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Humans excel at categorizing objects by shape. This facility involves
identifying shape features that objects have in common with other
members of their class and relies—at least in part—on semantic/cognitive
constructs. For example, plants sprout branches, fish grow fins, shoes
are moulded to our feet. Can humans parse shapes according to the
processes that give shapes their key characteristics, even when such
processes are hidden? To answer this, we investigated how humans
perceive the shape of cells from the olfactory system of Xenopus laevis
tadpoles. These objects are novel to most humans yet occur in nature
and cluster into classes following their underlying biological function. We
reconstructed three-dimensional (3D) cell models through 3D microscopy
and photogrammetry, then conducted psychophysical experiments. Human
participants performed two tasks: they arranged 3D-printed cell models by
similarity and rated them along eight visual dimensions. Participants were
highly consistent in their arrangements and ratings and spontaneously
grouped stimuli to reflect the cell classes, unwittingly revealing the
underlying processes shaping these forms. Our findings thus demonstrate
that human perceptual organization mechanisms spontaneously parse the
biological systematicities of never-before-seen, natural shapes. Integrating
such human perceptual strategies into automated systems may enhance
morphology-based analysis in biology and medicine.

1. Introduction
What makes a shoe a shoe and not a fish? Whenever we look at a novel
object, we effortlessly recognize what group or class it belongs to based on
our experience with previous objects. This facility involves identifying key
features of the object’s three-dimensional (3D) shape that it has in common
with other members of its class. These shared shape features are probably
due to the shared processes that generated the objects in the first place.
For example, plants sprout branches and leaves, fish grow a tails and fins
to propel them through water, and shoes are moulded into a shape that
matches the structure of human feet. Given that humans are able to parse
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shape features according to their physical causes [1–7], this suggests that we may be able to rely on visual 3D shape perception
to intuit the shared origins of objects. Yet, these abilities rely—at least in part—on cognitive and semantic processes and
constructs [8]. What happens instead when we are presented with completely novel objects of unknown origin? Remarkably, a
wealth of previous research has demonstrated that humans can classify novel objects from a few samples [9–13]. For example,
Morgenstern et al. [11,12] have shown that humans perform such ‘one-shot’ categorization of novel object classes by relying both
on simple heuristics as well as deeper analyses of shape characteristics, which may involve inferring the causal origin of an
object’s form. However, most of this previous research has used artificially generated stimuli, where the generation processes
were constructed ad hoc by the experimenters. This is problematic, as it pre-assumes which shape features make up a class. Yet,
natural objects can have extremely complex causal origins, leading to an almost unlimited range of possible diagnostic features
for organizing them into classes. In this context, biological entities make particularly fascinating objects of perception, because
they have richly structured shapes that result from exquisitely complex morphogenetic processes. It thus remains unknown
whether the human visual system is able to recover the underlying biological origin of objects it has never seen before. This
question is challenging to answer, however, since humans have extensive experience with both natural and artificial generative
processes in our everyday environment. We thus turned to an environment alien to most: the microscopic realm of cells (figure
1).

More specifically, we investigated how humans perceive and parse the 3D shape of cells from the olfactory epithelium of
tadpoles of the African clawed frog Xenopus laevis [14]. These cells belong to different classes depending on their biological
purpose (figure 1A). The olfactory epithelium contains three main cell types: basal cells, supporting cells and olfactory sensory
neurons [15]. Basal cells—found close to the basal lamina—are central to regenerative processes [16–18] in the vertebrate
olfactory system and may thus undergo mitosis (i.e. cell division). These dividing cells may then develop into either olfac-
tory sensory neurons or supporting cells. Immature cells that have just undergone mitosis and have yet to develop clearly
distinguishing features are classed as indeterminate. To obtain 3D reconstructions of cells belonging to each of these classes,
we acquired two-photon microscopy images of individual cells [19–21] and input these into 3D photogrammetry software
u-shape3D [22], which created 3D mesh models of each cell (figure 1B). We then 3D printed these 3D cell models at a scaling
factor of 1 : 1000 (figure 1C). Finally, we used these 3D-printed objects and 3D renderings as stimuli in human behavioural
experiments (figure 1D,E).

In order to classify the cells according to their underlying classes, biologists often visually assess microscopy images of the
cells [23]. These visual classifications primarily rely on identifying the stereotypical morphology of each cell class [14,24]. For
example, basal cells tend to be small, round and bulbous. Supporting cells and olfactory sensory neurons are instead elongated
as they extend from the basal lamina towards the nasal cavity. Furthermore, olfactory sensory neurons have stereotypical axonal
and dendritic projections, whereas supporting cells exhibit a conical shape related to their structural purpose [14,15]. Dividing
cells are often easily identifiable as they appear to be made of two body segments. Such manual, visually based classifications
can be an important step in neurobiological investigations; yet, they are time consuming and prone to human error [25]. It
would thus greatly benefit neurobiological science if the process of morphology-based cell classification could be improved
and/or automated [26].

The purpose of this study was thus twofold, spanning two very distinct disciplines. Our first aim was to test whether human
perceptual organization mechanisms parse 3D shapes according to the processes that give shapes their key characteristics,
even when these processes are completely hidden. Additionally, we sought to leverage this human facility to develop and
improve morphology-based cell classification systems. To achieve these goals, we designed two behavioural tasks. We designed
a multi-arrangement task [27] (figure 1D) in which we asked participants to arrange 3D-printed objects by how similar they
appeared in shape. This task was meant to reveal how naive observers would group novel stimuli, and whether such groupings
might reflect the biological origin of the stimuli. We then designed a rating task (figure 1E) which probed eight hand-selected
visual feature dimensions (figure 1F). This tested whether we could define ad hoc shape features that were related to human
similarity judgements and that could also be used to differentiate the cell classes.

2. Results
2.1. Experiment 1: multi-arrangement task
In Experiment 1, we used a multi-arrangement task (figure 1D) to investigate whether naive observers would spontaneously
group novel stimuli, and whether such groupings might reflect the biological origin of the stimuli. We asked participants to
arrange 3D-printed objects by similarity. All participants were tested with the same set of 30 stimuli (6 per class). Participants
performed this multi-arrangement task once at the beginning of the experiment (first session) and once at the end (second
session). Between these two sessions, participants performed a rating task (figure 1E, discussed below).

2.1.1. Participants spontaneously grouped novel stimuli, and groupings were related to the biological cell classes

To visualize participant arrangements, we aligned multi-arrangement data using Procrustes analysis. Specifically, we rigidly
translated and rotated the stimulus arrangements so they would match as closely as possible across sessions and participants,
regardless of their orientation on the workbench. Upon first visual inspection, how participants arranged the stimuli seemed
consistent across sessions and broadly corresponded to the underlying ground truth cell classes (figure 2A). To measure how
similarly participants grouped the stimuli, we computed representational dissimilarity matrices (RDMs) [27] for each session
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and for every participant. RDMs were constructed by computing pairwise Euclidian distances between every possible stimulus
combination, normalized to the maximum distance between stimuli. The patterns of correlation between RDMs across sessions
and participants represent the agreement between these different arrangements. The RDMs from one example participant
(figure 2B) illustrate the high internal consistency across sessions (r = 0.94, p < 0.001, for the example participant in figure 2B).
The similarity of the example participant’s RDMs to the group average RDM (figure 2C, left) also illustrates how different
participants produced similar arrangements. These robust within- and between-participant agreements held true across our
sample (figure 2D, mean within-participant r = 0.87, p < 0.001, mean between-participant r = 0.66, p < 0.001).

Individual participants thus relied on specific strategies when arranging the stimuli, and these strategies were similar across
participants. This suggests that there may be a common set of features that participants used to judge similarities between 3D
shapes. These features might in turn be related to the biological origin of the stimuli. If this were true, participants should have
grouped the stimuli lawfully according to their underlying cell classes. To test this, we computed the dissimilarity matrix for
perfect ground truth classification and compared it with the average RDMs of all participants from experiment 1. As shown
in figure 2C, the group average participant RDM (left) exhibits some—albeit weak—structure along the diagonal which aligns
with the cell class RDM (right), giving rise to the weak but significant correlation between participant arrangements and
biological cell class (figure 2D, r = 0.29, p < 0.001). This correlation was clearly not as strong as the between-subject correlation,
but this is possibly because the pure cell class RDM was not designed to capture the patterns of similarity across cell classes.
For example, it is possible to construct a more complex cell class model by making biologically plausible assumptions that: (i)
basal cells are more similar to dividing cells than to other cells (since dividing cells basal cells undergoing mitosis), (ii) it is more

Figure 1. Using novel but natural stimuli to probe human 3D shape perception. (A) Experimental stimuli were 3D reconstructions of cells from the olfactory epithelium
of Xenopus laevis tadpoles. The cell types reconstructed included basal cells, dividing cells, olfactory sensory neurons, supporting cells and a set of indeterminate cells
that could not be decisively assigned to any of the previous types. We reconstructed 30 individual stimuli, 6 stimuli per class. (B) For each of these cell types, 3D mesh
model reconstructions were obtained through 3D microscopy. (C) These 3D mesh models were then 3D printed, and a spherical retroreflective marker was glued onto
each object. (D) During the multi-arrangement task, participants were seated at a workbench imaged from multiple angles using passive marker tracking cameras. The
experimenter placed the 3D-printed stimuli in random order in a circle on the workbench. Participants were asked to rearrange the stimuli by placing them anywhere
on the workbench according to their shape similarity. The final object positioning was reconstructed and recorded using a position-tracking system. (E) In the rating
task, participants viewed stimulus videos on a computer monitor. Videos were renderings of each object rotating in depth. Participants rated the stimuli along each of
eight hand-selected feature dimensions, specified in (F).
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likely for dividing cells to be turning into supporting cells rather than olfactory sensory neurons, and (iii) that indeterminate
cells are most likely to be immature olfactory sensory neurons. The correlation between the group average participant RDM and
this more complex biological cell class model increases to r = 0.49 (p < 0.001). However, we report the simple cell class model in
our primary analyses since any more complex model involves making post hoc decisions about the relative distances between
cell classes.

Between the first and second multi-arrangement sessions, participants preformed a 30 min rating task in which they
rated the same stimuli along a set of visual feature dimensions. We wondered whether the rating task might have induced
participants to change strategies between sessions and arrange the stimuli according to the same set of rated dimensions. If this
were the case, we might expect between-participant agreement to be stronger in the second session compared with the first
session. Therefore, we calculated between-participant agreement for the first (r = 0.61, p < 0.001) and second sessions (r = 0.58, p <
0.001) separately (figure 2D) and observed that between-participant agreements did not differ significantly across sessions (t(15)
= 0.975, p = 0.345). We thus found no evidence that the rating task influenced participant arrangement strategies.

2.2. Experiments 1 and 2: rating task
We designed a computer-based rating task which probed eight hand-selected visual feature dimensions. Participants viewed
movie renderings of individual 3D shape stimuli and rated each stimulus along each dimension. Stimulus objects were the
same as those used in the multi-arrangement task. We selected the feature dimensions to span a perceptual space that would
plausibly cover the 3D shape characteristics of the cell stimuli. In experiment 1, participants performed this rating task between
the first and second multi-arrangement sessions. We tested whether participants could reliably rate the stimuli along these
feature dimensions, and whether performance at the rating task was as reliable as participant arrangements. We also assessed
whether feature ratings were related to how participants arranged the stimuli in the multi-arrangement task. In experiment 2,
we verified whether a different set of participants could perform feature ratings through vision alone, i.e. without having ever
touched or manipulated the 3D objects. Finally, we used principal component analysis (PCA) to examine the structure of the
feature space and tested whether the selected feature dimensions were related to the ground truth biological cell class.

2.2.1. Participants could reliably rate novel stimuli along hand-selected feature dimensions

Figure 1F lists the eight hand-selected feature dimensions we investigated. Participant ratings qualitatively aligned with the
feature dimensions. For example, the stimuli increase in size if we organize them according to average participant ‘size’ ratings
(figure 3A). If instead we organize the stimuli according to the average participant ‘spikiness’ ratings, we can observe how
the surface texture visually changes from smooth to spiky (figure 3B). Furthermore, participants agreed with one another on
each of the feature dimensions (figure 3C), meaning that different participants gave similar ratings to each of the stimulus

Figure 2. Multi-arrangement results. (A) Multi-arrangement data for one example participant in the first (left) and second sessions (right) of the multi-arrangement
task from Experiment 1. Data from the two sessions were aligned using Procrustes analysis. Different colours represent different cell classes: (BC) basal cells; (DC)
dividing cells; (OSN) olfactory sensory neurons; (SC) supporting cells, (I) indeterminate cells. (B) Representational dissimilarity matrices (RDMs) for the first (left) and
second sessions (right) from the same example participant. Dissimilarity was defined as the normalized Euclidian distance between stimulus pairs. Coloured bars
along the x- and y-axis of the RDMs colour-code the cell classes. (C) Mean RDM averaged across participants and sessions (left) compared with the ground truth
classification RDM derived from the cell classes. Note that we excluded indeterminate cells, as these may belong to different biological cell classes. (D) Within and
between-participant agreement in the multi-arrangement task and agreement with the ground truth cell classes. Bars represent the mean across participants; error
bars represent the 95% bootstrapped confidence intervals of the mean.
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objects. Indeed, the between-participant level of agreement for 7/8 feature dimensions was as good as or better than the
between-participant agreement in the multi-arrangement task.

2.2.2. Perceptual ratings almost perfectly predicted how participants arranged stimuli in the multi-arrangement task

To assess whether feature ratings were related to how participants arranged the stimuli in the multi-arrangement task, we
computed RDMs for each rating dimension and for every participant. We then correlated these RDMs with the average RDM
from the multi-arrangement task. We further fit a linear model regressing individual participant rating RDMs onto the average
multi-arrangement RDM. Figure 3D shows that ‘size’ and ‘spikiness’ are the dimensions that best explain the participant
arrangements. It is perhaps interesting to note that these were also the rating dimensions that participants agreed on most
strongly. Furthermore, a simple linear combination of the feature ratings could reliably explain participant arrangements.
Indeed, the best-fitting model correlated with participant arrangements as strongly as the between-participant agreement in the
multi-arrangement task (which here we take as a measure of the noise ceiling). We cross-validated the model using a different
set of participants in experiment 2 (see below).

2.2.3. Participants could rate the stimuli using vision alone

We wondered whether haptically manipulating the printed 3D models could have influenced participant behaviour in the
rating task. To test this, we thus ran a second experiment. We asked a separate set of participants to perform only the
feature rating task, without ever physically interacting with the physical 3D stimuli. We then correlated the rating data
of individual participants from experiment 2 to the average ratings across participants from experiment 1. The strong and
significant correlations between participants and across experiments (figure 3E) suggest that the observers’ behaviour on the
rating task was not influenced by the multi-arrangement task. Furthermore, we took the coefficients of the model fitted to the
experiment 1 data, which were based on ratings from experiment 1, and applied them to participant ratings from experiment
2. This provided cross-validated predictions of participant arrangements from experiment 1. These predictions could explain

Figure 3. Between-participant agreement within and across experiments and tasks. (A,B) Stimuli ranked 1st, 7th, 15th, 22nd and 30th from the average participant
ratings of the ‘size’ and ‘spikiness’ dimensions. (C) Between-participant agreement for each of the rating dimensions in experiment 1. As reference, the darker grey bar
displays the between-participant agreement for the same participants in the multi-arrangement task. (D) Agreement between rating and multi-arrangement data in
experiment 1. (E) Agreement between participant ratings across experiments 1 and 2. (F) Agreement between rating and multi-arrangement data across experiments
1 and 2. Bars represent the mean across participants; error bars are the 95% confidence intervals of the mean. The grey-shaded region in D and F represents the
noise ceiling (i.e. the upper and lower estimates of the between-participant agreement in the multi-arrangement task, corresponding to the upper bound of possible
agreement across tasks).
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participant arrangements from experiment 1 nearly as accurately as the participant ratings from experiment 1 itself (figure 3F).
This suggests that visual shape perception was sufficient to explain how participants arranged the stimuli in experiment 1.

2.2.4. Rating data spanned a multi-dimensional space that linearly separated objects into their underlying cell classes

We next tested to what extent the rating dimensions we chose were independent and examined the structure of the perceptual
space they spanned. Figure 4A shows overall moderate-to-low correlations between the feature dimensions, whereas figure 4B
shows that nearly all eight PCA dimensions are necessary to account for the variance in the rating data. These results suggest
that the feature dimensions we selected were at least partly independent. We next fit a multiple linear regression model to
attempt to predict cell class from the PCA transformed rating data. The fitted model significantly correlated with cell class, also
slightly better than the multi-arrangement data (figure 4C). Indeed, cell class appeared to be visually separable when projected
onto the first two PCA dimensions (figure 4D). Furthermore, cell class in PCA space appeared to be more separable but less
clustered than in the multi-arrangement data (figure 4E), which explains why the correlation between feature rating data and
cell class was still relatively low. However, these patterns suggested that a linear classifier should be able to tease apart cell class
from both rating and multi-arrangement data.

2.3. Experiments 1 and 3: recovering cell class from multi-arrangement versus rating data in naive observers and
experts

One of the goals of this project was to test whether we could leverage human visual 3D shape perception to classify cell stimuli
into their underlying biological classes. We were also interested in whether participants need to be familiar with the underlying
cell classes to provide data that could tease these classes apart. For this reason, we ran a final experiment 3 in which we asked a
group of five expert biologists—all highly familiar with these specific cell types—to perform the same tasks performed by naive
participants in experiment 1. In previous analyses, cell class appeared to be—at least to some extent—linearly separable from
the multi-arrangement and rating data. We, therefore, used support vector machine classifiers to attempt to recover cell class
from multi-arrangement and rating data in both naive participants and experts.

2.3.1. Support vector machine classifiers recovered cell class across tasks and participant groups

We used a cross-validation procedure to gauge whether support vector machine classifiers could predict cell class from
multi-arrangement and rating data provided by naive participants (experiment 1) and expert biologists (experiment 3). For
each data type and participant group, we trained classifiers on 20 cell stimuli (five stimuli per each cell class, excluding the
indeterminate cells) and tested whether the classifiers correctly predicted the cell class of the four left-out cells. We repeated this
procedure for all possible combinations of four left-out cells. Each iteration, we also queried the classifiers to predict the class of
the indeterminate cells.

The average human data, projected in two-dimensional (2D) space, appeared qualitatively similar across tasks and partici-
pant groups (left subpanels of figure 5A–D). Cells belonging to the same class were near one another, and the spatial relations
between cell classes were preserved. For this reason, cross-validated classification accuracy was well above chance across tasks
and participant groups (figure 5E). The cross-validated confusion matrices (right subpanels of figure 5A–D) show which cell
classes were most easily confused with one another. Basal cells (dark blue) and olfactory sensory neurons (green) were rarely
misclassified. Dividing cells (light blue) and supporting cells (orange) were instead more easily confused with each other. This
makes sense from a biological viewpoint, as dividing cells may be turning into supporting cells. Furthermore, across all datasets
the indeterminate cells (white) were predominantly classified as olfactory sensory neurons. This suggests that in our stimulus
set the category of the indeterminate cells consisted predominantly of immature olfactory sensory neurons, which already

Figure 4. The structure of the rating data. (A) Multi-collinearity matrix showing the correlations between the eight feature dimensions probed by the rating task.
(B) Scree plot displaying the variance explained (black curve) and cumulative variance explained (grey bars) the principal components of the rating data. (C) Agreement
of the multi-arrangement and rating data with the ground truth cell classes. (D) The average rating data projected in the first two principal components separate the
known cell classes. (E) The average multi-arrangement data are more clustered but do not separate cell class as clearly.
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displayed shape features similar to those of the mature cells, such as the characteristic axonal and dendritic protrusions. This
possibility is corroborated by the fact that expert biologists grouped 5/6 of the indeterminate cells with the olfactory sensory
neurons in the multi-arrangement task (figure 5C).

For both experts and naive participants, cross-validated classification accuracy for the classifiers trained on the rating data
was higher compared with the classifiers trained on the multi-arrangement data (figure 5E). This was in part due to the higher
dimensionality of the rating data. However, this pattern held true when we performed the same analyses using only the first
two PCA dimensions of the rating data. Furthermore, it is striking that the classification accuracy obtained from the naive
participants’ data was nearly as high as that obtained from the experts’ data. These results suggest that a feature rating task may
be preferable to a spatial arrangement task for classifying cell stimuli into their underlying biological classes. Furthermore, no
knowledge of the origin of the stimuli is required to rate visual shape features that can distinguish the different cell classes.

3. Discussion
Humans are able to visually identify and categorize objects based on, among other things, the objects’ perceived 3D shape
[1–13]. Here, we investigated this ability by using a unique set of stimuli that have a common biological origin but are unknown
to most: 3D models of cells from the olfactory system of Xenopus laevis tadpoles. We asked human participants to manually sort
3D-printed versions of these stimuli and rate animated renderings along a set of predetermined feature dimensions. Human
arrangements and ratings were highly reliable within and across participants and tasks. Participants’ arrangements clustered
systematically, and indeed biological cell class was linearly decodable from both arrangement and rating data.

3.1. Can humans leverage generative models to infer the causal origin of never-before-seen shapes?
Previous studies have demonstrated that humans are able to make precise categorization decisions based on a small number
of examples [9–13]. Such ‘one-shot’ categorization of novel object classes may involve inferring the causal origin of the objects’
form [11,12]. However, previous research has demonstrated that these abilities may rely in part on cognitive and semantic
processes and constructs [8]. For example, Spröte et al. [4] used both familiar and unfamiliar 2D shapes that appeared to be
‘complete’ or ‘bitten’ and asked participants to place dots to identify their perceived symmetry axis. Participant responses for
‘complete’ and ‘bitten’ objects were similar, suggesting participants could identify and discount the process that generated the
object deformations (i.e. the ‘biting’). To study object categorization independently of such higher level cognitive constructs
(such as the notion of an object part being ‘bitten-off’), some researchers have used discriminative tasks with purely artifi-
cially generated stimuli and artificially designed generative processes [28]. Discriminative tasks such as object categorization,
however, have a crucial problem when it comes to pre-selected stimuli. The experimenter determines the categories or, in

Figure 5. Classification analyses (A) Left: multi-arrangement data from naive participants from experiment 1, averaged across participants. Right: cross-validated
confusion matrix for a support vector machine trained to classify cell class from the multi-arrangement data. (B) Left: rating data from naive participants from
experiment 1, projected in PCA space and averaged across participants. Right: cross-validated confusion matrix for a support vector machine trained to classify cell
class from the PCA-projected rating data. (C,D) As A, B, except for expert biologists from experiment 3. (E) Cross-validated classification accuracy for all support vector
machine classifiers trained on different data and participants. Bars are means, error bars are 95% confidence intervals. Dashed-line represents chance performance;
grey lines show best-achievable classification accuracy.
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the case of artificial stimuli, the relevant features and/or generative processes that determine ‘ground truth’ category labels.
Then, participants typically compare artificial objects to one another, thus constraining the investigations to the experimenters’
expectations—reflected in the selected features and/or artificial generative processes.

Tiedemann et al. [13] in part overcame these limitations using a drawing task in which participants viewed 2D ‘exemplar’
shapes and then created their own ‘variations’ of these shapes belonging to the same class. The participant-drawn ‘variations’
were not mere copies of the ‘exemplars’ yet were strikingly similar across participants and shared distinctive features. Partici-
pants thus behaved as if they were using common generative models to parse the ‘exemplars’ into categories. However, even in
this study the ‘exemplars’ were artificially generated by the experimenters, and the results were potentially constrained by the
participants’ drawing skills. These findings could thus still reflect higher level cognitive processes shared between participants
and experimenters.

Our experimental design addressed this potential issue by asking participants to arrange—according to the perceived 3D
shape similarity—novel real-world objects which fell into unbiased ground truth categories. In line with Tiedemann et al. [13],
here we found that participants produced robust and consistent arrangements internally as well as between each other. Some
bias potentially remained, as the object categories tested were still selected by the experimenters, meaning that the choice
of categories might reflect experimenter biases regarding visual distinctiveness or class separability. Nevertheless, participant
judgements broadly agreed with the underlying object classes, even though we did not explicitly ask participants to uncover
such classes. Given that these classes arose from different natural generative processes, our findings corroborate the notion that
humans can recover such generative processes and may use generative models to analyse novel shapes.

3.2. A high-dimensional shape feature space
Our results thus demonstrate that humans can visually tease apart the underlying biological origin of never-before-seen stimuli.
What substrate does this ability rely on? Previous literature has proposed that processes of perceptual organization, such as
the decomposition of shapes into different parts according to their geometric properties [29–34], are a key aspect of segmenting
and representing shapes. Specifically, humans might represent objects as points in a high-dimensional feature space in which
objects that are close together belong to the same class, and objects that are far apart belong to different classes [35–38]. To
operationalize this hypothesis, Morgenstern et al. [11] developed ShapeComp, an image-computable model—based on over
100 2D shape descriptors—capable of accurately predicting human shape similarity judgements. These authors then used
ShapeComp to study how humans categorize novel object shapes. When participants were asked to categorize novel objects into
different classes and were given multiple exemplars of each class, participants relied on a fixed set of ShapeComp features to
perform the task. When participants were given just one exemplar per class instead (i.e. one-shot categorization), they relied
on a more sophisticated strategy that involved flexibly reweighting features on a stimulus-by-stimulus basis. This suggested
that the feature space is more important than the specific features it is composed of. Our results are consistent with, and
substantially extend, these previous findings obtained on 2D shape silhouettes derived from animal shapes. Notably, our
arrangement task was neither a one-shot categorization task, nor could participants rely on multiple class exemplars as the
stimuli were novel and we did not explicitly tell participants that the stimuli belonged to different classes. Nevertheless, we
were able to define a set of ad hoc visual features that were predictive of participant shape similarity arrangements. This set of
hand-selected features was also sufficient to tease apart the stimulus classes. Interestingly, the two most predictive features were
‘size’ and ‘spikiness’, even though these features differ conceptually—‘size’ is an atypical feature because shape is typically
thought of as a scale invariant, while ‘spikiness’ is a more localized feature among the ones included (such as elongation, limbs
or symmetry). This underscores the flexible and context-sensitive nature of human visual perception, suggesting that observers
dynamically reweight shape features based on their discriminative relevance within a particular stimulus set. Therefore, our
results demonstrate that our participants’ ability to organize novel stimuli according to their hidden underlying causal origin
relies on a highly flexible feature space that can be reweighted to reflect the statistical properties of the stimulus set.

However, we recognize that by using predefined, hand-selected dimensions, we introduce the risk of experimenter-induced
biases, somewhat conflicting with our aim to minimize such biases. Hebart et al. [39] provide an elegant data-driven alterna-
tive, in which relevant perceptual dimensions emerge directly from similarity judgements, which are subsequently validated
through explicit feature ratings. Due to the relatively small size of our stimulus set, we could not reliably adopt this unbiased
approach in the current study. Future research utilizing larger stimulus sets and more extensive sampling could use such
fully data-driven methods to rigorously identify and validate the precise perceptual dimensions underlying human shape
perception.

3.3. Bringing together feature-based and generative models of shape perception
Spröte et al. [4] suggest that the underlying generative processes are a key component to structure and organize perceived
shape and a possible strategy to make assumptions of how other members of the same class might look. Fleming and Schmidt
[28] instead propose that it is the objects’ statistical features that are responsible for their correct identification, and not the
generative process itself. Taken together with this previous research, our findings suggest that both could be true. Specifically,
in our stimulus set the members of each cell class share a common growth process that probably accounts for the specific
shape features shared by members of a same cell class. Mental generative models could thus operate directly in a shape feature
space, by first uncovering the statistical feature regularities within a stimulus set, and then reweighting the feature space to
reflect these regularities. Then, tasks requiring quick judgements of novel shapes (e.g. one-shot object categorization) could be
performed by assessing the plausibility of items and trajectories within this reweighted shape feature space.
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Note, however, that while our findings are consistent with generative models playing a role in visual perception, our
study was not explicitly designed to differentiate between generative and discriminative perceptual mechanisms. One prom-
ising approach to explicitly test these mechanisms could involve leveraging deep learning [40–58]. For example, one could
train discriminative deep neural networks [41,43–45,51,52,55,56] (e.g. convolutional neural networks optimized explicitly for
classification) as well as generative deep learning models [46–50,53,54,57,58] (e.g. generative adversarial networks) on novel
stimulus categories such as the biological shapes used here. After training, examining the representational structure in the latent
spaces of these models would clarify which perceptual strategy—generative, discriminative or a combination of both—better
aligns with human similarity judgements. Such a computational approach, which would require larger training sets than the
stimulus set available for the current study, would nevertheless enable future research to quantitatively dissociate or integrate
these perceptual mechanisms in human visual cognition.

3.4. Biological cell classification
Our findings relating to the visual analysis of cell shape may also be of interest to the research field of biological cell clas-
sification. To give just a few examples, cell shape guides the formation of healthy cardiac chambers [59], dictates whether
individual cells grow or die [60] and can help predict disease progression [61]. The analysis of cell morphology is thus of
great interest across biology and medicine, and although researchers have been developing automated methods to conduct
cell shape analysis, most previous attempts have focused on 2D images [62,63]. The u-shape3D [22] pipeline used in this work
to reconstruct 3D cell shapes from two-photon microscopy images of individual cells is one of the first tools for cellular 3D
morphometry, but this field is still in its infancy. Our work suggests that leveraging the computational principles of human
visual 3D shape processing may be a way forward. Specifically, simple machine learning approaches could be used to recover
cell class from human shape feature ratings, or from stimulus-computable quantities that model these.

Examining the spatial organization of participant arrangements and ratings in figure 5, is even more intriguing. For example,
we can note that basal cells are adjacent to dividing cells, and dividing cells are in turn adjacent and overlapping with
supporting cells. These patterns appear to reflect the underlying biology (figure 1A), as dividing cells are in fact basal cells
undergoing mitosis to replenish other cell types in the olfactory epithelium [14]. Olfactory sensory neurons are—for the most
part—clustered away from other cell types. This is probably due to their characteristic axonal and dendritic protrusions, which
make them saliently different from the other cell classes [15]. These protrusions develop only after cell division, which is
probably why the dividing cells do not overlap with the olfactory sensory neurons. Furthermore, the indeterminate cells seem
to be located between supporting cells and olfactory sensory neurons. This reflects the fact that the indeterminate cells are
probably immature cells developing into either supporting cells or olfactory sensory neurons. These observations reveal an
even deeper insight: we may be able to leverage the principles of human 3D shape processing to map out the life cycle and
developmental trajectories of cells within their environment.

3.5. Why are the data not perfectly clustered?
In our study, participants had no prior knowledge of the biological processes that shaped the objects and were asked to arrange
the stimuli purely based on their visual similarity. While the natural cell classes were not perfectly mirrored in the similarity
arrangements, as we note above, more nuanced patterns emerged in the data (figure 5). This only partial alignment with
biological classification is thus not surprising given that many of these cell classes share a common morphogenetic history. For
example, dividing cells can develop into supporting cells or olfactory sensory neurons (figure 1A). Such shared developmental
pathways may have made it difficult for participants to fully differentiate between distinct cell classes based solely on shape.
Moreover, when selecting the stimuli, we focused on cell class but not on the cells’ specific degree of maturity. Immature cells,
or even cells in the process of dividing, may introduce ambiguity into the perceived shape features, making it more challenging
to identify their function. This overlap in statistical features across developing or dividing cells probably blurred the boundaries
between classes in the participant arrangements. Additionally, while experts performed slightly better, their data were not
significantly more discriminative of cell class than the data from naive participants. This may be due to the fact that experts,
although trained to classify cells, were still arranging stimuli based on visual similarity, rather than explicitly grouping them
into known biological categories.

3.6. Future directions
Our study opens up many avenues for future research. For example, further investigation is needed to determine the role of
tactile manipulation and exploration [64,65] in constructing internal generative models of 3D shape. Additionally, participants
in our study might have been able to group stimuli more reliably according to their cell class if they had been explicitly asked
to uncover these underlying groups. In particular, expert biologists usually use more than just shape features when classifying
cells, by taking into account a cell’s location and orientation in the olfactory system to determine its type and function [14].
Incorporating these contextual cues in future experiments might improve classification accuracy for both experts and naive
participants. Furthermore, biologists often observe cells through various imaging systems and in different environments, which
probably influences their classification process in ways that were not captured by our task. On the other hand, we acknowledge
that our selection of visually distinctive stimulus classes facilitated participants’ spontaneous discovery of the underlying
biological categories. Our findings thus demonstrate human perceptual strategies specifically in scenarios where morphological
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regularities are visually apparent. Nonetheless, this study provides a proof of concept that human 3D shape perception can be
leveraged to classify and map out different cell classes in biological systems.

Moving forward, several strategies could be used to enhance this approach. First, crowdsourcing [66] could be used to
gather a broader set of perceptual data, possibly revealing additional common strategies for grouping unfamiliar biological
shapes. Second, biologically inspired computer vision systems [50,53,67–70] could be developed or adapted to replicate human
strategies for parsing 3D shapes and distinguishing between subtle biological features. These systems could eventually surpass
human capabilities in tasks like cell classification by incorporating contextual data or learning to recognize features that are not
immediately obvious to the human eye.

In conclusion, by focusing on objects that exist in nature but with which humans have limited experience—i.e. cellular
structures—we were able to demonstrate that human visual perception can successfully categorize novel 3D shapes based
on their underlying biological origins. Our approach reveals the flexibility of the human perceptual system in organizing
unfamiliar objects according to shape features, even in the absence of contextual information. These findings provide a
new understanding of how humans visually process 3D shape and suggests practical applications in fields like biology and
medicine, where leveraging human perceptual strategies could aid in automating tasks such as cell classification and morpho-
logical analysis.

4. Methods
4.1. Participants
Participants were students and staff from Justus Liebig University Giessen. All participants had normal or corrected to normal
vision and participated in the experiments for course credit or financial compensation (at a rate of 8 Euro h−1). We recruited
16 naive participants for experiment 1 (12 female, mean (range) age 23 (18–27) years), 15 naive participants for experiment 2 (9
female, age 26 (20-–35) years), and 5 ‘expert’ participants for experiment 3 (4 female, age 28 (25–32) years). Expert participants
were current or past members of the Animal Physiology and Molecular Biomedicine research group at the Institute of Animal
Physiology of Justus Liebig University Giessen. All participants provided written informed consent. All procedures were
approved by the local ethics committee of Justus Liebig University Giessen and adhered to the tenants of the sixth revision of
the Declaration of Helsinki (2008).

4.2. Stimuli
Experiments included two types of behavioural tasks, a multi-arrangement task and a rating task. The stimuli used in all
experiments and tasks were 3D reconstructions of real cells from the olfactory system of Xenopus laevis tadpoles. These
reconstructions were generated by the team of expert biologists led by Professor Ivan Manzini at the Department of Animal
Physiology and Molecular Biomedicine at Justus Liebig University Giessen. All animal procedures were performed following
the guidelines of laboratory animal research of the Institutional Care and Use Committee of the Justus Liebig University of
Giessen (649_M; GI 15/7 Nr. G 2/2019).

The cell reconstructions could belong to different cell types found in the olfactory epithelium of Xenopus tadpoles. We
selected 30 cell stimuli for our experiments, such that they would be equally distributed into four known cell classes plus one
indeterminate set. The four known cell classes were basal cells, dividing cells, olfactory sensory neurons and supporting cells.
Cells were classified as belonging to these classes through imaging investigations performed by the expert biologists. Cells
belonging to the indeterminate set were those that could not be reliably classified by the experts into any of the known groups.
These indeterminate cells might have been, for example, immature versions of olfactory sensory neurons or supporting cells.

Cell reconstructions were obtained through 3D microscopy. Specifically, 3D-microscopy images were processed using
u-shape3D [22], a software package to reconstruct and analyse 3D cell morphologies. The reconstructions were created as 3D
triangulated mesh models. The mesh models were further processed for rendering and 3D printing using Blender 2.91 software
(The Blender Foundation, Amsterdam, The Netherlands). We removed non-manifold edges, edges with no length, faces or face
corners with no area and small disconnected elements. Larger disconnected elements were instead manually reconnected to the
cell’s main body.

For the multi-arrangement task, the stimuli were 3D-printed versions of the cell reconstructions. The reconstructions were 3D
printed out of a light, yellow plastic at a scaling factor of 1 : 1000 (1 μm = 1 cm). For the rating task, we created video renderings
of each mesh model. Each video sequence displayed one mesh model rotating back and forth along frontal and vertical axes
at approximately 120° s−1. Video sequences were all 30 s long and were created with MATLAB R2020b software. Mesh models
in print-ready ‘.stl’ format and video renderings for all stimuli employed in our experiments will be made available from our
open-access data repository (doi: 10.5281/zenodo.14046922).

4.3. Apparatus
Experiments were programmed in Python 3.7.0 and MATLAB R2020b. In the multi-arrangement task, participants were asked
to arrange the full set of 3D-printed stimulus objects on a workbench (60 × 60 cm). The position of the stimuli arranged on the
workbench was captured with high-precision 3D tracking rig [71] using hardware and software produced by motion capture
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company Qualisys (Qualisys AB, Sweden). The stimuli were imaged from multiple angles by eight tracking cameras (Qualisys
Miqus) and six video cameras (Qualisys Miqus Video) arranged on a square frame surrounding the workspace (figure 1D). To
capture the position of the stimuli, we glued one passive reflective marker on top of each 3D-printed cell (figure 1C).

In the rating task, participants viewed stimulus videos on an Asus VG248QE monitor (24″, resolution = 1920 × 1080 pixel) at
60 Hz, positioned at a distance of 40 cm from the observers (figure 1E). The monitor subtended 67 × 41° of visual angle, and the
object size ranged from 1 to 10° of visual angle.

4.4. Procedure
In experiment 1, naive participants performed a first session of a multi-arrangement task, followed by a rating task, followed
by a second session of the multi-arrangement task. In experiment 2, naive participants performed only a rating task, which
was identical to the rating task performed by participants in experiment 1. In experiments 1 and 2, participants were kept
naive to the objects’ origin and were never told that the objects belonged to distinct categories. In experiment 3, a set of expert
participants preformed the same set of tasks and sessions as naive participants in experiment 1.

4.4.1. Multi-arrangement task

Each session, the experimenter initially positioned the 3D-printed stimuli in random order in a circle on the workbench.
Stimulus order was pseudo-randomly generated by the experimental script. Participants were asked to freely arrange the
stimuli anywhere on the table surface according to their perceived similarity. This meant that similar objects should be placed
spatially close together whilst dissimilar objects should be placed far apart. No other constraints on spatial configurations
were imposed, and participants had unlimited time to perform these arrangements. Once a participant was satisfied with the
stimulus arrangement, the experimenter recorded the final stimulus positioning measured by the Qualisys tracking system
using an ad hoc script written in Python. The identity of the stimuli was manually annotated by the experimenter off-line.

4.4.2. Rating task

Participants performed a computer-based rating task in which they were shown video sequences of rotating 3D stimuli. Each
trial, a participant had to rate one of the stimuli along one of eight feature dimensions. Participants rated each stimulus only
once for each dimension, for a total of (30 × 8) 240 trials. Participants had unlimited time to perform these ratings. The order
of the stimuli was randomized across participants, but the rating dimensions were queried in the same succession for each
stimulus object. Participants made their assessment either by using the mouse to adjust a slider or by typing in a number on
the keyboard. To ensure participants understood the rating dimensions, prior to the start of the experiment they were shown
exemplary cartoon drawings for each dimension (figure 1F).

4.5. Analyses
We used MATLAB R2020b software to analyse the data.

4.5.1. Analysis of the multi-arrangement data

First, we used Procrustes analysis to align and visualize the arrangements of the 30 cell models for each participant in each
condition. Specifically, we translated and rotated the arrangement data (without rescaling but allowing reflection) so they
were best-aligned across participants and sessions. Then, representational dissimilarity matrices for each participant and each
session were constructed from the arrangement data by computing the pairwise Euclidean distances between the 30 objects. All
analyses were performed using only the upper triangular portions of the dissimilarity matrices, excluding the diagonal.

4.5.1.1. Multi-arrangement task, within-participant agreement

For each participant, we computed two dissimilarity matrices, one for the first session RDMp, s1 and one for the second session
RDMp, s2. We computed the participant’s average dissimilarity matrix across the first and second session as

RDMp, Av = RDMp, s1 + RDMp, s2
2 .

Then, we calculated the Pearson correlation between this average dissimilarity matrix and the participant’s first- and second-
session dissimilarity matrices, Wp, s1 = corr RDMp, s1, RDMp, Av ,   Wp, s2 = corr RDMp, s2, RDMp, Av .

The average of these two correlations was taken as the within-participant agreement,
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Wp = Wp, s1 + Wp, s2
2 .

4.5.1.2. Multi-arrangement task, between-participant agreement

We first computed the average dissimilarity matrix across all N participants as

RDMAv = 1N ∑p = 1

N
RDMp, Av .

Then, the between-participant agreement we calculated as the Pearson correlation between participants’ average dissimilarity
matrices RDMp, Av and the average dissimilarity matrix of all participants,Bp = corr RDMp, Av, RDMAv .

4.5.1.3. Multi-arrangement task, within-session, between-participant agreement

To compute single-session between-participant agreement, we first calculated the single-session average dissimilarity matrices
across all N participants as

RDMAv, s1 = 1N ∑p = 1

N
RDMp, s1,   RDMAv, s2 = 1N ∑p = 1

N
RDMp, s2 .

Then, single-session between-participant agreements were computed asBp, s1 = corr RDMp, s1, RDMAv, s1 ,   Bp, s2 = corr RDMp, s2, RDMAv, s2 .

4.5.1.4. Multi-arrangement task, agreement with cell class

The dissimilarity matrix for cell class RDMCC was constructed as a binary matrix, where cells belonging to the same class had 0
dissimilarity, and cells belonging to different classes had a dissimilarity of 1. The agreement between participant arrangements
and cell class was taken as the correlation between the cell class dissimilarity matrix and the average dissimilarity matrix across
participants,

CC = corr RDMCC, RDMAv .

4.5.2. Analysis of the rating task data

4.5.2.1. Rating task, between-participant agreement in experiment 1

For each of the eight feature dimensions d, we first computed the average ratings across participants for all 30 stimuli.
Between-participant agreement was taken as the correlation between individual participant ratings Rtp, d and the average rating
across participants RtAv, d, Bp, d = corr Rtp, d,RtAv, d .

4.5.2.2. Between-task agreement within experiment 1

We computed dissimilarity matrices for each rating dimension and for every participant RDMp, dRt . To compute between-task
agreement, we then correlated these dissimilarity matrices with the average dissimilarity matrix from the multi-arrangement
task,

Bp, dMA − Rt = corr RDMp, dRt , RDMAv .

Next, we fit a linear model regressing individual participant rating dissimilarity matrices onto the average multi-arrangement
dissimilarity matrix. The model was defined as

RDMAv = ∑d = 1

8 βdRDMp, dRt + δ,

where βd are linear coefficients and δ is the intercept.

4.5.2.3. Rating task agreement across experiments 1 and 2

Between-participant agreement across experiments 1 and 2 was taken as the correlation between individual participant ratings
in experiment 2, Rtp, dE2  and the average rating across participants in Experiment 1,
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Bp, dE1 − E2 = corr Rtp, dE2 ,RtAv,dE1 .

4.5.2.4. Between-task agreement across experiments 1 and 2

We computed dissimilarity matrices for each rating dimension and for every participant from experiment 2 RDMp, dRt,E2. To
compute between-task agreement across experiments 1 and 2, we correlated these dissimilarity matrices with the average
dissimilarity matrix from the multi-arrangement task in experiment 1,

Bp, dMA − Rt,E1 − E2 = corr RDMp, dRt,E2, RDMAvMA,E1 .

Finally, we used the coefficients fitted above to predict, from the rating data in experiment 2, the multi-arrangement dissimilar-
ity matrix from experiment 1.

4.5.2.5. Principal component analysis of the rating task data

We assessed the multi-collinearity of the rating dimensions by computing the pairwise correlations between all the eight
rating features. We then performed PCA to recover eight new dimensions or principal components, each one orthogonal (and
thus uncorrelated) to the others, composed of a linear combination of the original features. To prevent biased results, we
standardized the scaling of the two dimensions which were assessed by assigning a discrete number (main body parts and
number of limbs) to the same [0 1] range in which the other six dimensions were expressed.

4.5.2.6. Agreement between rating data and cell class

To investigate whether rating data aligned with the underlying biological cell class, we computed per-participant RDMs for
each PCA dimension, and then fit a linear model regressing individual participant dissimilarity matrices onto the cell class
dissimilarity matrix.

4.5.3. Classification analyses

Our final analyses tested whether it was possible to recover the underlying biological cell classes of our stimuli from human
perceptual arrangements and judgements of 3D shape. We trained support vector machine classifiers to classify the participant
multi-arrangement and rating data into the correct underlying cell class. We performed these analyses on the data from
experiments 1 (naives) and 3 (experts). Classification accuracy was computed using the cross-validation procedure described in
the §2.
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