA a popular choice, however, we note the validity of other
approaches such as swarm intelligence (e.g., firefly, particle swarm optimisa-
tion: PSO) which have shown increasing popularity in recent years. In the
instance of PSO, we note one potential advantage is the ability for faster con-
vergence and more diversity in search trajectories (due to momentum effects)
[59]. A promising variant of GAs for faster convergence have been those with
adaptive mutation and crossover rates (e.g., [60]). Here, we demonstrate
taking an adaptive mutation strategy (dependent on the fitness of the so-
lution) results in faster convergence on higher quality solutions relative to
other strategies (e.g., scramble). We look to future work to compare the
performance of other metaheuristics utilising our formal model.

Finally, we demonstrate that a formal model explicitly optimising for
well-being can still find solutions which still significantly improve efficiency
relative to current working practice (Figure 4). Even with potentially con-
flicting goals, this approach recognises the two-way psychological relationship
between employer and employee, outside of the legal and formal framework
that an employee simply obtains work for fiscal reward [22]. Developing work-
ing practices that better the ‘pyschological contract’ between employee and
employer (e.g., allowing workers to define preferred tasks) enables workers to
view their relationship as a two-way transaction, rather than one imposed
against their interests [20]. In turn, finding solutions which improve efficiency
benefit both the business and workers by reducing the potential overburden
of overtime. In future work we look to develop more detailed mathemati-
cal representations of well-being which quantify factors such as short-term
satisfaction and personal skill development.

6. Conclusions

Financial service sector companies routinely check and resolve errors
across huge data sets, putting significant pressure on workforces with in-
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creasingly manual tasks. Automation is critical to ensure tasks are allocated
efficiently and fairly. In this article we introduced a formal model leveraging
a GA to allocate and schedule tasks across a workforce. Through definition of
objective functions for completion probability and worker reward, we present
a methodology to allocate tasks to both maximise business orientated goals
and worker well-being. The GA significantly outperforms baseline heuris-
tics and scales intermediately to a range of typical working circumstances,
demonstrating the potential for metaheuristic approaches. This formal model
is intended to service workforces at a global top 10 asset manager. Finally,
we note the applicability of our formal model to other domains, in particular
medical triage within an emergency department which we look to in future
work.
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