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Abstract

Cue-exposure is a treatment (e.g. for addictions and phobias) that aims to extinguish conditioned responses to target cues.
However, especially in the case of addiction, relapse still occurs after cue-exposure and this may be due to recovery of
conditioned responses outside of the extinction context. Super-extinction and deepened-extinction are two compound-cue
extinction procedures which have been assessed for their capacity to produce more robust extinction than standard single-cue
extinction procedures. We carried out further assessment of super and deepened-extinction protocols but found no evidence that
they produced less response recovery compared to single-cue extinction. Contrariwise, super-extinction actually produced
more recovery than the other two conditions. These results can be understood in terms of configural associative models
(configural Rescorla—Wagner and Pearce configural model) but not in terms of the simple elemental Rescorla—Wagner model.
Furthermore, the configural models provided better fits to overall data, and the Pearce configural model was better than the

configural Rescorla—Wagner model.

Keywords Associative learning - Extinction - Rescorla—Wagner - Pearce - Configural - Relapse - Response recovery -

Maximum likelihood - Akaike information

Associative learning allows organisms to adapt to their envi-
ronments and is a basic survival mechanism conferring an
evolutionary advantage. Perhaps one of the most important
features of associative learning is its flexibility. Once learn-
ing has taken place, it can be changed through various routes
if environmental changes lead to that learning becoming out-
dated or even maladaptive. One such route is extinction. A
simple extinction procedure involves presenting a previously
trained conditioned stimulus (CS) without the unconditioned
stimulus (US) it was previously associated with. As a result
of these ‘non-reinforced’ presentations of the CS the con-
ditioned response (CR) generated by the CS diminishes.
However, as discussed below, phenomena such as recovery
and renewal show that extinction involves more than simply
unlearning a previously learnt association (e.g. Bouton, 1993;
1994; 2000) and this has provided challenges to the vari-
ous models of associative learning that have been developed.
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Furthermore, re-emergence of extinguished CRs has been
identified as a potential limiting factor in applied settings
where the goal of cue-exposure treatment is to extinguish
CRs to e.g. drug-related cues. In what follows, we introduce
response recovery and renewal of extinguished responding
alongside theoretical and applied considerations before out-
lining the two primary objectives of the current investigation
namely 1) to compare standard, super, and deepened extinc-
tion procedures and 2) to compare associative models of these
procedures.

Recovery refers to the re-emergence of an extinguished
CR when the CS is re-presented following a delay after
extinction. On the other hand, renewal refers to the re-
emergence of an extinguished CR when the CS is presented
in a context that differs from the context in which extinction
took place. However, these traditionally identified distinc-
tions may be more apparent than real because both of these
phenomena can potentially be explained through mecha-
nisms involving contextual stimuli, with recovery being
treated as a special case of renewal in which the passage of
time implicitly modifies the context. In the case of renewal
contextual changes are explicit e.g. when the environment
changes after extinction. Therefore, in what follows, we use
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the terms recovery and renewal interchangeably. Contextual
stimuli are those that remain constant across the course of
multiple learning trials and can be contrasted with the punc-
tate CSs and USs that mark the learning trials. One approach
to explaining renewal is through conditioned inhibition and
‘protection-from-extinction’. According to this, based upon
the Rescorla—Wagner associative model (Rescorla & Wag-
ner, 1972), when the context changes during extinction, the
new context behaves as a CS and acquires inhibitory prop-
erties. Therefore, post-extinction, when the CS is presented
outside of this context, a renewal effect may occur because
the inhibitory influence of the extinction context is no longer
present. Some experiments have shown that extinction car-
ried out in the presence of a discrete inhibitory stimulus can
protect from extinction (e.g. Rescorla, 2003), but the evi-
dence for contextual stimuli functioning in that way is mixed
(e.g. Bouton & Swartzentruber, 1986; Glautier et al., 2013;
Polack et al., 2012).

Another associative model, developed by Pearce (1994),
can also explain renewal but the mechanism differs from
that proposed in the Rescorla—Wagner model. The Rescorla—
Wagner model is an elemental model, treating the CSs
involved in conditioning as discrete elements each of which
can enter into associations with USs. In contrast, Pearce’s
model is a configural model in which the discrete stim-
ulus elements encountered on each learning trial form
‘configurations’ and the configurations themselves are the
candidates for forming associations with USs. Renewal in
the Pearce configural model is determined by the similar-
ity relations between the stimulus configuration used in the
post-extinction test and the other stimulus configurations
previously encountered during acquisition and extinction.
Renewal occurs if the net of generalised excitatory and
inhibitory influences produced by the post-extinction test
configuration is greater than zero.

It is of practical and theoretical interest to get a better
understanding of the mechanisms underlying extinction. On
the practical side, there are therapeutic interventions based on
extinction which could be improved. In the case of addiction,
ithas long been accepted that relapse is a major problem with
typically less than 50% ‘survivors’ three months after initiat-
ing abstinence and this applies across a range of substances
and even in individuals receiving clinical interventions (e.g.
Anton et al., 2006; Fortmann & Killen, 1995; Northrup et al.,
2015). Cue-exposure for addiction is based on an underlying
model of addiction in which drug-related stimuli — drug-cues,
become CSs because they are repeatedly paired with drug
USs. The CRs produced by drug-cues are thought to play a
part in relapse, and cue-exposure treatment aims to reduce
relapse risk by extinguishing CRs to drug-cues by repeated
presentation of the cues without a drug US. Unfortunately,
although cue-exposure is effective for treatment of some con-
ditions (e.g. phobias cf. Choy et al., 2007), its effectiveness
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in the treatment of addiction is not well established, but a
small number of studies suggest it is an intervention worthy
of further investigation (e.g. Kiyak et al., 2023).

Renewal effects may be one factor that limits the effective-
ness of cue-exposure treatments (e.g. Bouton, 2000; Conklin
& Tiffany, 2002) and some experiments have provided evi-
dence that carrying out extinction in multiple contexts may
reduce renewal effects (e.g. Bustamante et al., 2016; Glautier
et al., 2013). An alternative approach, which is the focus of
the current paper, is to carry out extinction in the presence
of multiple excitatory cues (e.g. Craske et al., 2014). The
objective of carrying out extinction in the presence of mul-
tiple excitatory cues is to increase the amount of associative
change that occurs during extinction. According to associa-
tive models, such as the Rescorla—Wagner and the Pearce
configural models introduced above, associative change is
driven by prediction error. An error signal is generated dur-
ing extinction because a cue that has previously signalled
an outcome is presented in the absence of that outcome. It
follows from these associative models that if the prediction
error can be increased during extinction, then the amount of
learning during extinction will be correspondingly increased.
One way to increase prediction error, instead of presenting
single cues on each extinction trial, is to present compounds
of multiple excitatory cues on each trial during extinction.
To explain this further, the Rescorla—Wagner and the Pearce
configural models both make use of an error term given in
Eq. 1.

A—ZV (1)

In Eq. 1 the value of X is used to indicate the status of
the US on each learning trial. We set A = 1 when there is
a US, as in acquisition, and we set A = 0 when there is no
US, as in extinction. The subtrahend, )_ V, represents the
summed associative strength of all cues present on that trial.
So, in a simple case for the Rescorla—Wagner model, assum-
ing cue A has been trained to asymptote during an acquisition
phase then we would have V4 — 1 and then we begin
extinction of cue A. On the first extinction trial >V = V4
since cue A is the only cue present and the error on this first
extinction trial would therefore approach -1 and this value
determines the amount of associative change for cue A. Now
if, during acquisition, cues A and B had both been trained
to asymptote we would have the option presenting an AB
compound for extinction. In this case, on the first extinction
trial, the error term would approach -2 (3_V = V4 + Vp)
and we would therefore theoretically expect more extinction
to occur for target cue A than if only A had been presented
for extinction. But this is not a universal theoretical predic-
tion. According to the Pearce configural model, presenting an
AB compound for extinction in this simple procedure would
notincrease prediction error. This is because Y V in Pearce’s
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configural model is determined as a weighted sum of the asso-
ciative strengths of all configurations known to the system
with the weights being formed by the similarities between
the configuration actually present (AB in this case) and all
configurations in the system (A, B, and AB in this case).
Assuming the similarity between each of the elements and
the AB compound is % (Pearce, 1994) and since V45 = O we
would have . — >V — —1 which is the same as we would
have if A was presented alone for extinction. Furthermore,
since the associative change would occur to configuration AB
the impact would only be on responding to the target cue A
via generalisation, the associative strength of configuration
A itself would remain unaffected.

In fact, there have been numerous demonstrations, espe-
cially in animal studies, which have shown that increased
prediction error during extinction can result in more extinc-
tion (e.g. Rescorla, 2000, 2006), but see also Pearce and
Wilson (1991) for an exception. In Rescorla (2000) rats
were trained with two cues A and X as signals for food
(A+ and X+ trials) and with a third cue B which was
non-reinforced (B- trials). The animals were then divided
into four groups with one group receiving extinction tri-
als with an AX compound stimulus (AX- trials), and the
other groups receiving extinction trials with X alone (X-
trials), a BX compound (BX- trials), or no extinction tri-
als at all. In a test presentation of X group AX- showed
the least responding of all indicating that the AX- extinc-
tion trials had resulted in the most complete extinction. We
term this procedure ‘super-extinction’ (as used in Hermans
et al.,, 2006 and Jacoby and Abramowitz, 2016) after its
mirror analogue with ‘super-conditioning’ (e.g. Williams &
McDevitt, 2002) and distinguish it from a related procedure
‘deepened-extinction’. In super-conditioning, the acquisition
of associative strength for a target cue is enhanced by rein-
forcement of that target in compound with an inhibitory
cue, whereas in super-extinction, the extinction of associative
strength for a target cue is enhanced by non-reinforcement
of that target in compound with an excitatory cue.

Super-extinction differs from deepened-extinction in that
deepened-extinction is a ‘post-extinction’ procedure (Leung
et al., 2012) involving two extinction phases. In the first
extinction phase of a deepened-extinction procedure, the
target cue is extinguished alone and only after this initial
extinction of the target is a compound involving the target
and a second, non-extinguished, excitatory cue introduced.
In the second extinction phase, this compound is presented
non-reinforced. This difference could be theoretically as well
as practically important since according to the Rescorla—
Wagner model, in a simple super-extinction procedure, there
should be more rapid extinction when compared to extinction
of a single cue but asymptotically both procedures would lead
to the associative strength of the target cue falling to zero.
In contrast, in a deepened-extinction procedure, it would

be possible for the target cue to acquire inhibitory strength
and so cue-exposure treatment with deepened-extinction may
be more effective than single cue or super-extinction e.g.
because the target would be less likely to have residual post-
treatment associative strength. And, at least in a simple case,
the superiority of the deepened-extinction procedure is also
anticipated by the Pearce configural model and by a fre-
quently cited development of the Rescorla—Wagner model,
the configural Rescorla—Wagner model (e.g. Rescorla, 1973)
which will be described in more detail below.

In the current study, we had two primary objectives. First,
we sought to examine further the extent to which extinc-
tion is impacted, in human participants, by super-extinction
and deepened-extinction procedures. Second, we sought to
examine which of the three related associative models, each
based on error correction, would provide the best account
of participant behaviour during our extinction procedures. In
relation to the first point, as already mentioned, there are
many studies showing that increased prediction error can
increase extinction relative to simple single-cue extinction
procedures. However, notably in human studies, there are
several published investigations that indicate that strategies
to increase prediction error do not always have the anticipated
effect. For example, Griffiths et al. (2017), using a predictive
learning task, found that whilst a super-extinction proce-
dure resulted in faster extinction than single-cue extinction
(Experiment 1: phase 2 A- trials versus phase 3 CD- trials)
there was no evidence that single-cue extinction followed
by compound extinction was more complete than extended
single-cue extinction, in fact the reverse appeared to be the
case (Experiment 2: A/B ‘v’ C/D ). And, a recent set of five
experiments following up the work of Griffiths et al. whilst
consistently finding evidence that super-extinction produced
faster extinction than single-cue extinction (e.g. Experiment
1: phase 2 A- trials versus phase 3 CD-) trials) failed to show
an effect of prediction error (e.g. Experiment 1: cue B ver-
sus D). Cues B and D had the same number of compound
extinction trials but cue B was extinguished in compound
with a cue that was already extinguished whilst cue D was
extinguished in compound with an excitor.

In relation to the second point, it is clear a) that the simple
Rescorla—Wagner model can predict more rapid extinction
in super-extinction than in single-cue extinction and that
asymptotically deepened-extinction will be more effective
than super-extinction in the simplest procedures (see below).
It is also clear b) that these predictions, whilst shared by
the configural Rescorla—Wagner model, are only partially
shared by the Pearce configural model. To elaborate, as
described above, the Pearce configural model expects the
same rate of extinction for a single cue A as for an AB
compound but the configural Rescorla—Wagner also expects
faster extinction of the compound because of the larger pre-
diction error caused by the presence of two excitatory cues in
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the absence of reinforcement. In addition, c¢), both the con-
figural Rescorla—Wagner model and the Pearce configural
model anticipate response recovery in the super-extinction
condition whereas the Rescorla—Wagner model does not.
This is because the target cue A is actually extinguished dur-
ing super-extinction in the Rescorla—Wagner model but in
the configural Rescorla—Wagner model the configural cue in
the AB compound becomes inhibitory, protecting the target
from extinction. In the Pearce configural model the AB con-
figuration becomes inhibitory during super-extinction but the
configural unit for cue A is not affected and its associative
strength (moderated by generalisation of inhibition from AB)
is revealed in recovery test.

However, despite this, we do not necessarily have the
basis for a theoretically decisive test because these model
predictions are dependent on both procedural and model
parameters. For example, as super-extinction will asymp-
totically be equivalent to single cue extinction if there are
too many extinction trials then differences between single
cue and super-extinction conditions may be harder to detect.
And if the second stage of a deepened-extinction proce-
dure is introduced too early, then any differences between
super-extinction and deepened-extinction may also be dif-
ficult to detect. Furthermore, optimal procedural parameters
will depend on model parameters and some caveats need to be
attached to the discussion of model predictions in the previ-
ous paragraph. First, the discussion was based on the simplest
procedures for studying super and deepened-extinction only
involving A+ and B+ training during the initial acquisition
phase, only involving AB- trials during super-extinction, and
only involving A- followed by AB- trials during deepened-
extinction. Introducing other cues (e.g. fillers and contexts)
may have an impact on model predictions. Second, it has been
argued that in the Pearce configural model, a test on target
cue A after compound extinction will be equivalent to extinc-
tion of a single cue i.e. that the Pearce configural model does
not predict more extinction following a compound extinc-
tion procedure (Urcelay et al., 2009). However, we carried
out calculations to support the arguments made above (see
Footnote 1 for link to ESM including spreadsheet showing
these calculations.) but these are only valid under specific
conditions and simulations done under different conditions
may well produce different results.

Additionally, since the predictions outlined above are
based on associative strength, without assuming any more
than a monotonic mapping to response strength, they are
qualitative rather than quantitative. Therefore, in what fol-
lows, we apply a SoftMax function (e.g. Ahn et al., 2008;
Wikipedia, 2020; Yechiam & Busemeyer, 2005) to map
between associative strength and response probability in
order to estimate the likelihood of observed participant
behaviour under maximum likelihood parameterisation of
each of our three models. With these likelihood estimates,
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we use Akaike weight analysis (Burnham & Anderson, 2002;
Wagenmakers & Farrell, 2004) to provide further evaluation
of our three models by examining their capacity to model
observed behaviour rather than make specific predictions.

We pursued our two primary objectives (comparing super
and deepened-extinction to standard single-cue extinction
and comparing the fitting capacity of three related asso-
ciative models) by analysing data collected in a predictive
learning experiment involving human participants. All par-
ticipants underwent multiple experimental phases, including
the acquisition and extinction of predictive responses, fol-
lowed by arecovery test to assess the robustness of extinction
to contextual change. Participants were tested in three groups
differing in the type of extinction procedure used as detailed
fully in what follows.

Method

Participants

A sample of 207 student participants was recruited through
a subject pool run in the Department of Psychology at the
University of Southampton, by posted adverts, and by word
of mouth. Their average age was 19.5 years, 165 identified as
female, 41 identified as male, one identified as non-binary,
and one did not provide gender information.

Learning task

The online procedures were approved by the Ethics Com-
mittee at the University of Southampton. On arrival at the
experiment website, participants read an information sheet
and provided informed consent before giving age and gen-
der information and completing the learning task described
below. Participants also completed some questionnaires and
another behavioural task as part of a separate investigation.
The procedures took around 45 min in total, and participants
were awarded course credits on completion.

The learning task was programmed by the first author
using jsPsych and run on a JATOS server hosted at the Uni-
versity of Southampton. The task was designed to have a
‘game-like’ appearance. Participants were presented with
a background story which stated that they were part of a
research team studying the eating habits of a friendly uniden-
tified life form (FULF). The learning task consisted of a
series of trials. On each trial, cues were presented on the
screen (either one or two images of food items with the screen
background forming the context for that trial), followed by
FULF’s reaction, or lack of reaction, to that food item or food
item combination. FULF’s reaction, the outcome, was one of
three possibilities — happy, sad, or neutral (no change from
a baseline state), as per the experimental design. The happy
and sad outcomes were the reinforced outcomes and partic-
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ipants were instructed to press the ‘h’ or ‘s’ keys to predict
these outcomes and to refrain from pressing any key if the
neutral, no change (non-reinforced), reaction was expected.
Three outcomes were used, corresponding to X, Y, and Z as
detailed below, so that some reinforced trials (involving out-
come Y) could be delivered during the extinction phase whilst
cues paired with outcome X were being extinguished. Previ-
ous experience in this lab has indicated that if reinforcement
stops completely during an extinction phase, then respond-
ing stops very quickly and could therefore obscure important
differences between groups. Participants were instructed to
respond while the food item was present, before seeing the
reaction, in order to predict FULF’s reaction. The instructions
also asked participants to try and maximize the number of
correct predictions and minimise the number of incorrect pre-
dictions. The food items were present for 2 s, during which
participants had to make their prediction for the trial. Any
valid prediction responses during that period were recorded,
otherwise a prediction for the neutral outcome was recorded.
Next, the participants were shown the outcome for one and
a half seconds, and finally, a fixation cross was presented for
a further 2 s before the next trial started.!

Design and procedure

The design of the learning task is given in Table 1. Each par-
ticipant experienced a total of 179 trials split into five phases
— 144 acquisition phase trials, 16 extinction phase 1 trials,
16 extinction phase 2 trials, and two test phases, summation
test and recovery test. The participants were divided into
three independent groups receiving different experimental
treatments during the extinction phases. The summation test
phase came first and consisted of two trials and the experi-
ment finished with the recovery test phase which was a single
trial. Acquisition took place in context A:, the extinction and
summation phases took place in context B:, and recovery
was in context C:. Cues were presented in trials that were
either reinforced by presentation with an outcome or non-
reinforced by presentation without an outcome. There were
two types of reinforced trials, those with happy and those
sad outcomes which are coded X and Y in Table 1; the non-
reinforced trials are coded Z. The assignment of happy and
sad outcomes to X and Y was randomised so that for approx-
imately half of the participants X corresponded to sad and Y
corresponded to happy and vice-versa for the other half. The
acquisition and extinction phases had multiple trials divided
into blocks with trial order randomised independently for
each participant within block. The acquisition phase had four

! Extra-supplementary materials including images, an illustrative task
video with participant instructions, code, and data are available at the
Open Science Foundation website https://osf.io/p59zu/. The experi-
ment was not pre-registered.

blocks. Within each acquisition block there were four pre-
sentations of each cue with outcomes delivered according
to a continuously reinforced (e.g. four C — Y) or partially
reinforced schedule (e.g. three A — X and one A — Z
trials as per the design in Table 1). The images used for each
cue in the design were selected at random, without replace-
ment from a set of ten, for each participant. Throughout the
experiment cues and outcomes were presented in one of three
visually distinctive contexts as per the design. Screen back-
ground images were used to provide context cues. For each
participant backgrounds were selected at random, without
replacement from a set of five backgrounds, to serve each of
the three contextual functions (A:, B:, and C:).

Each of the two extinction phases contained eight blocks,
with each block containing one trial of each of the types
shown in Table 1. Cue A was the critical cue for testing
the effects of deepened and super-extinction. For the control
group cue A was extinguished alone during both extinction
phases. In the deepened-extinction condition, A was extin-
guished alone during extinction 1 and in compound with cue
B during extinction 2. In the super-extinction condition, cue
A was extinguished in compound with B during both extinc-
tion 1 and extinction 2. Cue G was used in a summation test
to assess the inhibitory strength of the extinction context after
extinction was finished. Cue A was presented for a renewal
test in a novel context, context C:, after the summation test.

It was assumed that if compound extinction was to
increase extinction above that seen with single-cue extinc-
tion, participants would have to sum outcome expectations
generated by multiple cues in the manner suggested by asso-
ciative models, such as the Rescorla—Wagner model. To
maximise the likelihood that such summation would occur
cues A and B were partially reinforced with outcome X dur-
ing the acquisition phase and cues K and L were partially
reinforced with outcome Y. Cues K and L were also presented
in a continuously reinforced KL compound as a ‘demon-
stration’ of cue additivity. Previous research with human
participants has found that such additivity demonstrations
encourage participants to sum outcome expectations gener-
ated by multiple cues (e.g. Lovibond et al., 2003).

Additional cues C, D and E were used to equate the number
of different outcome types on the single-cue trials during
acquisition. Cue C was presented with outcome Y during the
extinction phase, as in the acquisition phase, to provide some
continuity between phases to avoid giving the impression that
all reinforcement stopped suddenly after the change from
acquisition to extinction context.

Data selection and analysis
All analyses were carried out in R (R Core Development

Team, 2020). Thirty-three of the 207 participants were
excluded due to poor performance during the acquisition
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Table 1 Design of the learning

Acquisition
task d

A:

Extinction 1
B:

Extinction 2
B:

Summation
B:

Recovery
C:

Super A—>Xx12

Extinction A—Z x4
B—>Xx12
B—~Z x4
C—Y x16
D—Zx16
E—Zx16
G—Xx16
K—Y x12
K—Z x4
L—Y x12
L—>Zx4
KL—Y x16

Deepened A—Xx12

Extinction A—Z x4
B—>Xx12
B—Z x4
C—Y x16
D—Zx16
E—~Zx16
G—>Xx16
K—Y x12
K—7Z x4
L—Y x12
L—>Zx4
KL—Y x16

Control A—>Xx12
A—7Z x4
B—>Xx12
B—Zx4
C—Y x16
D—Z x16
E—Zx16
G—Xx16
K—Y x12
K—Z x4
L—Y x12
L—>Z x4
KL—Y x16

AB—7Z x8
C—Y x8

A—>7Z x8
C—Y x8

A—7Zx8
C—Y x8

AB—7Z x8
C—Y x8

AB—Zx8
C—Y x8

A—Zx8
C—Y x8

G—>Zx2

G—Zx2

G—>Zx2

A—Zx1

A—7Zx1

A—7Z x1

Characters before — give the cues for a trial type, characters after — give the outcome. ‘Z’ codes for non-
reinforced trials, ‘X’ and ‘Y’ code for the two different types of reinforced trials that were used. The number
of trials of each type are given e.g. x4. The columns indicate successive phases of the experiment, from left

to right, and the characters before colons indicate the context that is in force during each phase

phase, leaving 174 participants for the analyses reported
below. Since our primary aim was to study extinction of
responding to cue A we required that participants had actually
acquired appropriate responding to cue A during the acqui-
sition phase. For each participant, we constructed two binary
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vectors that were then compared using one-sided Wilcoxon
rank-sum tests. The first vector had length 4 and was used
to represent responses to cue A during the last four trials of
its presentation in the acquisition phase — X responses were
coded 1, with any other responses coded 0. The second vec-
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tor had length 12 and was used to represent responses to cues
C, D, and E during their last four presentations of the acqui-
sition phase, again X responses were coded 1 with any other
responses coded 0. Cues C, D, and E were never paired with
outcome X during the acquisition phase (C was continuously
reinforced with outcome Y, D and E were continuously non-
reinforced), and A was paired with outcome X on 75% of its
presentations. Therefore, participants were included if the
cue A vector was significantly greater (p< .05) than the cue
CDE vector and excluded otherwise.

Effects of extinction procedures

We compared our three extinction procedures to determine
whether or not there was any evidence for a) more rapid
extinction using a compound of two excitatory cues as com-
pared to extinction of a single excitatory cue and b) more
complete extinction in deepened and super-extinction pro-
cedures as compared to a standard single-cue extinction
procedure. In the case of a), we fitted a general linear mixed
model with a binomial link function and random effect inter-
cepts. The fixed effect terms were a between-subjects contrast
for group, within-subjects contrasts for trial, and interaction
contrasts for group and trial. The dependent variable was a
binary valued vector indicating whether or not participants
predicted outcome X on the last cue A trial of the acquisition
phase and on each of the eight extinction 1 trials involving
cue A. Participants for the control and deepened-extinction
groups were treated as one ‘standard single-cue’ extinction
group, dummy coded 0, for the purpose of this analysis since
they were treated identically up until the end of extinction 1
phase. The combined groups were contrasted with the super-
extinction group, dummy coded 1, which had extinction of an
AB compound during the extinction 1 phase. Eight dummy-
coded variables were used to contrast each of the extinction 1
phase trials with the last cue A trial of the acquisition phase.

In the case of b) a general linear model with a bino-
mial link function was used to contrast the group responses
in the recovery test phase. In addition, we also examined
whether responding in the recovery test phase was asso-
ciated with suppression of responding to cue G in the
Summation test. According to the protection from extinc-
tion account of response recovery the extinction context
becomes inhibitory and release from that inhibition causes
recovery of responding. Additional Wilcoxon rank-sum and
Kruskall-Wallis tests were therefore carried to compare the
amount of responding in the Summation test for our three
experimental groups and for those who did and did not
respond during the recovery test phase.

We also investigated whether or not there would be sum-
mation effects on the introduction of stimulus compounds on
the first trial of extinction 1 for the super-extinction group and
on the first trial of extinction 2 for the deepened-extinction

group. Summation effects would provide evidence of addi-
tivity, which is required for the error-correction mechanisms
described in the models considered in the introduction to gen-
erate increased rates of learning during compound extinction.
A Wilcoxon signed-rank test was used to assess the signif-
icance of the increase in the likelihood of an x-response
between the last trial of extinction 1 and the first trial of
extinction 2 in the deepened-extinction group.

Model evaluation

Three models were studied—the Rescorla—Wagner model, the
configural Rescorla—Wagner model, and the Pearce configu-
ral model in each of three steps. First, maximum likelihood
parameter estimates were obtained for each model and partic-
ipant. Second, using these parameter estimates, simulations
of the experimental design were carried out and the expected
(model) responses generated by simulation were compared
to the observed (participant) responses. Third, models were
compared using Akaike weight analysis to determine the best
model overall and in order to assess the best model for each
participant (Burnham & Anderson, 2002; Cavagnaro et al.,
2016; Farrell & Lewandowsky, 2018; Wagenmakers & Far-
rell, 2004).

The Rescorla-Wagner model The canonical form of the
Rescorla—Wagner model is given in Eq. 2 (Rescorla & Wag-
ner, 1972). In Eq. 2 AVjji is the change in the associative
strength (V) that occurs on trial i between cue j e.g. one
of the foods eaten by the FULF on that trial (labelled
A...E,G, K, LinTable 1) and outcome of that trial. AV is
a function of two learning rate parameters, « a learning rate
for cues and S alearning rate for outcomes, and the parenthe-
sised error term. In the error term A represents the outcome
of the trial and takes the value of 1 or O for the occurrence
and non-occurrence of an outcome, respectively. XV ji is the
associative strength for outcome k summed over the n cues
present on the trial.

n
AVije = afOu = Y Vijr) )
j=1

The Rescorla—Wagner model was implemented with two
values of &, o¢y and @y, to allow different learning rates
for different categories of cues. We allowed the diffuse con-
text cues provided by the screen background that were stable
within different phases of the experiment to have a different
learning rate than the discrete food cues, which changed from
trial to trial. We also allowed for two values of 8, 8,5 and
B~us, to allow for the possibility that the learning rate may
differ on reinforced and non-reinforced trials.

The configural Rescorla-Wagner model The configural
Rescorla—Wagner model was implemented in the same way

@ Springer



Learning & Behavior

as Eq. 2 except an additional class of cue was introduced to
represent stimulus configurations. In the Rescorla—Wagner
model cues are considered ‘standalone’ elements represent-
ing the intrinsic physical properties of a stimulus. However,
this is generally believed to be an oversimplification with evi-
dence indicating that configural cues can be produced when
multiple stimuli occur together (e.g. Rescorla, 1973; Wagner
& Rescorla, 1972; Woodbury, 1943). In our implementation
of the configural Rescorla—Wagner model we coded a unique
configural cue to represent each pairwise cue combination.
For example the cues on a trial involving presentation of cue
A in context A : would be encoded for simulation with three
cues aAw where a is context A :, A is cue A, and w is the
configural cue generated by the conjunction of A and A :.
For an AB compound presented in context B : the encoding
would involve six cues bABxyz, b for context B:, A for cue
A, and B for cue B, plus configural cues x, y, and z which
represent the pairwise cue combinations as follows: bA — x,
bB — y,and AB — z. The configural Rescorla—Wagner
model therefore has one more parameter than the Rescorla—
Wagner model, an additional learning rate parameter a.yg
allowing different learning rates now for three categories of
cue (context cues, discrete cues, and configural cues).

The Pearce configural model Pearce (1994) developed a
widely cited configural model of associative learning which,
despite the common moniker ‘configural’, operates on quite
different principles than the configural Rescorla—Wagner
model. The main difference between these models is in the
way in which the cues are processed. In the Rescorla—Wagner
model and the configural Rescorla—Wagner model each cue
enters into individual associations with the outcomes. In con-
trast, in the Pearce configural model, cues are grouped into
configurations, and a configuration is formed by each unique
pattern of cues encountered during learning and the con-
figurations, rather than cues, are the units which enter into
associations with the outcomes. For example, referring again
to design Table 1, during the acquisition phase a configural
unit a A would be used to represent the stimulus pattern when
cue A was encountered in context A : and in the extinction
phase a configural unit A B would represent the cue com-
pound A B presented in context B :.

In Eq. 3 Acjx is the change in the associative strength
between the configuration present on that trial (¢;) and
the trial outcome. Equation 3 is of the same form as the
Rescorla—Wagner model but the error term is computed as
the difference between A and a weighted sum of the associa-
tive strengths of all the stimulus configurations known to the
system. The weights are provided by the similarities between
¢; and each of the n configurations in the system with the
similarity between any two configurations a and b given as
a function of the number of cues common to both configura-
tions, ng4p, and the number of cues in each configuration, n,
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and ny, as shown in Eq. 4. In Eq. 4 d is a discrimination sen-
sitivity parameter with larger values reducing the similarity
and therefore increasing discrimination between configura-
tions (Kinder & Lachnit, 2003).

AVey = apOk — S (civcj) Vey) 3)
j=1

S(a, b) = )

(m)
Parameter estimation The maximum likelihood parameters
were estimated using R code written by the last author (see
Footnote 1 for availability) which was run in R version 4.0.3
using Nelder-Mead optimisation via package optimx version
2022-4.30 (Nash & Varadhan, 2011; R Core Development
Team, 2020). The optimisations found, for each participant
and model, a parameter vector for that model, #, which min-

imised £ over the n=179 trials of the experiment as shown
in Eq. 5:

L=-Y"IP(R) 5)

i=1

The models used one-step lookahead, making probabilis-
tic predictions for each available response (X, Y, and Z) on
trial n on the basis of what had been learned up to and includ-
ing trial n — 1. P(R;) was the model probability for the
observed response on trial i. Three possible responses were
available to participants on each trial — they could predict
outcome X, outcome Y, or outcome Z and P (R;) was a Soft-
Max function of the associative strengths of the cues present
on trial i and a sensitivity parameter g as shown in Eq. 6 (cf.
Ahn et al., 2008; Wikipedia, 2020; Yechiam & Busemeyer,
2005).

P(R) = M (6)

> exp(gVir)
k=x

Vi, in the numerator or Eq. 6 is the associative strength for
the outcome corresponding to the observed response summed
over all cues present on the trial and the denominator includes
the associative strength summed over all outcomes and all
cues present on the trial. When g — 0 Eq. 6 results in guess-
ing behaviour with the response probabilities approaching %
where n is the number of response options (n = 3 in this
case). When g — inf Eq. 6 results in maximisation with the
probability of the response for which the associative strength
of the cues present on that trial is highest approaching 1.

The optimisations included some constraints on the
parameter values to provide numerical stability and to pre-
serve the psychological sense of the parameters in the
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current modelling context (e.g. although some analyses
have suggested a modification of the Rescorla—Wagner
model which allows negative learning rates (e.g. Dickin-
son & Burke, 1996; Van Hamme & Wasserman, 1994)
these were not used here). All learning rates were con-
strained to the range [0.0001...0.75], g was constrained
to the range [0.0001 ... 15], and d was constrained to the
range [0.0001 ... 20]. In addition, all optimisations were run
with three initial values of #. One value came from an ini-
tial exploratory optimisation, and one value consisted of all
parameters set to 0.1 except for g, which was set to 2, and
the third initial value vector was set to a selection of random
values. Finally, on completion of the optimisations, a sen-

sitivity analysis was carried out to assess the importance of
each parameter for each model. The details and full results of
this analysis are presented in an extra-supplementary mate-
rial paper (see Footnote 1 for availability), with the key results
summarised below.

Results

Effects of extinction procedures

Figure 1 shows that there is some evidence that the super-
extinction group extinguished more rapidly across the extinc-
tion 1 phase trials although there is no indication of a

control4-deepened extinction [ [ |
superextinction O [
0 2 4 6 8
| | | | | | | | | |
observed expected
0.8 L
0.6 L
ol
0.4 I
0.2 L
0.0 I

Fig.1 Average proportion of x-responses observed and expected (£ 1
s.e.) from the general linear mixed model used to test for differences
in rate of extinction between the super-extinction and the combined

trial
control and deepened-extinction groups. The first point in each panel is

end of acquisition and the remaining eight points are extinction 1 phase
trials
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Table 2 Fixed effects from general linear mixed effects model for
extinction 1 phase

Estimate  Std. Error  zvalue  Pr(>|z|) sig
Intercept 2.03 0.31 6.53 0.00 o
Group 0.18 0.50 0.37 0.71
Triall -2.15 0.37 —5.88 0.00 HHE
Trial2 —1.23 0.36 —-3.37 0.00 HoAk
Trial3 —3.18 0.39 —8.17 0.00 HHE
Trial4 =3.75 0.41 —9.08 0.00 HHE
TrialS —4.42 0.46 -9.70 0.00 ok
Trial6 —5.04 0.51 -9.79 0.00 ok
Trial7 —4.53 0.46 -9.75 0.00 HHE
Trial8 —5.38 0.56 —-9.64 0.00 HHE
Group:Triall ~ —0.96 0.60 —1.60 0.11
Group:Trial2  —1.20 0.59 —2.03 0.04 *
Group:Trial3  —0.01 0.61 —0.02 0.98
Group:Trial4 ~ —2.38 0.92 —2.60 0.01 wE
Group:Trial5  —1.27 0.84 —1.52 0.13
Group:Trial6 —1.81 1.19 —1.52 0.13
Group:Trial7  —2.32 1.17 —1.98 0.05 *
Group:Trial§  —0.75 0.98 —0.76 0.45

Groups control and deepened-extinction contrasted with group super-
extinction. Trial contrasts against end of acquisition. *#* p < .001, **
B<.01,*B<.05

summation effect on the first extinction trial when the super-
extinction participants encounter AB compound cue for
the first time. In fact, all groups show a marked reduction
in responding on the first extinction trial. By the fourth
extinction trial responding in the super-extinction group was
markedly more suppressed than in the combined control and
deepened-extinction group but thereafter responding equates
by the end of extinction 1. Table 2 gives the fixed effect results
from the general linear mixed effects model used to examine

control

deepened extinction

the extinction 1 phase data. Overall, the Group x Block inter-
action was significant with a likelihood ratio test comparing
models with and without the interaction contrasts yielding
x% =18.501 (df = 8, p < .05). Confirming visual impres-
sions, the interaction contrast for the fourth extinction trial
was significant (p < .01).

Figure 2 shows the observed x-responses on trials contain-
ing cue A by group across the course of the experiment. It can
be seen that responding had stopped entirely by the end of the
extinction 2 phase. In fact, only two participants responded
on the last extinction 2 trial, one from the control group and
one from the super-extinction group. However, this does not
indicate extinction was complete — response recovery was
observed when cue A was presented for test in context C.
Wilcoxon signed rank tests comparing responding in the last
extinction 2 trial with responding in the recovery test phase
were significant for all groups (V=5,p < .05, V=0,
p < .05, V=175, p < .001, for the control, deepened, and
super-extinction groups respectively). However, the recov-
ery effect was much stronger in the super-extinction group
than in the other groups with the general linear model used
to analyse these data showing that the deepened extinction
group did not differ from the control group (z = 0.518,p=.6)
whereas the superextinction group did (z =4.158, p < .001).

There was no indication of a summation effect on the
first trial of extinction 1 in the super-extinction group. In
fact, x-responses markedly declined on introduction of the
AB compound on the first trial of extinction 1 for this
group. In contrast, there was a clear summation effect for
the deepened-extinction group. The number of x-responses
increased substantially between the end of extinction 1 and
the first trial of extinction 2 on introduction of the AB com-
pound (p < .01) as confirmed in a Wilcoxon signed rank
test. See Fig. 2.

super extinction

Lo observed

0] observed O
vxgmmvrl

vx}w:lud [

0.8

0.6 0.6

04 04

0.2 0.2

0.0 0.0

4 observed O
expected @
)" 2

[/

F 0.0 4

trial

Fig. 2 Average proportion of x-responses observed and expected for
the Rescorla—Wagner model using maximum likelihood parameters on
trials involving cue A by experimental condition (£ 1 s.e.). Vertical lines
separate acquisition, extinction 1, extinction 2, and recovery test phases.
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P(Ry) is the average probability of an x-response used to parameterise
the binomial distribution for generating random deviates for the model
responses
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Table 3 Mean maximum likelihood parameters and £ for Rescorla—
Wagner model (standard error)

group L Aetx Aeye Bus Bus 8

c 93.232  0.214 0.463 0.415 0.299 6.051
(4.6) (0.024) (0.026) (0.026) (0.028) (0.398)

de 95.065 0.248 0.492 0.336 0.319 6.05
(4.289) (0.035) (0.026) (0.028) (0.034) (0.449)

se 88.324  0.132 0.521 0.365 0.426 5.231
(3.075) (0.019) (0.02) (0.023) (0.026) (0.301)

all 91.767  0.19 0.493 0.376 0.354 5.73
(2.308) (0.015) (0.014) (0.015) (0.017) (0.217)

Finally, the average number of x-responses (minimum =
0, maximum = 2) to cue G in the Summation test was actually
lower (0.409) in those who did not respond in the recovery
test than it was for those who did respond in the recovery test
(0.49), but the differences were not significant (W =2598.5, p
=.08). This suggests that increased context inhibition, which
would have reduced responding in the Summation test, was
not linked to greater responding in the recovery test. Sup-
porting this, a Kruskal-Wallis test comparing the number of
x-responses in the Summation test for the three groups pro-
duced x 2 =4.779 (df = 2, p = .09) — the experimental groups
did not differ in the Summation test phase.

Model evaluation

Average maximum likelihood parameter estimates and £
values are shown in Tables 3, 4, and 5 for the Rescorla—
Wagner model, the configural Rescorla—Wagner model, and
the Pearce configural model respectively for each experimen-
tal condition and overall. As can be seen in Tables 3-5 the
average L values were in the range of 84 to 95 indicating that
the average model probabilities for the observed responses
were in the range of 0.62 to 0.58 and the model fits tended to
be better (lower L) for the super-extinction group and worst
for the Rescorla—Wagner model but note that these overall
model assessments do not take into account model complex-
ity which is done in Section Akaike weight analysis below.

Simulations

Simulations of the experimental design shown in Table 1
were carried out for each model and participant using max-
imum likelihood parameters. Figures 2, 3, and 4 show the
observed responses for each experimental condition and
model alongside the model-predicted responses. Data are
shown for trials with cue A present and for outcome X
responses. Participant responses were coded 1 if an outcome
X response was observed and 0 otherwise and the plotted
data is averaged across participants. The model predicted
responses were generated from random Bernoulli deviates
obtained for each trial and participant (1 coding the model
predicting an X response and O otherwise) with the distribu-
tion for each trial parameterised by P (R,) for that trial with
plotted data showing the model predicted responses aver-
aged across participants. The figures also show the average
Bernoulli parameters used to obtain the deviates. As can be
seen, the models generally provide a good fit to the observed
data with major exceptions being in the case of the Rescorla—
Wagner model where there is a summation prediction on the
first extinction trial (none was seen) and where the predicted
recovery on the last trial was substantially lower than that
observed.

Akaike weight analysis

Table 6 provides the results of overall Akaike weight anal-
yses and shows that the Pearce configural model performed
best. Each of the models discussed above was evaluated in
addition to a simple baseline guessing model in which it
was assumed that for all trials and participants P(R,) =
P(Ry) = P(R,) = % We used the finite sample correction
form of Akaike’s information criterion (A/C.) as given in
Eq. 7. In Eq. 7 V is the number of parameters and n is the
number of data points over which £ was computed.

WV +1
A1c0=2£+2v+g (7
n—V-—1

The best model has the lowest A I C, value, and the column
AAIC, in Table 6 provides the AIC, difference between

Table4 Mean maximum

likelihood parameters and £ for group £ Gerx Geue Pus Brus Yefs g
configural Rescorla-Wagner c 90.655 0.226 0.254 0.287 0.204 0.277 7.014
model (standard error)
(4.634) (0.026) (0.023) (0.025) (0.025) (0.029) (0.382)
de 92.519 021 0.292 0.305 0.224 0.272 6.64
(4.398) (0.035) (0.03) (0.034) (0.034) (0.032) (0.483)
se 84.323 0.128 0.227 0.261 0.262 0.381 6.787
(3.189) (0.017) (0.019) (0.022) (0.03) (0.027) (0.349)
all 88.641 0.184 0.253 0.281 0.231 0316 6.833
(2.357) (0.015) (0.013) (0.015) (0.017) (0.017) (0.227)
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Table 5 Mean maximum likelihood parameters and £ for Pearce con-
figural model (standard error)

group L ®par Bus Brus d g

c 91.159 0531 0482 0309 2069  6.933
(4.522)  (0.024) (0.03)  (0.033) (0.15)  (0.469)

de 93.16 0578 0427 0261 2564  6.391
(4.433)  (0.028) (0.032) (0.034) (0.456) (0.513)

se 83.962 0.553  0.482 0316 257 6.111
(3.237)  (0.021) (0.026) (0.029) (0.16)  (0.369)

all 88.841 0.551 0468 03 2387 6478
(2347)  (0.014) (0.017) (0.018) (0.14)  (0.256)

the best model, the Pearce configural model, and each model
listed. AAIC, > 10 indicates that a model has ‘essentially
no support’ in the context of the current data and compet-
ing models (Burnham & Anderson, 2002). The probability
of each model being the best model in the context of the
current data and competing models is given by the Akaike
weights (wAIC.) in Table 6 computed as in Eq. 8. In Eq. 8
the AAIC, value for each model i is normalised by dividing
by the AAIC, values summed over the K models.

=LA AIC,
w; AIC, exp (5 AAIC.)

®)

K
> exp (_TlAkAICc)
k=1

The average £ was actually slightly smaller for the config-
ural Rescorla—Wagner model than for the Pearce configural
model, but the configural Rescorla—Wagner model was not
the best model overall due to the Akaike parameter penalty.

and wAIC, values were computed for each participant and
it was found that the Pearce configural model was the best
model in 107 cases, with 40 and 27 cases best fit by the con-
figural Rescorla—Wagner model and by the Rescorla—Wagner
model, respectively. In the extra-supplementary material (see
Footnote 1), we follow up on these individual differences by
classifying participants into those who were best described
by each of the models and plotting the observed responses
to cue A throughout the experiment, as shown in Figs. 2—
4, but split according to group defined by ‘best-model’. Of
interest is the fact that in a simplified experimental design
the Pearce configural model predicted recovery effects in the
super-extinction but not in the deepened-extinction condi-
tions and the fact that this pattern was only shown in the
Pearce-configural participants.

We directly follow Cavagnaro et al. (2016) to assess the
evidence that each of the models could be the best model for
all participants and find, in keeping with the foregoing, that
the Pearce configural model is the most likely to be the best
model for any randomly selected participant. The individual
Akaike weights give the probability that each model is best
for that individual and therefore the product of the weights
across participants gives the joint probability that a model is
best for all participants. In addition, the ratio of two Akaike
weights provides the weight of evidence in favour (or against)
of one model versus another. Putting this together Cavagnaro
et al. (2016) define the group Akaike information criterion
(gAIC) for model i as in Eq. 9. In Eq. 9 the denominator is
wAIC for the guessing model so the gAIC; is the weight of
evidence in favour of model i being best for all participants
(j = 1...n)in comparison to the guessing model.

" wAIC ij
Although the Pearce configural model was the best model gAIC; = l_[ DAICOT ©)]
. o w
overall, it was not the best model for every individual. AAIC, j=1 J
control deepened extinction super extinction
10 ‘obsor\'ml o) o4 ‘ubscrv(‘d o L 104 ‘ol)acr\'od o
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Fig.3 Average proportion of x-responses observed and expected for the
configural Rescorla—Wagner model using maximum likelihood param-
eters on trials involving cue A by experimental condition (£ 1 s.e.).
Vertical lines separate acquisition, extinction 1, extinction 2, and recov-
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to parameterise the binomial distribution for generating random devi-
ates for the model responses
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Fig. 4 Average proportion of x-responses observed and expected for
the Pearce configural model using maximum likelihood parameters on
trials involving cue A by experimental condition (£ 1 s.e.). Vertical lines
separate acquisition, extinction 1, extinction 2, and recovery test phases.

Furthermore, the Akaike weights can be used to param-
eterise a Dirichlet distribution with a parameter for each of
the i models computed from Eq. 10.

n
o =1 +ZWAICij
=

(10)

Once the distribution parameters are calculated, the prob-
ability that model i will be the best for a randomly chosen
participant is given by Eq. 11. In Eq. 11 we sum over the m
models to normalise «;.

-1

P(best;) = «; Zai (11)

i=1

Table 7 provides the results of the analyses described
above and shows that the Pearce configural model is twice
as likely (p = 0.554) to be the best model for a randomly
selected participant than the next best model (the configural
Rescorla—Wagner model, p = 0.28).

Sensitivity analysis

One-parameter-at-a-time sensitivity analyses were used to
assess the importance of the parameters in each model. Small

trial

P(Ry) is the average probability of an x-response used to parameterise
the binomial distribution for generating random deviates for the model
responses

changes were made to each parameter around their maximum
likelihood values and relative changes in the likelihood values
were computed (c.f. Saltelli et al., 2004; Wikipedia, 2024).
In all cases, the relative change values were small (relative
changes generally < 1% for changes of up to 5% in parameter
values). And, summarising for parameters common across
the models, in each case: g was the most important parameter,
Bus was more important than f~,s, and B~ was least or
equal least important.

Discussion

In the current experiment, we looked for differences between
three different extinction procedures. In each case, ABC
designs were used such that acquisition was carried out
in one context (A:), extinction was carried out in a sec-
ond context (B:), and a response recovery test was carried
out in a third context (C:). In one condition, a standard
single-cue extinction procedure was used, in another, super-
extinction was used, and in a third condition, deepened
extinction was used. Our first primary objective was to deter-
mine whether or not super and/or deepened extinction would
produce more complete extinction than standard single-cue
extinction. Although there was evidence that super-extinction

Table 6 Overall Akaike weight

analyses using corrected AIC Model Parameters 2L AIC, AAIC, wAIC,
guessing 0 68434.8 68434.8 35728.2 < 0.000001
Rescorla—Wagner 5 31903.3 33724.9 1018.3 < 0.000001
configural Rescorla—Wagner 6 30801.4 33007.7 301 < 0.000001
configural model 5 30895.8 32706.6 0 — 1

The column ‘Parameters’ gives the number of parameters estimated for each participant for each model. There
were 174 participants; therefore, for example, the number of parameters estimated for £gescoria—w agner Was
5 x 174 = 870. L computed over 179 trials for each of 174 participants — i.e. over 31,146 data points
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Table 7 Comparison of models on group AIC and probability of each
model being the best model for a randomly chosen participant

Model loggAIC P(best)
guessing 0 0.006
Rescorla—Wagner 17349.8 0.16
configural Rescorla—Wagner 17707.3 0.28
Pearce configural model 17858.9 0.554

produced faster extinction than single-cue extinction, as has
been observed previously, we did not see this translated
into any evidence of reduced recovery. In fact, we observed
the opposite: the cue treated with super-extinction produced
more responding in the recovery test. There was also no
evidence that the deepened-extinction treatment resulted in
reduced recovery as compared to the other groups, except
possibly in the case of the participants with behaviour best
described by the Pearce configural model as found in a post
hoc analysis reported in the supplementary materials (see
Footnote 1). In relation to our modelling exercise, we found
that the Pearce configural model provided the best overall
fit to the data after correcting for model complexity using
Akaike weight analysis.

The evidence that super-extinction and/or deepened-
extinction can result in more robust extinction is divided in
the current literature. Whereas animal studies (e.g. Leung et
al., 2012; Rescorla, 2000, for deepened and super-extinction,
respectively) have shown that compound extinction can be
more robust than cue alone extinction these results have not
been established in human studies. Both Culver et al. (2015)
and Coelho et al. (2015) found that deepened-extinction
reduced spontaneous recovery of skin conductance responses
to aversively trained and then extinguished CSs. In contrast,
as already noted in the introduction, Griffiths et al. (2017)
reported that super-extinction resulted in faster extinction
and found that compound extinction led to less extinction
than single-cue extinction. Other human studies have also
found effects opposite to those expected. Lovibond et al.
(2000) showed reduced extinction in the presence of an
inhibitor (protection-from-extinction) and in the presence of
an excitor. Similar results were also reported by Griffiths
and Westbrook (2012) and Holmes et al. (2014). The current
result adds to those and represents something of a paradox
— how can the presence of multiple excitatory cues, as used
in super-extinction, result in apparently faster extinction and
greater response recovery?

Faster extinction can be explained in terms of the greater
prediction error generated by presentation of excitatory com-
pounds and we have some evidence for additivity effects in
the summation effect that was seen at the start of extinc-
tion 2 in the deepened extinction group. A similar effect was
expected at the start of extinction 1 but not observed despite
our design including an additivity demonstration that should
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have helped to facilitate (e.g. De Houwer et al., 2002; Lovi-
bond et al., 2003). However, quite possibly the novelty of
entering context B: at the start of extinction 1 could have
served to mask that effect. So, given that additivity is driving
faster extinction, what then leads to greater response recov-
ery?

One possibility is that the extinction context acquires
more inhibitory strength in the super-extinction condition
than in the other conditions, and this could cause protec-
tion from extinction. However, we found no evidence for
greater context inhibition in the super-extinction condition
in our Summation test. However, in the case of the config-
ural Rescorla—Wagner model there are additional configural
cues that would acquire inhibitory strength during extinction
and these differentiate the control, deepened, and super-
extinction treatments; the effect of these cues would not
be detected in the Summation test. For the control and
deepened-extinction conditions during Extinction 1 our con-
figural Rescorla—Wagner model coded the A—Z trials with a
cue B: for the context, cue A, and a third configural cue w rep-
resenting the coincidence of B: and A. Both B: and w would
become inhibitory and protect A from extinction. However, in
the case of super-extinction, there are two additional config-
ural cues — x for the coincidence of B: and cue B, and y for the
coincidence of cues A and B (see Introduction for additional
explanation). The result of this is that, according to the config-
ural Rescorla—Wagner model, the super-extinction condition
will result in more protection from extinction than the control
and deepened-extinction conditions. The Pearce configural
model can also predict more recovery in the super-extinction
than in the control and deepened-extinction conditions. For
the Pearce model, responding in the recovery test is based
on generalisation between a novel, and hence associatively
neutral, C:A configuration and configurations A:A, B:A, &
B:AB.

Generalisation between C:A and excitatory A:A is equiv-
alent in each condition but generalisation between C:A
and inhibitory B:A & B:AB differs between groups. In the
super-extinction condition B:AB is the only inhibitory con-
figuration and there is less generalisation between B:AB and
C:A than between B:A and C:A so generalised inhibition has
the least impact in the super-extinction condition, hence most
response recovery is seen.

Although the simple Rescorla—Wagner model has pro-
vided a hugely important stimulus to enquiries into the
associative basis of human learning over many years (e.g.
Le Pelley & McLaren, 2003; Miller et al., 1995; Shanks
& Dickinson, 1987) it has long been acknowledged that it
is inadequate in a number of respects, for example it can-
not provide an account of learning that seems to require
some kind of configural stimulus representation, such as
negative-patterning or bi-conditional discrimination learning
(e.g. Glautier et al., 2016; Pearce, 1994; Shanks et al., 1998).
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With this background, the results of studies of multiple-
cue extinction procedures cited above, and the results and
analyses of the current investigation we conclude that super-
extinction, as understood in simple Rescorla—Wagner terms,
may well indeed result in faster extinction but there is a
risk that any apparent therapeutic benefit would not mate-
rialise due to an increased risk of response-recovery, which
is not anticipated by simple Rescorla—Wagner. Furthermore,
we were unable to find any benefit of deepened extinction
over simple single-cue extinction.

As well as making a comparison between different extinc-
tion procedures, the current investigation sought to provide
a test of three associative learning models in accounting
for the behaviour observed across our three experimen-
tal conditions. Two of these models were ‘configural’ and
these configural models outperformed the simple ‘elemental’
Rescorla—Wagner model. Furthermore, the Pearce config-
ural model outperformed the configural Rescorla—Wagner
model when model complexity was taken into account using
Akaike’s information criterion. It is important to take model
complexity into account during model evaluation because,
in general, more complex models tend to produce better
fits to the data at hand but they do not generalise as well
to new data sets (e.g. Myung, 2000). To carry out this
model evaluation, however, it was necessary to extend each
model to map from associative strength to response prob-
ability. In some situations, there are qualitatively different
predictions from associative models — e.g. adding a common
feature to a feature negative discrimination (A+/AB- trials
versus AC+/ABC- trials) is a more difficult discrimination
for the Pearce configural model but an easier discrimination
for the Rescorla—Wagner model (cf. Pearce, 1994; Pearce
& Redhead, 1993; Thorwart et al., 2010). However, in the
current paper, we did not have differential qualitative predic-
tions available to distinguish between all three models but
employing Eq. 6 to map from associative strength to response
probability allowed us to compare the models on their fitting
capacity.

All models provided generally good fits to the observed
data (Figs. 2 ...4). The averaged minimised £ ranging
between ~ 93 and 84 (Tables 3 ...5) which with 179 tri-
als equates to average model probability for the observed
response on each trial ranging between 0.59 and 0.62. Over-
all the Pearce configural model was a clear winner in this
model fitting exercise. Unsurprisingly, the Pearce configural
model was also the winner at the level of individual par-
ticipant fits. The probability of the Pearce configural being
the best model for a randomly chosen participant was 0.55
— in comparison, for the second-best model, the configural
Rescorla—Wagner model, the probability of being the best
model for a randomly chosen participant was 0.28.

Until now, we have focused on trying to explain the pat-
tern of results in terms of three formal associative models,

but it is appropriate to consider an alternative view about
the underlying mechanisms for recovery effects. Rosas and
Callejas-Aguilera (2006), see also Bouton (1997) and Nelson
(2002), argued that during ABC/ABA recovery experiments,
the participants will pay attention to and encode the context
during the extinction phase so that extinction effects will
become context dependent. Their explanation is based upon
the idea that when there is a prediction error, it increases
context processing. In relation to the current studies, the
prediction error is maximal in the super-extinction condi-
tion and therefore extinction in this condition would become
more context dependent than in the other conditions. This
is an appealing explanation but speculative in the case of
this specific study because we did not measure attention.
However, recent work by Nelson et al. (2022) suggests a
way to take this idea forward in future studies. Using eye-
tracking apparatus, Nelson et al. classified their participants
into sign or goal trackers based on the location (CS or US
location, respectively) of their visual attention during learn-
ing. Subsequently, they found that a context shift reduced
latent inhibition in sign-trackers, whereas the opposite was
found in goal-trackers.

Before concluding, we consider two design issues that
may serve to limit the inferences that can be drawn from
this study. First, we relied on the recovery test to assess the
associative impact of our extinction procedures on the target
cue A. We chose to use an ABC design for this purpose
because context C would be associatively neutral at the time
of the test. One possible drawback of that design decision
is that the novelty of the context may have impacted the
sensitivity of this recovery test — and we saw some indication
that novelty effects could mask summation effects on the first
trial of extinction 1. However, in the event, we saw clear group
differences on this test where we would expect any novelty
effects to be equated across groups.

Second, and possibly more consequential, relates to the
use of single-cue extinction in the control condition and
during extinction 1 for the deepened-extinction group. This
raises the possibility that any difference between AB com-
pound extinction and single-cue A extinction is not mediated
by the associative strength of B and, in the case of the con-
trol group versus the super and deepened-extinction groups,
there is a difference in generalisation decrement between
the end of extinction 2 and the recovery test. In this experi-
ment, therefore, we have to acknowledge that the enhanced
reduction in responding during extinction 1 may not be
an associative effect, but we note that in many reported
studies, additional controls are added in later experiments,
which confirm that initial results are not due to some non-
associative effects. For example in Rescorla’s (2006) study
the initial experiments contrasted single and compound cue
extinction (e.g. Experiment 1: A+, X+ acquisition; A-, X-
extinction 1; followed by AX- or X- extinction 2) and addi-
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tional controls confirming the specific associative effect of
the compound extinction were added in Experiment 5 (see
also Leung et al., 2012, Experiment 1 ‘v’ Experiment 2 for
another example). With respect to the generalisation decre-
ment between the end of extinction 2 and the recovery test
it is true that using an AD- control condition would have
ensured matched similarity between the stimuli presented at
the end of extinction 2 and the test across groups but our
objectives included practical as well as theoretical consider-
ations. From the results of the experiment as conducted we
can say that there is no evidence for an advantage in pre-
senting cue compounds over single cues as is often done in
cue-exposure treatments (e.g. Drummond & Glautier, 1994;
Shiban et al., 2015) and, importantly, there is some evidence
that compound extinction may actually worsen recovery and
this is an important point. In summary, we found no evi-
dence that compound extinction either by super-extinction or
by deepened-extinction provided any advantage in terms of
reduced response recovery than simple single-cue extinction.
In fact, super-extinction actually increased response recovery
and increased the initial rate of extinction. However, we did
not find any evidence that a protection-from-extinction mech-
anism played a part in enhanced response recovery. We also
found that our two configural models performed better than
the simple Rescorla—Wagner model but the Pearce configural
model in turn outperformed the configural Rescorla—Wagner
model. Sensitivity analyses indicated that for all models, the
sensitivity parameter g from the SoftMax function (Eq. 6)
was the most important — small changes in the value of g
resulted in large changes in the model fit likelihood. Thus,
the mapping of associative strength to response probability
is crucial in testing and development of associative models.
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