ONOoO O WON =

NMNMNMNN =
WN—- 00 ONOOOOUBM~WN=O0OO

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

The road less travelled: Exploring the genomic characteristics and
antimicrobial resistance potential of Acinetobacter baumannii from the
indigenous Orang Asli community in Peninsular Malaysia

Soo-Sum Lean!, Denise E. Morris!, Rebecca Anderson', Ahmed Ghazi Alattraqchi?,
David W. Cleary*, Stuart C. Clarke'>*%7%" and Chew Chieng Yeo*"

'Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United
Kingdom; *Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine,
Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia; *Department of Microbes, Infections
and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and
Health, University of Birmingham, Birmingham, United Kingdom; *Institute of Microbiology and
Infection, University of Birmingham, Birmingham, United Kingdom, >NIHR Southampton Biomedical
Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, United
Kingdom; °Global Health Research Institute, University of Southampton, Southampton, United
Kingdom; "Institute for Research, Development and Innovation, International Medical University,
Kuala Lumpur, Malaysia; *Department of Biological Sciences, Faculty of Science, Universiti Tunku
Abdul Rahman, Kampar, Malaysia.

*Corresponding authors:
Stuart C. Clarke: S.C.Clarke@soton.ac.uk
Chew Chieng Yeo: chewchieng@gmail.com

Abstract

Acinetobacter baumannii is widely recognized as a multidrug-resistant pathogen, although
most public genome datasets are biased toward hospital-derived isolates. Little is known about
A. baumannii isolates from healthy individuals from the community. This study analyzed
genome sequences from nine 4. baumannii isolates obtained from the upper respiratory tract
of the indigenous Orang Asli in their rural community in Peninsular Malaysia. Genomic
analysis revealed genetic diversity, including three new Pasteur sequence types (STs) and six
novel Oxford STs. One isolate, 4. baumannii 19064, belonged to Global Clone 8 (GC8), a
lineage linked to clinical infections. Core genome phylogeny showed these community isolates
interspersed with clinical isolates from a nearby hospital, indicating potential pathogenicity
under suitable conditions. All isolates carried intrinsic blaoxa-si-like carbapenemase and blaapc
cephalosporinase genes but remained susceptible to meropenem. Two isolates, A. baumannii
19053 and 19062, were tetracycline-resistant but minocycline-susceptible, and harbored the
tet(39)-tetR gene pair within a mobile pdif module on distinct Rep 3-type plasmids. Only one

isolate, 4. baumannii 19055, is plasmid-free; the rest mainly harbored cryptic plasmids, often
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containing identifiable pdif modules. These findings highlight the clinical relevance of A.
baumannii strains residing in healthy individuals, particularly in isolated communities that are
seldom accessible to public health. Despite their remote origins, these isolates possess
virulence factors and resistance genes similar to those in hospital settings. This underscores the
importance of genomic surveillance of commensal pathogens, as exploring these less-studied
isolates can yield insights into broader epidemiological trends and guide future public health

strategies.

Keywords: indigenous community 4. baumannii, Orang Asli, antibiotic resistance genes,

virulence factors, pdif modules, plasmids

1 Introduction

Carbapenem-resistant Acinetobacter baumannii is recognized by the World Health
Organization as the top critical priority pathogen, posing the highest threat to public health due
to limited treatment options (World Health Organization, 2024). Unsurprisingly, the majority
of reported A. baumannii genomes and those deposited in public databases, such as NCBI
Genomes and the PubMLST genome collection, are mainly of hospital origin. These isolates
are obtained from patients with hospital-acquired infections (HAIs), such as ventilator-
associated pneumonia (VAP), meningitis, blood stream infections and urinary tract infections
(Bian et al., 2021; Cui et al., 2023; Shelenkov et al., 2024). As a result, the public A. baumannii
genome datasets are heavily skewed toward dominant hospital-associated clones, notably
members of the notorious Global Clone 2 (GC2) lineage (Shelenkov et al., 2023). While
keeping track of hospital-related 4. baumannii is essential due to their formidable antimicrobial
resistance (AMR) and clinical relevance, they only represent a subset of the species. These
strains often differ significantly from those found in the normal flora of healthy populations
(Muzahid et al., 2023). A. baumannii from healthy communities remain largely understudied,
more so for indigenous communities that are isolated from urban populations.

The Orang Asli are indigenous people in Peninsular Malaysia comprising of several ethnic
subgroups who retained their aboriginal language, customs and lifestyle (Mahmud et al., 2022).
They are only a minor population in Malaysia (0.8% of the population in Peninsular Malaysia
based on the year 2020 census) and often fall behind national socioeconomic, education and

healthcare improvement plans. Despite government resettlement programs, many Orang Asli
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communities remain in rural areas due to their lifestyle preferences (Pah Rokiah Syed Hussain
et al., 2017; Mahmud et al., 2022). Some of these isolated communities are difficult to reach,
limiting their access to modern medicines such as antibiotics and vaccines (Mohd Rosman et
al., 2020; Chew et al., 2022). This restricted interaction with urban communities and healthcare
has led to the formation of what we term here as “genomic capsules” — distinct microflora
genomes unique to the Orang Asli community and their respective tribes. As a result,
opportunistic pathogens such as 4. baumannii harbored by the Orang Asli may differ from
strains commonly present in urban hospitals.

A. baumannii from hospitals have been well-studied over the past two decades, gaining their
notoriety due to their multidrug resistance (MDR), extensive drug resistance (XDR) and pan-
drug resistance (PDR) characteristics (Shi et al., 2024). The Malaysian Ministry of Health has
published annual National Surveillance of Antibiotic Resistance (NSAR) Reports since 2003.
Beginning in the 2010s, more than 50% of 4. baumannii isolates have been reported to be
resistant to carbapenems (i.e., imipenem and meropenem), which are the drugs of choice for
treatment. However, the NSAR dataset is limited to participating hospitals which are mainly in
the urban and suburban areas of Malaysia (Ministry of Health, 2023). While the World Health
Organization’s (WHO) Tracking AMR Country Self-Assessment Survey (TrACSS) Country
Report emphasizes the importance of addressing AMR at the community level to enhance
infection prevention and control (IPC) efforts (WHO, 2022), there remains a significant
knowledge gap regarding AMR profiles and genomic characteristics of bacterial pathogens
within the indigenous communities in Malaysia. Notably, a recent study investigating A.
baumannii isolates from human fecal samples in a community in Segamat, Malaysia, revealed
phylogenomic clustering of four community-derived strains with two isolates from the town’s
main tertiary hospital. This finding suggests the potential persistence and circulation of certain
A. baumannii strains across both community and healthcare settings (Muzahid et al., 2023). In
this study, we aim to provide a genomic snapshot of 4. baumannii that were isolated during an
all-age, upper respiratory tract microbial carriage study undertaken among two rural Orang Asli
communities in the state of Terengganu, located in the eastern coast of Peninsular Malaysia in
2017. A previous investigation of Klebsiella pneumoniae isolates from a broader indigenous
cohort revealed the predominance of ST23 which is commonly associated with clinical K.
pneumoniae infections, and of concern, a proportion of these isolates harbored genes that
categorized them as hypervirulent (Das et al., 2024). Here, we present the genomic analysis of
A. baumannii isolates recovered from the upper respiratory tract of the Orang Asli and show

the genetic diversity of this hitherto unexplored 4. baumannii “genomic capsule”. Our findings
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offer insights into strains of novel STs, their patchwork of unique and shared mobile genetic

elements, antimicrobial resistance and virulence genes.

2 Materials and Methods

2.1 Sampling and isolation of A. baumannii from Orang Asli communities

Swabs were taken from two Orang Asli villages, namely Kampung Sungai Pergam and
Kampung Berua, in the state of Terengganu on the east coast of Peninsular Malaysia. Nasal
swabs and nasopharyngeal swabs were taken from each participant, as described (Cleary et al.,
2021). Conventional bacteriology of the samples were carried out using Columbia Blood Agar
(CBA), CHOC agar (CBA with chocolated horse blood), CNA agar (CBA with colistin and
naladixic acid), BACH (CBA with chocolated horse blood and Bacitracin) and GC agar (Lysed
GC selective agar) (all culture media from Oxoid, UK) (Cleary et al., 2021). Preliminary
identification of presumptive Acinetobacter spp. isolates was done using the MALDI Biotyper

(Bruker, UK) at the Portsmouth Microbiology Laboratories, UK.

2.2 Antibiotic susceptibility tests

A. baumannii was spread over Mueller-Hinton agar plates (MH; Oxoid, UK). Susceptibilities
to the antibiotics meropenem and ciprofloxacin were determined by disk diffusion using the
appropriate antibiotic disk (meropenem, 10 pg; ciprofloxacin, 5 ng) (Oxoid, UK) whereas
tetracycline and doxycycline susceptibilities were determined by placing Minimum inhibitory
concentration (MIC) E-test strips (bioMérieux, France) onto the surface of the agar. All agar
plates were incubated at 35°C + 1°C for 18 h & 2 h. Susceptibility was determined against the
EUCAST Clinical Breakpoint guidelines (2024).

2.3 Genome Sequencing and Assemblies

Genomic DNA of the nine 4. baumannii isolates were extracted using the QIAmp DNA Mini
extraction kit (Qiagen, UK) per the manufacturer’s instructions. Concentration of genomic
DNA was determined using Qubit 2.0 fluorometer (Thermo-Fisher, UK). Whole genome
sequencing was performed on a MiSeq (Illumina, UK) short-read platform at a commercial
sequencing provider (MicrobesNG, UK) using the 500 cycle v2 reagent kit to generate 2x150
bp paired-end reads. Raw reads obtained were then quality assessed and trimmed using fastp

(available from https://github.com/OpenGene/fastp; (Chen, 2023)). Genome assemblies were

carried out using Unicycler (available from https://github.com/rrwick/Unicycler; (Wick et al.,

2017), followed by evaluation using Quast (available from https://github.com/ablab/quast).
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2.4 Bioinformatics Analyses

Average nucleotide identity (ANI) of the assembled genomes to reference genomes were

determined using fastANI (available from https://github.com/ParBLiSS/FastANI; (Jain et al.,

2018). Annotation of the genomes was performed using Prokka (available from

https://github.com/tseemann/prokka; (Seemann, 2014)). Conventional multilocus sequence

typing (MLST) profiles of the assembled genomes were determined using mlst (available from

https://github.com/tseemann/mlst) and  matched to the PubMLST  database

(https://pubmlst.org/organisms/acinetobacter-baumannii). MLST profiles determined from the

two available schemes, namely the Oxford and Pasteur schemes, were used to identify the
corresponding Global Clones (GC). Serotyping based on A. baumannii surface polysaccharide
loci, namely capsule K loci (KL) and lipo-oligosaccharide OC loci (OCL), were carried out
using Kaptive v3.0.0b6 (available from https://github.com/klebgenomics/Kaptive; (Wyres et
al., 2020; Cahill et al., 2022)).

Genotypic resistance profiles of the genomes were determined using AMRFinderPlus

(available from https://github.com/ncbi/amr; (Feldgarden et al., 2021)) and ABRicate

(available from https://github.com/tseemann/abricate), whereby databases from CARD

(Alcock et al., 2023) and ResFinder (Zankari et al., 2012) were utilized to the latter approach.
Virulome of the assembled genomes were determined using ABRicate, utilizing database from
Virulence Factor DataBase (VFDB) (Liu et al., 2022). Findings were then compared to the

results obtained from VFAnalyzer (available from https:/www.mgc.ac.cn/cgi-

bin/VFs/v5/main.cgi). MGEs such as plasmids, insertion sequence (IS) elements and resistance

island (RI) hotspots were also determined from the genomes. Plasmids were identified using

PlasmidFinder (available from https://github.com/genomicepidemiology/plasmidfinder;

(Carattoli et al., 2014)), whereas classification of the plasmid replication protein (Rep) was

performed using an in-house built script, pREPonly (https://github.com/lean-SS/pREP-only)

utilizing the AcinetobacterPlasmid Typing database (available from

https://github.com/MehradHamidian/AcinetobacterPlasmid Typing; (Lam et al., 2023)). pdif

sites in the plasmids found were identified using a combination of pdif finder

(https://github.com/mjshao06/pdifFinder) (Shao et al., 2023) and manual search as outlined by

(Ambrose and Hall, 2024). Toxin-antitoxin (TA) systems were determined using the TADB 3.0
database (https://bioinfo-mml.sjtu.edu.cn/TADB3/index.php) (Guan et al., 2024). IS elements

were screened using ISEScan (available from https://github.com/xiezhg/ISEScan; (Xie and

Tang, 2017)) and ISfinder-sequences database through the Prokka —protein option (available
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from https://github.com/thanhleviet/Isfinder-sequences; (Siguier et al., 2006)), whereas the

comM resistance island (RI) hotspot (Hamidian and Hall, 2017) was determined through local
BLAST.

2.5 Pangenome and Phylogenetic Analysis

The pangenomes of the nine Orang Asli A. baumannii isolates were compared to other
community A. baumannii genomes using the Anvi’o platform (available from

https://github.com/merenlab/anvio; (Delmont and Eren, 2018; Eren et al., 2021)). Through the

use of the anvi-pan-genome program, the pangenomes were determined and then visualized
through anvi-display-pan, which links to the Anvi’o server. Core genome phylogenetic analysis
of A. baumannii genomes were performed using Roary (available from https://sanger-
pathogens.github.io/Roary/; (Page et al., 2015)) and VeryFastTree with the GTR+CAT model,

which combines the General Time Reversible (GTR) nucleotide substitution model with a
Constant Rate Across Sites (CAT) approximation (Pifieiro et al., 2020; Pifieiro and Pichel,
2024), and visualized with iTOL v7 (Letunic and Bork, 2024).

3.0 Results and Discussions

3.1 Preliminary Genomic Analysis of A. baumannii from the Orang Asli

A total of thirteen presumptive Acinetobacter spp. isolates were obtained from the Orang Asli
carriage studies at Kampung Sungai Pergam (n = 3) and Kampung Berua (n = 10). These were
from the nasopharyngeal swabs of a total of 130 participants (of which 68 were from Kampung
Sungai Pergam and 62 from Kampung Berua) (Cleary et al., 2021). Whole genome sequencing
was performed on all thirteen isolates, out of which nine were shown to be A. baumannii (Table

1). The remaining four isolates were determined to be 4. nosocomialis.

Genome assemblies of the nine A. baumannii Orang Asli isolates showed total genome sizes
that ranged from ~3.7 Mbp to 3.9 Mbp (Table 1). Average nucleotide identity (ANI) of the
genomes revealed >97% nucleotide identities to 4. baumannii genomes including those from
Thailand (SAMEA104305267, SAMEA104305309, SAMEA104305313 and
SAMEA104305269),  Vietnam (5577STDY 7716391, 5577STDY 7716201 and
5577STDY7716392) and Malaysia (SAMNO03174920 and SAMNO03174917), as listed in Table
1. In silico epidemiological typing of the assembled genomes, which includes traditional MLST

and surface polysaccharide loci typing, showed that each genome is distinct with its own
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sequence type (ST), KL and OCL types. MLST profiles based on the Oxford scheme revealed
six new STs, with only 4. baumannii 19056, 19060 and 19064 that were identified as
preexisting ST34150xr, ST8710xr and ST5850xt, respectively (Table 1). The new Oxford STs
were submitted and assigned by the PubMLST curators as ST35400xf, ST35410xs, ST35420xf,
ST35430xt, ST35430xs, ST35440xs and ST35450xr (Table 1). Additionally, the Pasteur MLST
scheme identified three novel STs from the nine 4. baumannii genomes, and these were
assigned as ST2832pas, ST2833pas, and ST2844p,. The six remaining genomes each belonged
to different preexisting Pasteur STs (Table 1). The identification of new STs suggests the
possible emergence of genetically distinct lineage within the Orang Asli community. The 4.
baumannii isolates with the new STs, although currently mostly susceptible, are capable of
acquiring new resistance and virulence genes. Their presence in a community setting is
noteworthy as they could represent a new lineage with the potential to spread and evolve,

similar to how the hospital-associated GCs such as GC2 have emerged (Hamidian and Nigro,

2019).

A. baumannii surface polysaccharide loci typing based on the K loci (KL), which were
responsible for the production of acinetamic acid (Lam et al., 2022), showed that each of the
nine Orang Asli A. baumannii genomes belonged to distinct KL types (Table 1). Notably, four
novel capsule types (i.e., KL170, KL202, KL172 and KL183) were detected, indicating
previously unreported characteristics and underscoring the uniqueness of these Orang Asli 4.
baumannii isolates. In contrast, analysis of the outer core lipo-oligosaccharide loci (OCL)
showed OCL2 (n = 4) to be the most common type, followed by OCL4 (n = 2) and OCL6 (n =
2) (Table 1). Nevertheless, 4. baumannii 19055 was identified as the lesser-studied OCL13
type, which was originally described in 4. baumannii strains associated with community-
acquired pneumonia in the Northern Territories, Australia (Meumann et al., 2019). The 4.
baumannii capsule plays a crucial role in its ability to cause disease, primarily by protecting
the bacterium from the host immune system and desiccation (Rakovitsky et al., 2021;
Talyansky et al., 2021). Novel capsule types could therefore have a significant impact on the

bacteria’s survival and virulence.



232  Table 1: General information of the source and the genome characteristics of the A. baumannii (n = 9) isolates from the upper respiratory tract of
233  the Orang Asli in this study.

Acinetobacter

isolate 19053 19055 19056 19058 19060 19061 19062 19063 19064
Location/source’ KSP/N KSP/NP KB/N KB/N KB/NP KB/N KB/NP KB/N KB/N
Species Acinetobacter  Acinetobacter  Acinetobacter  Acinetobacter  Acinetobacter Acinetobacter Acinetobacter Acinetobacter Acinetobacter
identification baumannii baumannii baumannii baumannii baumannii baumannii baumannii baumannii baumannii
Accession no. JBNPBH JBNPBI JBNPBJ JBNPBK JBNPBL JBNPBM JBNPBN JBNPBO JBNPBP

000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000
Closest neighbor | Acinetobacter  Acinetobacter  Acinetobacter — Acinetobacter  Acinetobacter Acinetobacter Acinetobacter Acinetobacter Acinetobacter
(fastANI) baumannii baumannii baumannii baumannii baumannii baumannii baumannii baumannii baumannii
SAMEA 5577 5577 5577 SAMEA SAMEA SAMN SAMN SAMEA
104305267 STDY7716391 STDY7716201 STDY7715392 104305309 104305313 03174920 03174917 104305269
(98.1849%) (99.8833%) (97.9228%) (98.7137%) (98.8467%) (98.0632%) (98.6532%) (97.9238%) (99.8239%)

Total genome size| 3,821,374 3,697,509 3,748,932 3,904,855 3,767,717 3,865,738 3,844,544 3,828,269 3,664,686
(bp)

No. of contigs 62 166 32 44 126 35 149 47 47
No. of plasmids 2 0 1 1 1 1 2 1 2
GC content (%) 38.91 39.04 38.97 38.87 38.95 38.75 38.99 38.81 38.78
Nso 478,783 67,766 458,370 254,121 77,219 477,098 73,853 369,580 195,600
Noo 68,035 15,343 166,877 88,568 17,967 165,195 17,420 116,120 67,830
Lso 3 17 3 6 16 2 14 3 7
Lo 11 61 8 18 49 8 53 10 20
No. of CDS 3,579 3,428 3,497 3,661 3,582 3,573 3,674 3,576 3,490
MLSToxs ST3542* ST3543* ST3415 ST3541* ST871 ST3544* ST3545* ST3540* ST585
MLSTpas ST2832* ST2114 ST2522 ST2834* ST2700 ST470 ST2635 ST2833* ST10
K loci KL121 KL96 KL170* KL202* KL112 KL172% KL81 KL183* KL108
OC loci OCL2 OCL13 OCL2 OCL4 OCL6 OCL4 OCL6 OCL2 OCL2

234  SAbbreviations used for location/source: KSP, Kampung Sungai Pergam; KB, Kampung Berua; N, nasal swab; NP, nasopharyngeal swab.

235  Notes: MLSToxr and MLSTp, represent the Oxford and Pasteur schemes available in PubMLST, respectively. ST represents sequence type and those marked
236  with an asterisk (*) are new STs that were identified in this study; KL represents K loci with those labelled with * representing K loci that has not been

237  reported; OCL represents lipo-oligosaccharide OC loci.
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3.2 Genotypic AMR observation revealed non-mainstream f-lactamases

The presence of genes encoding B-lactamases (bla) has become the hallmark of 4. baumannii,
not only as key determinants of carbapenem resistance (Shi et al., 2024), but also through the
intrinsic blaoxa-si-ike genes, which have been adopted as one of the typing methods for 4.
baumannii over the past two decades (Shelenkov et al., 2023). The recent categorization of
global clones (GCs) also incorporated various bla genes as characteristic traits observed in
certain GCs, for example, members of the GC8 lineage commonly harbor both blaoxa-23 and
blaoxa-s3 (Shelenkov et al., 2023). Although bla genes such as blaoxa-23, blaoxa-s1 and blaoxa-
66, are widespread among A. baumannii globally (Li et al., 2023; Shelenkov et al., 2023; Shi et
al., 2024), a different spectrum of bla genes were found from the Orang Asli 4. baumannii in

this study (Table 2).

The blaoxa-s1 family (or blaoxa-si-ike) 1s comprised of the well-characterized blaoxa-s1 gene
and its numerous variants, such as blaoxa-s4, blaoxa-6s and others (Li et al., 2023). In this study,
several variants were detected in the Orang Asli A. baumannii genomes including blaoxa-ss,
blaoxa-98, blaoxa-120, blaoxa-377, blaoxa-a24, blaoxa-s10, and blaoxa-sss. Only two genomes (i.c.,
A. baumannii 19058 and 19061) carried blaoxa-s1 itself while the remaining seven harbored
distinct variants of the blaoxa-s1 family (Table 2). The spectrum of genes of the blaoxa-s1 family
aligns with the findings of (Muzahid et al., 2023) who reported that community-derived 4.
baumannii isolates from Segamat, Peninsular Malaysia also carried a wide range of blaoxa-s1
variants. In the Segamat A. baumannii isolates, blaoxa-120 was the most prevalent variant,
followed by blaoxa-441, blaoxa-s10, blaoxa-69, blaoxa-9s and blaoxa-412. None of these variants

were found among the A. baumannii isolates from the Orang Asli community.

However, the presence of the intrinsic blaoxa-s1 family of genes is not considered a definite
marker for carbapenem resistance in A. baumannii due to the low affinities of the OXA-51
family of B-lactamases to meropenem and imipenem as well as the very low expression levels
of the blaoxa-si-iike genes. In certain cases, the presence of [S4bal directly upstream of the
blaoxa-si-ike gene provides a strong promoter which increases its expression level, leading to
carbapenem resistance but this also depends on the blaoxa-s1 variant that is being overexpressed
(Nigro and Hall, 2018). All nine Orang Asli A. baumannii isolates were phenotypically
carbapenem susceptible, and none of their genomes contained IS4bal (or related elements)

upstream of the blaoxa-si-iike genes. None of the nine Orang Asli 4. baumannii isolates also
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harbored acquired blaoxa-encoded carbapenemase genes such as blaoxa-23, blaoxa-24, and
blaoxa-ss, which have been directly implicated in carbapenem resistance, particularly in clinical
A. baumannii isolates (Hamidian and Nigro, 2019). This was similarly reported by (Muzahid
et al., 2023) where the acquired carbapenemase gene blaoxa-23 were only identified in their
Segamat hospital isolates which are carbapenem resistant. Likewise, our recent study of a 10-
year collection of A. baumannii from the main tertiary hospital in Terengganu also revealed the

predominance of the blaoxa-23 gene among the carbapenem-resistant isolates (Din et al., 2025).

Another class of intrinsic P-lactamase found in 4. baumannii genomes is the AmpC
cephalosporinase variants which are designated Acinetobacter-derived cephalosporinases
(ADCs). Overproduction of ADCs resulting from insertion of IS4bal or similar IS elements
upstream of the blaapc gene has been shown to be responsible for the development of resistance
towards extended-spectrum cephalosporins and in some cases, carbapenems (Tian et al., 2011;
Bhattacharya et al., 2014; Shi et al., 2024). Seven different variants of ADCs were detected
from the genomes of the nine Orang Asli A. baumannii isolates (Table 2) and in all cases,
ISAbal or similar elements were absent upstream of the encoding gene, suggesting that these
genes were either not expressed or were expressed at low levels in their hosts. ADC-25 were
identified in two of the Orang Asli A. baumannii isolates (i.e., 19053 and 19061; Table 2) and
this variant was found to be the 7" most prevalent ADC variant among A. baumannii isolates
globally (Mack et al., 2025). Four of the eight ADC variants identified here (i.e., ADC-99 in 4.
baumannii 19062, ADC-238 in 19060, ADC-279 in 19055, and ADC-312 in 19058) were listed
by (Mack et al., 2025) as variants that were rarely found in A. baumannii. By comparison, the
A. baumannii isolates from the Segamat community also presented a different spectrum of
blaapc genes where they mainly harbored blaapc-154 and blaapc-156 (Muzahid et al., 2023), but
both variants were absent in our Orang Asli isolates. However, blaapc-23s which was found in
A. baumannii C-65 from the Segamat community, was also found in 4. baumannii 19060 form
our Orang Asli collection. The ADC-238 variant was listed as a less-frequently encountered
variant (Mack et al., 2025) and its singular presence in both these community-based studies
supports this finding. Intriguingly, hospital isolates from Segamat (Muzahid et al., 2023) and
Terengganu (Din et al., 2025) showed a uniform pattern of blaapc-73 being the most prevalent,
agreeing with the analysis presented by (Mack et al., 2025) which revealed blaapc-73 as the
most prevalent ADC variant in A. baumannii isolates globally, with the exception of isolates

from North America.
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Hence, in terms of the class C (ADC) and class D (OXA) B-lactamases, the intrinsic variants
harbored by the A. baumannii community isolates showed diversity with little in common
although both studies (i.e., this study and the Segamat study) were in Peninsular Malaysia.
Even between communities, the AMR profiles varies (Meumann et al., 2019; Muzahid et al.,
2023) and thus, there are more to be learned about A. baumannii from the Orang Asli

community, which is further elaborated in the following sections.

3.3 Other resistance genes in the Orang Asli community A. baumannii isolates

Two out of the nine Orang Asli A. baumannii isolates (i.e., 19053 and 19062) were found to
harbor the fet(39) tetracycline resistance gene (Table 2), which encodes a tetracycline efflux
pump of the major facilitator superfamily (MFS) (Agerse and Guardabassi, 2005). This differs
from the A. baumannii community isolates from Segamat in which no tetracycline resistance
genes were detected. Both 4. baumannii 19053 and 19062 were phenotypically tetracycline
resistant (with MIC values of 64 pg/mL and 128 pg/mL, respectively) but doxycycline
susceptible (both with MIC values of 4 pg/mL). In contrast, Malaysian 4. baumannii hospital
isolates predominantly carried the fet(B) gene (n = 60/126 from HSNZ (Din et al., 2025); n =
12/15 from Segamat Hospital (Muzahid et al., 2023)), with only one isolate from HSNZ
harboring fet(4) and 10/126 carrying tet(39) (Din et al., 2025). All A. baumannii hospital
isolates harboring the te#(39) and tet(4) genes were tetracycline resistant and minocycline
susceptible whereas those that harbored the tet(B) gene were mostly resistant to tetracycline
but showed intermediate susceptibility to minocycline (Din et al., 2025). Meumann et al. (2019)
reported two A. baumannii isolates from community-onset pneumonia in Australia which
harbored both the tet(B) and tet(39) genes but phenotypic susceptibility testing for tetracyclines
was not performed in their study. The two tetracycline-resistant Orang Asli A. baumannii
isolates, 19053 and 19062, harbored the tet(39) gene on plasmids, which will be elaborated in

a later section.

Resistance to aminoglycosides in 4. baumannii is mainly mediated by the possession of genes
encoding aminoglycoside acetyltransferase (aac), nucleotidyltransferase (anf) and/or
phosphotransferase (aph) (Shi et al., 2024). Five out of the nine A. baumannii Orang Asli
isolates carried the ant(3”)-Ila gene (Table 2) whereas Muzahid et al. (2023) reported the
presence of this gene in all twelve of their A. baumannii strains that were isolates from the

community in the town of Segamat. Nevertheless, only two of the twelve Segamat community
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isolates showed resistance to amikacin, and all were gentamicin susceptible, suggesting that
some of these aminoglycoside resistance genes were either not expressed or expressed at a very
low level. Phenotypic resistance to aminoglycosides was, however, not tested for the Orang

Asli A. baumannii isolates in this study.

Sulfonamide resistance in A. baumannii is usually mediated by su/l and/or sul2 genes (Kold,
2001), with sul2 predominantly reported from Southeast Asian countries and the Asia-Pacific
region (Bian et al., 2021; Brito et al., 2022; Din et al., 2025). Only one Orang Asli isolate, A4.
baumannii 19062, was found to harbor the sul2 gene (Table 2), which was absent in the
Segamat community isolates (Muzahid et al., 2023). In contrast, nearly 50% (61/126) of the A.
baumannii hospital isolates from HSNZ, Terengganu, harbored the su/2 gene (Din et al., 2025)
whereas in Hospital Segamat, the gene was identified in 2/15 of the A. baumannii isolates. The
significance of the carriage of the su/2 gene in the solitary Orang Asli A. baumannii isolate is
currently unknown, but sul2 is known to be present on mobile elements such as plasmids and
transposons (Jeon et al., 2023). Plasmid analysis appeared to rule out the carriage of su/2 in
either of the two plasmids found in 4. baumannii 19062 (see subsequent section 3.7) but this
does not rule out its location on other mobile elements such as transposons or genomic islands

in the chromosome.
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357  Table 2: Distribution of antimicrobial resistance determinants across the Malaysian Orang Asli A. baumannii genomes (n = 9) and their
358  corresponding phenotypic resistance profiles.

Antimicrobial resistance Acinetobacter baumannii isolate

genes/phenotype 19053 19055 19056 19058 19060 19061 19062 19063 19064
Beta'lacfamS: blaapc.as, blaapcar, blaapc.ieo variant,  blaapcsiz variant,  blaapc.ass, blaspc.as, blaapc.99, blaxpc.iss variant,  blaapc.e,

*  Resistance gene(s) blaoxas1 blaoxa-120 blaoxa.sss blaoxa-si blaoxa-sio blaoxa-si blaoxa-ss blaoxa-a4 blaoxa-es

° Meropenem (10 pg)* | 22.3 (S) 26.6 (S) 24.2 (S) 29.1 (S) 28.6 (S) 25.7(S) 21.0 (S) 27.0 (S) 24.6 (S)
Aminoglycoside ant(3”)-la ant(3”)-1la - . ant(3”)-1la . ant(3”)-Ila . ant(3”)-Ila

resistance gene(s)

Tetracyclines:
. Resistance gene(s) tet(39) - - - - - tet(39) - -
*  Tetracycline® 64.0 (R) 12.0 (S) 4.0(S) 6.0 (S) 6.0 (S) 4.0(S) 128.0 (R) 4.0 (S) 6.0 (S)
s #
*  Doxycycline 40(S) 40(S) 40(S) 40(S) 40(S) 40(S) 40(S) 40(S) 40(S)
Sulfonamide resistance
- - - - - - sul? - -
genes(s)
Fluroquinolones:
. Mutation(s) in - - - - - - - - -
QRDRs of gyr4 and
parC
. Ciprofloxacin (5 23.5(S) 25.2(S) 24.7 (S) 28.3(S) 28.0(S) 28.0 (S) 21.7(S) 26.8 (S) 24.8 (S)
ng*
amvA amvA amvA amvA amvA amvA amvA amvA amvA
abesS, abeM, abesS, abeM, abeS, abeM, abeS, abeM, abeS, abeM, abesS, abeM, abeS, abeM, abeS, abeM, abeS, abeM,
Efflux pumps adeA, adeF, adeF, adeG, adeA, adeB, adeA, adeB, adeA, adeB, adeA, adeB, adeF, adeG, adeA, adeB, adeB, adeC,
pump adeG, adeH, adeH, adel, adeJ, adeF, adeG, adekF; adeG, adeF, adeG, adek] adeG, adeH, adel, adeC, adeF, adeF, adeG,
adel, adeJ, adeK, adel, adeH, adel, adeJ, adeH, adel, adeJ, adeH, adel, adeJ, adeH, adel, adeJ, adeJ, adeK, adeG, adeH, adeH, adel,
adeK, adel, adeN, adeS, adeR  adeK, adelL, adeK, adel, adeK, adel, adeK, adel, adel, adeN adel, adeJ, adeK, adeJ, adek,
adeN adeN, adeS,adeR  adeN, adeS,adeR  adeN, adeS, adeR  adeN, adeS,adeR adelL, adeN adelL, adeN

359 *values indicate zone of inhibition (in mm) of respective antibiotic discs with interpretations of resistance (R) or susceptibility (S) following EUCAST (2024) breakpoints.
360 *values indicate minimum inhibitory concentrations (in pg/ml) measured using MIC E-test strips with interpretations of resistance (R) or susceptibility (S) following EUCAST (2024)
361 breakpoints.
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3.4 The virulome of A. baumannii from the Orang Asli community

The isolation of 4. baumannii from diverse sources, including clinical settings, soil, and
wastewater, highlights its ability to persist across various environmental niches, facilitating its
widespread dissemination, colonization, and pathogenicity (Harding et al., 2018). This
persistence, evidenced by stress resistance and biofilm formation, is likely supported by the
acquisition and/or inheritance of multiple virulence factors (VFs). In this study, the majority of
identified VFs are associated with adhesion, biofilm formation, and quorum sensing regulation
(Figure 1). These findings are in agreement with Muzahid et al. (2023), who reported similar
virulome profiles in A. baumannii isolates from the Segamat community, including genes
related to adhesion (e.g., ompA, fliP, pilA, pilE), biofilm formation (e.g., adeFFGH, bap, csuA/B,
csuABCDE, pgaABCD), and quorum sensing (e.g., abal, abaR) (Choi et al., 2009; Lannan et
al., 2016; Ahmad et al., 2023). However, slight variations in VF combinations were observed
between these two Malaysian community studies. Notably, the biofilm gene combination we
termed BIO-Profile 1 (Figure 1) was dominant in our isolates but was absent in those from the
Segamat community. Despite these differences, the presence of numerous shared VFs
underscores their potential role in supporting the persistence of the A. baumannii isolates in

their niche and their capacity to cause infection.

Survival of 4. baumannii in harsh environmental conditions requires mechanisms for the
acquisition of micronutrients, such as iron scavenging through the production of acinetobactin
in iron-limiting environments (Lannan et al., 2016; Harding et al., 2018). The presence of iron
uptake genes is thus a signature VF in 4. baumannii and the combination of iron acquisition
genes designated IRO-Profile2 (Figure 1) was also observed in the Segamat community
isolates along with isolates from the Australian Northern Territory community (Meumann et

al., 2019; Muzahid et al., 2023).

All nine A. baumannii isolates displayed the full complement of the /ps-Ipx genes (designated
IMM-Profile; Figure 1), which are tagged as virulence factors that function in immune evasion.
Deficiency in /pxC has been shown to cause the loss of the LPS layer in A. baumannii leading
to the development of colistin resistance (Kamoshida et al., 2020). The full suite of the /ps-Ipx
genes were found in the Segamat 4. baumannii isolates, and this included hospital isolates that

were identified as resistant to colistin (z = 2) and polymyxin B (n = 4); nevertheless, a more
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detailed analysis of possible mechanisms for polymyxin resistance, including mutations in the

Ips-Ipx genes, was not presented (Muzahid et al., 2023).

The Type-6 Secretion System (T6SS) is utilized by 4. baumannii to release toxic effector
proteins into the neighboring environment, offering a competitive advantage to the pathogen
in multispecies environments (Carruthers et al., 2013) and also allowing A. baumannii to
spread, invade and resist host immune responses (Shadan et al., 2023). The T6SS main cluster
(T6MC), which encompasses the tssA, tssB, tssC, tssD/hcp, tssE, tssF, tssG, tssH/clpV, tssK,
tssL, tagX, vgrG and PAAR genes (Fitzsimons et al., 2018; Lewis et al., 2019), was identified
in five of the nine Orang Asli A. baumannii isolates (Figure 1). These genes are responsible
for T6SS apparatus assembly, whereby TssA functions as the priming protein (also known as
the cap), TssBC forms the sheath, TssD/Hcp the secretion tube with VgrG and PAAR proteins
as the spike. The spike (i.e., VgrG and PAAR) teams with the wedge (i.e., TssK and TssEFG)
to form the baseplate (Fitzsimons et al., 2018; Marazzato et al., 2022). The structure was then
supported by the membrane complex formed by TssJ, TssM and TssL proteins connecting
between inner and outer membrane (Fitzsimons et al., 2018; Marazzato et al., 2022). The T6SS
found in the five 4. baumannii genomes (Figure 1) was further identified as T6SS-1A (i.e.,
19053, 19056 and 19063) and T6SS-1B (i.e., 19058 and 19061), according to the classification
of (Repizo et al., 2019). These five A. baumannii isolates also encode the Tse4 effector (Figure
1), which function as an amidase (Lewis et al., 2019; Repizo et al., 2019). Other effectors were
also present in the Orang Asli isolates, with 4. baumannii 19063 and 19053 encoding an
additional Tse2 (predicted to function as a DNase), while 4. baumannii 19053 also encodes
additional Tsel (predicted lipase producer), and Tse3 (effector of unknown function) (Lewis et
al., 2019; Repizo et al., 2019). Conversely, only one of the Segamat community isolate, A.
baumannii C-98, harbored the complete T6SS whereas the hospital isolates contained the full
suite of T6SS genes (Muzahid et al., 2023). Majority of the A. baumannii hospital isolates from
Terengganu also harbored the full TOMC (n = 94/126; or 74.6%) (Din et al., 2025). This
suggests that the Orang Asli A. baumannii isolates may be better adapted to survival in a
multispecies environment with also the capacity to invade and colonize their host, should the

opportunity arise; however, such possibilities would require further experimental validation.
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Profiles:

ADH-Profile1a: ompA, fiiP, pilE
ADH-Profile1b: ompA, fiiP, pilA
ADH-Profile2: ompA, pilA
ADH-Profile3: ompA, fliP
ADH-Profiled: ompA, wbpl
ADH-Profile5: ompA

APC-Profile1: whjD/wecB, wecC
APC-Profile2: whjD/wecB
APC-Profile3: rmIC

BIO-Profile1: adeF, adeG, adeH, bap, csuA/B, csuA, csuB,
csuC, csuD, csuE, pgaA, pgaB, pgaC, pgaD

BIO-Profile2: adeF, adeG, adeH, csuA/B, csuA, csuB, csuC,
csuD, csuE, pgaA, pgaB, pgaC, pgaD

BIO-Profile3: adeF, adeG, adeH, csuA/B, csuA, csuC, csub,

csuE, pgaA, pgaB
BIO-Profiled: adeF, adeG, adeH, pgaA, pgaB, pgaC, pgaD

ENZ-Profile1: plc, plcD
IMM-Profile: IpsB, IpxA, IpxB, IpxC, IpxD, IpxL, lpxM

IRO-Profile1: barA, barB, basA, basB, basC, basD, basF, basG, basH, basl,
basJ, bauA, bauB, bauC, bauD, bauE, bauF, entE, hemO

IRO-Profile2: barA, barB, basA, basB, basC, basD, basF, basG, basH, basl,
basJ, bauA, bauB, bauC, bauD, bauE, bauF, entE

REG-Profile1: abal, abaR, bfmR, bfmS
REG-Profile2a: bfmR, bfmS, csrA
REG-Profile2b: abal, bfmR, bfmS
REG-Profile3: bfmR, bfmS

SRM-Profile1: pbpG, rmiD
SRM-Profile2: pbpG

425

426

427  Figure 1: Profiles of various virulence factors (VFs) identified from the Orang Asli 4.
428  baumannii genomes (n = 9). The profiles were abbreviated according to their biological
429  functions: adhesion (ADH), anti-phagocytosis (APC), biofilm formation (BIO), phospholipase
430 enzyme (ENZ), immune evasion (IMM), iron uptake (IRO), regulation (REG) and serum
431  resistance (SRM); singleton genes were labelled as is.
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3.5 The Orang Asli A. baumannii isolates were genetically diverse

Community isolates of A. baumannii represents a pool of unexplored genomes when compared
to the more well-studied clinical isolates. Therefore, many 4. baumannii isolates presented in
community studies belonged to novel STs that have yet to be classified into any clonal
complexes (CCs). We pooled together the A. baumannii genomes obtained from the Orang Asli
in this study along with the genomes obtained from fecal samples of the community in the town
of Segamat (Muzahid et al., 2023) for pangenome analysis. The analysis showed genetic
diversity among these community isolates from the 5,277 cloud genes identified (53.84%)
when compared to the 2,273 core genes (23.19%) (Figure 2). The lower ratio of core genes
indicated low homogeneity between the A. baumannii community isolates, highlighting the
uniqueness of the bacterium in each population. Even within the Segamat population itself, the
higher diversity of the community 4. baumannii isolates was apparent, as compared to the
hospital isolates from the same town (Muzahid et al., 2023). Of interest, there did not seem to
be any apparent geographical clustering between the two populations (Figure 2), and this was
evident when examining the core genome phylogenetic tree that was generated using both
community and clinical isolates of A. baumannii from Malaysia (Figure 3). Segamat is a
township in the state of Johor and is approximately 390 km to the south of the state of

Terengganu where the sampling was carried out in the Orang Asli rural settlements.
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Figure 2: Pangenome analysis of community 4. baumannii isolates from Malaysia that are
currently available in the databases (n = 20). The orange-colored tracks represent the Orang
Asli community 4. baumannii from this study (n = 9), whereas the green-colored tracks
represent the Segamat community strains (n = 11; isolates with the prefix “C”) that were
previously published (Muzahid et al., 2023). Heatmap on the top right corner presents the
average nucleotide identity (ANI) of A. baumannii from both communities, with all of them
having >97% identity.

A maximum-likelihood phylogenetic tree was generated from the core genome alignment of
199 Malaysian A. baumannii genomes (Figure 3) and these included the genomes from this
study, the Segamat study (both community and hospital isolates) (Muzahid et al., 2023), 126
genomes from a ten-year collection of isolates from Hospital Sultanah Nur Zahirah (HSNZ),
the main tertiary hospital in Terengganu (Din et al., 2025), and other clinical isolates of A.
baumannii obtained from the PubMLST database (refer to Appendix 1 for the list of genomes).
Hospital isolates of 4. baumannii were predominantly ST2p.s which were categorized under
the Global Clone 2 (GC2) lineage, and this is clearly evident in the phylogenetic tree where

they are clustered in a distinct clade (Figure 3). GC2 is the predominant A. baumannii lineage
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globally (Nigro and Hall, 2018) but the basis of this predominance is the overwhelming
majority of sequenced isolates were from the hospitals (Shelenkov et al., 2023). As mentioned
earlier, the Orang Asli A. baumannii genomes were scattered throughout the phylogenetic tree,
as were the Segamat community isolates whereas most of the Segamat hospital isolates were
clustered together in the GC2 clade, much like the HSNZ isolates. Interestingly, one Orang Asli
isolate, A. baumannii 19064 (ST10pas; ST5850xf), was found to be a member of the GC8
lineage. Similarly, Muzahid et al. (2023) had reported that one of their community isolates from
Segamat was identified as a member of the GC1 lineage. Apart from these exceptional cases,
none of the community 4. baumannii isolates belonged to any GC clusters. Additionally, the
Orang Asli 4. baumannii was also distinct from the Segamat community isolates with only A.
baumannii 19062 distantly grouped with C-72 (Figure 3). Although majority of the Orang Asli
isolates did not belong to any of the major Global Clones, we observed that they were
interleaved with a few non-GC clinical isolates from HSNZ in neighboring branches (Figure
3). It is possible that these community A. baumannii isolates were able to cause infections
whenever the opportunity arises (i.e., potential pathogenicity) and thus, we see the relatively
close genetic relationship between some of the Orang Asli isolates and the non-GC hospital
isolates. However, without specific infection data and proven clinical relevance, this remains
speculative. Nevertheless, genomic data can inform future research on A. baumannii,
particularly with broader longitudinal carriage studies, contract tracing or case control analysis
with clinical samples, any transmission between the community and hospital isolates could be
detected and proven.

Apart from the distinct clustering of various GCs (Figure 3), the Malaysian clinical A.
baumannii isolates also presented a different catalogue of dominant bla genes, which varies
from the community A. baumannii resistome described earlier. The presence of blatem-i
(Ambler Class A), blanpm-1 (Ambler Class B), blaapc-73 (blaapc-1-ike; Ambler Class C), blaoxa-
23 and blaoxa-e6 (Ambler Class D) were recorded from almost all the Malaysian GC2 genomes,
and likewise for the tetracycline resistance gene tet(B) (Figure 3). One distinctive feature of A.
baumannii hospital isolates is the presence of large AbaR resistance islands that were often
inserted within the chromosomal comM gene (Meumann et al., 2019). The intactness of the
comM gene was investigated for all the Malaysian 4. baumannii genomes presented here. Not
surprisingly, the comM gene was interrupted in all the GC2 isolates whereas the proportion was
87.5% for GCI, 71.4% for GC7, and 66.7% for GC11 isolates (Figure 3). The non-GC A4.
baumannii genomes have a much lower percentage of interrupted comM, and within the nine

Orang Asli isolates, only 4. baumannii 19060 was identified with disruption of the comM gene
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(Figure 3). Nevertheless, the genes that were inserted within comM in A. baumannii 19060
were not associated with antimicrobial resistance but rather those associated with metabolism,
regulatory genes and hypothetical proteins, much like what was described for the community-

onset isolates from the Australian Northern Territory (Meumann et al., 2019).
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Figure 3: Midpoint-rooted maximum likelihood phylogenetic tree of all Malaysian A.
baumannii genomes that are published [i.e., the current Orang Asli isolates, the Segamat
hospital and community isolates described by (Muzahid et al., 2023), and the ten-year HSNZ
isolates reported by (Din et al., 2025)] along with 4. baumannii genomes originating from
Malaysia that are found in PubMLST (as of 30 January 2025). Also shown are their
categorization into the various Global Clone (GC) lineages, the presence/absence of
predominant carbapenemase (purple boxes) and tetracycline resistance genes (green boxes),
the intactness of the comM gene (orange circles) and presence of plasmids of the Rep 3 family
(light green tick marks).

3.6 Insertion sequence (1S) elements

A total of 17 ISs belonging to five families, namely 1S3, IS5, IS9/, IS630 and ISL3, were
identified from the Orang Asli 4. baumannii genomes (Appendix 2). IS4ba43 of the ISL3
family (Cameranesi et al., 2020) was found in all nine 4. baumannii genomes, with at least one

copy of the IS in each genome (Appendix 2). Other IS families were found in fewer numbers
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with ISAba40, 1ISAba57, and 1SAba63 of the IS3 family found in one genome each, and the
remaining IS elements identified found only in A. baumannii 19062 (Appendix 2). There were
few reports for most of these IS elements except IS7006 which was identified in 4. baumannii
19062 and is well-known for its association with plasmid-borne antimicrobial resistance
regions (Harmer and Hall, 2021; Varani et al., 2021; Hall, 2022). However, the identified copy

of IS7006 in A. baumanii 19062 was not found to be associated with any resistance genes.

3.7 Carriage of plasmids in A. baumannii from the Orang Asli community

Plasmids play an important role in the evolution of 4. baumannii, being a major vehicle for the
dissemination of antibiotic resistance genes (Lam and Hamidian, 2024; Tobin et al., 2025). In
a comprehensive survey of 439 mostly complete 4. baumannii genomes, more than half (52%)
contained one plasmid, 27% harbored two plasmids while seven genomes contained six to
eleven plasmids (Lam and Hamidian, 2024). Plasmids of the Rep 3 family were by far, the
most predominant with more than half of these plasmids harboring antibiotic resistance genes
(Lam et al., 2023; Lam and Hamidian, 2024; Tobin et al., 2025). Among the nine Orang Asli
A. baumannii genomes, only one isolate, A. baumannii 19055, was without any detectable
plasmids; three isolates (i.e., 19053, 19062 and 19064) harbored two plasmids each, while the
remaining five isolates contained a plasmid each (Appendix 3). Eight of these plasmids were
small plasmids (i.e., <10 kb; (Lean and Yeo, 2017)), ranging in size from 2,178 bp to 8,837 bp.
Out of these eight small plasmids, only one plasmid, p19053a, belonged to the Rep 1 family,
specifically the R1-T6 type. p19053a was only 2,178 bp and harbored the rep gene and two
other hypothetical open reading frames (ORFs) (Appendix 4). Lam and Hamidian (2024) noted
that the R1-type plasmids are typically 2 — 3 kb in size and encode only the replication initiation
protein along with one or two hypothetical proteins. None of these plasmids harbored AMR
genes and p19053a follows the characteristics of the prototypical R1-type plasmid.

The remaining seven small plasmids were of the Rep 3 family, specifically the R3-T5 (n = 4),
R3-T13 (n=2) and R3-T64 (n = 1) types (Appendix 3 & 4). Two of these R3 types (i.e., R3-
T5 and R3-T13) were reportedly among the most abundant R3 types globally, but their
distribution were mainly linked to minor STs (Lam and Hamidian, 2024). Plasmid p19064a
from the R3-T5 type was found in an ST10pas host (4. baumannii 19064), which was the only
isolate from this study that belonged to the one of the known Global Clone lineages, GCS, but
did not harbor antibiotic resistance genes. Among these small plasmids, only p19053b, which

was also of the R3-T5 type, harbored the fet(39) tetracycline resistance gene (Figure 4). In
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contrast, A. baumannii clinical isolates from Malaysia, particularly those of the GC2 lineage,
prevalently harbored an 8,731 bp plasmid we initially designated pAC12a (Lean et al., 2014;
Lean and Yeo, 2017; Din et al., 2025) and which is identical to the pAl-1 plasmid (accession
no. CP010782) that is harbored in a GC1 isolate obtained in 1982. This plasmid was previously
typed as GR2 in an older scheme (Bertini et al., 2010) but has since been typed as R3-T1, and
almost half of the members of this group were identical or nearly identical to pAl-1 (Lam et
al., 2023). This supports the long-standing association of this plasmid with the GC1 and GC2
lineages but isolates of other STs have also been found that harbor this plasmid albeit at a much
lower frequency (Lam et al., 2023; Din et al., 2025). A characteristic feature of this plasmid is
the presence of mobile pdif modules containing the se/l, abkBA toxin-antitoxin genes, and a
gene encoding a TonB-dependent receptor (Lean and Yeo, 2017; Lam et al., 2023). Notably,
this plasmid type was absent from all A. baumannii isolates obtained from the Orang Asli
population and the Segamat community, suggesting a possible specific association with clinical
strains.

Lam and Hamidian (2024) reported that almost half of the R3-type plasmids were not
associated with AMR determinants. The genetic structures of the R3-T5 and R3-T13-type
plasmids identified in this study (n = 6; Figure 4 and Appendix 4) showed the absence of AMR
genes from five of them, except for the fet(39)-tetR genes in p19053b. The tet(39)-tetR genes
are located within a mobile pdif module usually found in Acinetobacter plasmids (Blackwell
and Hall, 2017; Lean and Yeo, 2017). A pdif module typically comprises one or two related
genes flanked by pdif sites, which resemble the chromosomal dif site involved in site-specific
recombination. These 28 bp pdif sites contain binding regions for the recombinases XerC and
XerD, similar to the chromosomal dif site near the bacterial chromosome terminus. The term
pdif was used to differentiate these plasmid-associated sites from chromosomal dif sites
(Blackwell and Hall, 2017; Castillo et al., 2017; Balalovski and Grainge, 2020). Three other
pdif modules were uncovered from p19053b, and these carry a nucleotide-binding protein-
encoding gene, higBA toxin-antitoxin genes, and a sel/ gene along with a gene encoding the
SMI1/KNR4-family protein (Figure 4; Appendix 5). Interestingly, the gene arrangement of
the higBA, and sell-SMI1/KNR4-family pdif modules were observed in almost all the R3-T5-
type plasmids identified in this study and also extends to the R3-T13-type plasmids (i.e.,
p19058 and p19063) (Figures 4 and 5; Appendix 4).

Two plasmids of the R3-T5-type, namely p19056 and p19061, were nearly identical, with both
at 7,146 bp (Figure 4). They were closely related to the pD1279779 plasmid (accession no.
CP003968.1) which was slightly larger at 7,416 bp with an additional hypothetical protein
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found downstream of the SMI11/KNR4-family gene (Figure 4). Plasmid p19064a also appeared
to be closely related to pD1279779 but the p19064a sequence was actually stitched together
from two separate contigs (Figure 4), and whether there are additional genes that are lost in
between these two contigs is not known. Interestingly, the host for pD1279779 was A.
baumannii D1279779, which was isolated from a community-acquired bacteremia patient in
Northern Australia and typed as ST267p.s/ST9420xr (Farrugia et al., 2013). Based on the
collection of Acinetobacter plasmids curated by (Lam et al., 2023), the R3-T5-type plasmids
identified in this study were related to pPM194229-3 and pDETABG, besides pD1279779. The
p19053b plasmid, which harbored the fe#(39)-tetR genes, is thus the sole R3-T5-type plasmid
which encode AMR determinants. This plasmid is more closely related to pPDETAB6, which
harbored two hypothetical ORFs instead of the fet(39)-tetR genes in p19053b (Figure 4).
AMR genes are also a rarity among the R3-T13-type plasmids. A search in the Acinetobacter
plasmid repository posted by (Lam et al., 2023) led to the discovery of p29FS20-2 (accession
no. CP044521.1) as the sole carrier of fet(39)-tetR, and the aminoglycoside resistance genes
aph(3”)-Ib and aph(6)-1d in this plasmid type. Two of the three R3-T13-type plasmids
identified in this study, p19058 and p19063, were not associated with AMR determinants;
however, p19062b was the only R3-T13-type plasmid that harbored the fet(39)-tetR gene pair
(Figure 5). Similar to p19053b, the fet(39)-tetR genes in p19062b was also located within a
pdif module, a feature that was also observed in p29FS20-2 (Figure 5). Plasmids p19058 and
p19063 were more closely related to another R3-T13-type plasmid, p6200-9.327kb, but this
plasmid contained additional genes encoding sulphate permease (su/P) and a universal stress
protein (usp) (Figure 5). One of the interesting observations of note regarding these plasmids
is the almost universal presence of the rep 3-orfX backbone, the higBA, and sel/-SMI11/KRN4
family modular arrangement of genes, covering also the R3-T5-type plasmids (Figures 4 and
5). The sole exception to this is plasmid p19062b where the se//-SMI1/KRN4 pdif module was
absent, and the putative toxin-antitoxin module (identified as re/BE by TADB 3.0) was distantly
related to the higBA module usually found in the other similar plasmid-types (Figure 5).

The other plasmids identified in the Orang Asli A. baumannii genomes are p19062a of the R3-
T64 type, p19060 of R3-T26, and p19064b of R3-T27 type (Appendix 4). These plasmid types
are rarely encountered when compared to the R3-T5 and R3-T13 types (Lam et al., 2023). None
of these plasmids harbor AMR determinants.

Even though only nine 4. baumannii genomes were investigated in this study, the diversity of
plasmids found is reflective of the diversity reported for the genus Acinetobacter (Lam and

Hamidian, 2024). Given the limited direct clinical antibiotic exposure in the studied
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community, it is plausible that plasmid-mediated resistance (in particular, tetracycline
resistance) is maintained and disseminated through environmental and ecological interactions.
Local environmental sources (such as soil and water contaminated with antimicrobial residues)
and animals (including livestock and wildlife) can act as reservoirs of resistance plasmids and
provide opportunities for gene exchange between commensal, environmental, and pathogenic
bacteria. Such interactions may help explain the persistence and spread of resistance
determinants in these isolates despite low human antibiotic usage (Davies and Davies, 2010;
Aminov, 2009). This is particularly true for tetracycline resistance in which the antibiotic has
been extensively used for decades in both human and veterinary medicine as well as in
agriculture and aquaculture. This historical use could have created an initial selective pressure
which led to the persistence of the resistance gene(s) in the bacterial population (Aminov,
2009). Even if the exposure to tetracycline is now limited, the fitness cost of carrying the
resistance gene might be low, which enables them to persist by being integrated into mobile
genetic elements such as pdif modules and plasmids that are easily transmitted between
bacteria. The tet(39) pdif module along with pdif modules harboring carbapenem and macrolide
resistance genes have indeed been reported in diverse Acinetobacter spp. isolated from aquatic

environments in South Australia (Tobin et al., 2024).
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Figure 4: Comparisons of the R3-T5-type plasmids found in the Orang Asli 4. baumannii
isolates with similar R3-T5-type plasmids in the database curated by (Lam et al., 2023). Needle
and thread icon shown for the p19064a plasmid map indicated that the plasmid was a composite
that was stitched together from two separate contigs. The pdif sites are marked with green and
red crosses representing XerC/D and XerD/C recognition sites, respectively.

rep3 SMI1/KNR4
(Rep3- R3T13) family protein sel1
»®

higA higB

/

p6200-9.327kb
(CP010400)

P —— 9327 bp

Sy

p19058 i m— 7701 bp

p19063

\
pra— 7752 bp
.

folP aph(6)-Id” aph(3’)-Ib:
p29FS20-2 3

‘ 3 12731 bp
(CP044521)

p19062b < —4 - 10209 bp

I 100%

76%

higB  relE relB
(Rep3- R3T13)

Figure 5: Comparative linear map of R3-T13-type plasmids identified from the Orang Asli A4.
baumannii with closely related R3-T13-type plasmids found in the plasmid database presented
by (Lam et al., 2023). Red-green crosses representing pdif sites were labelled as indicated in
the previous Figure.

3.8 Perspectives, Limitations and Suggestions for Future Studies

By conducting genomic analysis of A. baumannii strains from a previously understudied
population, our work addresses a key WHO priority in its Global Action Plan on AMR (WHO,
2015). The identification of resistance genes and their prevalence in this unique community
provides new surveillance data from a region where such information is limited. This is
essential for informing and strengthening national and regional AMR strategies, thereby
contributing to the global surveillance network. Our findings on the presence of antimicrobial-
resistant A. baumannii in asymptomatic carriers from a community setting also underscore the
importance of community-level surveillance and infection prevention. WHO recognizes that
AMR is not just a hospital problem (WHO, 2015). For A. baumannii, there has been scarce

data on the genomic characteristics of community-origin isolates worldwide, resulting in the
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overwhelming prevalence of hospital-origin GC2 genomes in the public databases (Lam and
Hamidian, 2024; Shelenkov et al., 2023; Hamidian and Nigro, 2019). Our study also highlights
the need for targeted public health interventions and awareness campaigns to mitigate the
spread of resistant bacteria in non-clinical settings. This information is vital for developing
effective community-based strategies to limit the transmission of AMR.

A major limitation in this study is that these 4. baumannii genomes were sequenced using the
[llumina short-read platform, which does not allow for complete genome assembly. Therefore,
some of the plasmid architecture presented here should be taken with caution as we could not
ascertain if there are genes or genetic elements that are lost in the assembly of the draft
genomes. This limitation is particularly relevant for plasmid p19064a which was assembled
across two separate contigs. Nevertheless, the fact that some of these plasmids have similar
counterparts from clinical 4. baumannii isolates is of concern as they could serve as vehicles
for the dissemination of AMR genes. The discovery of the tet(39)-tetR gene pair within a
mobile pdif module in two distinct plasmids, p19053b and p19062b, underlines this likelihood
and highlights the importance of continued genomic surveillance particularly among the
community.

Another limitation of this study is the small number of 4. baumannii isolates that were obtained
and analyzed (n = 9), thus necessitating future broader longitudinal studies for a better
representation of the population. We also phenotypically tested a limited number of
antimicrobials in this study (i.e., meropenem, ciprofloxacin, tetracycline, and doxycycline).
Hence, increasing the number of antibiotics by including classes such as the aminoglycosides
would be useful for a more comprehensive phenotypic resistance profile, more so as the
aminoglycoside resistance gene, ant(3 ”)-1la, was detected in five isolates. The expression of
these resistance genes can be validated by using quantitative real-time reverse transcriptase
PCR (qRT-PCR), particularly for isolates in which the resistance gene is detected but the isolate
remains phenotypically susceptible. Future studies should also focus on functional assays to
determine the role of the new STs and capsule types in biofilm formation, resistance to
environmental stresses and host immune evasion. This will provide a clearer understanding of
how these novel types might influence the ability of the bacteria to cause disease and resist

antibiotics in clinical settings.
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4 Conclusions

Acinetobacter baumannii and its antimicrobial resistance mechanisms have long been central
in the global fight against superbugs, as understanding these traits is essential for improving
treatment strategies. Over the decades, numerous reports have highlighted the alarming rise in
carbapenem-resistant, MDR and even PDR A. baumannii strains in clinical settings (Akeda,
2021; Chen et al., 2023), suggesting that that treatment practices themselves may contribute to
the development of resistance (De Blasiis et al., 2024). In contrast, A. baumannii isolates from
remote communities, such as the indigenous Orang Asli population studied here, exhibited
lower levels of antibiotic resistance. However, data on community-derived isolates remain
scarce when compared to clinical isolates (Lam and Hamidian, 2024).

Despite their relative antibiotic susceptibility, these community-associated A. baumannii
isolates still harbor a range of virulence factors (VFs) and mobile genetic elements, including
plasmids and insertion sequences (Meumann et al., 2019; Muzahid et al., 2023), features well-
documented in hospital-derived strains. Notably, one isolate from this study belonged to the
Global Clone 8 (GC8) clinical lineage, while (Muzahid et al., 2023) previously identified a
Global Clone 1 (GC1) isolate in a more urbanized community setting in Malaysia. Moreover,
the phylogenetic interleaving of these community isolates with certain non-GC hospital strains
suggests that they possess the capacity to cause infections and acquire resistance traits, akin to
their clinical counterparts. The presence of shared genomic features in 4. baumannii from a
presumptive antibiotic-naive environment underscores the pathogen’s inherent capacity for
persistence and colonization, even in healthy individuals. Of concern is the detection of two 4.
baumannii isolates from this study that harbors tetracycline resistance genes in mobile pdif
modules located in distinct plasmids with similarities to those isolated from clinical strains.
This finding suggests the potential for further acquisition of resistance determinants and serves
as a cautionary signal against the unregulated introduction of antibiotics into vulnerable
populations, highlighting the need for a targeted public health policy that guides the use of
antibiotics in these communities. Healthcare practitioners working with remote communities
can use these insights to make more informed treatment decisions, adopting rapid diagnostic
tests, if possible, to ensure that antibiotics are prescribed only when clinically necessary. This
minimizes unnecessary antibiotic exposure, thereby potentially reducing the emergence and
spread of AMR (Yau et al., 2021). Therefore, expanding genomic surveillance to include
community-derived A. baumannii strains, even from remote indigenous tribes is indeed a useful

endeavor. Although this is a road less taken, the knowledge obtained particularly tracking the
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shifts in known and novel STs, will be invaluable for understanding the pathogen's broader

epidemiological dynamics and informing future public health strategies.
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APPENDIX 1: List of Acinetobacter baumannii genomes from Malaysia used to construct the phylogenetic tree

Strain ID Location Latitude Longitude Country Year ST (Oxford) ST (Pasteur) Global Clone Klocus Olocus R3Plasmid comM intactness
19053 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 3542 2832 NA KL121 OCL2 Present Intact
19055 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 3543 2114 NA KL96 OCL13 Intact
19056 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 3415 2522 NA KL170  OCL2 Present Intact
19058 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 3541 2834 NA KL202  OCL4 Present Intact
19060 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 871 2700 NA KL112  OCL6 Truncated
19061 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 3544 470 NA KL172  OCL4 Present Intact
19062 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 3545 2635 NA KL81 OCL6 Intact
19063 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 3540 2833 NA KL183 OCL2 Present Intact
19064 Kg. Sungai Pergam  4.0471 103.2859 Malaysia 2017 585 10 8 KL108  OCL2 Present Intact
11795 SAMN12769618  Unknown 4.2105 101.9758 Malaysia 2017 2098 46 NA KL28 OCL1 Intact
13581 SAMNO03174915  Unknown 4.2105 101.9758 Malaysia 2012 - 739 NA KL229  OCL6 Present Intact
13582 SAMNO03174917  Unknown 4.2105 101.9758 Malaysia 2012 2596 374 NA KL50 OCL6 Intact
13583 SAMNO03174920  Unknown 4.2105 101.9758 Malaysia 2012 - 360 NA KL52 OCL6 Truncated
18713 AC1532 Unknown 4.2105 101.9758 Malaysia 2015 229 25 7 KL14 OCL6 Truncated
18714 AB24 Unknown 4.2105 101.9758 Malaysia 2012 229 25 7 KL14 OCL6 Truncated
18837 CRE341 Unknown 4.2105 101.9758 Malaysia 2015 1947 25 7 KL139  OCL6 Truncated
2733 AC30 Terengganu 5.3283 103.1412 Malaysia 2011 195 2 2 KL3 OCL1 Present Truncated
2754 AC12 Terengganu 5.3283 103.1412 Malaysia 2011 195 2 2 KL3 OCL1 Present Truncated
2756 AC29 Terengganu 5.3283 103.1412 Malaysia 2011 195 2 2 KL3 OCL1 Present Truncated
2942 341 Unknown 4.2105 101.9758 Malaysia 2013 - 2 2 KL210  OCL1 Truncated
4127 CRE341 2015 Kuala Lumpur 3.1319 101.6841 Malaysia 2015 1947 25 7 KL139  OCL6 Present Truncated
4128 CRE449 2014 Kuala Lumpur 3.1319 101.6841 Malaysia 2014 - - NA KL3 OCL1 Present Truncated
6871 CRE449 Pahang 3.9743 102.4381 Malaysia 2014 - - NA KL3 OCL1 Present Truncated
7942 AC1839 Terengganu 5.3283 103.1412 Malaysia 2018 - - NA KL120  OCLI Intact
7943 AC1934 Terengganu 5.3283 103.1412 Malaysia 2019 - - NA KL176  OCLS Intact
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Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
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Terengganu
Terengganu
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Terengganu
Terengganu
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103.1412
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Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
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Terengganu
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Terengganu
Terengganu
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Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
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2016
2016
2016
2016
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2017
2017
2017
2017
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2017
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2017
2017
2017
2017
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2090
2089
2024
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514
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OCL7
OCL1
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OCLI1
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Terengganu
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Segamat
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Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
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Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu

Terengganu
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5.3283
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5.3283
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5.3283
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103.1412
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103.1412
103.1412
103.1412
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Malaysia
Malaysia
Malaysia
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2018
2018
2018
2018
2018
2018
2018
2018
2018
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2018
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2019
2019
2019
2019
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2019
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684
1418
3390
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OCL1
OCL1
UK
OCL1
OCL3
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ACI1919
AC1930
AC1932
AC1940
AC1950
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AC1957
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AC2009
AC2010
AC2013
AC2014
AC2015
AC2018
AC2024
AC2025
AC2028
AC2029
AC2034
AC2035
AC2036
AC2037
AC2041
AC2043
AC2044
AC2045

Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu
Terengganu

Terengganu

5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
5.3283
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103.1412
103.1412
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103.1412
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103.1412
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103.1412
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103.1412
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Malaysia
Malaysia
Malaysia
Malaysia
Malaysia
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Malaysia
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2019
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2020
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2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
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Present
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AC2046
AC23
AC38
AC40
AC6
AC8
ATCC BAA1605
C-102
C-15
C-28
C-39
C-55
C-59
c-61
C-64
c-72
C-95
C-98
H-10112
H-10156
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H-52446
H-6657
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H-7940

Terengganu
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
Segamat
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5.3283
2.5035
2.5035
2.5035
2.5035
2.5035
2.5035
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2.5035
2.5035
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2.5035
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2.5035
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102.8208
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102.8208
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102.8208
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102.8208
102.8208
102.8208
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102.8208
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Malaysia
Malaysia
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Present
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1077
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Segamat
Segamat
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102.8208
102.8208
102.8208

Malaysia
Malaysia
Malaysia
Malaysia
Malaysia

Malaysia

2018
2018
2018
2018
2018
2017

2241
208
547
547
207
2098

23 8 KL8
2 2 KL2
2 2 KL14
2 2 KL14
2 2 KL2
46 KL28

OCL2
OCL1
OCL1
OCL1
OCL1
OCL1

Present
Present
Present

Present

Intact

Truncated
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APPENDIX 2: List of insertion sequence (IS) elements found in the Orang Asli A. baumannii genomes

A. baumannii isolate ID

IS elements (family)

19053
19055
19056
19058
19060
19061
19062
19063
19064

ISAbad3 (ISL3), ISAba57 (IS3), ISAba40 (IS3)

ISAba43 (ISL3)
ISAba43 (ISL3)
ISAba43 (ISL3)
ISAba43 (ISL3)
ISAba43 (ISL3)

ISAbad3 (ISL3), ISAba68 (IS5), IS1006 (IS91), ISAbad4 (IS630)

ISAba43 (ISL3)

ISAba43 (ISL3), ISAba63 (IS3)
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APPENDIX 3: List of plasmids identified from the genomes of the Orang Asli 4. baumannii isolates.

A. baumannii strain 1D Plasmids (n) Plasmid name Location Size (bp) Rep family Coverage (x)
19053 2 p19053a contig29 2,178 RI1-T6 198
p19053b contig20 8,837 R3-T5 20.1
19055 0 - - - - -
19056 1 p19056 contigl5 7,146 R3-T5 81
19058 1 p19058 contig24 7,701 R3-T13 29.7
19060 1 p19060 contig56 14,883 R3-T26 26.7
19061 1 p19061 contigl4 7,146 R3-T5 39.2
19062 2 p19062a contig51 8,039 R3-T64 562.6
p19062b contig51 10,209 R3-T13 562.6
19063 1 p19063 contigl6 7,752 R3-T13 330.2
19064 2 p19064a contig34, 35 7,416 R3-T5 201.7
p19064b contig27 19,328 R3-T27 20.9
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APPENDIX 4: Linear genetic maps of all plasmids identified in the Orang Asli community 4.
baumannii isolates. Majority of the plasmids were of the Rep 3 family with only plasmid,
p19053a, belonging to the Rep 1 family. The rep-encoded replication initiation protein gene is
depicted as blue-colored arrows with its Rep type labelled while its downstream gene, recently
designated orfX (Lam et al., 2023), is shown as light blue arrows. White colored arrows
represent genes encoding hypothetical proteins. Other colored arrows are as in the legends to
Figures 4 and 5 in the main text. pdif sites are depicted as green (XerC/D) and red (XerD/C)
crosses. Note that plasmid p19064a is a composite of two contigs that were stitched together
as signified by the needle and thread icon above its linear map.
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APPENDIX 5: List of pdif sequences identified in the Orang Asli 4. baumannii plasmids

Plasmid Start End Sequence (5'>3")* Type$
p19053a ND* ND# - _
p19053b 1696 1723 ATTTCGTATAA GGCGTA TTATGTTAATT C|D
2727 2754 ATTTAACATAA TGGGCG TTATATGAAAT DIC
4048 4075 ATTTAACATAG AAACTC TTATGCGAATC DIC
5445 5472 ATTTCGGATAA CGCCCA TTATGTTAAAT C|D
7474 7501 AATTAACATAA TACGCC TTATGCGAAGC DIC
p19056 2187 2214 ATTTAACATAA TGGGCG TTATCCGAAAT DIC
3582 3609 GATTCGCATAA GAGTTT CTATGTTAAAT CD
4902 4929 ATTTCATATAA CGCCCA TTATGTTAAAT CID
p19058 2293 2320 ATTTCGTATAA GGTGTA TTATGTTAATT CD
2945 2972 ATTTAACATAA AATCTC TTATTCGAAAT DIC
3466 3493 ATTTAACATAA TGGGCG TTATATGAAAT DIC
4786 4813 ATTTAACATAG AAACTC TTATGCGAATC DIC
p19060 4641 4668 ATTTCGTATAA GGCGTA TTATGTTAATT CID
6088 6115 ATTTAACATAA TGGGCG TTATACGAAAC DIC
6933 6960 GTATAAGGTGT ATTATG TTAATTTTAGA DIC
8372 8399 GCTTCACATAA GAGATT TTATGTTAAAT CID
13010 13037 AATTAACATAA TACACC TTATACGAAAT D|C
p19061 3582 3609 GATTCGCATAA GAGTTT CTATGTTAAAT CID
p19062a 2685 2712 ATTTAACATAA AATCTC TTATGTGAAGC DIC
p19062b 1623 1650 AATTAACATAA TACACC TTATACGAAGG DIC
3109 3136 TCTAAAATTAA CATAAT ACACCTTATAC DIC
6421 6448 GTATAAGGTGT ATTATG TTAATTTTAGA CID
8445 8472 ATTTAACATAA TGGGCG TTATCCGAAAT DIC
p19063 2160 2187 ATTTCGTATAA GGTGTA TTATGTTAATT CID
2701 2728 ATTTAACATAA TGGGCG TTATATGAAAT D|C
4021 4048 ATTTAACATAG AAACTC TTATGCGAATC DIC
5413 5440 ATTTCGGATAA CGCCCA TTATGTTAAAT C|D
5934 5961 ATTTCGAATAA GAGATT TTATGTTAAAT CID
p19064a 3750 3777 ATTTCGTATAA GGCGTA TTATGTTAATT C|D
5992 6019 ATTTAACATAG AAACTC TTATGCGAATC D|C
7387 7414 ATTTCGGATAA CGCCCA TTATGTTAAAT CID
p19064b 5705 5732 GCTTCACATAA GAGATT TTATGTTAAAT C|D

*pdif sites are presented with underlined fonts representing the 6 bp spacer that is flanked by the XerC/XerD

binding sites.

SC|D refers to the XerC-spacer-XerD orientation while D|C refers to the XerD-spacer-XerC orientation of the

pdif site
*ND = not detected
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