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A B S T R A C T

Machinery condition prognosis systems use long-term historical data to predict the remaining
useful life (RUL). One of the critical steps to reach this purpose is to segment long-term data into
two or several degradation stages (healthy, unhealthy, critical stage). Finding a changing point
between stages may be a crucial preliminary task for further prediction of degradation process.
However, finding the accurate partition into two or more stages is a challenging task in actual
application when noise inherent in the observed process exhibits non-Gaussian characteristics.
In this paper, a framework for data-driven segmentation is presented for prognosis of machinery
long-term data in presence of heavy-tailed distributed noise with finite variance. It is assumed
that three different stages are inherent in degradation process and each segment of data follows
a specific trend (constant, linear, exponential or polynomial). At first, data is divided into
three parts. Trend functions are fitted to the data by using robust regression method, and
cumulative error is calculated. This process is done iteratively for all possible partitions into
three intervals to find the segmentation which minimizes the error. The framework has been
tested via empirical analysis of estimators of the changing points obtained in Monte Carlo
simulations. Also, discussed approaches are applied to the real data. In such measurement,
data that are commonly available (in condition monitoring systems) is aggregated from the
raw signal and sampled at long intervals. Finally, effectiveness of the segmentation results is
assessed by comparing them with envelope frequency analysis of raw signal to confirm the fact
that detected changing points coincide with start time of the fault in the machine or not.

. Introduction

Prognostics and Health Management (PHM) is one of the significant tasks in condition-based maintenance (CBM). The CBM
ystems are developed to assess the machine’s condition by collecting massive amounts of data during the operation of machines.
HM is usually composed of four different processes: 1. Data acquisition is defined as the process of recording and saving different
ypes of monitoring data from various sensors mounted on the monitored machine. 2. Construction of a health index (HI): Generally,
health index is defined as the set of statistical and frequency domain-based features extracted from raw signals to describe health

ondition of the machinery. It should be noted that selecting an appropriate health index that accurately describes degradation is
rucial for subsequent procedures. Extensive literature exists on this topic, with numerous papers specifically addressing this area
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of research. However, due to the scope of this paper, we will refrain from providing an in-depth description of this aspect. 3. Health
stage (HS) evaluation and 4. Predicting RUL: HS evaluation is taken as an expression of fault detection in the PHM community [1].
Nevertheless, their assignments are different from each other. Fault diagnosis is determined by the pattern and intensity of the fault
of the machine. However, the primary purpose of HS evaluation is to divide continuous degradation process into several health
stages due to varying trends of HI. Also, it is hard and dubious to predict RUL during the healthy stage. RUL estimation should start
from the unhealthy stage’s start time, known as the first predicting time (FPT), due to the fact that in the healthy stage observations,
there is no valuable information about the unhealthy stage and its degradation trend. Therefore, instead of trying too hard to employ
complex model, such as the model with switching regimes or non-linear trends to predict RUL, breaking HI into different HS and
trying to predict RUL from the last stage may be more accessible and evaluative. Commonly, for HS evaluation, the health index is
compared to a limit value that usually is provided by the manufacturer (threshold corresponding to change from ‘‘Good Condition’’
(healthy stage) to ‘‘Warning’’ (degradation stage) and ‘‘Warning’’ to ‘‘Alarm’’ stage (critical stage). Unfortunately, we do not know the
limit values or desired useful life in many cases, which is often present in raw materials industry [2], especially when the machine
is unique. In addition, note that most of these thresholds are introduced by manufacturing industries and are defined based on
particular working and environmental conditions standards that may not be valid when conditions change.

In recent years, several papers have been published in the literature to detect changing points in time series in different areas
uch as financial, medical, and meteorology [3–8]. Also, it should be noted that this process is known as regime-switching point
etection or signal segmentation in other communities. Signal segmentation is repeatedly employed in signal processing applications
o separate original data into homogeneous segments or extract the pattern. In related studies, qualitative trend analysis (QTA) has
een employed as a method for achieving the same objective. QTA involves analyzing and interpreting qualitative patterns and
rends in the data to identify stage borders [4,5,9]. However, QTA as an approach which takes into account trend only. In our case,
he considered problem is much more general. Gasior et al. [10] used segmentation for shock extraction in sieving screen vibrations.
ucharczyk et al. [11] used stochastic modeling for seismic signal segmentation. Grzesiek et al. [12] proposed a methodology to
etect regime-changing when regime A smoothly transforms into regime B. Also, a few papers have been published in the PHM
ommunity based on dividing HI into different HS. Some of these articles divide HI into two different stages. Alkan et al. [13]
resented a methodology for diagnosis of electromechanical systems faults based on the variance-sensitive adaptive alarm threshold
nd principal component analysis (PCA). Fink et al. [14] explained the prediction of RUL as a two-stage classification to detect
he machine’s condition after the defined time interval. Schlechtingen et al. [15] compared three different model-based approaches
or two-stage division of wind turbines, i.e., a regression-based model and two artificial neural networks (ANN) based models. Hu
t al. [16] used a one-class support vector machine and a Gaussian threshold model for condition monitoring of turbo-pumps. The
wo-stage division is only valuable for cases where the degradation trends of machinery in the unhealthy stage are consistent and
an be represented utilizing a single degradation model. Nonetheless, due to variations of fault patterns or operational conditions,
he degradation trends of machinery may change. According to this circumstance, the unhealthy stage should be split into various
tages based on different degradation trends. A few of these research divided HI and spectra into several stages, with changing points
etection approaches. For instance, Kimotho et al. [17] segmented degradation trend into five stages due to variation of frequency
mplitude in power spectra density. Sutrisno et al. [18] split the bearing degradation process into different stages by employing
nomaly detection of frequency spectra. Hu et al. [19], separated HI into four stages using changing points of confidence levels.
ethods based on machine learning techniques are frequently used for long-term data analysis for classification, fault detection,

rognosis, etc. [2,20–23]. In this case, unsupervised classification, i.e. clustering, is required because every machine works under
ifferent conditions and labeling data is not an easy task. Hence, the clustering approach has a huge potential to divide long-term
ata into several regimes. The authors of [21] proposed the Long Short Term Memory (LSTM) network with a clustering method for
ulti-stage predicting RUL. Jaskaran Singh et al. [22] introduced an adaptive data-driven model-based approach to detect regime-

hanging points using K-means clustering. Also, discrete state transition models such as HMMs [24–26] and dynamic state-space
odels [27–29] are frequently employed to segment degradation processes into multiple stages. However, most of the mentioned

esearch was performed under the assumption that observation noise has Gaussian distribution, while in most actual applications,
specially in PHM area it is not a proper assumption. In many cases, impulsive noise can be observed, which is properly described
ith a heavy-tailed distribution, meaning that marginal events are likely to occur. This may happen for several reasons. Wind

nflows are one of possible sources of impulsive noise in wind turbine [30–32], ore falling on devices in the mining environment is
nother [33,34].

Due to specific random character of degradation process observed in HI data, classical algorithms known from the literature may
ail to properly perform the segmentation procedure [35–37]. To solve this problem, in the article, we propose a novel stochastic
ata-driven approach that leverages whole historical data to robustly identify stage borders, specifically the transitions between the
ealthy, degradation, and critical stages. Our method is designed to handle the presence of non-Gaussian noise with finite variance,
hich commonly occurs when the machine undergoes condition changes. It is considered that degradation process is composed of

hree stages and each stage of the data follows a specific trend (constant, linear and exponential or polynomial). First, the long-term
istorical data is divided into three parts. Trend functions are fitted to the data using the regression method and cumulative error is
alculated. This process is done iteratively for all possible partitions into three intervals to find the changing points, which minimizes
he error. This procedure is repeated using different regression methods including robust methods such as the least absolute error
nd fitting the Student’s t distribution. It should be noted that the Student’s t distribution was chosen because it is both heavy-tailed
unlike Gaussian distribution) and at the same time has finite variance (for considered range of degree of freedom) making it easier
o fit than some other theoretically well-established distributions. Also, in our previous paper, we showed that this distribution
2

an describe a random part as proper [38]. Furthermore, for better comparison and to check if non-Gaussian noise assumption is
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necessary, along with the mentioned approach, we have included two hidden Markov model-based methods having Gaussian noise
assumption (these two methods use a relatively different structure for segmentation). We also presented a waterfall plot of the
short-time envelope spectrum calculated for available raw vibration data for the real data sets. Such a 3D plot demonstrates how
envelope spectrum changes and allow us to visually validate whether the detected changing points are coinciding with the time the
fault in the machine occurs or not.

The main contribution of this paper is summarized as follows:

• We illustrated the possibility of segmenting long-term condition monitoring data into three segments based on global trends
(deterministic parts) with constant (for healthy stage), linear (for degradation stage), and exponential or polynomial trend
(critical stage).

• We demonstrated and highlighted the effect of noise (noise with Gaussian distribution as a standard assumption in literature
and noise with non-Gaussian characteristics) to detect mentioned stages. We have highlighted importance of this issue and
we state there is lack of sources that analyze the effect of noise to detect any of the stages in the literature for machinery
prognosis.

• We used several conventional statistical approaches (robust and non-robust) to fit a proposed model with three stages in the
presence of different noise levels with time-varying scale of noise to show the performance of it to do this task and make
comparisons between them.

• Additionally, to validate the results in a real case, we applied all the methods to three benchmark data sets in the prognosis area,
and we evaluated the results with condition monitoring techniques to see if the model with three stages has any correlation
with the nature of growing faults in the bearings and which methods perform better in actual area.

Finally, it should be highlighted, that segmentation is a crucial step in prognosis. Many authors assume they know this is second
r third regime and then they do prognosis. But if we do not know what regime we have at the moment, situation is extremely
ifficult: if we are in regime 1 - there is no sense to do prognosis. (No one wants to forecast constant value). The difference between
egimes 2 and 3 is significant, there are different models of HI behavior. In the paper we showed that to achieve information about
urrent regime is not trivial, even if one has all historical data. Additional trouble is related to the presence of non-Gaussian noise.
his is also not clear for many engineers and scientists.

The paper is structured as follows: after the introduction, in Section 2, we reviewed the most common long-term data model and
escribed the model used in this paper. In Section 3, we have reviewed theoretical and mathematical aspects of the methods used
n this paper. In Section 4, we generated data based on Section 2 and employed the proposed structure to segment long-term data
n the presence of Gaussian and non-Gaussian noise. Finally, in Section 5 the results of applying the proposed approach to three
enchmark data sets are presented with an indication of all intermediate steps, and in Section 6 the conclusions are formed.

. Long term data model

Model-based degradation process analysis is a common approach in the PHM community. These models can be described by
arious deterministic trends (linear, polynomial, exponential, and constant); see Fig. 1, various noise distributions, and structures
f dependence for random components; see Figs. 2, 3.

According to pre-knowledge of degradation process, the model can be selected; for example, linear model is frequently used to
escribe the drilling degradation process [39,40], see panel (b) Fig. 1. Meanwhile, exponential degradation trend is usually used
or expressing the battery degradation process [41,42] (but with a negative slope), see panel (c) in Fig. 1. To describe degradation
rocess of bearings, gears or shafts, different kinds of model composed from various deterministic trends may be used [43,44] (see
ig. 1, panel (d), (e), (f)).

In this paper, we assume that degradation process has complex trends, such as those presented in Fig. 3. This model consists of
hree stages. Firstly, degradation process is centered around some constant level that corresponds to healthy stage. The second stage
s made up with a linear function corresponding to the degradation stage. The last part has either an exponential or a polynomial
rend that is referred to as the critical stage. The two moments of transition from one stage to another we will denote as changing
oints: CP1 (is a border between healthy stage with constant trend and degradation stage with linear trend) and CP2 (is a border
etween degradation stage with linear trend and critical stage with exponential or polynomial trend).

Also, this model can include different kinds of noise distribution covering degradation process. In most of the research in this
rea, it is assumed the distribution of noise is Gaussian, see Fig. 2 [45], while this assumption is not proper when the machine
orks in harsh environments [38]. To achieve a model that better reflects real condition, in our previous work [38] we developed a

imulation framework that produces degradation process observations; an exemplary trajectory is shown in Fig. 3. In this framework,
long with the trend of degradation process, the distribution of noise and its scale (square root of variance in the Gaussian case)
re also changing in each stage. Main characteristics of our framework are summarized in Table 1. In this paper, we assume finite
ariance for non-Gaussian distribution.

. Methodology

We assume that the long-term data of health index (HI) is composed of three distinct stages exposing significantly different
ehavior. Based on this assumption, our aim is to divide the time series into these three sections using robust mathematical regression
3

ethods, achieving the best fit to one of the specified models. All of the methods that we discuss, assume that the health index is a
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Fig. 1. Different types of HI variations and degradation models: (a) good condition (constant trend), (b) good to gradual wear (linear trend), (c) exponential
trend, (d) good to accelerated wear (linear trend), (e) good to accelerated wear (exponential trend), (f) three stages model (good, linear progress and exponential
(polynomial) progress of degradation) [38].

Fig. 2. Three stage degradation model [46].

Fig. 3. The proposed long-term degradation model with 3 stages [38].

stochastic process (its observations we denote by 𝑋𝑡 where 𝑡 is the discrete-time index) and that its trend is a function of time and
a set of parameters. Thus, the HI observation process consists of time-changing trend (expected value of 𝑋 , which we assume to be
4

𝑡
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Table 1
Main characteristics of data for the three stages indicated in Fig. 3 [38].

Stage 1 Stage 2 Stage 3

Trend Constant Linear Exponential or polynomial
Scale Nearly constant Linearly growing Lin. or exp. growing
Random component Gaussian/non-Gaussian Gaussian/non-Gaussian Gaussian/non-Gaussian

finite) and residual 𝑟𝑡, hence we have the following.

𝑋𝑡(𝛩) = 𝑋𝑡(𝛩) + 𝑟𝑡(𝛩), 𝑋𝑡(𝛩) = 𝐸(𝑋𝑡(𝛩)). (1)

By 𝛩 in this section, we denote the complete set of parameters to be fitted to the data. It may include the changing points (see
previous section) and the parameters of a probability distribution if a method employs any. We now present the methods in two
groups.

3.1. Piece-wise regression models

This class of methods allows for division of the data into three segments, each having a different form of the model. We employ
three functional components: constant, linear, and exponential as below:

𝑋𝑡(𝛩) =

⎧

⎪

⎨

⎪

⎩

𝑓1(𝑡, 𝜃1) = 𝜃1, 0 < 𝑡 ≤ 𝜏1,
𝑓2(𝑡, 𝜃2, 𝜃3) = 𝜃2𝑡 + 𝜃3, 𝜏1 < 𝑡 ≤ 𝜏2,
𝑓3(𝑡, 𝜃4, 𝜃5, 𝜃6) = 𝜃4 exp(𝜃5𝑡) + 𝜃6, 𝜏2 < 𝑡 ≤ 𝑁,

(2)

where the variables 𝜏1 and 𝜏2 stand for CP1 and CP2, the number 𝑁 is signal length, and 𝜃1,… , 𝜃6 are constants (which need to be
fitted) parameters used to model deterministic parts of HI.

3.1.1. Ordinary least squares (OLS)
The most basic approach is based on minimizing sum of squares of residuals of the model. The procedure designed to find optimal

set of parameters iterates in two loops through possible divisions into three windows (which allows us to find optimal 𝜏1 and 𝜏2).

𝛩 = argmin
𝛩

𝜏1−1
∑

𝑡=1
(𝑋𝑡 − 𝑓1(𝑡, 𝜃1))2 +

𝜏2−1
∑

𝑡=𝜏1

(𝑋𝑡 − 𝑓2(𝑡, 𝜃2, 𝜃3))2 +
𝑁
∑

𝑡=𝜏2

(𝑋𝑡 − 𝑓3(𝑡, 𝜃4, 𝜃5, 𝜃6))2. (3)

In the case of observations with Gaussian noise, given each division, optimal parameters can be equivalently estimated using
Maximum Likelihood Estimation (MLE) with Gaussian distributed residuals.

3.1.2. Dynamic programming segmentation
In this method, the optimal segmentation of the time series of observations 𝑋𝑡=1,…,𝑁 is done by fitting model parameters in terms

of Gaussian distribution MLE by using optimized dynamic programming. The computation cost of this model is high based on using
dynamic programming. For more details on this method, please see following Refs. [47,48].

3.1.3. Iteratively reweighted least squares (IRLS)
The method of iteratively reweighted least squares (IRLS) is a modification of the OLS method where the weights are assigned

to error terms according to changing variance which we assume to be finite (for each time 𝑡 the weight 𝑤𝑡 = 1∕𝜎𝑡 is reciprocal of
the corresponding standard deviation 𝜎𝑡 of the error term of the observation). The weights are modified in an iterative way; thus,
in the 𝑗th step, the vector of weights 𝑤(𝑗)

𝑡 , 𝑡 = 1,… , 𝑁 is applied, resulting in updating of the piecewise regression parameters:

𝛩(𝑗) = argmin
𝛩

𝜏1−1
∑

𝑡=1
𝑤(𝑗)

𝑡 (𝑋𝑡 − 𝑓1(𝑡, 𝜃
(𝑗−1)
1 ))2 +

𝜏2−1
∑

𝑡=𝜏1

𝑤(𝑗)
𝑡 (𝑋𝑡 − 𝑓2(𝑡, 𝜃

(𝑗−1)
2 , 𝜃(𝑗−1)3 ))2 +

𝑁
∑

𝑡=𝜏2

𝑤(𝑗)
𝑡 (𝑋𝑡 − 𝑓3(𝑡, 𝜃

(𝑗−1)
4 , 𝜃(𝑗−1)5 , 𝜃(𝑗−1)6 ))2, (4)

where 𝛩(𝑗) is the current values set of 𝛩 in the 𝑗th iteration of IRLS algorithm. Among many different iterative methods of finding
proper weights, we used a method that applies to model’s residuals the Tukey biweight function 𝜙(𝑥) = 𝑥(1−𝑥2)2 (as defined in [49])
implemented in Matlab robustfit() function. Weights are updated using the formula [50]:

𝑤(𝑗)
𝑡 =

𝜙(𝜀(𝑗)𝑡 )

𝜀(𝑗)𝑡

, (5)

where 𝜀(𝑗)𝑡 is residual of the model divided by the current estimate of standard deviation term, that is:

𝜀(𝑗)𝑡 =
𝑟𝑡
(𝑗)

. (6)
5

𝜎𝑡
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3.1.4. Least absolute error (LAE)
The sum of absolute deviations is used as a cost function instead of a sum of squares. It is a widely known alternative to OLS

ethod, making adjustment of the regression parameters more robust, even in the case of infinite variance [51]. The optimization
rocedure that includes LAE cost function with changing points is defined as follows:

𝛩 = argmin
𝛩

𝜏1−1
∑

𝑡=1
|𝑋𝑡 − 𝑓1(𝑡, 𝜃1)| +

𝜏2−1
∑

𝑡=𝜏1

|𝑋𝑡 − 𝑓2(𝑡, 𝜃2, 𝜃3)| +
𝑁
∑

𝑡=𝜏2

|𝑋𝑡 − 𝑓3(𝑡, 𝜃4, 𝜃5, 𝜃6)|. (7)

The same as in OLS method we iterate through all possible divisions into three stages and in that way we find 𝜏1 and 𝜏2. This
method is beneficial when the errors have rather a heavy-tailed than Gaussian distribution. Namely, given each division into three
windows, it can be equivalently stated as applying MLE estimation with Laplace distributed residuals.

3.1.5. Student’s t distribution estimation (ST)
In this method, residuals of the model in each degradation stage are assumed to have a scaled Student’s t distribution, that is:

𝑟𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜎1𝑢𝑡, 0 < 𝑡 ≤ 𝜏1,
𝜎2𝑢𝑡, 𝜏1 < 𝑡 ≤ 𝜏2,
𝜎3𝑢𝑡, 𝜏2 < 𝑡 ≤ 𝑁,

(8)

where {𝑢𝑡}𝑡=1,…,𝑁 is a series of independent random variables from Student’s t distribution with 𝜈𝑖 degrees of freedom for the 𝑖 -th
segment (𝑖 = 1, 2, 3). This enables heavy tails in the error distribution and makes fitting more robust allowing proper parametrization
of non-Gaussian observation data. Estimation procedure is based on MLE technique applied to each possible division into three stages.
The optimal set of parameters is found to fulfill the following:

𝛩 = argmin
𝛩

𝜏1−1
∑

𝑡=1
log

(

𝑝𝜈1
(𝑋𝑡 − 𝑓1(𝑡, 𝜃1)

𝜎1

))

+
𝜏2−1
∑

𝑡=𝜏1

log
(

𝑝𝜈2
(𝑋𝑡 − 𝑓2(𝑡, 𝜃2, 𝜃3)

𝜎2

))

+
𝑁
∑

𝑡=𝜏2

log
(

𝑝𝜈3
(𝑋𝑡 − 𝑓3(𝑡, 𝜃4, 𝜃5, 𝜃6)

𝜎3

))

, (9)

where 𝑝𝜈 (⋅) is the probability density function (PDF) of Student’s t distribution given by the formula [52]:

𝑝𝜈 (𝑦) =
(1 + 𝑦2

𝜈 )
− 𝜈+1

2

𝐵( 𝜈2 ,
1
2 )
√

𝜈
, 𝑦 ∈ R, (10)

where 𝐵(⋅, ⋅) is the beta function. The parameter 𝜈 is called number of degrees of freedom. We restrict parameter 𝜈 to be greater
than 2, thus variance of the underlying random variable is finite [52].

Additionally, it is worth noting that optimal values for parameters of the methods described in this subsection (namely OLS, IRLS,
LAE and ST) are determined based on unconstrained multivariate optimization using derivative-free approach (we use fminsearch
function in Matlab). Also, we should again emphasize the fact that in the proposed approach described with Eq. (1), the three stages
are only assumed to exist but the values of CPx are not fixed at the initialization of the parameters fitting procedure. Due to Eqs. (3)
to (10), all the parameters of the model can be fitted, including also 𝜏1 and 𝜏2.

3.2. Hidden Markov models and expectation–maximization algorithm

For a shorter notation, in this subsection, we will denote the process of observations as 𝑋 = {𝑋𝑡}𝑡=1,…,𝑁 . Hidden Markov models
are the models in which to describe the evolution of observations process 𝑋, an additional unobserved process (hidden states)
𝑧 = {𝑧𝑡}𝑡=1,…,𝑁 is introduced so that the whole system has Markov property. As hidden states are unknown, the full likelihood of
a system 𝑃 (𝑋, 𝑧|𝛩) cannot be calculated directly to obtain the parameters with MLE method. Standard iterative method that can
be used instead is called Expectation–Maximization (EM) algorithm. First, some initial values of 𝛩(0) are set. Next, EM procedure
is based on repeated steps of calculating expectation of the likelihood given the distribution of 𝑧 conditioned with 𝑋 and 𝛩 = 𝛩(𝑢)

and reassigning 𝛩 to new values that maximize conditional expectation. The 𝑢th step can be described with the updating formula:

𝛩(𝑢+1) = argmax
𝛩

𝐸𝑧|𝑋,𝛩=𝛩(𝑢)

(

𝑃 (𝑋, 𝑧)|𝛩
)

, (11)

where the letter E stands for conditional expectation. We consider two different models from this class. However, they share the
same equation for evolution of 𝑋 given 𝑧, which is a polynomial (of degree 𝑝) regression:

𝑋𝑡 =
𝑝
∑

𝑖=0
𝛽𝑖,𝑧𝑘 𝑡

𝑖 + 𝜎𝑧𝑡𝜀𝑡, (12)

where 𝑡 = 1,… , 𝑁 , the constants 𝛽0,𝑧𝑘 to 𝛽𝑝,𝑧𝑘 are polynomial coefficients in the state (degradation stage) 𝑧𝑘, and 𝜀𝑡 is Gaussian white
noise. The set of 𝑝+ 1 polynomial coefficients depends on the current stage 𝑧𝑡. The hidden states can be interpreted as degradation
stages indexed from 1 to K in the proper order from healthy state to full degradation (thus 𝐾 denotes number of distinct degradation
stages). In this paper, according to the framework described in Section 2, we put K = 3.

In the HMM approach, CP1 and CP2 are not included in 𝛩. The result of fitting HMM model to the data contains probabilities
for each 𝑡 of the current stage 𝑧𝑡 being equal to 1,… , 𝐾. The state with highest probability indicates in which degradation state the
6

observed machine is at time 𝑡, and thus we obtain the division of degradation process into three stages.
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3.2.1. Hidden Markov model regression (HMMR)
This approach employs a mixture of polynomial regressions handled by hidden states of a discrete-time Markov chain. Changing

f the stages is therefore fully described by the initial distribution and the one-step transition matrix. Significant restrictions are
herefore put to the transition probabilities to better reflect nature of the process, thus for all 𝑙 = 1,… , 𝐾 we have:

𝑃
(

𝑧𝑡+1 = 𝑘|𝑧𝑡 = 𝑙
)

= 0, for 𝑘 ∉ {𝑙, 𝑙 + 1} (13)

nd generally nonzero otherwise. The parameters are estimated through Baum–Welch algorithm as described in [47].

.2.2. Hidden logistic process (HLP)
In this method, the process of unobserved switching stages affecting the set of polynomial regression coefficients is modeled with

multinomial logistic regression model. Distribution of the current stage 𝑧𝑡 in this model is assumed to be as follows:

𝜋𝑡,𝑘(𝛽) = 𝑃 (𝑧𝑡 = 𝑘|𝛽) =
𝑒𝑥𝑝(

∑𝑝
𝑖=0 𝛽𝑘𝑖𝑡

𝑖)
∑𝐾

𝑙=1 𝑒𝑥𝑝(
∑𝑝

𝑖=0 𝛽𝑙𝑖𝑡
𝑖)
, for 𝑘 = 1,… , 𝐾, (14)

where 𝛽 = [𝛽𝑘𝑖]𝑘=1,…,𝐾, 𝑖=0,…,𝑝 is matrix containing 𝑝 + 1 regression parameters for all 𝐾 degradation stages. As 𝑧 is not observed,
total log-likelihood of the model must include Gaussian distribution of 𝑋𝑡 given 𝑧𝑡. In terms of probability density functions, we
have (see [47]):

𝑝(𝑋|𝛩) =
𝑁
∑

𝑡=1
log

𝐾
∑

𝑘=1
𝜋𝑡,𝑘(𝛽)𝑝𝛩(𝑋𝑡|𝑧𝑡 = 𝑘), (15)

where the Gaussian PDF denoted with 𝑝𝛩(𝑋𝑡|𝑧𝑡 = 𝑘) comes from Eq. (12). The resulting model is a special case of time-heterogeneous
Gaussian mixture model. A dedicated EM for this approach is described in [47]. As is shown there, in a single iteration of EM the
expectation term which is a function of 𝛩 (compare Eq. (11)) can be separated into two terms, one dependent on 𝛽 and the other
dependent on 𝜎 and 𝛽. Thus, fitting of these two sets of parameters can be done independently. Matrix 𝛽 is estimated utilizing a
multi-class iterative reweighted least squares (IRLS) approach.

4. Analysis of simulated data

Based on the assumption of Section 2, the model for long-term data is used to generate HI observations. After the mentioned
methodologies are employed to segment the data into three stages in the presence of Gaussian noise and non-Gaussian noise.
Additionally, to show performance of the methodology, results were compared together.

4.1. Model description

Considering the model discussed in Section 2, we propose following model to generate 𝐻𝐼(𝑡) that will be used in the simulation
study:

𝐻𝐼(𝑡) = 𝑅(𝑡) +𝐷(𝑡), (16)

where 𝑅(𝑡) and 𝐷(𝑡) are, respectively, random and deterministic components. Both these parts consist of three stages, denoted as
stage 1, stage 2 and stage 3, which are related to three considered underlying stages (healthy stage/degradation stage/critical stage)
and determine behavior of the process with regard to both trend and noise’s scale (variance in Gaussian distribution). Let us assume
that we have a sample signal 𝐻𝐼(1),… ,𝐻𝐼(𝑁). The changing point between stages 1 and 2 is denoted by 𝜏1, and the changing
point between stages 2 and 3 is 𝜏2, where 1 < 𝜏1 < 𝜏2 < 𝑁 . In other words, we can divide the signal segment by segment, so that
the sequence 𝐻𝐼(1),… ,𝐻𝐼(𝜏1) corresponds to stage 1, the sequence 𝐻𝐼(𝜏1 +1),… ,𝐻𝐼(𝜏2) corresponds to stage 2 and the sequence
𝐻𝐼(𝜏2 + 1),… ,𝐻𝐼(𝑁) corresponds to stage 3.

In the simulation study presented in the next section, we assume two distributions for the random component, namely Gaussian
and Student’s t. The aim of using both Gaussian and Student’s t (being an example of a heavy-tailed distribution) in the simulation
is to provide a comparison between them for condition monitoring application, as non-Gaussian behavior is widely present in real
scenarios. The random component corresponding to 𝑅(𝑡) is constructed in the following way:

𝑅(𝑡) = 𝑆𝐶(𝑡)𝑅(𝑡), (17)

where function 𝑆𝐶(𝑡) represents the time-changing scale and 𝑅(𝑡) is a series of independent identically distributed random variables.
For discussion and interpretation of the components of model (17) we refer the Reader to our previous article [38]. For Gaussian
distribution, for each 𝑡 we put 𝑅(𝑡) ∼  (0, 1) and for Student’s t distribution case 𝑅(𝑡) ∼ 𝑡(𝜈). For simplicity, we assume that the
distribution in each stage is the same, however, as it was mentioned in Section 2, in practice, it may be different for different stages.

As it was mentioned, its behavior is different for each stage, namely, we assume that in stage 1 the scale grows linearly, from
𝜎1 to 𝜎2 (where both values are relatively close to each other), then in stage 2 it also increases linearly, from 𝜎2 to 𝜎3, and finally,
in stage 3 it grows exponentially, from 𝜎3 to 𝜎4. The function 𝑆𝐶(𝑡) is defined as follows:

𝑆𝐶(𝑡) =

⎧

⎪

⎨

⎪

𝑎1𝑡 + 𝑏1 0 < 𝑡 ≤ 𝜏1,
𝑎2𝑡 + 𝑏2 𝜏1 < 𝑡 ≤ 𝜏2, (18)
7

⎩

𝑎3 exp(𝑏3𝑡) 𝜏2 < 𝑡 ≤ 𝑁,
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Fig. 4. Simulation model: (a) deterministic part with marked changing points, (b) Gaussian noise, (c) non-Gaussian noise with 𝜈 = 3, (d) health index in presence
of Gaussian noise, (e) health index in presence of non-Gaussian noise.

where constants 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3 are derived in such a way that 𝑆𝐶(1) = 𝜎1, 𝑆𝐶(𝜏1) = 𝜎2, 𝑆𝐶(𝜏2) = 𝜎3 and 𝑆𝐶(𝑁) = 𝜎4 [38].
Behavior of the deterministic component 𝐷(𝑡) in Eq. (16) has different nature for different stages. Let us recall that in stage 1

it is at fixed constant level, denoted here as 𝑐1. Then, in stages 2 and 3 we consider linear and exponential functions, respectively,
with the same growth parameters as for the corresponding stages of scale function 𝑆𝐶(𝑡). Moreover, we assume the function 𝐷(𝑡)
has no discontinuities in stage changing points 𝜏1 and 𝜏2. Under these assumptions, the deterministic term of the signal has the form

𝐷(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑐1 0 < 𝑡 ≤ 𝜏1,
𝑎2𝑡 + 𝑐2 𝜏1 < 𝑡 ≤ 𝜏2,
𝑎3 exp(𝑏3𝑡) + 𝑐3 𝜏2 < 𝑡 ≤ 𝑁,

(19)

where 𝑐2 and 𝑐3 are derived in such a way that 𝐷(𝑡) is a continuous function. In panel (a) in Fig. 4 we present deterministic component
𝐷(𝑡) and scale function 𝑆𝐶(𝑡) for the following values of parameters: 𝜏1 = 1000, 𝜏2 = 1600, 𝑁 = 1700, 𝜎1 = 1, 𝜎2 = 2, 𝜎3 = 7, 𝜎4 = 25
and 𝑐1 = 10. Here, we assumed four additional values of 𝜈- parameter, namely 𝜈 ∈ {2.1, 3, 5, 10}. As can be seen, for the Gaussian
distributed signal we do not observe outlying observations, see panel (b) in Fig. 4, while for the non-Gaussian heavy-tailed case,
large impulses occur in the data, see panel (c) in Fig. 4. The smaller the 𝜈, the higher impulses may occur in the signal.

It should be noted that the model used for the simulation is different from that used in the segmentation methods. A model used
for piecewise regression methods (see Eq. (2)) is a simplified version of the simulated model presented in this section neglecting
the scaling factor 𝑆𝐶(𝑡), i.e. changing it to a constant. The reason for such is to investigate how complex behavior may be modeled
with a simplified approach.

4.2. Analysis for Gaussian noise

In this subsection, the proposed methodology is applied to data generated by the proposed model assuming that noise term has
Gaussian distribution 𝑅(𝑡) ∼  (0, 1). Segmentation results for simulated data are presented together for all of the selected methods.
Due to the simulation procedure, at Time = 1000 healthy stage is going to degradation stage (CP1 which is the meaning of 𝜏1), and
at Time = 1600 is CP2 (which is the meaning of 𝜏2).

In Fig. 5 we can observe an exemplary simulated trajectory along with estimated changing points CP1 and CP2 resulting from
each of the methods. As we can see, in this case, where all stages include Gaussian noise, the selected methods could detect CP1
with good precision. CP1 is detected by most of the methods such as ST, LAE, and IRLS precisely, while rest of the methods also
discovered this point somewhere around Time = 1000 and Time = 1088, which is acceptable except HLP method that discovered this
point at Time = 882 happens earlier than expected time. According to this fact, transition between the two last stages is significant;
CP2 was found with most methods except IRLS, OLS, and HLP, which could not detect this point as an appropriate point.

Estimation procedure was repeated for 100 simulations from the same model. In Fig. 6 the estimation results are visualized
using box plots. Horizontal red lines are at the level of the mean estimation results and the level of the gray dashed line is the true
changing point value. The vertical length of the blue boxes corresponds to IQR (an inter-quartile range which is the range between
Q1 and Q3). In addition, outliers can be observed. Estimation of CP1 and CP2, according to HMMR, HLP and DPS, has low variance
(it can be inferred from small value of IQR), however, in the case of CP1 the result is biased to the right from the true value of
8
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Fig. 5. Changing points detection in the presence of Gaussian noise.

Fig. 6. Monte Carlo analysis for changing point detection in presence of Gaussian noise.

1000. In the case of CP2, most of the methods (excluding IRLS, OLS and ST) tend to have a significant number of outliers on the
left side from the true value of 1600.

Also, MSE is calculated based on the differences between true changing point values (CP1 = 1000 and CP2 = 1600) and the
estimates from Monte Carlo simulation performed for each method. It is illustrated in Fig. 7. As can be seen in this Fig. 7, IRLS
method has the lowest MSE for detecting CP1, while it has the highest MSE for detecting CP2. Also, TS method could detect CP2
very well. However, it has not been able to perform as well as CP2 in detecting CP1. By comparing all the bars, it can be concluded
that DPS, HMMR, and ST methods perform the lowest MSE in the case of Gaussian noise.

4.3. Analysis for non-Gaussian noise

In this part, the proposed methodology is applied to the data generated by the proposed model with Student’s t distributed
random component, considering different values of the parameter 𝜈 varying from two marginals: the value closely above 2 which
is the limit case below which variance becomes infinite (highly non-Gaussian) and the value large enough so that the distribution
is close to Gaussian.

According to the simulation procedure, CP1 and CP2 are equal to Time = 1000 and Time = 1600, respectively. In Fig. 8 we
can observe an exemplary simulated trajectory along with the estimated changing points CP1 and CP2 resulting from each of the
methods for the case of degrees of freedom 𝜈 = 2.1. CP1 is discovered by methods such as ST and LAE precisely, while the rest of
the methods could not correctly identify this point; for example, HMMR, DPS, IRLS and HLP discover this point at Time = 347, 348,
600, and 900, respectively; also, OLS detected this point with a delay at Time = 1280. Similarly, ST and LAE precisely detected CP2,
and HMMR and DPS discovered this point with a slight delay at Time = 1612, which is acceptable, while IRLS on OLS identified
this point at Time = 1400 and 1440, which is very early, and the results of HLP are not valuable.
9
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Fig. 7. MSE for Monte Carlo analysis for changing point detection in presence of Gaussian noise.

Fig. 8. Segmentation results for non-Gaussian simulation case with 𝜈 = 2.1.

To confirm efficacy of the methods, estimation procedure was repeated for 100 simulations from the same model for different
levels of non-Gaussian noise. In Fig. 9 the estimation results are visualized using box plots. By analyzing the box plot, as we expect,
it can be seen that obviously ST method has the best performance in detecting both changing points(particularly CP2) in presence
of different non-Gaussian noise levels.

Also, MSE is calculated based on real changing points (CP1 = 1000 and CP2 = 1600) for all Monte Carlo simulations for different
values of 𝜈 and shown in Fig. 10. As can be seen in panel (a) of Fig. 10, MSE of many mentioned methods used to detect CP1, such as
OLS, HMMR, DPS, and more or less HLP, has increased with decreasing 𝜈 (decreasing 𝜈 causes increased impulsiveness). However,
the reduction of 𝜈 value does not have a particular effect on MSE of the robust method such as ST, LAE, and IRLS. Also, it should be
mentioned that ST, IRLS, and HLP have the lowest MSE for detecting CP1 among all methods mentioned. Likewise, MSE of methods
for CP2 is shown in panel (b) of Fig. 10. MSE of methods such as HMMR, DPS, and more or less OLS increased with decreasing
𝜈, while MSE of methods such as ST, LAE, IRLS, and more or less HLP is not affected by decreasing value of 𝜈. Furthermore, ST
method could detect CP2 with the lowest MSE among all methods.

In order to demonstrate universality of the proposed approach, we also verified the methodology for another non-Gaussian
distribution, namely the stable distribution [53]. Details of this distribution are presented in Appendix A.1. Random variables
from stable distribution (except Gaussian case) have infinite variance; thus, identification of the changing points is much more
difficult than in the case considered in this paper, also for the analyzed non-Gaussian distribution. In Appendix A.2 we demonstrate
the estimation results of changing points CP1 and CP2 for signals with stable distribution for the selected value of the parameter
responsible for non-Gaussian behavior, i.e. 𝛼 parameter. We recall that 𝛼 < 2 indicates non-Gaussian heavy-tailed behavior of the
signal. The results presented in Appendix A.2 clearly indicate the efficiency of the proposed approaches also in this case and confirm
the universality of the methodology introduced.
10
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Fig. 9. Monte Carlo analysis for changing point detection in the presence of different levels of non-Gaussian noise, (a) 𝜈 = 2.1, (b) 𝜈 = 3, (c) 𝜈 = 5, (d) 𝜈 = 10.

Fig. 10. MSE for Monte Carlo analysis for changing point detection in the presence of different levels of non-Gaussian noise, (a) bar plot of MSE for CP1, (b)
bar plot of MSE for CP2.

5. Real data analysis

In this section, we apply and evaluate the proposed methodology for available real data sets. These data are typically employed
as benchmark data sets for different papers and competitions and have specific behavior corresponding to noise properties
and deterministic trends. In following sections, essential information about objects, experiments, and data will be recalled, and
appropriate references are provided.
11
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Fig. 11. IMS test rig [61].

5.1. IMS data set

This data set was collected by the Intelligent Maintenance System (IMS) laboratory of the University of Cincinnati. The IMS data
set included three subsets of bearing degradation tests. Four Rexnord ZA-2115 double-row bearings were used on a shaft during
degradation tests Fig. 11. Accelerometers were mounted on the bearing housings. At the end of the test, degradation patterns are
recorded in detail by checking the bearings. Bearings in the IMS data set have a longer and more complicated degradation trend
than other benchmark data sets. In some cases, the ’increase-decrease-increase’ behavior can also be observed in bearing degradation
trends related to the ’self-healing’ nature of damage phenomena. Furthermore, this data set has enough frequency resolution of
the vibration signals for extracting frequency domain features to monitor bearing degradation process and frequency analysis for
condition monitoring. According to data set documentation, each file consists of 20,480 data samples with a sampling frequency
of 20 kHz. Furthermore, this data set has been used in many publications for segmentation [54,55], RUL prediction [56–60] and
condition monitoring [61].

To apply our proposed methodology to IMS data set, data set number 2 is selected as a case study. This data set was collected
from February 12, 2004, 10:32:39 to February 19, 2004, 06:22:39, and includes 984 sets of recorded vibration data. Every of these
vibration sets is recorded for 1 s with a 20 kHz sampling rate, and this procedure is repeated every 10 min panel (a) in Fig. 12.
In this study, root mean square (RMS) of each vibration set is employed as HI. As shown in panel (b) in Fig. 12 at the beginning
of degradation process, vibration amplitude increased due to the impact generated by the initial surface defect, such as cracks or
spalling. Then the impact amplitude decreased because the initial surface defect was smoothed by continuous rolling contact. When
damage is spread over a broader area, the vibration amplitude increases again.

5.2. FEMTO data set

The FEMTO data set was acquired by Franche-Comté Electronics Mechanics Thermal Science and Optics– Sciences and
Technologies institute from a PRONOSTIA platform, Fig. 13. This data set includes 17 historical records that show bearing
degradation. Two accelerometers and a temperature sensor are used to acquire acceleration and temperature. Additionally, speed of
the shaft was kept stable during the test. In this data set, the bearing failure pattern and the bearing degradation trend are different
under the same operating conditions. Furthermore, sampling frequency of the data set is 25 600 Hz, but the length of the signal
is 0.1 s, so it is too low for standard frequency analysis and spectrogram. Similarly to the IMS data set, this data set has been
12
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Fig. 12. IMS data set case number 2, (a) raw bearing run-to-failure vibration signals, (b) health index (RMS).

Fig. 13. FEMTO test rig [70].

employed in many publications for health index construction [62–64], segmentation of degradation process [17,65,66] and RUL
prediction [67–69].

Bearing1 − 1 is selected as a case study in this research from the FEMTO data set. This data set includes 2803 sets of recorded
vibration data. Each of these vibration sets is recorded for 0.1 s with a 25.6 kHz sampling rate (see panel(a) in Fig. 14). This process
is repeated every 10 s. The shaft speed is approximately 1800 rpm and the load is equal to 4000 N. Also, in this study, RMS of each
vibration set is employed as HI, see panel (b) in Fig. 14.

5.3. Wind turbine data set

This data set is collected from a wind turbine (see Fig. 15). The sensor has been mounted on a high-speed bearing shaft of the
2.2 MW power wind turbine. This data set was acquired over more than 50 days using two different ways. In the first approach,
raw vibration signal is acquired for 6 s with 100000 Hz sampling frequency per day for +50 days (see panel (a) in Fig. 16) and
for the second version, the bearing inner race energy is calculated every 10 min for +50 days (see panel (b) in Fig. 16). For more
information on the methodology used to calculate the inner race energy, see [71].

In the end, the inner race fault has occurred, which has been proven by inspection, see Fig. 15. Bearing type used during the
test is 32222 − 𝐽2- SKF. It should be mentioned that this data set has been used for prognosis by several papers [71–73].
13
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Fig. 14. FEMTO data set case number 1, (a) Raw bearing run-to-failure vibration signals, (b) health index (RMS).

Fig. 15. Wind turbine test rigs [71].

5.4. Results and discussion

In this subsection, we presented the results of our proposed methodology for three real data sets (IMS, FEMTO, and wind turbine
data set). We apply our robust approach to every data set and compare the results with conventional methods.

5.4.1. Results for IMS data set
Results of the segmentation methods for this case study are presented in panel (a) of Fig. 17. As can be seen in panel (a) of

Fig. 17, most methods detected first changing point (CP1) (boundary point between healthy stage and degradation stage) between
Time = 500 and 560. By visual check of HI and the results, it looks like most of the methods gave adequate results. For the second
changing point (boundary point between degradation stage and critical stage trend), many methods such as OLS, HMMR, DPS, IRLS
and HLP detected this point around Time = 700, where indeed HI presents a large increase of value. The same situation is for
the LAE method — it has identified Time = 800 and indeed after that point HI values are growing rapidly. Unfortunately, both
mentioned cases seem to be not correct/true CP2 points in a global sense, as HI values started decreasing. This is the reason that we
14
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Fig. 16. Wind turbine data set, (a) raw bearing run-to-failure vibration signals, (b) health index (Inner race energy).

Fig. 17. Changing points detection IMS data set case number 2, (a) result of changing points detection method, (b) envelope spectrum of the raw vibration
signal.

claim CP2 = 900 identified by the ST method is correct as the trend of the data after that point suggests exponential degradation
for a wide time span. Also, to confirm our results, envelope analysis is applied for each vibration set, and the result is sequentially
plotted in panel (b) of Fig. 17. For more details about envelope analysis, we refer to [74–77].

As can be seen in panel (b) of Fig. 17 after Time = 527 harmonic frequency has appeared – namely the Ball Pass Frequency Outer
(BPFO) fundamental harmonic – which means the bearing went to the degradation stage. By comparison of the envelope analysis
and segmentation methods, it can be concluded that ST and HLP methods provide the best result.

5.4.2. Results for FEMTO data set
Results of the segmentation methods for this case study are presented in Fig. 18. As can be seen, this data set perfectly follows

the idea of 3 stages: for Time = 0 to c.a. 1300 it is nearly flat, then up to Time = 2700 there is a linear increase and then rapid
growth occurs. Some noise, especially in the middle stage, is seen, and some minor outliers can also be noticed. Thus, we consider it
to be a trend with nearly Gaussian noise. As shown in Fig. 18 most of the algorithms detected first changing point (boundary point
between healthy and degradation stage) between Time = 1200 and 1400, except HMM-based algorithms such as HMMR and HLP
that discovered first changing point much later than it occurs in reality. Based on the visual check first changing point should be
located around Time = 1300. That means that ST method could detect this point with acceptable error. It should be considered that
transferring between healthy and degradation stages is smooth, and it is not easy to detect this point. According to Fig. 18 second
changing point should be somewhere around Time = 2700, where the health index is starting to dramatically increase — in global
sense. Therefore, it can be concluded that ST, OLS, HMMR, and HLP methods could detect this point as well. However, LAE, DPS,
and IRLS methods have not been able to discover this point properly.
15
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Fig. 18. Result of changing points detection methods for the FEMTO data set.

5.4.3. Results for wind turbine data set
To apply the proposed approach to the wind turbine data set, inner race energy is selected as a health index. As can be seen in

panel (b) of Fig. 16 this data set is include a lot of outliers. Thus, we consider it as a trend with non-Gaussian noise. In addition,
a few fluctuations have appeared on HI may that have corresponded to variation of the load or some phenomena like self-healing.
This specific behavior in real cases makes a significant challenge to segmentation and prediction of RUL. In Fig. 19 results of the
segmentation methods for this case study are presented. CP1 (changing point between healthy stage and degradation stage) is
detected by all methods somewhere between 15 March and 21 March; for instance, OLS, ST, LAE and IRLS discovered this point on
15 March, while HMMR, DPS, and HLP detected this point on 18 March, 18 March, 19 March, respectively.

Looking at Fig. 19, 15 March seems a more logical candidate for CP1 because, after this day, HI is dramatically growing until 21
April, which means that this point is discovered by HMMR, HLP and DPS with a delay. CP2 (boundary point between degradation
stage and critical stage trend) for HMMR, DPS, and HLP was detected on 8 April. Unfortunately, all mentioned methods seem
to detect wrong CP2 points in a global sense. It is also wrong for LAE which detected CP2 when HI values started decreasing.
Meanwhile, ST and IRLS discovered it on 20 April. It can be concluded that CP2 = 20 April is the correct CP2 as the trend of the
data after that point suggests exponential growth with less fluctuation for a wide time span. Another version of this data set is used
to validate our results. As discussed before, this version of the data set is made up of a raw vibration signal recorded for six seconds
every day with a sampling rate of 100k; see panel (a) in Fig. 20. So it means that it has excellent potential to apply various frequency
analyses to do condition monitoring. Envelope analysis is applied for each vibration set, and the result is sequentially plotted in
panel (b) of Fig. 20. As can be seen in panel (b) of Fig. 20 after 14 March, harmonic frequency – namely the Ball Pass Frequency
Inner (BPFI) fundamental harmonic – has appeared, which means the bearing went to degradation stage. Also, after 22 April, the
harmonic frequency amplitude increased dramatically, which can be considered CP2. By comparing results of the segmentation
method, it can be found that IRLS and ST methods have the best results for this case.

5.4.4. Discussion
The percentage error for detecting changing points in all actual data sets is demonstrated in Fig. 21. As we can see in both

subfigures for both CP1 and CP2, the ST method has the lowest percentage error. In contrast, error percentage for the rest of the
methods has fluctuated on different data sets, which can include the fact that considering non-Gaussian noise distribution improves
the process of detecting changing points in long-term condition monitoring data. Moreover, Appendix B presents a comprehensive
table detailing computational costs associated with each methodology when applied to real-world datasets. This information provides
valuable insights into computational requirements of the different approaches under consideration.

It should be noted that in this paper, particularly in real data analysis, we tried to present envelope analysis to give this option
to readers to check what exactly happens in the frequency domain at given time and around the points that are detected by different
methods (how much can they provide us a physical meaning). Also, we confirm that condition monitoring based on non-Gaussian
nature of the data acquired from the machine may need more advanced signal processing techniques [33,35,78] instead of basic
envelope analysis.

Also, we should clarify that one objective of this study is to provide a comprehensive analysis of full datasets in order to deepen
our understanding of degradation process and develop expertise in this domain, rather than focusing on evaluation of online methods,
which probably will be much harder to achieve. However, it does not mean that this work is useless. In many cases, one may deal
with many machines of the same type. We can use historical data sets to build knowledge about machine behavior. It is clear that
selecting such CPx points could be done by experts but it is non-objective and prone to bias. In this paper, several methods are
tested and in easy cases results provided by various methods are similar. For more complicated cases – as this from Fig. 17(a) – the
role of the expert is limited to selecting the best option from 3 suggestions instead of analysis of the whole data set. In addition,
it is essential to emphasize the significance of evaluating post-factum segmentation methods for tasks such as model identification
and labeling. Results obtained from these evaluations can serve as valuable training data for online methods, which can employ
a supervised learning approach and operate in real-time. It is important to note that the segmentation task becomes even more
16
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Fig. 19. Changing points detection of wind turbine data set.

Fig. 20. Changing points detection wind turbine, (a) raw vibration data, (b) envelope spectrum map.

Fig. 21. Percentage error for real data sets changing points detection, (a) percentage error for CP1, (b) percentage error for CP2.
17
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challenging due to the presence of non-Gaussian noise and time-varying characteristics in the data. By addressing these challenges,
we believe this paper establishes a crucial foundation for future research in the development of effective online methods for real-time
diagnostics. Conclusively, it is crucial to underscore that the three-regime model represents an idealized scenario, whereas real-world
machinery might not precisely adhere to this model. Various other influences, such as those encountered in the IMS and wind turbine
datasets, may introduce deviations in the curve’s shape. The emergence of a non-linear pattern within the health index presents an
additional challenge alongside the influence of non-Gaussian noise. It is our view that the field of PHM would benefit from paying
more attention to this aspect in future endeavors. Specifically, a greater focus on constructing a health index characterized by more
consistently monotonic trends could mitigate the impact of non-linearity.

6. Conclusions

In the paper, a segmentation problem of long-term degradation (health index) data from condition monitoring systems has
een investigated. The long-term data describes degradation process. There are several approaches that assume a model of such
egradation. Here, we follow the idea of 3 stages with different properties (see Fig. 3). In practical application, it is a really crucial
ask to detect when a machine is changing its condition from a healthy stage to a degradation stage (warning) and degradation
tage to a critical stage (alarm), and it is the basis for further analysis such as prognostics. Also, in many papers, researchers focus
n the last segment, but they do not mention how they have found the division between stages 2 and 3 and whether this detected
oint coincides with the true start time of the rapid development of the fault in the machine. Therefore, in this paper, we tested
arious techniques for CPx finding, as CPx is a basis for identifying data segments with different properties. The achievements of
his paper can be summarized as follow:

• A model of HI data was proposed as a three segments sequence with non-Gaussian noise (Student’s t distributed) to describe
degradation process, which can be used to simulate the artificial data set.

• Moreover, we showed that non-Gaussianity of the model makes detection efficiency worse.
• We applied selected methods to simulate and analyze signals with Gaussian and non-Gaussian noise. We used Monte Carlo

simulation and box plot-based visualization to provide meaningful results. In the case of Gaussian noise, most of the mentioned
methods almost have been able to detect changing points, although a few methods, such as HLP and ST, had the lowest error.
However, the situation is entirely different in the presence of non-Gaussian noise. As expected, the efficacy of methods derived
on the basis of Gaussian distribution decreased with the increase in impulsiveness of HI. In contrast, the efficacy of robust
methods such as ST, LAE, and IRLS have not been significantly influenced by increasing impulsiveness.

• We have noticed that detection of CP1 is much more difficult than that of CP2. Statistical properties evolve in time over whole
life of the machine. The difference between the end of stage 1 and the beginning of stage 2 is not so clear as between stage 2
and stage 3, as we change trend from linear to exponential.

We applied the procedure to real data sets known in the community as benchmark (reference) data sets (namely IMS, FEMTO,
nd data from wind turbine drive). Additionally, we presented a waterfall plot of the envelope spectrum calculated for available raw
ibration data for IMS and wind turbine data sets. Such a 3D plot demonstrates how the envelope spectrum changes allow validating
isually that detected changing points are correct. Also, the results obtained from applying the mentioned methods to real data sets
nd comparing them with the results of envelope analysis show that the ST method has the most efficiency in detecting changing
oints. Furthermore, because the investigated data sets are benchmark data sets, many papers use them as references every year.
esearchers can use the results of the real data set section, particularly 3D plots to compare research results.

Also, it is noteworthy that the ST method, developed based on non-Gaussian distribution, had the proper efficiency in detecting
hanging points in both simulated and real data sets. This can be a point to consider for a researcher working in the field of long-term
ondition monitoring data analysis in a harsh environment to choose noise distribution. Although there are other noise distributions
o describe impulsive behavior of degradation process, which may be more compatible with this procedure, this issue deserves more
esearch in the future.

Segmentation has a crucial role in condition-based maintenance and it can be considered as a pre-processing step of larger
nalytical pipeline. With convincing results of segmentation, one can start describing/modeling the data corresponding to given
egments and building knowledge and expertise about the process and/or the machine. Finally, based on the model one can make
prediction which is crucial for RUL analysis.
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Appendix A. Result for the signals with stable noise

A.1. Stable distribution

In non-Gaussian case, symmetric stable distribution have been selected as an example of heavy-tailed distributions [53].
In general, the stable distribution is defined by its characteristic function and is characterized by four parameters: 𝛼 (stability),

𝛽 (skewness), 𝜎 (scale), and 𝜇 (location). However, for the symmetric case with a standardized scale, we assume 𝛽 = 𝜇 = 0, 𝑐 = 1,
and the corresponding characteristic function is given by the formula:

𝐸[𝑒𝑖𝑡𝑋 ] = 𝑒−|𝑡|
𝛼
. (A.1)

The parameter 𝛼 is called the stability index and takes the value from (0, 2] interval. It should be noted that the stable distribution
reduces to Gaussian distribution when 𝛼 = 2. In case when 𝛼 decreases, the distribution becomes significantly non-Gaussian and
heavy-tailed, [79]. In the simulation study, we assume that the stability index is 𝛼 = 1.9.

A.2. Monte Carlo analysis for stable distributed signals

The estimation procedure was repeated for 100 simulations of the same model (similar as in Section 4.1). However in this case
noise 𝑅̃(𝑡) was generated from stable distribution with 𝛼 = 1.9, instead of Student’s t distribution. In Fig. A.22, the estimation results
are visualized using two box plots. The vertical lines of each blue box correspond to IQR (the interval between Q1 and Q3). In
addition, outliers can be observed. Based on the CP1 box plot, the median value of the estimator obtained by IRLS, OLS, ST and
LAE is at CP1 = 1000, which means that these methods can accurately detect first changing point in most cases. In the case of CP2
box plot, the median value of the estimator is close to CP2 = 1600 for most methods, except IRLS and OLS. As we can see, the
robust techniques (ST and LAE) are also efficient for both changing points in the case when the Student’s t distribution of noise is
replaced with stable distribution. This assures us about their potential effectiveness in general non-Gaussian case.

Fig. A.22. Monte Carlo analysis for changing point detection in the presence of non-Gaussian noise (stable noise with 𝛼 = 1.9).
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Table B.2
Computational cost.

OLS ST LAE HMMR DPS IRLS HLP

FEMTO data set 1.96 (s) 2.89 (s) 1.98 (s) 1.11 (s) 118.09 (s) 16.85 (s) 0.38 (s)
Wind turbine data set 6.97 (s) 8.91 (s) 7.13 (s) 1.17 (s) 399.07 (s) 40.02 (s) 0.68 (s)
IMS data set 0.13 (s) 0.34 (s) 0.27 (s) 0.47 (s) 6.78 (s) 2.65 (s) 0.34 (s)

Appendix B. Computational cost

Table B.2 demonstrates the computational cost of all methods for real data sets. The proposed method is implemented with
atlab 2021b, and the hardware property of the system for this implementation are as follows: Processor: Intel (R) Core (TM)

7-10750H CPU @ 2.60 GHz 2.59 GHz and Ram: 32.0 GB.
As anticipated, the methodologies employing dynamic programming, such as DPS, and iterative methods, such as IRLS, exhibit

he highest computational costs, respectively. In contrast, the methodologies based on Hidden Markov Models (HMM), such as
HMR and HLP, demonstrate the lowest computational costs among all the approaches. Our analysis also highlights the enhanced
ccuracy of the Student’s t (ST) method, which, despite its superior performance, maintains a moderate range of computational
osts.
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